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Abstract: The electroencephalogram (EEG) signal is a key parameter used to identify the different
sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several
sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming
process. Automatic sleep staging algorithms offer a practical and cost-effective alternative to manual
sleep staging. However, due to the limited availability of EEG sleep datasets, the reliability of existing
sleep staging algorithms is questionable. Furthermore, most reported experimental results have
been obtained using adult EEG signals; the effectiveness of these algorithms using pediatric EEGs
is unknown. In this paper, we conduct an intensive study of two state-of-the-art single-channel
EEG-based sleep staging algorithms, namely DeepSleepNet and AttnSleep, using a recently released
large-scale sleep dataset collected from 3984 patients, most of whom are children. The paper studies
how the performance of these sleep staging algorithms varies when applied on different EEG channels
and across different age groups. Furthermore, all results were analyzed within individual sleep stages
to understand how each stage is affected by the choice of EEG channel and the participants’ age. The
study concluded that the selection of the channel is crucial for the accuracy of the single-channel
EEG-based automatic sleep staging methods. For instance, channels O1-M2 and O2-M1 performed
consistently worse than other channels for both algorithms and through all age groups. The study
also revealed the challenges in the automatic sleep staging of newborns and infants (1–52 weeks).

Keywords: sleep stage scoring; pediatric; EEG; electroencephalogram; deep learning

1. Introduction

Humans spend almost one-third of their lifetime sleeping. Healthy sleep is vital for
human physical and mental health. Sleep disorders, such as insomnia, apnea, and parasom-
nias, affect the quality of sleep, causing medical conditions, such as depression, difficulty
concentrating, and weight gain [1]. Delays in the treatment of some sleep disorders can
lead to more serious diseases, such as heart disease, diabetes, and memory loss [2–4].
Polysomnography, or a sleep study, is commonly used to diagnose sleep disorders. A
polysomnography includes various biosignals measured during eight hours of overnight
sleep [5]. Electroencephalogram (EEG), which measures the brain’s electrical activity, is the
main biosignal measure used in sleep staging, the time-intensive step of identifying the five
different stages in the EEG signal. Sleep stage scoring is typically performed by dividing
the EEG signal into epochs and assigning each epoch to one of the five sleep stages defined
by the American Academy of Sleep Medicine (AASM) [6], namely wake stage (W), rapid
eye movement stage (REM), and non-random eye movement stages (N1, N2, and N3). N3
is what is known as the deep sleep stage. The amount of sleep spent in the deep sleep stage
is a key indicator of healthy sleep.
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Manual sleep stage scoring is costly and a resource- and time-consuming process.
Therefore, there is an increased interest in automatic sleep stage scoring techniques to
support experts in their diagnosis. Several approaches have been proposed to automatically
classify each epoch to one of the five sleep stages, including shallow classifiers, such as
support vector machine [7], random forest [8], decision tree [9], as well as deep learning
techniques [10], such as convolutional neural network (CNN) [11] and long short-term
memory (LSTM) [12,13]. Most of the recent automatic sleep stage scoring methods rely
on a signal from a single EEG channel [12–19]. A typical EEG-based sleep stage scoring
method consists of pre-processing and feature extraction modules followed by the classifier
module. However, recent end-to-end deep learning methods use the raw EEG signal as
an input to a trainable front-end feature extraction network. The most commonly used
architecture for the feature extraction network is the multi-resolution convolutional neural
networks (CNNs) [18,20].

In polysomnography, multiple EEG channels are collected using a cap placed on the
head, which patients find uncomfortable and disruptive. Collecting data from just a single
EEG channel would be more comfortable for the patient and enable home monitoring. It
would also make the collection of large datasets needed to train data-hungry algorithms for
sleep stage scoring, such as deep learning methods, more feasible. Knowing which channel
is the most effective is, thus, crucial. Due to the limitation of available sleep datasets in
terms of the number of channels and the number and varieties of participants, most of the
current work has been applied to a limited number of channels and focused only on adult
sleep signals.

Children’s sleep is known to have significant variations across different age groups
and within the same age group [21]. However, due to the unavailability of adequate
child sleep data, very little work has been carried out on automatically analyzing child
sleep [13,16,22].

Therefore, in this paper, the following questions were investigated:

• How does the type of EEG channel used impact the accuracy of automatic sleep staging?
• How does the accuracy of automatic sleep staging vary with the subject’s age?
• How effective is a model trained on adult EEG data for sleep staging on pediatric

EEG signals?

To answer these questions, the performance of two state-of-the-art (SOTA) automatic
sleep staging algorithms, DeepSleepNet [20] and AttnSleep [18], was compared on seven
different EEG channels and over 19 age ranges between the ages of 6 days to ~58 years.

The remainder of the paper is organized as follows. Section 2 highlights recent work
on automatic sleep staging. The two adopted sleep staging algorithms are summarized in
Section 3 along with the utilized dataset. The experimental setup is detailed in Section 4.
The results are presented in Section 5 and discussed in Section 6. Finally, the conclusion is
drawn in Section 7.

2. Related Work

Existing sleep staging techniques can be divided into two main categories: classical
(shallow) machine learning and deep learning-based. Although classical machine learning
techniques are computationally inexpensive, their accuracy is highly dependent on the
selection of hand-crafted features.

