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Abstract: This study considers the change point testing problem in autoregressive moving average
(ARMA) (p, q) models through the location and scale-based cumulative sum (LSCUSUM) method
combined with neural network regression (NNR). We estimated the model parameters via the NNR
method based on the training sample, where a long AR model was fitted to obtain the residuals. Then,
we selected the optimal model orders p and q of the ARMA models using the Akaike information
criterion based on a validation set. Finally, we used the forecasting errors obtained from the selected
model to construct the LSCUSUM test. Extensive simulations and their application to three real
datasets show that the proposed NNR-based LSCUSUM test performs well.

Keywords: ARMA models; change point; neural networks regression; LSCUSUM test

1. Introduction

The change point problem has been extensively studied in time series analysis because
time series often suffer from structural changes due to issues such as changes of governmen-
tal policy, health care quality, and critical social events. This problem has also been crucial in
engineering, medicine, and economics, and numerous related articles have been published.
We refer the reader to Csörgö and Horváth [1], Hušková et al. [2], Franke et al. [3], Kang
and Lee [4], Lee and Chen [5], and Huh et al. [6] for a general review.

The cumulative sum (CUSUM) test proposed by Page [7] is one of the most popular
methods for change point tests due to its convenience of usage. Lee and Na [8] proposed
the conventional estimate-based CUSUM test, which generally performs well, but suffers
from severe size distortions and produces low powers on some occasions. Na et al. [9]
and Lee [10] suggested the residual-based CUSUM test for time series models as a remedy.
This test is more stable, but it suffers serious power loss when location parameters change
because it can only detect the change in scale parameters. To improve upon this shortcom-
ing, Oh [11,12] proposed a score vector-based CUSUM test and a modified residual-based
CUSUM method to enhance the power performance. Lee [13] introduced a location- and
scale-based CUSUM (LSCUSUM) test, and simulations confirmed its improved perfor-
mance in terms of stability and power over any estimate-, residual- and score vector-based
CUSUM tests developed thus far.

A key step in constructing the LSCUSUM test is to accurately estimate the residuals,
i.e., fitting a correct model is important if we want to test change points in time series.
The most popular time series fitting method is the classical ARMA method, which uses
maximum likelihood estimation (QMLE) or least squares estimation (LSE) to fit an ARMA
model. Classical linear ARMA models produce an accurate prediction when a time series
truly follows them, but the prediction is not correct if the time series has obvious nonlinear
characteristics. Because many time series carry nonlinear characteristics, new analytical
tools such as neural network regression (NNR), support vector regression (SVR), and least
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absolute shrinkage and selection operator (LASSO) have been applied to fit them, and
have been demonstrated to outperform classical time series models, especially when a time
series has certain nonlinear and nonstationary characteristics. For surveys, we refer the
reader to Hwarng and Ang [14], Hossain et al. [15], Zafar et al. [16], and Giacomazzo [17].
Harchaoui and Lévy-Leduc [18] considered the change point estimation problem as a
variable selection problem and used the LASSO method to estimate multiple change points
in one-dimensional piecewise constant signals. Chan et al. [19] applied a group LASSO
method to estimate multiple change points in a time series. Jin et al. [20] proposed a fast
algorithm to estimate multiple change points in nonstationary time series models. Qian
and Su [21] studied a multiple change points estimation problem for panel data models
via an adaptive group fused LASSO. For more studies about change point estimation via a
penalized model selection method, please refer to Lee et al. [22], Jin et al. [23], and Ciuperca
and Maciak [24], among many others.

Lee et al. [25,26] proposed an SVR with a hybridization of the CUSUM method to
detect change points in ARMA and generalized autoregressive conditional heteroscedastic
(GARCH) models. As is well known, the NNR can approximate the nonlinearity of a time
series without knowing the underlying dynamic structure by minimizing the empirical risk.
Motivated by this, we adopted NNR to obtain ARMA residuals, and then constructed the
LSCUSUM statistic to test change points. Our simulations show that the proposed method
outperforms methods based on SVR, the adaptive least absolute shrinkage and selection
operator (ALASSO), and classical ARMA.

The rest of this paper is organized as follows. Section 2 presents the principle of the
LSCUSUM test for ARMA models. Section 3 introduces the NNR method in a general
framework. Section 4 proposes a forecasting method based on the NNR fitting ARMA
model, herein the NNR-ARMA model, and then explains how to apply the NNR-ARMA
model to the construction of the LSCUSUM test. Section 5 performs Monte Carlo simula-
tions to evaluate the validity of the proposed method under various linear and nonlinear
ARMA models. Section 6 applies the method to three real datasets for illustration. Finally,
Section 7 provides concluding remarks.

2. LSCUSUM Test for ARMA Models

The model discussed in this paper is

yt = f (Θ; yt−1, . . . , yt−p,εt−1, . . . , εt−q) + εt, (1)

where f is an unknown function to be estimated, Θ = (φ1, . . . , φp, θ1, . . . , θq, σ2) is an
unknown parameter vector, p and q are real numbers, and εi are IID random variables with
mean zero, covariance σ2 > 0, and E|εt|4 < ∞. For given observations y1, . . . , yn, we are
interested in the null and alternative hypotheses

H0 : Θt = Θ, t = 1, . . . , n ,

H1 : Θt =

{
Θ, t = 1, . . . , k

Θ + ∆, t = k + 1, . . . , n
,

where Θ is the unknown parameter vector, the nonzero constant vector ∆ represents the
parameter skip, and k = [nτ] is the location of the change point, where τ ∈ (0, 1) and [·]
denotes the integral function. Model (1) includes AR, ARMA, threshold ARMA (TARMA)
and time-varying AR (TVAR) models as special cases.

