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Abstract: Given two graphs G and H, the mapping of f : V(G)→ V(H) is called a graph homomor-
phism from G to H if it maps the adjacent vertices of G to the adjacent vertices of H. For the graph G,
a subset of vertices is called a dissociation set of G if it induces a subgraph of G containing no paths
of order three, i.e., a subgraph of a maximum degree, which is at most one. Graph homomorphisms
and dissociation sets are two generalizations of the concept of independent sets. In this paper, by
utilizing an entropy approach, we provide upper bounds on the number of graph homomorphisms
from the bipartite graph G to the graph H and the number of dissociation sets in a bipartite graph G.
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1. Introduction

Throughout this paper, we consider only undirected and labeled graphs which contain
no multiple edges. Let G be a simple graph. For the vertex v ∈ V(G), let N(v) = {u|uv ∈
E(G)} and the degree d(v) of v be the size of N(v). The graph G is regular if all vertices
have the same degree; if this degree is d, then G is d-regular. A subset of the vertices of G is
called an independent set if it induces a subgraph of G containing no edges. The empty set
is also thought to be an independent set of G. Let

I(G) = {I|I is an independent set of G},

and
i(G) = |I(G)|.

If the vertex set V(G) of G can be partitioned into two nonempty independent sets
L and R, so that L ∪ R = V(G) and L ∩ R = ∅, then G is a bipartite graph and is denoted
by G[L, R]. Furthermore, if all vertices in L or R have the same degree, then G is called a
half-regular bipartite graph. For a positive integer k, the disjoint union of the k copies of G is
denoted by k · G.

In the last decades, the problem of upper bounding the number of discrete structures
satisfying specific properties has received considerable attention. In particular, there have
been a lot of results on upper bounding the number of independent sets in a given class of
graphs. Using an entropy approach, Kahn [1] obtained the greatest number of independent
sets in regular bipartite graphs. Zhao [2] extended Kahn’s result to all regular graphs.

Theorem 1. [1,2] If G is an n-vertex d-regular graph, then

i(G) ≤ (2d+1 − 1)
n
2d ,

with equality if and only if n is divisible by 2d and G ∼= n
2d · Kd,d.
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The result in Theorem 1 can be rephrased as: if G is a d-regular graph, then

i(G) ≤ ∏
uv∈E(G)

(2d(u) + 2d(v) − 1)1/(d(u)d(v)) = ∏
uv∈E(G)

(i(Kd(u), d(v)))
1/(d(u)d(v)). (1)

Kahn [1] conjectured that the inequality (1) also holds for any graph G that contains no
isolated vertices. In 2019, Sah et al. [3] solved the conjecture.

Theorem 2. [3] If G is a graph that contains no isolated vertices, then

i(G) ≤ ∏
uv∈E(G)

(2d(u) + 2d(v) − 1)1/(d(u)d(v)) = ∏
uv∈E(G)

(i(Kd(u), d(v)))
1/(d(u)d(v)).

Recently, Sason [4] presented an entropy approach proof of Theorem 2 under the
assumption that the graph is a half-bipartite graph.

For the extremal problem of this kind, other special graph substructures, such as
maximal (maximum) independent sets [5–7], matchings [8], minimal dominating sets [9],
maximum dissociation sets [10], etc., were also studied by the researchers.

In this paper, we focus on two generalizations of the concept of independent sets. The
first is graph homomorphism. Given two graphs G and H, the mapping f : V(G)→ V(H)
is called a graph homomorphism from G to H if it maps the adjacent vertices of G to the
adjacent vertices of H. Let

Hom(G, H) = { f : V(G)→ V(H) : f (u) f (v) ∈ E(H) ∀uv ∈ E(G)},

and
hom(G, H) = |Hom(G, H)|.

The graph G is called the source graph and is usually simple; the graph H is called the
target graph and it is allowed to have loops. For a simple graph G, when H is a graph with
V(H) = {v1, v2} and E(H) = {v1v1, v1v2}, for any f ∈ Hom(G, H), the vertex set

{u : u ∈ V(G) and f (u) = v2}

is an independent set of G, and it is easy to see that there exists a bijection between the
elements of Hom(G, H) and the independent sets of G. Galvin and Tetali [11] extended the
result in Theorem 1 to graph homomorphisms as follows.