Deep learning techniques have recently made significant advancements in their clas-
sification capabilities. These techniques can extract features of EEG signals directly and
capture the transition relationship between sleep stages. However, a considerable amount
of training data is needed to train a reliable deep learning sleep staging model.

In [16], a bi-stream adversarial learning network was proposed for classifying sleep
stages of pediatric data. The proposed system consists of two stream networks (i.e., Student
and Teacher) in addition to a similarity function to reduce the difference between the output
of the aforementioned networks. Furthermore, two datasets were used to evaluate the
proposed system. The first one named NPH contains O1-M2 EEG data of 15 pediatric
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participants, while the second dataset is a subset of the Sleep-EDF dataset that contains
Fpz-Cz EEG data of eight adult participants. The proposed systems achieved remarkable
results (i.e., 80% and 91% over NPH and a subset of the Sleep-EDF, respectively) compared
with other systems, although they struggled with the N1 sleep stage.

In [22], a hybrid multi-domain neural network was proposed. The proposed system
used CNN and bidirectional LSTM (BLSTM) models for classifying sleep stages of pediatric
EEG data. Two layers of CNN were used to model the frequency and time domain
information followed by the LSTM layer to model the dependency of the data within
every epoch. The proposed system was tested using a dataset of 115 female and 103 male
pediatric participants with 32 EEG channels. In addition, the effect of epoch length, the
number of channels to be used, and the use of frequency and time domain information was
investigated. The proposed system achieved 92% accuracy but over three sleeping stages
only (i.e., W, N1, and N2).

A model that utilized the CNN and recurrent neural network (RNN) was introduced
in [15]. This model is composed of three layers of convolutional neural networks and two
layers of recurrent neural networks. The proposed model was trained using a dataset of
ECG signals of two groups of participants (i.e., controlled and uncontrolled) with a total of
71 male participants and 41 female participants. All participants were above 48 years old.
The model accuracy was high in the case of three-stage classification (i.e., 86.4%) and low
with five-stage classification (i.e., 74.2%). One of the drawbacks of this model is its higher
computational load compared to other models.

Enhancing feature extraction from EEG signals was performed in [17]. The authors
added an attention component to the CNN to learn local correlations of EEG signals.
The CNN layers were followed by two layers of BLSTM to extract global correlations of
sequential epochs. The sleep-EDF dataset with its two versions, 2013 and 2018, was used to
evaluate the proposed model. It achieved 84.14% and 82.58% accuracy over the Fpz-Cz and
Pz-Oz channels, respectively, on the 2013 version. However, less accuracy was achieved
with the 2018 version.

The authors of [14] used classical machine learning algorithms to classify sleep stages.
In the feature extraction phase, they extracted a set of frequency and time domain features
from EEG signals. In addition, they used assigned weights for each feature to determine its
importance. These weights were used to decrease the number of features from 59 to only
11. In the classification phase, decision trees, support vector machine, random forest, and
backpropagation neural network were tested. The random forest classifier achieved the
best accuracy over the Fpz-Cz channel from the expanded Sleep-EDF dataset. It achieved
83.56% and 82.53% using 59 and 11 features, respectively.

Similarly, time and frequency domain features were extracted from EEG signals in [23].
The authors extracted a set of 136 features and proposed a technique based on ant colony
optimization (ACO) to reduce the features to only 40 features. In addition, they utilized
a random forest classifier for sleep stage classification. Furthermore, they improved the
classification accuracy using the hidden Markov model (HMM), which takes into account
knowledge about the temporal pattern of sleep stage transitions. The proposed model
was faster than RNN- and CNN-based models and less susceptible to modifications of
hyperparameters, but its feature extraction process was time-consuming.

The authors of [24] used the C4-M1 channel to develop clinical decision support
systems (CDSSs). The authors proposed a deep learning model that utilized CNN and
transformers to classify three sleep stages. Five layers of CNN were used to extract
features from EEG data, then two transformers were used to encode the current and
previous epochs. In addition, a large dataset with 2274 participants was used to train
and evaluate the proposed model that achieved high accuracy. The disadvantage of this
model is that the training of the second transformer requires a successive number of epochs
(i.e., seven epochs).

Using the EEG signal in addition to time-frequency images was proposed in [25]. The
authors proposed a sequence-to-sequence model able to learn from both EEG signals and
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images of time-frequency. This model utilized a CNN to extract features from raw signals
and a bidirectional RNN to extract time–frequency features. In addition, they designed
this model to take into consideration the complementary effect of both network streams
(i.e., CNN and RNN) and the avoidance of overfitting. Although they achieved a high
accuracy of sleep staging classification over five datasets, using two-stream networks
consumes more time and compactional resources.

Ref. [26] proposed using a multi-level fusion technique over EEG and electromyog-
raphy (EMG) data. The authors tried one level of fusion (i.e., data, features, and decision
fusion) and found that multi-level fusion achieved better accuracy. They suggested a fusion
technique constructed with the CNN and suited to the properties of various EEG and EMG
inputs. In addition, they tested the proposed method over the Sleep-EDF dataset using
three layers of CNN to extract features from Fpz-Cz, Pz-Oz, and EMG data. Their methods
achieved high accuracy (i.e., 87.3%) and improved the N1 stage accuracy.