To test the above null and alternative hypotheses, we applied the following two
LSCUSUM tests proposed by Lee [13]:

T̂LS
n = max

1≤k≤n

 1
nγ̂2

1,n

∣∣∣∣∣ k

∑
t=1

(yt − ε̂t)ε̂t −
k
n

n

∑
t=1

(yt − ε̂t)ε̂t

∣∣∣∣∣
2

+
1

nγ̂2
2,n

∣∣∣∣∣ k

∑
t=1

ε̂2
t −

k
n

n

∑
t=1

ε̂2
t

∣∣∣∣∣
2
,
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T̂max
n = max

1≤k≤n
max

{
1√

nγ̂1,n

∣∣∣∣∣ k

∑
t=1

(yt − ε̂t)ε̂t −
k
n

n

∑
t=1

(yt − ε̂t)ε̂t

∣∣∣∣∣, 1√
nγ̂2,n

∣∣∣∣∣ k

∑
t=1

ε̂2
t −

k
n

n

∑
t=1

ε̂2
t

∣∣∣∣∣
}

,

where ε̂t = yt − f (Θ̂; yt−1, . . . , yt−p,εt−1, . . . , εt−q) denotes the residuals with Θ̂ as the
estimator of Θ, and

γ̂2
1,n =

1
n

n

∑
t=1

(yt − ε̂t)
2 ε̂2

t −
(

1
n

n

∑
t=1

(yt − ε̂t)ε̂t

)2

,

γ̂2
2,n =

1
n

n

∑
t=1

ε̂4
t −

(
1
n

n

∑
t=1

ε̂2
t

)2

.

We rejected H0 if T̂LS
n > 2.4503 or T̂max

n > 1.4596 at the nominal 0.05 level. The
critical values of these two tests were obtained though Monte Carlo simulations using
two-dimensional standard Brownian motion.

Next, we introduce the NNR method in a general framework, propose a fitting method
based on NNR to the ARMA model, and explain how to apply the NNR-ARMA method
when constructing the LSCUSUM test.

3. Neural Network Regression

A neural network (NN) is a simplified model obtained by abstracting and modeling
the human brain, which is a parallel connection of a set of nodes called neurons. It can
effectively solve complex regression and classification problems with a large number of
correlated variables and make accurate predictions for time series.

In this study, we define an NN with an input layer, a hidden layer, and an output layer.
We consider a feedforward net with n input nodes, one layer of H hidden nodes, and one
output node. As shown in Figure 1, n nodes representing independent variables on the left
form the input layer, H nodes in the middle form the hidden layer, and the rightmost node
belongs to the output layer representing dependent variables. These nodes are connected
according to the arrows, and the number next to an arrow marks its weight.

Figure 1. Proposed neural network topology.

Considering an input vector x = (x1, . . . , xn) ∈ <n, the output zh(x;θ) of the h−th
hidden node is

zh(x;θ) =ψ

(
n

∑
i=1

ωihxi + ω0h

)
.
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The output of the net is

F(x;θ) =ψ∗
(

H
∑

h=1
υhzh(x;θ)+υ0

)
= ψ∗

{
H
∑

h=1
υh

[
ψ

(
n
∑

i=1
ωihxi + ω0h

)]
+ υ0

}
,

where ωih(i = 0, . . . , n; h = 1, . . . , H) is the weight connecting the i−th input layer node
and h−th hidden layer node; υh(h = 0, . . . , H) is the weight of the h−th hidden layer
node to the j−th dependent variable; and θ stands for all parameters υ0, . . . , υH and
ωih(i = 0, . . . , n;h = 1, . . . , H) of the network. We also write υ = (υ0, . . . , υH)

T and
ω = (ωih, i = 0, . . . , n; h = 1, . . . ,H). Here, ψ(·) and ψ∗(·) are activation functions of the
NN, which are usually defined as S-shaped logistic functions,

ψ(x) =
1

1 + exp(−ax)
,

and

limψ(x) =
{

1, x → ∞
0, x → −∞

,

where a is a parameter that controls the inclination of the function. Different function types
can be selected as required, such as the threshold, piecewise, Gaussian, and hyperbolic
tangent functions.

The NN connection weights were adjusted through training, as follows:

1. Assume that the input vector and the associated output vector are x = x1, . . . , xm ∈ <n

and y = y1, . . . , ym ∈ <, respectively.
2. Initialize the weights in the network:

ω(0) , υ(0).

3. Use forward propagation to obtain the predicted value and calculate the loss function,

S(y, x;θ) =
1
2

m

∑
j=1

(yj − F(xj;θ))
2.

4. Update the connection weights:

ωk =ωk−1 + ∆ω;

υk = υk−1 + ∆υ

Taking individual weights, the k− th iteration weights are

ω(k)
ih

= ω
(k−1)
ih − η

{
∂S(y, x;θ(k))

∂ωih

}
, f or i = 0, . . . , n, h = 1, . . . , Handj = 1, . . . , m.

Similarly,

υ(k)
h

= υ
(k−1)
h − η

{
∂S(y, x;θ(k))

∂υh

}
, f or h = 1, . . . , Handj = 1, . . . , m.

where η(0 < η < 1) is the learning rate; k is the number of updates or iterations; and
∂S(y,x;θ(k))

∂ωhj
and ∂S(y,x;θ(k))

∂υh
are respective error terms of the hidden unit and output unit,
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i.e., the gradient values or partial derivatives of the loss function with respect to them.
According to the chain rule, they are:

∂S(y, x;θ(k))
∂ωhj

=
∂S

∂ωhj
=

∂S
∂F

∂F
∂z

∂z
∂ωhj

,

∂S(y, x;θ(k))
∂υh

=
∂S
∂υh

=
∂S
∂F

∂F
∂z

∂z
∂υh

5. Repeat steps 3 and 4 until the loss function is less than the preset threshold or the
number of iterations is exhausted and the output parameter is the best parameter
at present.

