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Abstract: A basic understanding of delayed packet loss is key to successfully applying it to multi-
node hopping networks. Given the problem of delayed data loss due to network delay in a hop
network environment, we review early time windowing approaches, for which most contributions
focus on end-to-end hopping networks. However, they do not apply to the general hopping net-
work environment, where data transmission from the sending host to the receiving host usually
requires forwarding at multiple intermediate nodes due to network latency and network cache
overflow, which may result in delayed packet loss. To overcome this challenge, we propose a delay
time window and a method for estimating the delay time window. By examining the network
delays of different data tasks, we obtain network delay estimates for these data tasks, use them
as estimates of the delay time window, and validate the estimated results to verify that the results
satisfy the delay distribution law. In addition, simulation tests and a discussion of the results were
conducted to demonstrate how to maximize the reception of delay groupings. The analysis shows
that the method is more general and applicable to multi-node hopping networks than existing time
windowing methods.

Keywords: network security; hopping network; delayed time windows; time window compensation;
time window parameter estimation

1. Introduction

With the advancement of information technology, the wide application of the network
promotes the development of the social economy, but it also faces serious security problems.
In the face of various malicious network assaults such as Trojans, worms, and viruses,
these attacks substantially increase the risks of disclosing user information and resulting
in property loss. Traditional network protection approaches such as security vulnerability
screening, firewalls, intrusion detection, and so on have been investigated to achieve this
goal. Those defensive technologies have raised the degree of network protection and are
increasingly becoming the typical network defense configuration.

However, network attack techniques are always improving, and current defensive
systems are unable to defend against all new types of network assaults, such as Trojan
port hopping, hopping proxy, protocol conversion, distributed denial of service (DDoS),
and other unknown attacks. To that end, the idea of moving target defense (MTD) [1–4]
was first proposed in the Astronomy Picture of the Day (APOD) project [5], which was
presided over by the USA Ministry of Defense (MoD) department. In that project, they
provided a brand-new technical route to deal with new attacks. Unlike past cyber security
approaches, MTD is devoted to building a dynamic, heterogeneous, and unpredictable
network that may avoid, delay, or stop network assaults by increasing the randomness or
decreasing the predictability of the system. Furthermore, MTD technologies attempt to
create an unpredictable cyber environment by continuously changing the attack surface
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and reducing exposure to static targets. Because this technology subverts the traditional
defense concept of “fixed and die-hard defense” for specific attacks, it is still effective in
defending against some uncertain or unknown attacks and is thus referred to as dynamic
or active defense technology, whereas the traditional defense technology is referred to as
static or passive defense. According to popular belief, genuinely effective network security
must comprise both active and passive defense technology.

Network active defense systems are based on hopping networks, and thus hopping
networks have been one of the most active research directions, where some of the pri-
mary studies on hopping networks are randomization of network parameters [6–9], etc.
Chang et al. [9] randomized the IP addresses of SDNs to improve the randomness of hop-
ping networks; Luo et al. [10] proposed a random port and address hopping (RPAH)
mechanism; Lee et al. [11] proposed a UDP/TCP port-hopping method that allows the
server parameters to vary with time and a shared secret key function. To prevent attackers
from continuously tracking their targets, Fenske et al. [12] proposed a deployment scheme
based on MAC address randomization. Since IPv6 has a larger address space, Dunlop
et al. [13] proposed an IPv6-based moving target defense (MT6D) technique. These network
parameter randomization techniques break the offensive–defensive balance to some extent,
making it more difficult for attackers to attack network targets. However, they sacrifice
certain network resources when implementing a hopping network, which impacts the
network’s performance.

The influence on network performance includes two main aspects: one is the problem
of resource congestion, i.e., in order to carry out network hopping, it is inevitable to
consume network resources, thus indirectly causing a reduction in network transmission
performance; the other is the so-called network delay packet loss problem, i.e., when
each node in the network synchronizes hopping, due to transmission delay, some data
transmitted with pre-hopping parameters do not reach the receiving node at the time of
hopping, and it also cannot be correctly received by the node after hopping, thus causing
transmission packet loss. This not only degrades performance but also interferes with the
normal network function when network resources are tight, transmission paths are long, or
hops are frequent.

The solution to network delayed packet loss is mainly to increase the data reception
time (time window) for a period of time compared to the data sending time in order to
balance the network transmission delay. For example, in a port-hopping network, Lee [14]
makes the data reception time longer than the data sending time by a period of time and
uses the overlapping time of the time window of the two periods before and after to receive
delayed data from different ports; to further adapt to the network environment through
repeated interactions with the receiver, Kong et al. [15] proposed a sliding time window
based on an IPv6 address hopping (AHSTW) model, and Ma et al. [16] proposed a dynamic
address tunneling model for IPv6, which they based on the results of the interaction
feedback and made the length of the data-reception time window larger than the length of
the data-sending time window. These techniques are mainly used in end-to-end networks,
and they are tightly coupled to the service, which to some extent severely disrupts normal
network operations and is therefore not suitable for general network scenarios.