Very limited methods have been applied to children’s EEG signals. In [27], a deep
neural network model was proposed for classifying children’s sleep stages. The proposed
model utilized a modularized architecture that enables the neural network to have many
layers without being constrained by the increasing number of hyperparameters. In addition,
a dataset containing a sleep study of 344 patients was developed to train and evaluate the
proposed system. The age of patients was between 2 and 18 years. Furthermore, the system
achieved an accuracy of 83.36% over five stages of classification. The limitations of this
system are its low accuracy for N1 and the lack of results from children under 2 years old.

A stacked 1D CNN- and LSTM-based method has been introduced in [13] and applied
to a small private dataset of 26 children ranging from 2–12 years old. The method employed
data from a single EEG channel and trained using the edge AI paradigm. Six EEG channels
were explored, namely F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1. The best F1
score of 76.5 was achieved using the F4-M1 channel.

It has been noted that most of the literature work used a small publicly available
dataset, such as sleep-EDF [28], or a large private dataset. In addition, most of the experi-
ments have been conducted using an adult dataset and applied to limited EEG channels.

In this study, a large-scale dataset is used with a wide age range of participants, and
seven different EEG channels are explored.

3. Method
3.1. Dataset

The Nationwide Children’s Hospital (NCH) dataset was created to cover the lack of
pediatric publicly available sleep studies [29]. It has sleep recordings from 3984 patients
collected in a clinical environment, where most of them are children. Figure 1 shows the
number of participants in each age range.
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Approximately 92.56% of the patients have a single night’s recordings, while the rest
have recordings from two or more nights, with a maximum of four. Of the participants,
56.3% were male and 43.7% were female. The total duration of the recordings is 40,884 h,
with ~80% sampled at 256 Hz, ~14% at 400 Hz, and the remaining at 512 Hz.

The annotation of the sleep studies was conducted in two phases: a real-time phase,
where a first technician annotated the sleep study during the sleep time of every par-
ticipant, followed by an offline phase, where a second technician revised and corrected
the annotation.

The dataset was split into 19 subsets on the basis of the age range of the participants.
That is, the first group contains all recordings of participants 1 year old and younger, the
second group contains all recordings of participants with ages between 1 and 2 years,
and so on. The final group contains recordings of participants 18 years old and older.
Participants in each group were further split into training, validation, and testing subsets,
as explained in Section 4.

3.2. Sleep Staging Algorithms

Two sleep staging algorithms were utilized in this study, DeepSleepNet [20] and
AttnSleep [18]. DeepSleepNet was chosen, as it is widely accepted and has been used as
a benchmark in several recent works [19,30–33], while AttnSleep is an SOTA attention-
based [34] method that was proven to outperform other existing work. Both algorithms are
end-to-end deep learning-based with a trainable feature extraction network. The official
implementations of both algorithms are available as open-source code, which we used
without any modification in our experiments (https://github.com/akaraspt/deepsleepnet
(accessed on 20 January 2022)) (https://github.com/emadeldeen24/AttnSleep (accessed
on 18 February 2022)). In this section, an overview of the two algorithms is provided.

3.2.1. DeepSleepNet

In DeepSleepNet, time-invariant characteristics are extracted using CNNs, and transi-
tions between sleep stages are learned using bidirectional LSTMs. The model architecture
is shown in Figure 2a. In the first part, a multi-resolution CNN-based feature extraction
module is deployed that consists of two CNNs with different filter sizes to capture high-
and low-frequency components in the EEG signal. Each CNN has four layers of convo-
lution and two layers of max-pooling. The outputs of both CNNs are then concatenated
into one feature vector that inputs to the LSTM module. The LSTM module consists of
two BLSTMs layers to learn to model sleep experts’ behaviour in detecting the next sleep
stage on the basis of the previous stages.

A two-step training algorithm was proposed to train the DeepSleepNet model as an
end-to-end using backpropagation to handle the class imbalance problem that usually exists
in large datasets. The approach initially performs a supervised training of the first part of
the model (i.e., CNNs) by connecting a softmax layer directly after the feature extraction
network using a class-balance training set (i.e., all sleep stages are equally represented),
which has been achieved by duplicating the minority sleep stages. The output softmax
layer is then discarded and the pre-trained feature extraction network is connected to the
LSTM network. Sequential training is then performed to fine-tune the entire model using
an imbalanced training set. In both steps, the cross-entropy loss is used to measure the
agreement between the anticipated and the desired sleep stages.

3.2.2. AttnSleep

The AttnSleep algorithm adopts a multi-resolution CNN architecture similar to the
DeepSleepNet as a feature extraction front-end network with an additional adaptive feature
recalibration (AFR) network that acts as a feature selection module.

https://github.com/akaraspt/deepsleepnet
https://github.com/emadeldeen24/AttnSleep
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Unlike the DeepSleepNet, the AttnSleep algorithm models the temporal contextual
dependencies by adopting the attention mechanism [34]. The attention network consists
of a multi-head attention (MHA) network followed by two “add and normalize” layers
and two fully connected feed-forward layers. This architecture is similar to the transform
block introduced in [34], with the exception that the positional encoding in the AttnSleep is
achieved by a causal 1D convolutional layer instead of the sinusoidal positional encoding
mechanism. The architecture is depicted in Figure 2b.