An NN can have multiple hidden layers, but one is generally enough. The number of
nodes in the hidden layer can be large or small. Too many nodes may lead to overfitting, and
too few to poor fitting. The number of neurodes H in the hidden layer can be determined
as in Looney [27] by rule of thumb as

H = ‖1.7 ∗ log2(n)‖+ 1.

Alternatively, one can use the Bayesian information criterion (BIC), as proposed by
Swanson [28], to sequentially determine H. In this paper, the optimal number of nodes
H is selected according to root mean square error (RMSE) recommendations through
cross-validation.

4. Prediction Based on NNR-ARMA Model

Throughout this section, we assume that {yt : t = 1, . . . , n, n + 1, . . . , n + l} is gener-
ated according to the ARMA model (1). If the training sample is known to follow an
NNR-ARMA (p, q) model with specific orders p and q, we can use this model. Otherwise,
we determine the orders from the training sample as follows:

Step 1 Let y = (ym, . . . , yn), and design the matrix

X = (Xm, Xm+1, . . . , Xn)
T

=


ym−1 · · · ym−p εm−1 · · · εm−q

ym · · · ym−p+1 εm · · · εm−q+1
...

. . .
...

...
. . .

...
yn−1 · · · yn−p εn−1 · · · εn−q


as the NN input. The design matrix X involves the potential innovation terms
εt(t = m− q, . . . , n− 1). Thus, the long AR(p′) model is first fitted to y1, . . . , yn to ob-
tain the residual ε̂t, and then the residual ε̂t is used to approximate the unobserved εt.

See Hannan and Rissanen [29] for more details. The design matrix with εt replaced is
^
X,

where m = p′ + max(p, q) + 1. When fitting the long AR(p′) model, the order p′ can be
determined using the Akaike information criterion (AIC), with the maximum order set to
be 10 log 10(n).

Step 2 Fix p∗ > 0 , q∗ > 0, and the underlying true ARMA orders p ≤ p∗ and q ≤ q∗,
where p∗, q∗ are known upper bounds of the true orders. For each p, q, we assume that
y1, . . . , yn approximately satisfy

yt = f (yt−1, . . . , yt−p, ε̂t−1, . . . ε̂t−q) + ε̂t, (2)

and the NNR-ARMA (p, q) model is fitted with y = (ym, . . . , yn) and
^
X, as in Section 3. Then,

after applying the obtained NNR-ARMA (p, q) model to yn+1, . . . , yn+l , calculate the predic-
tion errors ε̃t(t = 1, . . . , l) and the corresponding AIC, namely, AIC = 2(p + q) +l ln(RSS/l),
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where l denotes the number of effective observations and RSS denotes the sum of squared
residuals. We then select the optimal order (p0, q0) by minimizing the AICs.

Step 3 Train the NNR-ARMA (p0, q0) model for the whole training sample y1, . . . , yn+l
and predict the testing samples with the estimated NNR-ARM (p0, q0) model. The obtained
prediction errors are then used in the construction of the NNR-based LSCUSUM test T̂LS

n
and T̂max

n .

5. Monte Carlo Simulation

We conducted Monte Carlo simulations to evaluate the finite sample performance
of the NNR-based LSCUSUM test for linear and nonlinear ARMA models. For this, we
used the AR, ARMA, TARMA, and TVAR models to generate data, and focused on the
comparison of NNR-, ALASSO-, SVR-, and classical ARMA-based LSCUSUM tests. For
each simulation, the empirical sizes and powers were calculated as the number of rejections
of the null hypothesis of no changes out of 1000 repetitions at the 5% significance level.
The sample sizes under consideration were n = 300, 500, and 1000. The change point was
assumed to occur at [n/2] under the alternatives. The simulations were conducted with R
version 4.1.3, and we used the R packages nnet and caret for NNR, glmnet for ALASSO,
and e1071 for SVR.

(1) Linear ARMA model

We generated time series from the ARMA (1,1) model:

yt = φyt−1 + θεt−1 + εt,

where |φ| < 1 and εt are IID normal random variables with mean zero and variance σ2. We
considered the following setups for the null hypothesis:

Model 1: AR(1) with φ = 0.3, θ = 0, and σ2 = 1.
Model 2: ARMA(1,1) with φ = 0.3, θ = 0.3, and σ2 = 1.

Under the alternative, we assumed a single parameter changed while the others
remained constant. Tables 1 and 2 report the empirical sizes and powers for the AR(1) and
ARMA(1,1) models, respectively, from which it can be seen that there was no size distortion,
and reasonably good powers were produced using all four methods. In particular, the
NNR-based LSCUSUM test outperformed the ALASSO-, SVR-, and classical ARMA-based
LSCUSUM test, and for the LSCUSUM statistic, T̂max

n was preferable to T̂LS
n in terms of

stability and power. In addition, we conducted simulations with a sample size of 500 and
different change point locations; see Table 3. It can be seen that the empirical power is
greatly affected by the position of the change point, the NNR-based LSCUSUM test has the
highest power when a change occurs in the middle, and the power decreases as the change
point comes nearer to the beginning and ending points of time series, indicating that the
change point is more easily detected when in the middle of the sequence.

Table 1. Empirical sizes and powers for AR(1) model with φ = 0.3, σ2 = 1 under the null and each
alternative.

φ = 0.3, σ2 = 1 n = 300 n = 500 n = 1000
NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.056 0.044 0.038 0.043 0.046 0.045 0.047 0.046 0.061 0.044 0.044 0.045

T̂max
n 0.050 0.042 0.035 0.041 0.045 0.040 0.046 0.042 0.057 0.039 0.043 0.039

→ φ = 0.5 T̂LS
n 0.283 0.267 0.226 0.268 0.458 0.457 0.419 0.449 0.814 0.809 0.788 0.810

T̂max
n 0.287 0.257 0.238 0.264 0.489 0.463 0.435 0.458 0.833 0.816 0.797 0.816

→ φ = 0.7 T̂LS
n 0.929 0.876 0.818 0.872 0.999 0.992 0.983 0.992 1.000 1.000 1.000 1.000

T̂max
n 0.937 0.897 0.813 0.888 0.997 0.994 0.984 0.993 1.000 1.000 1.000 1.000

→ σ2 = 2 T̂LS
n 0.908 0.903 0.885 0.916 1.000 0.999 0.997 0.999 1.000 1.000 1.000 1.000

T̂max
n 0.930 0.923 0.990 0.934 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

We also found that our method is obviously superior to the classical method when the
change point occurs at the front of the sequence. Although not reported here, we carried



Entropy 2023, 25, 133 7 of 14

out simulations for various settings of model parameters and sample sizes, and a similar
pattern was seen.