Theorem 3. [11] Let G be a simple d-regular bipartite graph. Then, for any graph H,

hom(G, H) ≤ [hom(Kd, d, H)]|V(G)|/(2d) = ∏
uv∈E(G)

[hom(Kd, d, H)]1/d2
.

It can be shown that the hypothesis in Theorem 3 that G is a bipartite graph cannot be
discarded [12]. Galvin [13] posed the following conjecture that extends Theorem 3.

Conjecture 1. [13] Let G be a simple bipartite graph that contains no isolated vertices. Then, for
any graph H,

hom(G, H) ≤ ∏
uv∈E(G)

[hom(Kd(u), d(v), H)]1/(d(u)d(v)).

The first contribution of our work is to prove that Conjecture 1 holds for simple half-
regular bipartite graphs. Let G be a simple bipartite graph that contains no isolated vertices.
We obtain an upper bound on hom(G, H) for any graph H using an entropy approach.



Entropy 2023, 25, 163 3 of 11

Theorem 4. Let G[L, R] be a simple bipartite graph that contains no isolated vertices. For any
vertex v ∈ R, let δv := minu∈N(v){d(u)}. Then, for any graph H,

hom(G, H) ≤ ∏
uv∈E(G),u∈L,v∈R

[hom(Kδv , d(v), H)]
1

δvd(v) .

The following corollary can be easily deduced from Theorem 4 and implies that
Conjecture 1 holds for simple half-regular bipartite graphs.

Corollary 1. Let G be a simple half-regular bipartite graph that contains no isolated vertices. Then,
for any graph H,

hom(G, H) ≤ ∏
uv∈E(G)

[hom(Kd(u), d(v), H)]1/(d(u)d(v)).

The second generalization of the concept of independent sets considered in this paper
is dissociation sets. Let G be a simple graph. A dissociation set of G is a set of vertices
which induces a subgraph containing no paths of order 3, i.e., a subgraph of a maximum
degree which is at most one. Clearly, an independent set of G is also a dissociation set of G.
Let

D(G) = {D|D is a dissociatio set of G},

and
Φ(G) = |D(G)|.

In the early 1980s, Yannakakis [14] introduced the concept of dissociation sets and
proved that the problem of finding a dissociation set of the largest possible size in a given
graph is NP-complete in bipartite graphs. The problem is also NP-complete in planar
graphs of a maximum degree which is at most four [15].

The second contribution of our work is to give an upper bound on Φ(G) for the simple
bipartite graph G by the entropy approach.

Theorem 5. Let G[L, R] be a simple bipartite graph that contains no isolated vertices. For any
vertex v ∈ R, let δv := minu∈N(v){d(u)}. We have

Φ(G) ≤ ∏
uv∈E(G),u∈L,v∈R

(
(d(v) + 1) · 2δv + 2d(v) − d(v)− 1

) 1
δvd(v) .

The following corollary can be easily obtained from Theorem 5.

Corollary 2. Let G be an n-vertex simple d-regular bipartite graph. Then,

Φ(G) ≤ ((d + 2) · 2d − d− 1)
n
2d .

The rest of this paper is organized as follows. In Section 2, we introduce some of the
basic concepts and notations of entropy, as well as several important preliminary lemmas.
In Section 3, the proofs of Theorems 4 and 5 are presented. The upper bound given in
Corollary 2 is not tight. When d = 2, a simple two-regular bipartite graph is a disjoint
union of the even cycles. In Section 4, we give a tight upper bound on Φ(G) for a simple
two-regular graph G. In Section 5, we summarizes our work.

2. Entropy

All the preliminary lemmas introduced in this section and their proofs can be found
in [16]. Hereinafter, let X, Y, etc., be discrete random variables. We write p(x) and p(x | y)
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to denote Pr[X = x] and Pr[X = x | Y = y], respectively. The entropy of the random
variable X is defined by

H(X) = E[log
1

p(x)
] = ∑

x
p(x) log

1
p(x)

,

where the logarithm is base two and we assume that 0 log 1
0 = 0. It is useful for us to

understand entropy H(X) as a measure of the degree of randomness of X.