The class imbalance problem is handled in AttnSleep by introducing a class-aware
loss function. The class-aware loss function is a weighted version of the cross-entropy loss
function, where the loss of each class is scaled by a factor proportional to the number of
training samples available for each class.

4. Experimental Setup

As previously mentioned, the main objective of this paper is to study the performance
of the single EEG channel-based sleep staging algorithms over different types of channels
and different subjects’ age ranges. Several experiments were conducted to better under-
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stand the impact of the type of EEG channel and the age of the participant on automatic
sleep staging. All experiments have been performed using the two sleep staging algorithms
detailed above, DeepSleepNet and AttnSleep.

The dataset is first divided into 19 subsets representing different age groups with a
one-year step. That is, group 0 contains data from subjects aged from 6 days to 52 weeks,
while group 19 contains data from subjects aged 18 years and over. Subjects of each age
group are further split into training, validation, and testing sets. Of the subjects, 80% were
used for training, while the other 20% was split equally between the validation and testing
subsets. All three subsets had the same male/female distribution of subjects. Figure 3
shows the number of training epochs in each age range.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19 
 

 

4. Experimental Setup 

As previously mentioned, the main objective of this paper is to study the perfor-

mance of the single EEG channel-based sleep staging algorithms over different types of 

channels and different subjects’ age ranges. Several experiments were conducted to better 

understand the impact of the type of EEG channel and the age of the participant on auto-

matic sleep staging. All experiments have been performed using the two sleep staging 

algorithms detailed above, DeepSleepNet and AttnSleep. 

The dataset is first divided into 19 subsets representing different age groups with a 

one-year step. That is, group 0 contains data from subjects aged from 6 days to 52 weeks, 

while group 19 contains data from subjects aged 18 years and over. Subjects of each age 

group are further split into training, validation, and testing sets. Of the subjects, 80% were 

used for training, while the other 20% was split equally between the validation and testing 

subsets. All three subsets had the same male/female distribution of subjects. Figure 3 

shows the number of training epochs in each age range. 

 

Figure 3. The distribution of the training data over different stages and age ranges. 

Seven EEG channels were employed in this study, namely C3-M2, O1-M2, O2-M1, 

CZ-O1, C4-M1, F4-M1, and F3-M2, as they are available in the recordings of ~99% of the 

participants [29]. For each EEG channel, recordings of participants from each age group 

were used to train two automatic sleep staging models, one for each automatic sleep stag-

ing algorithm. Given the seven channels and the 19 age groups, a total number of 126 

models for each algorithm were trained. All models were trained to classify each epoch of 

30 s duration as one of the five sleep stages, W, N1, N2, N3, and REM. 

The parameters of the CNN feature extraction layers are the same in both algorithms, 

as they are a function of the sampling rate (see Figure 2). The parameters of the classifica-

tion network and the training parameters are empirically determined, and the best values 

are listed in Table 1. 

Table 1. Parameter settings of the DeepSleepNet and AttnSleep methods. 

Parameter DeepSleepNet AttnSleep 

No. epochs 100 (pre-training)/300 (fine-tuning) 100 

Batch size 100 128 

Optimizer Adam [35] Adam 

Learning rate 0.0001 0.001 

Weight decay 0.01 0.001 

Dropout 0.5 0.5 

No. attention heads N/A 5 

Feature dimension N/A 100 

 

  

   

   

   

   

                            

 
 
  
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

         

        

Figure 3. The distribution of the training data over different stages and age ranges.

Seven EEG channels were employed in this study, namely C3-M2, O1-M2, O2-M1,
CZ-O1, C4-M1, F4-M1, and F3-M2, as they are available in the recordings of ~99% of the
participants [29]. For each EEG channel, recordings of participants from each age group
were used to train two automatic sleep staging models, one for each automatic sleep staging
algorithm. Given the seven channels and the 19 age groups, a total number of 126 models
for each algorithm were trained. All models were trained to classify each epoch of 30 s
duration as one of the five sleep stages, W, N1, N2, N3, and REM.

The parameters of the CNN feature extraction layers are the same in both algorithms,
as they are a function of the sampling rate (see Figure 2). The parameters of the classification
network and the training parameters are empirically determined, and the best values are
listed in Table 1.

Table 1. Parameter settings of the DeepSleepNet and AttnSleep methods.

Parameter DeepSleepNet AttnSleep

No. epochs 100 (pre-training)/300 (fine-tuning) 100
Batch size 100 128
Optimizer Adam [35] Adam

Learning rate 0.0001 0.001
Weight decay 0.01 0.001

Dropout 0.5 0.5
No. attention heads N/A 5
Feature dimension N/A 100

The sampling rate of the recordings was fixed to 256 Hz, and recordings with higher
sampling rates were downsampled to 256 Hz. Both algorithms receive the raw EEG signal
of a single epoch of 30 s as an input at each time step.
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The F1 score was used to evaluate the classification performance of each stage i
as follows:

F1i =
2 × precisoni × recalli

precisioni × recalli
(1)

The overall performance was reported as a weighted average of the F1 scores of all
stages as follows:

WF1 =
1
N ∑

i
Si × F1i (2)

where Si is the number of test samples of the stage i, and N is the total number of samples
in the test set.