Table 2. Empirical sizes and powers for ARMA(1,1) model with φ = 0.3, θ = 0.3, σ2 = 1 under the
null and each alternative.

φ = 0.3, θ = 0.3 n = 300 n = 500 n = 1000
σ2 = 1 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.048 0.047 0.053 0.042 0.052 0.044 0.049 0.042 0.064 0.048 0.043 0.043

T̂max
n 0.045 0.046 0.047 0.038 0.041 0.048 0.046 0.042 0.063 0.046 0.043 0.042

→ φ = 0.5 T̂LS
n 0.316 0.281 0.254 0.252 0.512 0.473 0.420 0.439 0.863 0.830 0.790 0.805

T̂max
n 0.316 0.279 0.251 0.242 0.522 0.474 0.408 0.440 0.870 0.850 0.794 0.824

→ φ = 0.7 T̂LS
n 0.949 0.899 0.784 0.859 0.997 0.995 0.975 0.993 1.000 1.000 1.000 1.000

T̂max
n 0.954 0.917 0.802 0.869 0.998 0.998 0.981 0.996 1.000 1.000 1.000 1.000

→ θ = 0.7 T̂LS
n 0.488 0.515 0.451 0.492 0.798 0.829 0.764 0.813 0.992 0.994 0.984 0.988

T̂max
n 0.519 0.527 0.451 0.512 0.810 0.837 0.774 0.821 0.993 0.993 0.984 0.992

→ σ2 = 2 T̂LS
n 0.938 0.923 0.880 0.922 0.999 0.998 0.992 0.998 1.000 1.000 1.000 1.000

T̂max
n 0.931 0.925 0.884 0.927 0.997 0.997 0.996 0.997 1.000 1.000 1.000 1.000

Table 3. Empirical powers when change point occurs at [nτ] with n = 500 for ARMA(1,1) model.

φ = 0.3, θ = 0.3 τ = 0.25 τ = 0.50 τ = 0.75
σ2 = 1 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.278 0.228 0.212 0.107 0.512 0.473 0.420 0.439 0.368 0.281 0.257 0.248

T̂max
n 0.287 0.226 0.204 0.100 0.522 0.474 0.408 0.440 0.359 0.298 0.260 0.263

→ φ = 0.5 T̂LS
n 0.899 0.827 0.657 0.389 0.997 0.995 0.975 0.993 0.947 0.945 0.910 0.935

T̂max
n 0.914 0.857 0.691 0.377 0.998 0.998 0.981 0.996 0.952 0.950 0.931 0.952

→ φ = 0.7 T̂LS
n 0.600 0.676 0.509 0.375 0.798 0.829 0.764 0.813 0.551 0.494 0.451 0.458

T̂max
n 0.628 0.684 0.527 0.389 0.810 0.837 0.774 0.821 0.541 0.497 0.450 0.452

→ θ = 0.7 T̂LS
n 0.834 0.809 0.757 0.439 0.999 0.998 0.992 0.998 0.964 0.961 0.940 0.962

T̂max
n 0.861 0.871 0.796 0.510 0.997 0.997 0.996 0.997 0.969 0.969 0.953 1.969

(2) Threshold ARMA model

We generated time series from the TARMA(1,1) model:

yt =

{
φ1yt−1 + θ1εt−1 + εt. yt−1 ≤ 1
φ2yt−1 + θ2εt−1 + εt. yt−1 > 1

where εt are IID normal random variables with mean zero and variance σ2. We considered
the following setup for the null hypothesis:

Model 3: TARMA(1,1) with φ1 = 0.1, φ2 = −0.5, θ1 = θ2= 0.5, and σ2 = 1.
Model 4: TARMA(1,1) with φ1 = 0.3, φ2 = −0.5, θ1 = θ2= 0.5, and σ2 = 1.

Under the alternative, we assumed a single parameter changed while the others
remained constant. Tables 4 and 5 list some empirical sizes and powers for models 3 and 4,
respectively. The results show that the classical ARMA- and ALASSO-based LSCUSUM
tests had severe size distortion, which became more severe as the sample size increased.
The NNR- and SVR-based LSCUSUM did not have such a problem, and the NNR-based
LSCUSUM test produced better powers than the SVR-based LSCUSUM test. As anticipated,
the power increased as the sample size increased or the deviance between the two parameter
sets before and after the change point became larger. The simulation results considering
different change point positions were the same as before, i.e., the LSCUSUM test had the
highest power when a change point occurred in the middle of the time series (Table 6).

(3) Time-varying AR model

We generated a time series from the period AR(1) (PAR) model:

yt = φtyt−1 + εt

where φt is periodic with period t = 1, 2 and εt ∼ N(0, σ2). We considered the following
setup for the null hypothesis:
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Model 5: PAR (1) with φ1 = −0.3, φ2 = −0.5, and σ2 = 1.
Model 6: PAR (1) with φ1 = 0.3, φ2 = 0.5, and σ2 = 1.

Table 4. Empirical sizes and powers for threshold ARMA(1,1) model with φ1 = 0.1, φ2 = −0.5,
θ = θ1 = θ2 = 0.5, σ2 = 1 under the null and each alternative.

