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ABSTRACT
The recent proliferation of programmable network equipment has
opened up new possibilities for embedding intelligence into the
data plane. Deploying models directly in the data plane promises to
achieve high throughput and low latency inference capabilities that
cannot be attained with traditional closed loops involving control-
plane operations. Recent efforts have paved the way for the integra-
tion of trained machine learning models in resource-constrained
programmable switches, yet current solutions have significant limi-
tations that translate into performance barriers when coping with
complex inference tasks. In this paper, we present Henna, a first
in-switch implementation of a hierarchical classification system.
The concept underpinning our solution is that of splitting a diffi-
cult classification task into easier cascaded decisions, which can
then be addressed with separated and resource-efficient tree-based
classifiers. We propose a design of Henna that aligns with the inter-
nal organization of the Protocol Independent Switch Architecture
(PISA), and integrates state-of-the-art strategies for mapping de-
cision trees to switch hardware. We then implement Henna into a
real testbed with off-the-shelf Intel Tofino programmable switches
using the P4 language. Experiments with a complex 21-category
classification task based on measurement data demonstrate how
Henna improves the F1 score of an advanced single-stage model by
21%, while keeping usage of switch resources at 8% on average.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; • Computing methodologies→Machine learning.
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1 INTRODUCTION
The growing complexity and requirement for flexibility in modern
network architectures necessitate network operations automation
via Network Intelligence (NI) [1], where human intervention in
network management is minimized or even eliminated where pos-
sible [2, 8]. Artificial intelligence (AI) models are viewed as the
key enablers of NI in next-generation mobile networks [6, 18]. In
particular, data-driven AI techniques based on machine learning
(ML) tools have been especially successful at automating a number
of tasks in network environments [4, 12, 14]. According to tradi-
tional realization of the software-defined network (SDN) paradigm,
the NI models are implemented and run in programmable control
planes [9]. However, control-plane models do not operate at line
rate and hence cannot meet the extreme low latency requirements
that characterize specific next-generation network functions [31].

The recent availability of commercial programmable data planes
like Intel Tofino ASICs [11] or Netronome Network Processing
Units (NPUs) [15], and of dedicated languages like P4 [3] opens new
opportunities in terms of low-latency high-throughput inference
in networks. Yet, programmable switches are highly constrained,
with low available memory and limited support for mathematical
operations [17, 19]. This rules out the possibility of training models
in the switch, and limits the complexity of tasks that can be solved
with ML models mapped onto the switch pipeline.

In this context, models based on decision trees (DTs) are presently
those most suitable to in-switch operation, mainly because their log-
ical structure makes them easier to map onto the PISA pipeline [5,
13, 26, 27, 29–31]. However, most of the solutions proposed to
date have significant limitations which induce performance barri-
ers when dealing with complex inference tasks. pForest [5] intro-
duces a random forest (RF) mapping approach later replicated by
Switchtree [13], where each level of a tree is mapped in a match
and action table, with a final decision being made at tables encod-
ing leaf nodes. This approach is not scalable since the tables of a
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tree have to be accessed in the sequence of the levels they encode,
thereby being directly bounded by the number of stages in the
switch pipeline, and hence not suitable for handling complex tasks.
NERDS [26] encodes single decision trees using a series of nested
if/else conditional statements, which do not scale for even slightly
complex tasks in the switch with limited resources. pHeavy [29] is
a specialized machine learning-based heavy flow detector, which
is not easily adaptable to other applications, does not support RFs
and hence would not be directly applicable to difficult classification
problems. Mousika [27] presents an encoding of decision trees by
knowledge distillation which is very memory efficient. However, it
only supports DTs and has only been validated with simple tasks.
IIsy [28, 30] proposes an approach to map DTs into the switch
pipeline by encoding feature thresholds over tree nodes using code
words. The concept is extended in Planter [31, 32], by overlapping
feature encoding over trees and implementing RF models. Planter
represents the state-of-the-art in-switch implementation of RFs but,
as we will see in our experiments, it shows its limits when it is used
for complex inference tasks.