5. Results
5.1. Channel Analysis

As discussed, to investigate the impact of EEG channels on the accuracy of automatic
sleep staging, seven DeepSleepNet models and seven AttnSleep models were trained and
tested using data from one of the EEG channels.

Figure 4a,b show the average WF1 of each channel over all age groups for both Deep-
SleepNet and AttnSleep, respectively. Overall, AttnSleep achieved a higher average WF1
compared with DeepSleepNet overall EEG channels, which is in line with the performance
reported in [18] on other datasets. For AttnSleep, the highest average WF1 of ~77.8% was
achieved on C3-M2 and F3-M2, followed by F4-M1, with an average WF1 of ~77.3%. On the
other hand, with DeepSleepNet, the highest average WF1 of ~78% was obtained on CZ-O1,
followed by F3-M2 and C3-M2, with average WF1 scores of ~75% and ~74.2%, respectively.
For both algorithms, O1-M2 and O2-M1 channels obtained the lowest average WF1 scores
of ~75% and ~72.7% for AttnSleep and ~70% and ~66% for DeepSleepNet, respectively.
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑖 
 (1) 

The overall performance was reported as a weighted average of the 𝐹1 scores of all 

stages as follows: 

𝑊𝐹1 =
1

𝑁
∑ 𝑆𝑖 × 𝐹1𝑖

𝑖

 (2) 

where 𝑆𝑖 is the number of test samples of the stage 𝑖, and 𝑁 is the total number of sam-
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Figure 4. Box plot of the average WF1 of each EEG channel over all age groups for (a) DeepSleepNet
and (b) AttnSleep algorithms. AttnSleep achieved higher average WF1, and less performance
variation over different age groups compared to DeepSleepNet.

As seen in Figure 4a,b, DeepSleepNet suffers from a high variation in performance
over different age groups throughout all channels, with standard deviations ranging from
±5% on CZ-M1 to ±10% on O2-M1. On the contrary, AttnSleep was shown to have a
more consistent performance over age groups, with standard deviations ranging from ±4%
achieved on C3-M2 to ±6.6% achieved on O2-M1.

Figure 5a,b show a heatmap of the WF1 scores of each channel over different age
groups for the two adopted algorithms. AttnSleep performance on F3-M2 and F4-M1 was
superior in subjects aged 5 years and older, while at younger ages, it outperformed on
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C3-M2 compared with other channels. With DeepSleepNet, the best performance was
achieved on CZ-O1 over other channels in most age ranges.
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Figure 5. Heatmap of the WF1 scores of each channel over different age groups for (a) DeepSleepNet
and (b) AttnSleep. In AttnSleep, F3-M2 and F4-M1 outperformed other channels in participants
> 5 years old. In DeepSleepNet, CZ-O1 was superior in most age ranges.

We further broke down the performance of the DeepSleepNet and AttnSleep algo-
rithms into the five sleep stages, as depicted in Figure 6a–e. The performance is measured
by the F1-score computed using Equation (1). N3 is the most accurate stage, with an
average F1 score ranging from 85.6% ± 4% achieved on C3-M2 to 82% ± 4.3% achieved
on the O2-M1 channel for the AttnSleep algorithm. For DeepSleepNet, the best average
N3 detection F1 score of 84% ± 6.5% was obtained on CZ-O1, while the lowest average F1
score of 77% ± 13.3% was attained on O2-M1.

It is obvious from the figures that N1 is the most challenging stage, with an F1 score
below 35% for both AttnSleep and DeepSleepNet models over all ages and channels. It is
also noticeable that N1 has the highest performance variations among age groups in both
algorithms compared with other stages.

5.2. Age Analysis

To explore the performance of automatic sleep staging at different age ranges, the
NCH dataset was split into 19 groups on the basis of the age of the subjects from 0 to 18.
The 0 group contains subjects aged up to 52 weeks, while the 18 group includes subjects of
18 years and older. Each model was trained and tested using data from the same age group.

In the previous section, CZ-O1 performed the best with DeepSleepNet and C3-M2
channel with AttnSleep. Therefore, in the following experiment, the CZ-O1 channel is used
with the DeepSleepNet, and the C3-M2 channel is used with the AttnSleep.

Figure 7a,b show the F1 scores of the five sleep stages (dotted lines) over all age
groups along with the WF1 score (solid line) for DeepSleepNet and AttnSleep algorithms,
respectively. Each model was trained and tested using data from the same age group. As
shown in the two figures, infant data (group 0) has the lowest F1 score over all stages and
for both DeepSleepNet and AttnSleep algorithms compared with other age groups. The
highest degradation in the performance of the infant data occurred in N1 and N2 stages,
with F1 scores in the N1 stage close to 0% for both algorithms.
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Figure 6. The DeepSleepNet (blue solid) and AttnSleep (red dashed) F1 scores over all age groups
of the classification of the five sleep stages: (a) Wake, non-REM stages, (b) N1, (c) N2, (d) N3, and
(e) REM. Overall, AttnSleep outperformed DeepSleepNet in the classification of almost all stages. N3
is the most accurate sleep stage while N1 is the most challenging one.
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Figure 7. The F1 scores of the five sleep stages (dotted lines) over all age groups along with the WF1
score (solid line) for (a) DeepSleepNet and (b) AttnSleep. As seen, a noticeable degradation in the
performance was occurred in infant participants (age group 0) in the classification of all stages.