Lemma 1. If X takes its values on a finite set X , then

H(X) ≤ log |X |,

with equality if and only if X is uniform on X .

The conditional entropy H(Y | X) of Y given X and the joint entropy H(X, Y) are
defined by

H(Y | X) = ∑
x

p(x)∑
y

p(y | x) log
1

p(y | x)
= ∑

x
p(x)H(Y | X = x),

and
H(X, Y) = ∑

x,y
p(x, y) log

1
p(x, y)

,

respectively. If Y is a function of X, then we say X determines Y.

Lemma 2. (Dropping rule) (1) H(Y | X, Z) ≤ H(Y | X) ≤ H(Y);
(2) If X determines Z, then H(Y | X) ≤ H(Y | Z).

Lemma 3. (Chain rule)
H(X, Y) = H(X) + H(Y | X).

as a general rule, for a random vector X = (X1, X2, · · · , Xn),

H(X) = H(X1) + H(X2 | X1) + · · ·+ H(Xn | X1, · · · , Xn−1).

Lemma 4. (Subadditivity) For a random vector (X1, X2, · · · , Xn),

H(X1, X2, · · · , Xn) ≤
n

∑
i=1

H(Xi),

and

H(X1, X2, · · · , Xn | Y) ≤
n

∑
i=1

H(Xi | Y).

3. Proofs of Theorems 4 and 5

Proof of Theorem 4. We first introduce a useful expression for hom(Km,n, H) that was
given in [11]. Consider a complete bipartite graph Km,n with bipartition (U, V). For
A ⊆ V(H), let

T(V, A) = { f : V → A : f surjective}

and
C(A) = {w ∈ V(H) : wz ∈ E(H) ∀z ∈ A}.

Then,
hom(Km,n, H) = ∑

A⊆V(H)

|T(V, A)||C(A)|m. (2)
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Let ` := |L| and r := |R|. We assign the labels u1, u2, · · · , u` to the vertices of L and
the labels v1, v2, · · · , vr to the vertices of R.

Choose a graph homomorphism f uniformly at random from Hom(G, H). For S ⊆
V(G), we write fS for the restriction of f to S. When S = {v}, we write fv for f{v}. For
v ∈ V(G) and A ⊆ V(H), let Mv := { f (u), u ∈ N(v)}, and mv(A) := Pr[Mv = A]. Clearly,
for every vertex v ∈ V(G),

∑
A⊆V(H)

mv(A) = 1. (3)

By Lemmas 1 and 3, we have

H( f ) = log hom(G, H) (4)

and
H( f ) = H( fL) + H( fR | fL). (5)

We will prove that

H( fL) ≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

H( fN(v)). (6)

By Lemma 3, we have

H( fL) = H( fu1) + H( fu2 | fu1) + · · ·+ H( fu`
| fu1 , · · · , fu`−1)

=
`

∑
i=1

H( fui | fu1 , · · · , fui−1).

Suppose that for a vertex v ∈ R, N(v) = {ui1 , · · · , uik}, where 1 ≤ i1 < · · · < ik ≤ `.
Then, by Lemmas 2 and 3,

H( fN(v)) = H( fui1
) + H( fui2

| fui1
) + · · ·+ H( fuik

| fui1
, fui2

, · · · , fui(k−1)
)

≥ H( fui1
| fu1 , · · · , fui1−1) + H( fui2

| fu1 , · · · , fui2−1) + · · ·

+ H( fuik
| fu1 , · · · , fuik−1).

Recall that for a vertex v ∈ R, δv = minu∈N(v){d(u)}. For any vertex u ∈ L,

∑
v∈N(u)

1
δv
≥ ∑

v∈N(u)

1
d(u)

= 1.