We note that other models, including Support Vector Machines
(SVM), Naive Bayes, K-Means, XGBoost, or Isolation Forest have
also been implemented in switches Planter [31]; however, none of
them was found to offer better performance and higher scalability
than DTs and RFs. Also, attempts at using binary neural networks
to overcome the current performance barriers of RFs have been
hampered by the limited support for mathematical operations and
available memory of off-the-shelf programmable switches [21];
such neural network models have instead found applications in
more flexible user plane environments, like smart network interface
cards (smartNICs) [22] or FPGA-enhanced switching pipelines [24].
Here, it is worth noting that smartNICs are typically deployed at
specific network appliances (e.g., traffic classifiers or load balancers)
in dedicated hosts within a data center: therefore, they grant line-
rate inference at specific locations of the network only, and not at
any point of the transport domain as enabled by in-switch solutions.
And, attaching FPGAs to regular programmable switches has a clear
and significant added deployment costs that hinder applying that
approach at scale. Ultimately, we conclude that there is still a large
margin for improvement in solutions for relatively complex inference
tasks that can be deployed pervasively within programmable switches.

In this work, we make a step towards addressing the aforemen-
tioned gap and present a model for hierarchical in-switch machine
learning, or Henna, which is a first in-switch implementation of
a cascaded tree classifier. The main concept behind our solution
is that a difficult classification task can be split into a sequence
of easier ones, each of which can then be tackled using simpler,
resource-efficient, and performance-improving tree-based classi-
fiers. Therefore, Henna builds on the concept of hierarchical or
multi-stage classification, which is known to alleviate imbalances
in data and simplify classification tasks by exploiting the relation-
ships between classes in earlier stages [10]. By developing Henna,
we make the following contributions.

• We propose an in-switch implementation of a hierarchical
two-stage classifier which breaks down a difficult classifica-
tion task into simpler ones that are themselves easily handled
by smaller classifiers.

• We exploit both ingress and egress processing to logically
separate the two stages of Henna. This establishes our solu-
tion as the first in-switch inference model to exploit both
parts of the pipeline, achieving a more efficient resource
allocation.

• We implement Henna as well as a one-stage benchmark clas-
sifier in a commercial P4-programmable Intel Tofino switch
and, unlike most previous works, we make our source code
publicly1 available to promote research in the area of in-
network inference.

• We run experiments on an actual testbed and demonstrate
how Henna improves performance with respect to the bench-
mark by a relative gain of up to 21% for a device identification
task with 21 classes, which is a much more complex use case
than those considered in previous works that targeted a
maximum of 8 classes.

2 HENNA CASCADED TREE MODEL
Flat classification is the most straightforward approach to classi-
fication problems, where all the classes are inferred in one stage
by a monolithic model. Although a one-stage strategy works well
for problems where the classes are just a few or are naively told
apart, it becomes less practical in tasks where the number of classes
is large and the differences among them become more nuanced:
indeed, in the latter situation, monolithic models tend to become
extremely complex in order to meet the desired accuracy.

To address the accuracy-complexity trade-off, inherent hierarchi-
cal relationships between one or more classes in the problem can
be exploited to simplify the classification task, by identifying class
groups in earlier stages. The concept underpins hierarchical classi-
fication, where the task is broken down into a multiple stages in a
hierarchy or directed acyclic graph, where easier distinctions are
made at higher stages and the final stage identifies the actual class
of the sample [20]. A multi-stage approach also helps to mitigate
the problem of imbalance in datasets, by training local classifiers
for groups of classes where each class is more likely to be better
represented than in the whole dataset.

2.1 Motivation
Previous works have shown that the resource usage for in-switch
machine learning models surges with model complexity [30, 31].
As the number of classes increases, the model size also grows until
it hits a performance barrier determined by the amount of available
resources in the switch. In these cases, a more complex model
that could have yielded better accuracy is just not feasible for in-
switch operation. Also, we remark that although next generations
of programmable switches will arguably have more resources and
capabilities, some constraints, like themaximum number of bits that
can fit in a unit of ternary content-addressable memory (TCAM),
will most likely remain and require techniques to overcome them.

In this scenario, hierarchical paradigms come to the rescue by
splitting the target overall task into simpler ones that are themselves
easier to handle; then, smaller classifiers can be trained to solve the
sub-tasks, collectively yielding a better accuracy while being able
to fit within the limited switch capabilities.
1Our python and P4 code is available at https://github.com/nds-group/Henna.

https://github.com/nds-group/Henna
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Figure 1: Overview of the Henna two-stage architecture,
mapped onto the ingress and egress PISA pipeline.

All solutions currently proposed in the literature and listed in
Section 1 adopt a monolithic approach that suffers from the issue
above: by addressing the whole inference task via a single DT or RF,
existing tree-based models do not scale well with the complexity of
the problem, and their performance is restrained by the in-switch
environment. To the best of our knowledge, Henna is the first model
that does not rely on a single-stage architecture, and implements
instead a hierarchical multi-stage operation for in-switch inference.