For DeepSleepNet, the F1 score gradually increases with the age and is relatively
saturated after group 5 (>5 years). On the other hand, N3 and N2 stages in AttnSleep were
shown to be less affected by age, with the exception of infant (group 0), while REM and
Wake suffered from inconsistency performance, with a high degradation occurring at ages
3, 9, and 14.

As most of the available EEG datasets were collected from adult participants, such
as the PhysioBank [28], Sleep-EDF, and UCD datasets, and SHHS [36], we tested the
effectiveness of a model trained on adult data (>18) in detecting sleep stages of younger
age groups. The results of the sleep staging of the two algorithms using the seven EEG
channels over different age groups are depicted in Figure 8. The results clearly show that
the performance of automatic sleep staging using the adult model improves gradually
with age and starts to saturate after 11 years old and 14 years old for AttnSleep and
DeepSleepNet, respectively. This is an important finding, demonstrating the development
of the EEG signals with age and the cut-off age where these signals become more adult-like.
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In other words, there is a high degree of discrepancy between adult and child EEG signal
at younger ages, which decreases gradually as the child grows up. Unlike the within-age
group scenario where CZ-O1 and C3-M2 outperform other channels in DeepSleepNet and
AttnSleep algorithms, respectively, here F4-M1 channel is superior to other channels in
both algorithms.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 19 
 

 

As most of the available EEG datasets were collected from adult participants, such as 

the PhysioBank [28], Sleep-EDF, and UCD datasets, and SHHS [36], we tested the effec-

tiveness of a model trained on adult data (> 18) in detecting sleep stages of younger age 

groups. The results of the sleep staging of the two algorithms using the seven EEG chan-

nels over different age groups are depicted in Figure 8. The results clearly show that the 

performance of automatic sleep staging using the adult model improves gradually with 

age and starts to saturate after 11 years old and 14 years old for AttnSleep and DeepSleep-

Net, respectively. This is an important finding, demonstrating the development of the 

EEG signals with age and the cut-off age where these signals become more adult-like. In 

other words, there is a high degree of discrepancy between adult and child EEG signal at 

younger ages, which decreases gradually as the child grows up. Unlike the within-age 

group scenario where CZ-O1 and C3-M2 outperform other channels in DeepSleepNet and 

AttnSleep algorithms, respectively, here F4-M1 channel is superior to other channels in 

both algorithms. 

Figure 9a,b show the breakdown of the performance over different sleep stages using 

the F4-M1 channel for AttnSleep and DeepSleepNet, respectively. In AttnSleep, the N3 

stage was shown to be the stage least affected by the subject age, with an average F1 score 

of 82.7% ± 5.7%, while the REM stage has a significantly lower performance at younger 

ages compared with older ages, with an average F1 score of 54% ± 17%.  

Similarly, in DeepSleepNet, N3 has low variation in the performance between 

younger and older age groups compared with other stages, with an average F1 score of 

80% ± 7%, while the N2 stage has a lower average F1 score of 69% and significantly higher 

standard deviation of ±17%. 

 
(a) 

 

   

   

   

   

   

   

   

   

   

                            

 
  

         

            

                                   
Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 
 

 

 
(b) 

Figure 8. The performance of a model trained on adult EEG signal over different age ranges using 

different channels for (a) DeepSleepNet and (b) AttnSleep methods. As seen, the model had the 

lowest WF1 score when tested against infant EEG signal and increased gradually with the increase 

of the participants’ age. 

 
(a) 

 

   

   

   

   

   

   

   

   

   

                            

 
  

         

        

                                   

 

   

   

   

   

   

   

   

   

   

 

                            

  
 
  

         

            

                

Figure 8. The performance of a model trained on adult EEG signal over different age ranges using
different channels for (a) DeepSleepNet and (b) AttnSleep methods. As seen, the model had the
lowest WF1 score when tested against infant EEG signal and increased gradually with the increase of
the participants’ age.

Figure 9a,b show the breakdown of the performance over different sleep stages using
the F4-M1 channel for AttnSleep and DeepSleepNet, respectively. In AttnSleep, the N3
stage was shown to be the stage least affected by the subject age, with an average F1 score
of 82.7% ± 5.7%, while the REM stage has a significantly lower performance at younger
ages compared with older ages, with an average F1 score of 54% ± 17%.
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Figure 9. The breakdown of the adult model performance over different sleep stages for (a) Deep-
SleepNet and (b) AttnSleep.

Similarly, in DeepSleepNet, N3 has low variation in the performance between younger
and older age groups compared with other stages, with an average F1 score of 80% ± 7%,
while the N2 stage has a lower average F1 score of 69% and significantly higher standard
deviation of ±17%.