φ1 = 0.1, φ2 = −0.5 n = 300 n = 500 n = 1000
θ = 0.5, σ2 = 1 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.057 0.070 0.039 0.073 0.040 0.086 0.038 0.096 0.041 0.083 0.037 0.097

T̂max
n 0.045 0.066 0.040 0.068 0.040 0.092 0.041 0.095 0.041 0.081 0.043 0.095

→ φ1 = 0.5 T̂LS
n 0.464 0.310 0.213 0.445 0.888 0.817 0.820 0.825 1.000 1.000 0.994 1.000

T̂max
n 0.510 0.327 0.321 0.475 0.909 0.769 0.748 0.756 1.000 1.000 0.997 1.000

→ φ1 = 0.7 T̂LS
n 0.998 0.975 0.684 0.977 1.000 1.000 0.925 1.000 1.000 1.000 1.000 1.000

T̂max
n 0.998 0.951 0.748 0.959 1.000 1.000 0.951 1.000 1.000 1.000 1.000 1.000

→ θ = −0.5 T̂LS
n 0.524 0.361 0.323 0.712 0.747 0.391 0.481 0.810 0.888 0.630 0.753 0.946

T̂max
n 0.531 0.390 0.352 0.737 0.756 0.398 0.513 0.818 0.899 0.635 0.776 0.946

→ σ2 = 2 T̂LS
n 0.904 0.913 0.868 0.913 0.995 0.989 0.997 0.991 1.000 1.000 1.000 1.000

T̂max
n 0.909 0.920 0.880 0.923 0.994 0.993 0.991 0.991 1.000 1.000 1.000 1.000

Table 5. Empirical sizes and powers for threshold ARMA(1,1) model with φ1 = 0.3, φ2 = −0.5,
θ = θ1 = θ2 = 0.5, σ2 = 1 under the null and each alternative.

φ1 = 0.3,φ2 = −0.5 n = 300 n = 500 n=1000
θ = 0.5, σ2 = 1 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.065 0.094 0.034 0.100 0.069 0.137 0.050 0.137 0.045 0.134 0.044 0.134

T̂max
n 0.067 0.094 0.035 0.096 0.068 0.140 0.039 0.134 0.048 0.136 0.042 0.135

→ φ1 = 0.7 T̂LS
n 0.880 0.799 0.433 0.836 0.994 0.999 0.795 1.000 1.000 1.000 0.996 1.000

T̂max
n 0.876 0.781 0.528 0.841 0.993 0.995 0.857 0.995 1.000 1.000 0.998 1.000

→ φ1 = 0.9 T̂LS
n 1.000 1.000 0.488 0.996 1.000 1.000 0.701 1.000 1.000 1.000 1.000 1.000

T̂max
n 1.000 1.000 0.543 0.997 1.000 1.000 0.769 1.000 1.000 1.000 1.000 1.000

→ θ = −0.5 T̂LS
n 0.225 0.113 0.090 0.430 0.264 0.140 0.118 0.549 0.284 0.218 0.160 0.678

T̂max
n 0.259 0.110 0.095 0.472 0.278 0.135 0.126 0.585 0.295 0.212 0.183 0.701

→ σ2 = 2 T̂LS
n 0.904 0.896 0.852 0.903 0.993 0.898 0.987 0.991 1.000 1.000 1.000 1.000

T̂max
n 0.919 0.910 0.865 0.911 0.996 0.988 0.988 0.988 1.000 1.000 1.000 1.000

Table 6. Empirical power of the change point occurs at [nτ] and n = 500 for threshold ARMA(1,1).

φ1 = 0.1, φ2 = −0.5 τ = 0.25 τ = 0.50 τ=0.75
θ = 0.5, σ2 = 1 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

→ φ1 = 0.5 T̂LS
n 0.365 0.378 0.298 0.479 0.888 0.817 0.478 0.825 0.629 0.576 0.510 0.626

T̂max
n 0.358 0.357 0.302 0.496 0.909 0.769 0.489 0.756 0.635 0.559 0.516 0.616

→ φ1 = 0.7 T̂LS
n 0.700 0.769 0.575 0.826 1.000 1.000 0.925 1.000 0.989 0.952 0.922 0.960

T̂max
n 0.726 0.756 0.608 0.836 1.000 1.000 0.951 1.000 0.993 0.940 0.932 0.951

→ θ = −0.5 T̂LS
n 0.986 0.975 0.298 1.000 0.747 0.391 0.481 0.810 0.756 0.354 0.544 0.891

T̂max
n 0.988 0.975 0.271 0.999 0.756 0.398 0.513 0.818 0.720 0.351 0.489 0.868

→ σ2 = 2 T̂LS
n 0.810 0.826 0.778 0.836 0.995 0.989 0.997 0.991 0.962 0.949 0.938 0.949

T̂max
n 0.814 0.864 0.787 0.962 0.994 0.993 0.991 0.991 0.961 0.954 0.943 0.955

Under the alternative, we assumed a single parameter changed while the others
remained constant. Tables 7 and 8 summarize the empirical sizes and powers, respectively,
for the PAR model. The results show that no tests had size distortions, and the NNR-based
LSCUSUM test outperformed the ALASSO-, SVR- and classical ARMA-based LSCUSUM
tests of stability and power. As in cases 1 and 2, NNR-based T̂max

n was superior to the other
tests. Table 9 shows a similar pattern to cases 1 and 2.

Table 7. Empirical sizes and powers for PAR(1) model with φ1 = −0.3, φ2 = −0.5, T = 2 under the
null and each alternative.

φ1 = −0.3, φ2 = −0.5 n = 300 n = 500 n = 1000
T = 2 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.053 0.049 0.056 0.039 0.055 0.063 0.058 0.051 0.057 0.049 0.048 0.047

T̂max
n 0.052 0.047 0.046 0.038 0.060 0.053 0.055 0.049 0.052 0.050 0.046 0.056
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Table 7. Cont.