Thus, we have

∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

H( fN(v)) = ∑
v∈R

d(v) · 1
δv

1
d(v)

H( fN(v)) = ∑
v∈R

1
δv

H( fN(v))

≥
`

∑
i=1

∑
v∈N(ui)

1
δv

H( fui | fu1 , · · · , fui−1)

≥
`

∑
i=1

H( fui | fu1 , · · · , fui−1)

= H( fL).
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Now we have proved that the inequality (6) holds. Furthermore, since H( fN(v)) ≤
H( fN(v), Mv) = H(Mv) + H( fN(v) | Mv),

H( fL) ≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

H( fN(v)) ≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

[H(Mv) + H( fN(v) | Mv)]. (7)

Next, consider H( fR | fL).

H( fR | fL) ≤ ∑
v∈R

H( fv | fL) (8)

= ∑
u∈L

∑
v∈N(u)

1
d(v)

H( fv | fL) (9)

≤ ∑
u∈L

∑
v∈N(u)

1
d(v)

H( fv | fN(v)) (10)

≤ ∑
u∈L

∑
v∈N(u)

1
d(v)

H( fv | Mv), (11)

where the inequality (8) follows from Lemma 4, the inequality (10) follows from Lemma 2
and the fact that for any vertex v ∈ R, N(v) ⊆ L, and the inequality (11) follows from the
fact that fN(v) determines Mv.

Combining (5)–(11), we have

H( f ) = H( fL) + H( fR | fL)

≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

[H(Mv) + H( fN(v) | Mv)] + ∑
u∈L

∑
v∈N(u)

1
d(v)

H( fv | Mv)

= ∑
u∈L

∑
v∈N(u)

1
δvd(v)

[H(Mv) + H( fN(v) | Mv) + δv H( fv | Mv)].

= ∑
u∈L

∑
v∈N(u)

1
δvd(v) ∑

A⊆V(H)

[mv(A) log
1

mv(A)
+ mv(A)H( fN(v) | Mv = A)+

+ δvmv(A)H( fv | Mv = A)].

(12)

By Lemma 1,
H( fN(v) | Mv = A) ≤ log |T(N(v), A)|, (13)

and
H( fv | Mv = A) ≤ log |C(A)|. (14)

Combining (12)–(14), we have

H( f ) ≤ ∑
u∈L

∑
v∈N(u)

1
δvd(v) ∑

A⊆V(H)

[mv(A) log
1

mv(A)
+ mv(A) log |T(N(v), A)|

+ δvmv(A) log |C(A)|]

= ∑
u∈L

∑
v∈N(u)

1
δvd(v) ∑

A⊆V(H)

mv(A) log
|T(N(v), A)||C(A)|δv

mv(A)

≤ ∑
u∈L

∑
v∈N(u)

1
δvd(v)

log ∑
A⊆V(H)

|T(N(v), A)||CH(A)|δv (15)

= ∑
u∈L

∑
v∈N(u)

1
δvd(v)

log hom(Kδv , d(v), H), (16)
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where the inequality (15) follows from the concavity of the function f (x) = log x and the
equality (3), the equality (16) follows from the equality (2).

It follows from (4) and (16) that

hom(G, H) ≤ ∏
u∈L

∏
v∈N(u)

hom(Kδv ,d(v), H)
1

δvd(v)

= ∏
(u,v)∈E(G),u∈L,v∈R

hom(Kδv , d(v), H)
1

δvd(v) .

We complete the proof of Theorem 4.

Proof of Theorem 5. Choose a dissociation set S uniformly at random from D(G). For
every vertex u ∈ L, we define the random variable Xu by:

Xu =

{
1, if u ∈ S,
0, if u /∈ S.

For every vertex v ∈ R, we define the random variable Yv by:

Yv =

{
1, if v ∈ S,
0, if v /∈ S.

Let X := (Xu1 , ..., Xu`
) and Y := (Yv1 , ..., Yvr ). By Lemmas 1 and 3, we have

H(X, Y) = log Φ(G), (17)

and
H(X, Y) = H(X) + H(Y | X). (18)

Let v be a vertex of R. We denote by XN(v) a random vector (Xu)u∈N(v). Let Qv :=
1{ ∑

u∈N(v)
Xu ≤ 1} and qv := Pr[Qv = 1], where 1{E} is the indicator of an random event E.