6. Discussions

This paper provided, for the first time, an extensive comparison of the performance of
automatic sleep staging of adults and children from a single EEG channel covering seven
different EEG channels and a wide age range. The NCH recently released dataset was
utilised for the study. The NCH dataset contains 40,884 h of sleep recordings collected from
3984 patients during a single night’s sleep. The participants were split into 19 groups on
the basis of their age, from 0 (participants < 52 weeks) to 18 (participants >= 18 years old).

All experiments were conducted using two well-known deep learning-based automatic
sleep staging algorithms, namely DeepSleepNet and AttnSleep.
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A comparison of the two algorithms showed that AttnSleep performed better than
the DeepSleepNet, specifically at younger ages (<2 years old) and also in the detection of
the N1 stage throughout all ages (see Figure 6). Moreover, the performance of AttnSleep
was more consistent over different ages compared with the DeepSleepNet, which suffers
from high variations in performance among age groups. As explained in Section 3, both
DeepSleepNet and AttnSleep adopt the same multi-resolution CNN front end module;
however, AttnSleep architecture has an additional recalibration network AFR that works as
an adaptive feature selection layer. As reported in the AttnSleep paper [18], this module is
the most effective part of the network, as it has the ability to learn the inter-dependencies
among features and adaptively select the most discriminative ones.

The channel analysis revealed that the models have the lowest average F1 score on
O1-M2 and O2-M1 over almost all ages, indicating that these channels are not effective
in training single-EEG channel automatic sleep staging models. The most effective three
channels were C3-M2, F3-M2, and F4-M1 for AttnSleep and CZ-O1, F3-M2, and F4-M1
for DeepSleepNet, which have F3-M2 and F4-M1 in common (see Figure 4). Furthermore,
F4-M1 was shown to be less affected by the age mismatch when used to train an adult
model and tested with children’s data from different age groups (see Figure 8).

To demonstrate how significant the superiority of the model trained on a signal from
the central and front EEG channels (C3-M2, CZ-O1, F3-M2, and F4-M1) was over the back
channels (O1-M2 and O2-M1), we employed the almost stochastic order (ASO) significance
test [37,38], as implemented by [39]. The method compares scores from two deep learning
models A and B by computing the significance score εmin. If εmin < 0.5, then A is better than
B based on a pre-defined significance level α. The lower εmin is, the higher the confidence
that A is better than B. Table 2 shows the significance score εmin when applying the ASO
test, with significance level α = 0.05, to pairs of models trained on different EEG channels
using both DeepSleepNet and AttnSleep algorithms. As shown in Table 2, εmin < 0.5 for all
channel pairs, which indicates that the models trained on central and front EEG channels
data are significantly better than the models trained on back channels.

Table 2. The ASO significance score εmin of pairs of models A and B, where model A is trained on
data from central and front EEG channels, and model B is trained on data from back channels. If
εmin < 0.5, then A is stochastically dominant over B. The lower the value of εmin, the higher the
confidence that A is better than B.

Model B

DeepSleepNet AttnSleep

O1-M2 O2-M1 O1-M2 O2-M1

Model A

CZ-O1 0.05 0.008 0.21 0.04
F3-M2 0.23 0.04 0.23 0.45
F4-M1 0.36 0.07 0.23 0.07
C3-M2 0.41 0.18 0.57 0.23

When the sleep staging models were trained and tested using data from the same age
group, significant degradation in the performance of the detection of all stages for infant
subjects (<52 weeks) was observed in both algorithms (see Figure 7).

When a model trained on adult data was used in performing sleep staging for child
data, the performance was significantly lower in infant data and started to improve grad-
ually to saturate after 13 years old (see Figure 8). Therefore, to achieve an accurate sleep
staging for young subjects (<12 years old), the model should be trained on data from the
age group, while an adult model can be reliable from 13 years old and older.

Overall, the N1 stage achieved the lowest classification accuracy compared with
other stages in all experiments. This is a well-known problem that has been reported in
several EEG-based sleep staging algorithms [18,20,30,40]. The possible reasons for this
low classification accuracy are: Firstly, N1 is the shortest stage in the sleep cycle (~5%),
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which means that it has the lowest number of samples in the training set (see Figure 3),
and therefore, even with the oversampling of the N1 class samples, the variations in the
training data are not adequate to accurately model the N1 stage. Secondly, N1 is the
transition stage between wake and deep sleep, and according to the AASM sleep-scoring
guidelines [41], the characteristics of the EEG signal during the N1 stage is similar to those
of the W stage, and therefore, high confusion between N1 and W stages occurs. Finally,
Lee et. al. show in a recent study [42] that N1 has a very low interrater reliability of 0.24,
while W, N2, N3, and R have interrater reliability of 0.7, 0.57, 0.57, and 0.69, respectively.
The low interrater reliability affects the quality of the labels of the training data and, in turn,
affects the accuracy of the trained model.

Compared with existing literature, to the best of our knowledge, no other work
investigates the effect of age on the sleep staging classification performance. Moreover,
the performance of the automatic sleep staging algorithm on pediatric sleep data has been
briefly investigated. Jeon et al. [22] applied several deep and shallow machine learning
methods to private pediatric data of children aged 10–15 years old and used multiple EEG
channels. When using signals from 19 EEG channels, the average F1 score was 0.9 and
dropped to 0.86 when the number of channels reached 6. In our study, the average F1
score of children of the same age range was ~0.8 when only one EEG channel was utilized.
Although they used several EEG channels, they did not investigate which channel is the
most effective but focused on the optimum number of channels to be used.