To address the above problems, we propose a delayed time window estimation algo-
rithm. Firstly, we introduce the concept of delay time window and the estimated value of the
delay time window; secondly, we propose the basic conditions for avoiding non-interaction
and IP address conflicts and mathematically prove that the time window compensation
mechanism can satisfy these conditions, and we give the calculation of the estimated value
of the delay time window; that is, after analyzing the network transmission of different data
services, we obtain the expression for the estimated value of the delay time window, and at
the same time, mathematically, we prove that the estimated value of the delay time window
is theoretically close to the optimal value of the delay time window and finally provide
the implementation algorithm. The algorithm not only minimizes the loss of delayed data
but also does not require interaction with the service. In addition, the method allows the
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network to consume fewer network resources and is able to maintain normal system service
under network resource constraints, and it is therefore applicable to networks in general
and is no longer limited to end-to-end networks.

2. Preliminaries
2.1. Hopping Network

As shown in Figure 1, assume that the network G is made up of physical nodes N1,
N2, . . . , Nz. The network parameters (IP address, port number, etc.) configured for the
corresponding node Ni, i = 1, 2, . . . , z is denoted as hij, j = 1, 2, . . . , ξ. Typically, the set H
= (hij)z×ξ remains constant during the work, while nodes can rely on H for mutual access.
For each node, it is specified that at every period T, a parameter is selected from H and
configured to it by some rule, and its network parameters are changed every period T. For
this change, it is called network hopping, and T is the hopping period.
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2.2. Time Window

As network parameters constantly change in the hopping, a particular network pa-
rameter is only valid for a specific period, which is the time window for that network
parameter, as shown in Figure 2. Then the network parameter hij corresponding to the
i node at the j hopping period is valid for the time range [twa(j), twb(j)] for the hij time
window, denoted as TW(hij). Since the network nodes are generally synchronous hopping,
the time windows of the parameters corresponding to each node are fully overlapping, i.e.,
TW(h1j) = TW(h2j) = . . . = TW(hzj) = [twa(j), twb(j)], so they are denoted uniformly as TW(j).
In the normal case, the time window within which the data is sent is the sending time win-
dow STW(j)= [sta(j), stb(j)]. After receiving the data within the time window, the time win-
dow for receiving the data can be denoted as receiving time window RTW(j) = [rta(j), rtb(j)].
The set of times at which data arrives after it has been sent within the time window is the
arrival-data time window ATW(j) = [atb(j), atb(j)]. In the ideal case of no network delay,
RTW (j) = STW(j) = ATW(j).
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2.3. Delayed Packet Loss

In hopping networks, some mechanisms are usually designed so that all legitimate
nodes can sense the change of H in real time, so the regular communication of legitimate
nodes is unaffected. However, some transmission packet loss is still generated during a
short period of time when H is hopped, which is called delayed packet loss. As shown
in Figure 3, the specific cause of delayed packet loss is that ATW(j) is slightly delayed
by a period of time compared to STW(j) due to the presence of network delay d, which
results in RTW(j) not being able to cover ATW(j) completely. As a result, different methods
have been tried to make RTW(j) cover ATW(j)as much as possible. We summarize the
descriptions in the literature [15–17], where they present two methods for RTW(j) to cover
ATW(j). One is to maximize RTW(j) coverage of ATW(j) by extending RTW(j) on the basis
that STW(j) does not change [14]; the other is to shorten STW(j) on the basis that RTW(j)
does not change, which is equivalent to delaying RTW(j) to give it a chance to cover ATW(j)
completely [15,16], but both methods have drawbacks.
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2.4. Problem Statement

These two methods have two disadvantages:
One is the problem of conflicting IP addresses. When extending RTW(j) for some time,

then RTW(j) is a period longer than STW(j), and there will be a period of overlap between
this extra time ODRT = [rta(j + 1), rtb(j)] and RTW(j + 1). Since the overlapping time can
receive data from different ports but not from different IP addresses, receiving data during
the overlapping time can lead to a problem of conflicting IP addresses, as shown in Figure 4.
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The other is the problem of tight business coupling. When STW(j) is shortened by a
period of time, then a period of time FDTT = [stb(j), sta(j + 1)] for which STW(j) is less than
RTW(j) can be used without being used to send data and without the need to interact with
the tasks to obtain stb(j) and sta(j + 1) for this period of time through the time window. The
aim is to allow delayed data to arrive in total, and such a time window is mainly used in
end-to-end networks (see Figure 5).
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3. Proposed Scheme

In this section, we present a scheme for a delayed time window compensation mecha-
nism and its parameter estimation to solve the problem of IP address conflicts and tightly
coupled services. The implementation of such a mechanism then requires two conditions:
firstly, a time window compensation mechanism and defined associated parameters that
meet the above requirements; secondly, such a mechanism can effectively perform the
function as a time window when the influence of external factors (it is assumed that there
are no network attacks on the hopping network and that the hopping network is hopping
at a uniform rate) on the compensation mechanism is negligible.