Similarly, we can prove that

H(X) ≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

H(XN(v)). (19)

Furthermore, since H(XN(v)) ≤ H(XN(v), Qv) = H(Qv) + H(XN(v) | Qv),

H(X) ≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

H(XN(v)) ≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

[H(Qv) + H(XN(v) | Qv)]. (20)

Next, consider H(Y | X).

H(Y | X) ≤ ∑
v∈R

H(Yv | X) (21)

= ∑
u∈L

∑
v∈N(u)

1
d(v)

H(Yv | X) (22)

≤ ∑
u∈L

∑
v∈N(u)

1
d(v)

H(Yv | XN(v)) (23)

≤ ∑
u∈L

∑
v∈N(u)

1
d(v)

H(Yv | Qv), (24)
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where the inequality (21) follows from Lemma 4, the inequality (23) follows from Lemma 2
and the fact that for any vertex v ∈ R, N(v) ⊆ L, and the inequality (24) follows from the
fact that XN(v) determines Qv.

Combining (18)–(24), we have

H(X, Y) = H(X) + H(Y | X)

≤ ∑
u∈L

∑
v∈N(u)

1
δv

1
d(v)

[H(Qv) + H(XN(v) | Qv)] + ∑
u∈L

∑
v∈N(u)

1
d(v)

H(Yv | Qv)

= ∑
u∈L

∑
v∈N(u)

1
δvd(v)

[H(Qv) + H(XN(v) | Qv) + δv H(Yv | Qv)].

(25)

For the random variable Qv,

H(Qv) = qv log
1
qv

+ (1− qv) log
1

1− qv
. (26)

Consider the conditional entropy H(XN(v) | Qv). If Qv = 1, then Xu = 1 for at most
one vertex u in N(v), so by Lemma 1,

H(XN(v) | Qv = 1) ≤ log(d(v) + 1).

If Qv = 0, then Xu = 1 for at least two vertices u in N(v), so by Lemma 1,

H(XN(v) | Qv = 0) ≤ log(2d(v) − d(v)− 1).

Then,

H(XN(v) | Qv) = qvH(XN(v) | Qv = 1) + (1− qv)H(XN(v) | Qv = 0)

≤ qv log(d(v) + 1) + (1− qv) log(2d(v) − d(v)− 1).
(27)

Consider the conditional entropy H(Yv | Qv). If Qv = 1, then Yv may be 0 or 1. If
Qv = 0, then Yv must be 0. Thus,

H(Yv | Qv) = qvH(Yv | Qv = 1) + (1− qv)H(Yv | Qv = 0)

≤ qv log 2.
(28)

It follows from (25)–(28) that

H(X, Y) ≤ ∑
u∈L

∑
v∈N(u)

1
δvd(v)

[qv log
1
qv

+ (1− qv) log
1

1− qv

+ qv log(d(v) + 1) + (1− qv) log(2d(v) − d(v)− 1) + δvqv log 2]

= ∑
u∈L

∑
v∈N(u)

1
δvd(v)

[qv log
(d(v) + 1)2δv

qv
+ (1− qv) log

2d(v) − d(v)− 1
1− qv

]

≤ ∑
u∈L

∑
v∈N(u)

1
δvd(v)

log[(d(v) + 1)2δv + 2d(v) − d(v)− 1], (29)

where the inequality (29) follows from the concavity of the function f (x) = log x.
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It follows from (17) and (29) that

Φ(G) ≤ ∏
u∈L

∏
v∈N(u)

[(d(v) + 1)2δv + 2d(v) − d(v)− 1]
1

δvd(v)

= ∏
(u,v)∈E(G),u∈L,v∈R

[(d(v) + 1)2δv + 2d(v) − d(v)− 1]
1

δvd(v) .

We complete the proof of Theorem 5.

4. Further Remarks

By Corollary 2, if G is an n-vertex simple two-regular bipartite graph, then

Φ(G) ≤ 13
n
4 ≈ 1.8988n.

In this section, we give a tight upper bound on Φ(G) for a simple two-regular graph G.