2.2 In-switch hierarchical inference design
Figure 1 provides an overview of the Henna workflow. We design
our solution as a two-stage cascade of tree-based classifiers, which
exploits both the ingress and egress packet processing pipelines
of PISA to classify packets at high speed and with low latency.
Specifically, (𝑖) the ingress is mapped to a first-stage classifier, which
tags each incoming packet according to a target group of classes;
then, (𝑖𝑖) the egress implements a second-stage classifier, which
identifies the actual class of the packet among those of the group.
The main components of the system are illustrated in the figure
and function as follows.

Ingress parser. Incoming packets go through the ingress parser
which extracts header information from the headers and stores
them in the Packet Header Vector (PHV). Such header information
includes packet length, transport protocol ports, and flags, all of
which serve as features for the subsequent ML-based inference.

Ingress control. This is the first part of the match-and-action
(M/A) pipeline that a packet goes through upon exiting the parser.
Once the packet arrives here with the PHV carrying the features
as metadata, the first model in the Henna cascade is executed so
that a class group is assigned to the packet by the first stage of the
hierarchical classifier. We implement this first-stage model as an
RF. The class group information is stored in a header field which
will be then available to the egress pipeline. The packet is then
reassembled at the ingress deparser and is sent to the egress via the
traffic manager as shown in Figure 1.

Egress parser.As the packet arrives the egress, it is again parsed
as in the ingress, and all the necessary header information, which
now includes the classification result of the previous stage, are
extracted and stored in the PHV.

Egress control. The class group determined by the first stage is
checked and, based on its value, a specific second-stage model is
selected for further classification of the packet. Generally, the tasks
of these second-stage models are much simpler than that faced in
the first stage; therefore, in our implementation2, all second-stage
models are implemented as DTs. The appropriate DT model is then
run on the features gathered by the egress parser, and the output
final class information is stored in a header field for downstream
accuracy analysis. The processed packet is reassembled at the egress
deparser and forwarded to the desired switch port.

Tree-based model mapping. To map the RF and DT models to
the ingress and egress switch M/A pipeline, we employ the state-of-
the-art mapping proposed in Planter [31]. This mapping strategy
efficiently represents in a single feature table all the possible thresh-
olds used on a same feature by the decision nodes of any tree, across
multiple trees of an RF; this is a very compact representation, which
is much more resource-efficient than, e.g., mapping tree levels to
M/A units [5]. In the control logic, the value of each feature for
the current packet in the PHV is matched against the correspond-
ing feature table, and the triggered action sets a binary code that
encodes the decisions to be taken at each node using that feature.
The paths to all leaf nodes in each tree can be then described as
a specific sequence of feature-level codes, and are stored in dedi-
cated code tables, one per tree: then, matching the concatenation
of feature-level codes obtained for a specific packet against such
code tables returns the per-tree class decision for the packet.

Voting table.Abiding by the original model [32], the code tables
also report a certainty value indicating how accurate is the decision
taken by the tree. In the case of RFs, the final decision is made by a
majority vote over the classes output by all the trees in the model.
When ties occur, the certainty values are checked, and the tied
decision with the highest certainty is accepted. It is worth noting
that we engineered our own version of the Planter mapping since
at the time of writing no implementation was publicly available.

Stages allocation. As a final remark, we highlight that the RF
and DT models could be both implemented in the ingress pipeline,
without using egress resources. However, this approach forces the
trees in the two stages to line up in series in the ingress processing,
contending for the same M/A resources and thereby limiting the
number of tree models within a same M/A unit. Allocating the mod-
els of the two stages to the ingress and egress pipeline, respectively,
avoids the problem and allows trees in both stages to share the
resources of the M/A units, ultimately leading to more efficient use
of the scarce switch resources.

2.3 Offline model preparation
Due to the limited capabilities of the switch, all ML steps prelim-
inary to inference must be executed offline [19]. These include
feature extraction, model training and validation, as well as the

2Extending our implementation of Henna to support RF models also in the second
stage is straightforward, but was not required for the use case we considered in our
performance evaluation, presented in Section 3.2.



NativeNI ’22, December 9, 2022, Roma, Italy Aristide T.-J. Akem, Beyza Bütün, Michele Gucciardo and Marco Fiore

generation of all feature and code tables that allow implementing
the tree-based models in PISA, as described in Section 2.2. We detail
these steps below.

Feature extraction.We compute stateless packet-level features
in the training data using Tshark [7], which extracts header infor-
mation of packets from historical pcap traces.