φ1 = −0.3, φ2 = −0.5 n = 300 n = 500 n = 1000
T = 2 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

→ φ1 = −0.5 T̂LS
n 0.140 0.113 0.112 0.095 0.185 0.163 0.155 0.136 0.337 0.333 0.281 0.290

T̂max
n 0.134 0.113 0.104 0.097 0.175 0.162 0.153 0.134 0.343 0.340 0.305 0.299

→ φ1 = −0.7 T̂LS
n 0.347 0.291 0.291 0.247 0.567 0.502 0.468 0.445 0.875 0.870 0.831 0.834

T̂max
n 0.344 0.289 0.293 0.240 0.570 0.506 0.482 0.452 0.888 0.869 0.847 0.848

→ φ2 = −0.7 T̂LS
n 0.094 0.079 0.086 0.069 0.137 0.091 0.117 0.082 0.202 0.199 0.212 0.170

T̂max
n 0.086 0.074 0.079 0.062 0.116 0.092 0.111 0.075 0.186 0.186 0.199 0.162

→ φ2 = 0.3 T̂LS
n 0.704 0.576 0.430 0.712 0.952 0.898 0.775 0.950 1.000 1.000 0.995 1.000

T̂max
n 0.693 0.580 0.420 0.714 0.954 0.899 0.747 0.950 1.000 1.000 0.996 1.000

Table 8. Empirical sizes and powers for threshold PAR(1) model with φ1 = 0.3, φ2 = 0.5, T = 2 under
the null and each alternative.

φ1 = 0.3, φ2 = 0.5 n = 300 n = 500 n = 1000
T = 2 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

Size T̂LS
n 0.054 0.048 0.039 0.044 0.047 0.050 0.048 0.039 0.059 0.041 0.032 0.031

T̂max
n 0.056 0.039 0.036 0.039 0.046 0.053 0.044 0.046 0.059 0.039 0.041 0.034

→ φ1 = 0.5 T̂LS
n 0.125 0.107 0.095 0.090 0.190 0.154 0.136 0.138 0.329 0.327 0.276 0.289

T̂max
n 0.119 0.106 0.097 0.094 0.176 0.153 0.137 0.139 0.327 0.317 0.278 0.287

→ φ1 = 0.7 T̂LS
n 0.346 0.315 0.269 0.262 0.564 0.506 0.475 0.443 0.862 0.859 0.830 0.831

T̂max
n 0.333 0.299 0.268 0.244 0.583 0.511 0.476 0.457 0.878 0.872 0.841 0.845

→ φ2 = 0.7 T̂LS
n 0.111 0.081 0.087 0.065 0.140 0.086 0.100 0.083 0.237 0.178 0.196 0.140

T̂max
n 0.098 0.074 0.075 0.062 0.125 0.086 0.097 0.070 0.230 0.160 0.182 0.128

→ φ2 = −0.3 T̂LS
n 0.717 0.589 0.417 0.754 0.953 0.921 0.777 0.961 1.000 1.000 0.987 1.000

T̂max
n 0.722 0.580 0.413 0.738 0.950 0.924 0.767 0.964 1.000 1.000 0.987 1.000

Table 9. Empirical power of the change point occurs at [nτ] for PAR(1).

φ1 = −0.3, φ2 = −0.5 τ = 0.25 τ = 0.50 τ = 0.75
T = 2 NNR ALASSO SVR Classical NNR ALASSO SVR Classical NNR ALASSO SVR Classical

→ φ1 = −0.5 T̂LS
n 0.123 0.095 0.096 0.088 0.185 0.163 0.155 0.136 0.128 0.106 0.112 0.096

T̂max
n 0.118 0.095 0.093 0.083 0.175 0.162 0.153 0.134 0.125 0.121 0.119 0.105

→ φ1 = −0.7 T̂LS
n 0.301 0.214 0.218 0.181 0.567 0.502 0.468 0.445 0.392 0.346 0.318 0.308

T̂max
n 0.288 0.225 0.219 0.170 0.570 0.506 0.482 0.452 0.397 0.344 0.332 0.307

→ φ2 = −0.7 T̂LS
n 0.084 0.064 0.077 0.054 0.137 0.091 0.117 0.082 0.104 0.083 0.105 0.071

T̂max
n 0.082 0.062 0.084 0.053 0.116 0.092 0.111 0.075 0.091 0.086 0.084 0.074

→ φ2 = 0.3 T̂LS
n 0.496 0.318 0.270 0.608 0.952 0.898 0.775 0.950 0.792 0.751 0.613 0.746

T̂max
n 0.512 0.315 0.270 0.621 0.954 0.899 0.747 0.950 0.798 0.763 0.600 0.744

6. Empirical Applications

We illustrate our proposed NNR-based LSCUSUM test scheme by analyzing three
sets of real data: the annual volume of discharge from the Nile River at Aswan in 108m3

from 1871 to 1970, the weekly average oil prices of the USA from 1 September 2014 to
27 August 2018, and the weekly Hang Seng Index (HSI) of Hong Kong from 4 September
2011 to 26 Jun 2022, whose respective time series were obtained from the R package TSA
and the websites www.macrotrends.net (accessed on 27 June 2022) and investing.com. We
used 70% samples of each dataset for training and the remaining 30% for testing. Prior
to fitting the NNR-ARMA model, we inspected the autocorrelation function (ACF) and
partial autocorrelation function (PACF) of each time series, looking for irregular patterns of
autocorrelations, as seen in Figure 2, where plot (a) shows that the ACFs and PACFs for the
Nile River dataset support stationarity to a great extent, indicating that estimation via the
NNR-ARMA model with this time series would not undermine the outcomes. In contrast,
plots (b) and (c) show that oil prices and HSI are nonstationary time series, and we use the
log-returns of the oil prices and HIS.