Theorem 6. If G is an n-vertex simple two-regular bipartite graph, then

Φ(G) ≤ 19
n
6 ≈ 1.8415n,

with equality if and only if n is divisible by six and G ∼= n
6 · C6.

Proof. A simple two-regular bipartite graph is a disjoint union of even cycles. It suffices to
prove that if n ≥ 4 and n 6= 6, then

Φ(Cn) < Φ(C6)
n
6 = 19

n
6 ≈ 1.8415n.

Claim 1. When n ≥ 3, Φ(Pn) ≤ 1.14× 1.84n, where Pn is a path on n vertices.

Proof of Claim 1. Φ(P3) = 7, Φ(P4) = 13, Φ(P5) = 24. It is easy to verify that when
3 ≤ n ≤ 5, Φ(Pn) ≤ 1.14× 1.84n. When n ≥ 6,

Φ(Pn) =Φ(Pn−1) + Φ(Pn−2) + Φ(Pn−3)

≤1.14× 1.84n−3(1.842 + 1.84 + 1)

≤1.14× 1.84n.

Claim 2. When n ≥ 7, Φ(Cn) ≤ 1.0015× 1.84n.

Proof of Claim 2.

Φ(Cn) =Φ(Pn−1) + Φ(Pn−3) + 2Φ(Pn−4)

≤1.14× 1.84n−1 + 1.14× 1.84n−3 + 2× 1.14× 1.84n−4

=
1.14× (1, 843 + 1.84 + 2)

1.844 × 1.84n

≤1.0015× 1.84n.

By a direct calculation, Φ(C4)
1
4 = 11

1
4 ≈ 1.8212 and Φ(C6)

1
6 = 19

1
6 ≈ 1.8415. When

n ≥ 8, Φ(G)
1
n ≤ (1.0015× 1.84n)

1
n ≤ 1.0015

1
8 × 1.84 ≈ 1.8404. It follows that if n ≥ 4 and

n 6= 6, then Φ(Cn) < 19
n
6 ≈ 1.8415n.

We complete the proof of Theorem 6.
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Theorem 7. If G is an n-vertex simple two-regular graph, then

Φ(G) ≤ 7
n
3 ≈ 1.9130n,

with equality if and only if n is divisible by three and G ∼= n
3 · C3.

Proof. It suffices to prove that if n ≥ 4, then

Φ(Cn)
1
n < Φ(C3)

1
3 = 7

1
3 ≈ 1.9130.

Φ(C4)
1
4 = 11

1
4 ≈ 1.8212, Φ(C5)

1
5 = 21

1
5 ≈ 1.8384, Φ(C6)

1
6 = 19

1
6 ≈ 1.8415. By the

proof of Theorem 6, when n ≥ 7, Φ(G)
1
n ≤ (1.0015× 1.84n)

1
n ≤ 1.0015

1
7 × 1.84 ≈ 1.8404.

We complete the proof of Theorem 7.

5. Conclusions

The study of independent sets has had a central place in graph theory. What is
the greatest number of independent sets in an n-vertex d-regular graph? The problem
was initially posed by a mathematician, Andrew Granville, who found applications in
combinatorial number theory and combinatorial group theory [17]. Since then, the study
of counting independent sets in graphs has been a hot topic in graph theory. Some other
applications of the study of this kind was provided in [18].

Graph homomorphisms generalize some of the basic concepts of graph theory, for
example, independent sets, graph colorings, etc. One may wonder whether many results
on counting independent sets can generalize to graph homomorphisms. A well-known
conjecture (Conjecture 1) was posed. In this paper, we partially solve the conjecture and
show that the conjecture holds for half-regular bipartite graphs. The following problem
could generate future research directions in the study of counting graph homomorphisms.

Problem 1. Prove or disprove Conjecture 1.

We also consider another important generalization of the concept of independent sets,
dissociation sets. The study of dissociation sets has applications in networking security,
wireless sensor networks, scheduling and telecommunications [19,20]. In this paper, we
focus on the problem of counting dissociation sets in bipartite graphs. But, the upper
bounds given in Theorem 5 and Corollary 2 are not tight. Much more work needs to be
done in the future.

Problem 2. For d ≥ 3, find a tight upper bound on the number of dissociation sets in an n-vertex
d-regular graph.