Model selection. Feature selection and a grid search on the
model hyperparameters are performed with the help of Scikit-Learn
libraries [16]. Specifically, we perform the feature selection by train-
ing the RF model in the first stage and DT models in the second
stage with all extracted features and then ranking the features ac-
cording to their importance as expressed by the Mean Decrease in
Impurity (MDI). We subsequently find the subset of features that
achieve the best performance by adding the ranked features one
by one and training the models with those only. We repeat the
feature selection process jointly across a traditional grid search on
the maximum number of trees in the RF model and the maximum
depth of each tree, so as to identify the best hyperparameters.

Tree pruning. The switch can only support a limited size of the
sequence of feature-level codes used to represent a path within a
tree. This inherently limits the number of leaves that can be sup-
ported by the hardware. We thus use pruning to limit the number of
leaves of the tree to fit the hardware constraints. We do so by tuning
the max_leaf_nodes parameter of the RandomForestClassifier()
in Scikit-Learn.

Table generation. From the best trained model, we generate
feature and code table entries abiding by the operation in Section 2.2.
For each DT, we collect all the thresholds of individual features and
build feature tables; then, for each leaf, we trace and encode the
path to the leaf in a binary string, which is stored into the code
table. For the RFs, we simply loop over all trees in each step and
combine all thresholds of the same feature in the same table to have
a single feature table for all the trees.

3 EXPERIMENTAL SETUP
We implement Henna as a P4 program, which can be compiled
and executed in PISA-compliant programmable switches. We run
experiments in a real-world testbed using a device classification use
case of much higher complexity than inference tasks considered to
date to evaluate user-plane ML models.

3.1 Testbed setup
We implement our models in a rackmount testbed comprising 3
Edgecore Wedge100BF-QS programmable switches equipped with
an Intel Tofino BFN-T10-032Q ASIC and 32 100GbE QSFP28 ports
each. The testbed is completed by 2 servers with Intel 8-core Xeon
processors at 2GHz, 48GB of RAM and QSFP28 interfaces, which are
connected to the switches. The experimental platform thereby rep-
resents a production-grade full-100Gbps network, and is depicted
in Figure 2. Each switch runs Open Network Linux (ONL) and the
Intel Software Development Environment (SDE) version 9.7.0. We
build a Barefoot Runtime Interface (BRI)-based Python controller
that performs the initial configuration of the switch at start up,
sets up ports, and injects the table entries encoding the machine
learning models. We use 100Gbps connections to send captured
traffic through the switch from one server to another, by replaying
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Figure 2: Photo of the experimental testbed, annotated with
the hardware elements (left) and their role (right).

pcap traces via Tcpreplay[25]. The captured traffic on the receiving
server is then analyzed for classification statistics.

3.2 Inference use case
In order to explore the limits of in-switch inference, we target a
much more complex use case than those typically considered in
the related literature. Specifically, we use the publicly available
UNSW-IoT traces [23], which report 20 days of captured traffic in
pcap files, and contain measurement data for traffic flows generated
by a wide range of IoT and non-IoT devices. The inference objective
is to classify packets transiting in the switch by tagging them with
one of 21 possible source devices. To this end, we use packet header
information as input to the ML model: the features considered
comprise TCP flags (ACK, SYN, PUSH, ECE, RESET, FIN), TCP/UDP
source and destination ports, and packet length. We remark that
the largest classification task tacked in related works involved 8
classes for solutions only tested in emulated environments, and just
6 classes for models deployed in actual hardware.

In Henna, we organize the 21 classes into 5 class groups: Switches
and Plugs (Belkin Wemo switch, iHome, TP-Link Smart plug, and
Light Bulbs LiFX Smart Bulb); Sensors (Withings Aura smart sleep
sensor, Belkinwemomotion sensor, andNEST Protect smoke alarm);
Video Devices (Withings Smart Baby Monitor, Insteon Camera, TP-
Link Day Night Cloud camera, Samsung SmartCam, Dropcam, and
Netatmo Welcome); Appliances (PIX-STAR Photo-frame, Amazon
Echo, Triby Speaker, Netatmo weather station, Withings Smart
scale, and Smart Things); and, Computers (Laptop, and MacBook).
The first stage of our hierarchical model aims at identifying the
group via a RF, whereas in the second stage 5 dedicated DTs return
the actual class given the group. Based on the hyperparameter tun-
ing procedure described in Section 2.3, we use a RF model with 3
trees of maximum depth 10 in the first stage, and DT models with
variable depth from 4 to 10, depending on the target group, in the
second stage. We train Henna on 15 days of data and test on 1 day.