We applied the NNR-based LSCUSUM test to the Nile River data and obtained
T̂LS = 9.589 and T̂max = 2.631, which are larger than the respective critical values 2.4503 and
1.4596 at the 0.05 level. Thus, we rejected the null hypothesis of no changes. We calculated
that both statistics detected the change point at 1899, which is the conclusion of Cobb [30],
MacNeill et al. [31], and Wu and Zhao [32]. They believed that there is a change (decrease)

www.macrotrends.net
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in year 1899, which may be due to the construction of a new dam at Aswan. See Figure 3,
where the red vertical line indicates a change point. For comparison, we also applied the
classical ARMA-based LSCUSUM test to the Nile River data. Here, we expect this method
to misbehave due to the nonlinearity of the datasets (Keenan’s linearity test [33] is quite
against the linearity assumption). We obtained T̂LS = 2.271 < 2.4503, which does not reject
the null hypothesis, whereas T̂max = 1.468 > 1.4596 rejects it, indicating that the change
point occurs in 1917. The blue vertical line in Figure 3 shows that the change point for the
dataset is quite away from the previously obtained one. This result demonstrates that the
classical ARMA-based LSCUSUM can be severely damaged when a time series sample has
a strong nonlinear feature.

Figure 2. Plot of ACF and partial autocorrelation function (PACF) up to lag 30 of: (a) Nile River data;
(b) oil prices; and (c) HSI.
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Figure 3. Annual volume of discharge from Nile River at Aswan, 1871–1970.

Furthermore, we obtained the NNR-based T̂LS = 4.665 and T̂max = 2.009 for log-
returns of oil prices, which indicates the detection of change in both cases at the 0.05 level.
Both statistics identified the location of a change point at 14 February 2016, whereas we
found that T̂LS = 7.004 and T̂max = 2.153 for log-returns of HSI, and both statistics
indicate that the change point occurs on 10 December 2017. Similar to the case of oil
prices, a significant change in trend was observed in the original datasets, as shown in
Figures 4 and 5.

Figure 4. (a) Weekly averages of oil prices; (b) log-returns with detected change point.
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Figure 5. (a) Weekly price of HIS; (b) log-returns with detected change point.

7. Concluding Remarks

We proposed a prediction method based on the NNR-ARMA model and described
how to determine an optimal model. This model was used to obtain residuals for a
training time series sample, which was divided into two subseries. A long AR model was
fitted to the first subseries to obtain the residuals, which were used as the error terms
in the NNR-ARMA (p, q) model, and for each estimated NNR-ARMA (p, q) model, we
calculated AICs based on the second subseries and selected an optimal ARMA order with
the smallest AIC. Prediction errors or residuals were obtained using the determined NNR-
ARMA (p, q) model and used to construct the LSCUSUM test. Monte Carlo simulations
were conducted using the linear and nonlinear ARMA models with various parameter
settings, including ARMA, TARMA, and TVAR. The results show that the NNR-based
LSCUSUM test outperformed the classical ARMA- and ALASSO-based LSCUSUM tests,
especially when the underlying model was nonlinear. Finally, our method was applied
to the analysis of real datasets, namely of Nile River data, oil prices, and HSI prices, and
detected one change point in all cases. Our findings support the validity of our method
and its practicality in various real-world circumstances.

Author Contributions: Conceptualization, Z.C. and X.-h.R.; methodology, X.-h.R.; software, X.-h.R.;
validation, X.-h.R. and Y.L.; formal analysis, Z.C.; writing—original draft preparation, X.-h.R.;
writing—review and editing, Z.C. and Y.L.; visualization, X.-h.R. and Y.L.; supervision, Z.C.; project
administration, Z.C.; funding acquisition, Z.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.12161072),
Natural Science Foundation of Qinghai Province (No.2019-ZJ-920).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is contained within the article.



Entropy 2023, 25, 133 13 of 14

Acknowledgments: The authors would like to thank the editor and the referees whose comments
have improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict interest.

References
1. Csörgö, M.; Horváth, L. Limit Theorems in Change-Point Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1997.
2. Hušková, M.; Prášková, Z.; Steinebach, J. On the detection of changes in autoregressive time series Asymptotic. J. Stat. Plan.

Inference 2007, 137, 1243–1259. [CrossRef]
3. Franke, J.; Kirch, C.; Kamgaing, J.T. Changepoints in times series of counts. J. Time Ser. Anal. 2012, 33, 757–770. [CrossRef]
4. Kang, J.; Lee, S. Parameter change test for Poisson autoregressive models. Scand. J. Stat. 2014, 41, 1136–1152. [CrossRef]
5. Lee, S.; Lee, Y.; Chen, C.W.S. Parameter change test for zero-inflated generalized Poisson autoregressive models. Statistics 2016,

50, 540–557. [CrossRef]
6. Huh, J.; Kim, H.; Lee, S. Monitoring parameter shift with Poisson integer-valued GARCH models. J. Stat. Comput. Simul. 2017, 87,

1754–1766. [CrossRef]
7. Page, E.S. A test for a change in a parameter occurring at an unknown point. Biometrika 1955, 42, 523–527. [CrossRef]
8. Lee, S.; Na, O.; Na, S. On the cusum of squares test for variance change in nonstationary and nonparametric time series models.

Ann. Inst. Stat. Math. 2003, 55, 467–485. [CrossRef]
9. Na, O.; Lee, J.; Lee, S. Change point detection in SCOMDY models. AStA Adv. Stat. Anal. 2013, 97, 215–238. [CrossRef]
10. Lee, J.; Lee, S. Parameter change test for nonlinear time series models with GARCH type errors. J. Korean Math. Soc. 2015, 52,

503–522. [CrossRef]
11. Oh, H.; Lee, S. On score vector-and residual-based CUSUM tests in ARMA–GARCH models. Stat. Methods Appl. 2018, 27, 385–406.