Another contribution of our work is the simplification of Sason’s [4] entropy approach
that can deal with irregular bipartite graphs. But it’s a pity that the entropy approach
presented in this paper is not suitable for general graphs. A future work needs to be done
that extends the entropy approach to deal with general graphs.

Author Contributions: Conceptualization, methodology, and validation, Z.W., J.T. and R.L.; formal
analysis and investigation, Z.W. and J.T.; writing—original draft preparation, Z.W.; writing—review
and editing, J.T. and R.L.; supervision, J.T. and R.L. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was funded by Research Foundation for Advanced Talents of Beijing Technol-
ogy and Business University (No. 19008022331).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Entropy 2023, 25, 163 11 of 11

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kahn, J. An entropy approach to the hard-core model on bipartite graphs. Comb. Probab. Comput. 2001, 10, 219–237. [CrossRef]
2. Zhao, Y. The number of independent sets in a regular graph. Comb. Probab. Comput. 2010, 19, 315–320. [CrossRef]
3. Sah, A.; Sawhney, M.; Stoner, D.; Zhao, Y. The number of independent sets in an irregular graph. J. Comb. Theory Ser. B 2019, 138,

172–195. [CrossRef]
4. Sason, I. A Generalized Information-Theoretic Approach for Bounding the Number of Independent Sets in Bipartite Graphs.

Entropy 2021, 23, 270. [CrossRef] [PubMed]
5. Mohr, E.; Rautenbach, D. On the maximum number of maximum independent sets in connected graphs. J. Graph Theory 2021, 96,

510–521. [CrossRef]
6. Moon, J.W.; Moser, L. On cliques in graphs. Isr. J. Math. 1965, 3, 23–28. [CrossRef]
7. Sagan, B.E.; Vatter, V.R. Maximal and maximum independent sets in graphs with at most r cycles. J. Graph Theory 2006, 53,

283–314. [CrossRef]
8. Davies, E.; Jenssen, M.; Perkins, W.; Roberts, B. Independent sets, matchings, and occupancy fractions. J. Lond. Math. Soc. 2017,

96, 47–66. [CrossRef]
9. Alvarado, J.D.; Dantas, S.; Mohr, E.; Rautenbach, D. On the maximum number of minimum dominating sets in forests. Discrete

Math. 2019, 342, 934–942. [CrossRef]
10. Tu, J.; Zhang, Z.; Shi, Y. The maximum number of maximum dissociation sets in trees. J. Graph Theory 2021, 96, 472–489. [CrossRef]
11. Galvin, D.; Tetali, P. On weighted graph homomorphisms. Discrete Math. Theor. Comput. Sci. 2004, 63, 97–104.
12. Zhao, Y. Independent Sets and Graph Homomorphisms. Amer. Math. Monthly 2017, 124, 827–843. [CrossRef]
13. Galvin, D. Bounding the partition function of spin-systems. Electron. J. Combin. 2006, 13, 11. [CrossRef] [PubMed]
14. Yannakakis, M. Node-deletion problems on bipartite graphs. SIAM J. Comput. 1981, 10, 310–327. [CrossRef]
15. Orlovich, Y.; Dolgui, A.; Finke, G.; Gordon, V.; Werner, F. The complexity of dissociation set problems in graphs. Discrete Appl.

Math. 2011, 159, 1352–1366. [CrossRef]
16. Galvin, D. Three tutorial lectures on entropy and counting. In Proceedings of the 1st Lake Michigan Workshop on Combinatorics

and Graph Theory, Kalamazoo, MI, USA, 15–16 March 2014.
17. Alon, N. Independent sets in regular graphs and sum-free subsets of finite groups. Isr. J. Math. 1991, 73, 247–256. [CrossRef]
18. Samotij, W. Counting independent sets in graphs. Eur. J. Comb. 2015, 48, 5–18. [CrossRef]
19. Acharya, H.B.; Choi, T.; Bazzi, R.A.; Gouda, M.G. The k-observer problem in computer networks. Netw. Sci. 2012, 1, 15–22.

[CrossRef]
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