3.3 Benchmark and metrics
We compare Henna to a state-of-the-art single-stage model, i.e.,
a monolithic RF using our implementation of Planter [31]. This
benchmark aims at classifying each of the 21 target devices at once.
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To this end, it is configured with 3 trees of maximum depth of
10; note that 10 is the maximum depth considered for DT or RF
in-switch implementations in the literature as deeper trees are
considered impractical [5, 31], whereas increasing the number of
trees in the RF did not result in any performance gain, as shown
in Figure 3 for the metrics presented hereinafter. We consider this
model representative of most of the previous solutions for in-switch
inference, which all use a single-stage approach and so experience
the same problems that Henna seeks to address. We deploy the
single-stage benchmark in our Tofino switch testbed with P4.

The quality of the classification result returned by both Henna
and the benchmark is evaluated using standard performance met-
rics, i.e., precision, recall and F1 score. These metrics are defined
based on four key measures of a classification problem, i.e., true
positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN), as follows.

• Precision captures the fraction of positive predictions that
truly belong to that class, as TP/(TP + FP).

• Recall measures the quantity of positive samples that are
predicted as positive, as TP/(TP + FN).

• F1 score is an harmonic mean of recall and precision that
is widely used to compare model performances, and is com-
puted as 2TP/(2TP + FP + FN).

For every metric, the final value is averaged over all classes in two
ways, which we introduce next.

• Macro average is the unweighted mean of the metrics com-
puted for each individual class; it expresses the model per-
formance in a scenario where all classes have the same im-
portance, i.e., without the bias due to the representation of
each class in the data.

• Weighted average is the mean of the metrics computed for
each class, weighted using the number of samples of each
class in the data; it represents the classification quality for a
generic packet in the (possibly biased) target data.

4 RESULTS AND DISCUSSION
We evaluate Henna and the one-stage benchmark in terms of the
metrics in Section 3.3, as well as by looking at their switch resource
usage, as reported next.

4.1 Classification accuracy
The per-class performance of Henna against the benchmark in
terms of precision, recall and F1 score is summarized in Table 1
and Table 2. Our solution improves the single-stage approach in all
metrics, with relative gains of over 21% and 8% in terms of macro
and weighted F1 scores, respectively.

A detailed breakdown of the classification performance of the 21
devices is shown in Figure 4. The improved accuracy of Henna is
very consistent across all target classes, in terms of all metrics. The
per-class precision of our solution is typically on par or better than
that of the single-stage benchmark, with a couple of exceptions.
Where Henna shines is in terms of increased recall, i.e., in limiting
the number of false negatives with respect to the benchmark. The
F1 scores reflect the trends above: overall, Henna improves the
compound metric in all classes with just one exception, where it
still achieves very close performance to that of the one-stage model.

4.2 Resource Usage
It is important to determine if and to what extent the enhanced
accuracy of Henna comes at a cost in terms of increased resource
usage, processing latency, or power consumption. To collect all
these statistics, we employ the Intel P4 Insight tool3, which provides
a detailed analysis of the compiled P4 programs in the target Intel
Tofino ASICs, and of their mapping to hardware resources. The
results are summarized in Table 3.

On average, Henna consumes just an added 3.40% of the total
available resources with respect to the single-stage benchmark,
for an overall 8.50% utilization of the hardware capacity. When
compared to the standard P4 program for core L2/L3 switching,
popularly known as switch.p4, Henna consumes just about 22% of
what such a baseline program requires. These figures indicate that
Henna leaves sufficient room in the switch to coexist with other
legacy switching functions; this is especially true when considering
that Hennawould share M/A stages with legacy switching functions
upon compilation, and that it would reuse constructs (e.g., header
information) already created by legacy functions within limited
resources like PHV containers.

We also note how the one-stage model consumes 8 M/A units to
implement one RF, whereas Henna only requires 2 additional M/A
units to implement both a similarly sized RF plus 5 additional DT
models. The reason is that our solution exploits for the first time
also the egress pipeline, which lets trees of different stages coexist
in the same M/A stages and overall leads to more efficient usage of
the PISA structure.

With regard to latency, Table 3 shows that the inference time of
Henna is much smaller than the packet processing delay of legacy
forwarding functions via switch.p4; specifically, latency is 43.40%
and 62.68% of that of switch.p4 in ingress and egress, respec-
tively. These figures are slightly higher than those for the one-stage
benchmark, but well within the limit for line-rate operation as
classification occurs much faster than packet forwarding.