[CrossRef]
12. Oh, H.; Lee, S. Modified residual CUSUM test for location-scale time series models with heteroscedasticity. Ann. Inst. Stat. Math.

2019, 71, 1059–1091. [CrossRef]
13. Lee, S. Location and scale-based CUSUM test with application to autoregressive models. J. Stat. Comput. Simul. 2020, 90,

2309–2328. [CrossRef]
14. Hwarng, H.B.; Ang, H.T. A simple neural network for ARMA (p, q) time series. Omega 2001, 29, 319–333. [CrossRef]
15. Hossain, M.B.; Moon, J.; Chon, K.H. Estimation of ARMA model order via artificial neural network for modeling physiological

systems. IEEE Access 2020, 8, 186813–186820. [CrossRef]
16. Zafar, T.; Kamal, K.; Mathavan, S. A Hybrid Approach for Noise Reduction in Acoustic Signal of Machining Process Using Neural

Networks and ARMA Model. Sensors 2021, 21, 8023. [CrossRef]
17. Giacomazzo, M. Three Essays on Shrinkage Estimation and Model Selection of Linear and Nonlinear Time Series Models. Ph.D.

Thesis, Arizona State University, Tempe, AZ, USA, 2018.
18. Harchaoui, Z.; Lévy-Leduc, C. Multiple change-point estimation with a total variation penalty. J. Am. Stat. Assoc. 2010, 105,

1480–1493. [CrossRef]
19. Chan, N.H.; Yau, C.Y.; Zhang, R.M. Group LASSO for structural break time series. J. Am. Stat. Assoc. 2014, 109, 590–599.

[CrossRef]
20. Jin, B.; Shi, X.; Wu, Y. A novel and fast methodology for simultaneous multiple structural break estimation and variable selection

for nonstationary time series models. Stat. Comput. 2013, 23, 221–231. [CrossRef]
21. Qian, J.; Su, L. Shrinkage estimation of common breaks in panel data models via adaptive group fused lasso. J. Econom. 2016, 191,

86–109. [CrossRef]
22. Lee, S.; Seo, M.H.; Shin, Y. The lasso for high dimensional regression with a possible change point. J. R. Stat. Soc. Ser. B Stat.

Methodol. 2016, 78, 193. [CrossRef]
23. Jin, B.; Wu, Y.; Shi, X. Consistent two-stage multiple change-point detection in linear models. Can. J. Stat. 2016, 44, 161–179.

[CrossRef]
24. Ciuperca, G.; Maciak, M. Change-point detection in a linear model by adaptive fused quantile method. Scand. J. Stat. 2020, 47,

425–463. [CrossRef]
25. Lee, S.; Lee, S.; Moon, M. Hybrid change point detection for time series via support vector regression and CUSUM method. Appl.

Soft Comput. 2020, 89, 106101. [CrossRef]
26. Lee, S.; Lee, S. Change Point Test for the Conditional Mean of Time Series of Counts Based on Support Vector Regression. Entropy

2021, 23, 433. [CrossRef] [PubMed]
27. Looney, C.G. Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientist; Oxford University Press

Inc.: Oxford, UK, 1997.
28. Swanson, N.R.; White, H. A model-selection approach to assessing the information in the term structure using linear models and

artificial neural networks. J. Bus. Econ. Stat. 1995, 13, 265–275.
29. Hannan, E.J.; Rissanen, J. Recursive estimation of mixed autoregressive-moving average order. Biometrika 1982, 69, 81–94.

[CrossRef]
30. Cobb, G.W. The problem of the Nile: Conditional solution to a changepoint problem. Biometrika 1978, 65, 243–251. [CrossRef]

http://doi.org/10.1016/j.jspi.2006.02.010
http://doi.org/10.1111/j.1467-9892.2011.00778.x
http://doi.org/10.1111/sjos.12088
http://doi.org/10.1080/02331888.2015.1083020
http://doi.org/10.1080/00949655.2017.1284848
http://doi.org/10.1093/biomet/42.3-4.523
http://doi.org/10.1007/BF02517801
http://doi.org/10.1007/s10182-012-0200-y
http://doi.org/10.4134/JKMS.2015.52.3.503
http://doi.org/10.1007/s10260-017-0408-9
http://doi.org/10.1007/s10463-018-0679-4
http://doi.org/10.1080/00949655.2020.1775833
http://doi.org/10.1016/S0305-0483(01)00027-5
http://doi.org/10.1109/ACCESS.2020.3029756
http://doi.org/10.3390/s21238023
http://doi.org/10.1198/jasa.2010.tm09181
http://doi.org/10.1080/01621459.2013.866566
http://doi.org/10.1007/s11222-011-9304-6
http://doi.org/10.1016/j.jeconom.2015.09.004
http://doi.org/10.1111/rssb.12108
http://doi.org/10.1002/cjs.11282
http://doi.org/10.1111/sjos.12412
http://doi.org/10.1016/j.asoc.2020.106101
http://doi.org/10.3390/e23040433
http://www.ncbi.nlm.nih.gov/pubmed/33917192
http://doi.org/10.1093/biomet/69.1.81
http://doi.org/10.1093/biomet/65.2.243


Entropy 2023, 25, 133 14 of 14

31. MacNeill, I.B.; Tang, M.; Jandhyala, V.K. A search for the source of the Nile’s change-points. Environmetrics 1991, 2, 341–375.
[CrossRef]

32. Wu, W.B.; Zhao, Z. Inference of trends in time series. J. R. Stat. Soc. 2007, 69, 391–410. [CrossRef]
33. Li, W.K. Diagnostic Checks in Time Series; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/env.3770020309
http://doi.org/10.1111/j.1467-9868.2007.00594.x

	Introduction 
	LSCUSUM Test for ARMA Models 
	Neural Network Regression 
	Prediction Based on NNR-ARMA Model 
	Monte Carlo Simulation 
	Empirical Applications 
	Concluding Remarks 
	References