In [27] a CNN-based sleep staging model has been applied to private data collected
from 344 children aged 2–18 years old. Although the data they used has a wide age
range, the model was trained and tested using data from all age ranges, and the reported
performance was averaged over all participants due to the lack of sufficient participants at
each age group to train age-specific models.

Table 3 compares the results of the NCH dataset to the work performed on the Sleep-
EDF and SHHS datasets using DeepSleepNet and AttnSleep algorithms. For a fair compari-
son, the results of NCH were obtained from the adult model (>18), as both Sleep-EDF and
SHHS datasets were collected from adult participants. The results of the Sleep-EDF and
SHHS datasets are obtained from the AttnSleep paper [18].

Table 3. Comparing NCH dataset (adult part) to the other sleep datasets in performing sleep stage
scoring using DeepSleepNet and AttnSleep methods.

Dataset Algorithm
No.

Participants
EEG-

Channel

F1 Score
Macro F1

W N1 N2 N3 REM

Sleep-EDF-20 DeepSleepNet
20

Fpz-Cz 0.87 0.45 0.85 0.83 0.83 0.76
AttnSleep Fpz-Cz 0.9 0.42 0.89 0.9 0.79 0.78

Sleep-EDF-78 DeepSleepNet
78

Fpz-Cz 0.9 0.45 0.79 0.72 0.71 0.72
AttnSleep Fpz-Cz 0.92 0.42 0.85 0.82 0.74 0.75

SHHS
DeepSleepNet

329
C4-A1 0.85 0.4 0.82 0.79 0.81 0.74

AttnSleep C4-A1 0.87 0.33 0.87 0.87 0.82 0.75

NCH
DeepSleepNet

151 (>18)
C3-M2 0.81 0.24 0.83 0.81 0.72 0.68

AttnSleep F4-M2 0.84 0.3 0.84 0.85 0.72 0.7

The NCH is shown to be more challenging than the other datasets; one possible reason
is that most NCH participants have some type of sleep disorder, while other datasets are
collected from participants with healthy sleep.

7. Conclusions

Intensive experiments were conducted using a recently released large-scale pediatric
sleep dataset for the automatic sleep-scoring problem to investigate the impact of the type
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of the EEG channel and the patient’s age on the accuracy of the single EEG channel sleep
scoring system.

Two recent and widely accepted algorithms of automatic sleep scoring were utilized in
this work. Approximately 126 models were trained and evaluated covering 19 age groups
and seven different EEG channels. The experimental results provide the following answers
to the underlying research questions:

• How does the type of EEG channel used impact the accuracy of automatic sleep staging?

The experiments clearly showed that the performance of the automatic sleep scoring
was significantly affected by the electrode position of the channel. The EEG signal obtained
from the back electrodes (O1 and O2) achieved consistently lower accuracy compared with
the central (Cz) and front (F3, F4) electrodes. A similar finding has been reported in [13],
where six EEG channels were compared and O1-M2 and O2-M1 obtained the lowest F1
score of ~0.67 and ~0.65, respectively, while F4-M1 achieved the highest F1 score of 0.76.

This finding suggests that when training a single EEG-based automatic sleep-scoring
system, O1 and O2 should be avoided, and Cz, F3, and F4 are more likely to achieve higher
classification accuracy.

• How does the accuracy of automatic sleep staging vary with the subject’s age?

A noticeable degradation in the accuracy of the infant participants using a model
trained and tested on infant EEG signals occurred in both utilized algorithms. Elder ages
achieved consistent performance when tested using models trained on a dataset of the
same age group.

This finding suggests that, with the exception of infants, age-specific automatic sleep-
scoring models, i.e., model trained and tested on a dataset from the same age group, are
effective and achieved reasonable average classification accuracy over all age groups.

• How effective is a model trained on adult EEG data for sleep staging on pediatric
EEG signals?

Experimental results showed that the classification accuracy of the sleep-scoring model
trained on adult participants (>18 years) was maintained when tested on participants of
13 years and older. The accuracy of the adult model degraded gradually for ages younger
than 13 years old, with the lowest accuracy obtained in participants in age groups 0 and 1
(<2 years).

This finding suggests that the model trained on adult EEG signals is not reliable for
use in sleep scoring of younger ages. Training data from matching age groups is needed to
achieve reasonable accuracy.

This work is considered the first work to study the influence of EEG channels and
participants’ age using a large-scale dataset that includes participants as young as a few
days old. However, the study is limited to one dataset and needs to be extended to other
datasets to validate the generalization of the findings. Moreover, this study focuses on
the performance of the single EEG channel sleep-scoring algorithms. However, using
a multichannel (e.g., multiple EEG channels and EEG+EOG) model may improve the
performance, specifically in younger ages.

Our future work includes investigating several domain adaptation techniques to
alleviate the impact of age variations on the performance of the sleep-scoring algorithms.
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