Power consumption is also relatively low. In the ingress, Henna
consumes less than the benchmark, and just 15.56% of the power
required by switch.p4. At the egress, power needs are less than
half of those of the legacy forwarding.

Figure 5 and Figure 6 offer a closer look at the switch resource us-
age. The figures detail the percent consumption of the total switch
capacity by the one-stage model and Henna, for each type of re-
source. We separate the results in two plots to favor readability
across consumption at different scales for two groups of resource
types. While usage of most resources is fairly limited, in-switch
inference tends to absorb specific types of memory: (𝑖) the ternary
content-addressable memory (TCAM) and the Ternary Match Input
Xbar (TM Xbar) that are used for matching concatenated feature-
level codes that includewildcards; and, (𝑖𝑖) the PHV used to store the
stateless features used for classification through the PISA pipeline.
In these cases, Henna can consume 30% to 45% of the switch re-
sources. We remark however that these resources are not fully used
in legacy forwarding operations, hence the utilization for inference
is still compatible with normal functions. Moreover, the high con-
sumption is an inherent limitation of the Planter model mapping

3https://www.intel.com/content/www/us/en/products/network-io/programmable-
ethernet-switch.html.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
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Table 1: Macro scores of the three consid-
ered metrics, for the single-stage bench-
mark and Henna, with absolute and relative
gains of our proposed solution.

Metric 1-Stage
Henna

Value Gain
Absolute Relative

Precision 65.38% 70.50% 5.12% 7.83%
Recall 55.50% 70.95% 15.45% 27.84%
F1 score 55.54% 67.50% 11.95% 21.52%

Table 2: Weighted scores of the three con-
sideredmetrics, for the single-stage bench-
mark and Henna, with absolute and relative
gains of our proposed solution.

Metric 1-Stage
Henna

Value Gain
Absolute Relative

Precision 84.50% 89.07% 4.57% 5.41%
Recall 77.25% 83.91% 6.66% 8.62%
F1 score 78.95% 85.52% 6.57% 8.32%
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Figure 4: Comparison of Henna metric scores against the one-stage benchmark across the 21 target classes.

Table 3: Summary of the resource us-
age of themodels. Power consumption
and latency are expressed in % of those
of switch.p4.

Resource 1-Stage Henna

Overall (w.r.t. total) 5.10% 8.50%
Overall (w.r.t. switch.p4) 13.42% 22.27%
Match-Action units 8 10
Latency at ingress 35.42% 43.40%
Latency at egress 59.15% 62.68%
Power consumption at ingress 20.73% 15.56%
Power consumption at egress – 42.29%
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Figure 5: Breakdown of the resource
usage as a % of the total available in
the switch, for the least consumed re-
sources.
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Figure 6: Breakdown of the resource
usage as a % of the total available in
the switch, for the most consumed re-
sources.

strategy, rather than of the hierarchical approach: indeed, the prob-
lem affects the single-stage benchmark as well, which only spares
5%–10% of them with respect to Henna.

5 CONCLUSION
We presented Henna, a two-stage tree-based in-switch packet clas-
sifier. Results obtained in a real-world experimental platform with
a sizeable use case show that a hierarchical solution improves clas-
sification performance while keeping resource usage under control.

We note that Henna is a proof of concept, which only implements
a two-stage hierarchy and operates on simple packet-level features,
and we plan to work on removing these limitations in the future.
To this end, multiple directions are possible. A straightforward one
is exploring use cases with multi-stage hierarchies that go beyond
the two currently considered; this can be achieved by compressing
multiple stages in both the ingress and egress pipelines, as well
as by exploiting the multiple pipelines present in high-end pro-
grammable switches. A different and orthogonal option is changing
the classification target of the models from packets to flows, and
employing flow-level features for improvedmodel performance; yet,
this would require maintaining stateful registers to store flows and
stateful features, which can be a challenge in constrained switch

environments. Another interesting perspective is extending Henna
beyond a single switch and distribute different stages or parts of a
complex model or ensemble of models over different switches: this
would enable distributed inference in the network where different
nodes can contribute to a final and possibly more accurate classi-
fication result. Lastly, given that the resource usage footprint of
Henna in terms of critical resources like PHV and TCAM is fairly
high (owing to the Planter RF mapping scheme), the exploration
of more efficient model mapping techniques is another research
direction that will contribute to making RF to switch mappings
more efficient and hence reduce the resource footprint of Henna.
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