3.1. Delay Time Window Compensation Mechanism

According to the above, there are problems with both methods of RTW(j) covering
ATW(j) by extending RTW(j) on the basis that STW(j) does not change length or shortening
STW(j) on the basis that RTW(j) remains unchanged, so we propose the idea of keeping
STW(j) equal to RTW(j) and delaying RTW(j) to STW(j) for a period of time, with the aim of
allowing RTW(j) to override ATW(j). This not only avoids IP address conflicts and tight
task coupling, but it also solves the problem of delayed packet loss. The proof is as follows:

Firstly, when STW(j) = RTW(j), then there is not a period of time when RTW(j) is longer
than STW(j); this period of time does not create an overlap with RTW(j + 1), and therefore
this does not lead to IP address conflicts. Furthermore, there is also not a period of time
when STW(j) is less than RTW(j), which indicates that the time window does not require
interactive data tasks to obtain such a period of time, and therefore this does not lead to
tight service coupling.

Secondly, when RTW(j) = ATW(j), then all the data from STW(j) can be received in
RTW(j), including the delayed data.

Thus, we let STW(j) = RTW(j) and RTW(j) = ATW(j); they can be achieved by the
following two steps:

(1) For RTW(j) = STW(j), let rtb(j)− rta(j) = stb(j)− sta(j), then rtb(j) = stb(j) and rta(j) = sta(j).
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(2) For RTW(j) = ATW(j), assume that d is the network delay and w~ denotes a pe-
riod of time (delay time window). Under the condition that step (1) and (2) are
satisfied, it follows that ata(j) = sta(j) + d, atb(j) = stb(j) + d, rta(j) = sta(j) + w~ and
rtb(j) = stb(j) + w~. Conversely, the values of rta(j) and rtb(j) can be determined as long
as the estimated value of w~ is obtained and w~ = d, again satisfying STW(j) = RTW(j)
and ATW(j) = RTW(j).

In summary, the delay time window compensation mechanism has the characteristics
of necessity and possibility:

1. Necessity means that a delay time window compensation mechanism must solve the
problem of delayed packet loss and related problems.

2. Possibility means that there may be a suitable delay time window length, i.e., a value
of w~ (see Figure 6).
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(1) A simple data task. Under normal situations, routers and network agents have 
sufficient network cache [17,18] to store and forward data, so in most cases, the network 
cache is still significantly effective in reducing delay in packet loss. However, a few in-
stances can still cause packet loss problems for some data. These are the rare cases where 
the processor does not have enough processing capability due to large amounts of data or 
unusual data, and therefore the network cache is insufficient. The few cases that cause 
delayed packet loss are then our target. Consequently, we examine task 1 (r = 1), as shown 
in Figure 8. In task 1, we start with two nodes, with a network delay of d10 between node 
A and node B. When data is sent from A to B, a small amount of data is lost, except for 
most of the data that is received by B. This is because when B has sufficient network cache 
and w~ > d10, the network cache can store data arriving before rta(j) without data loss. How-
ever, when B does not have sufficient network cache due to oversized data, data arriving 
before rta(j) is lost; furthermore, when w~ < d10 and RTW(j) cannot completely cover 
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3.2. Estimation for Delay Time Window

In this section, we obtain the value of w~ by calculation, as getting the value of w~

helps us to determine the values of rta(j) and rtb(j). Since d is unknown, then we can only
find a way to estimate a value for the network delay and use it as an estimated value for w~.
From this, we present an example with multiple (l) data tasks distributed in an observable
wholly connected network. By progressively computing the network transmission delay for
the typical data tasks in the example, we finally obtain an estimated value of the network
delay for w~. These typical data tasks include an end-to-end data task, a multi-node data
task, and multiple multi-node data tasks. This regular data task is more complex, so we
plan to start with the simpler data tasks, as shown in Figure 7.
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(1) A simple data task. Under normal situations, routers and network agents have
sufficient network cache [17,18] to store and forward data, so in most cases, the network
cache is still significantly effective in reducing delay in packet loss. However, a few
instances can still cause packet loss problems for some data. These are the rare cases where
the processor does not have enough processing capability due to large amounts of data
or unusual data, and therefore the network cache is insufficient. The few cases that cause
delayed packet loss are then our target. Consequently, we examine task 1 (r = 1), as shown
in Figure 8. In task 1, we start with two nodes, with a network delay of d10 between node A
and node B. When data is sent from A to B, a small amount of data is lost, except for most
of the data that is received by B. This is because when B has sufficient network cache and
w~ > d10, the network cache can store data arriving before rta(j) without data loss. However,
when B does not have sufficient network cache due to oversized data, data arriving before
rta(j) is lost; furthermore, when w~ < d10 and RTW(j) cannot completely cover ATW(j), the
data arriving after rtb(j) are lost (see Figure 9). The lost data can be expressed as:

LAB = v·|d10 − w~| (1)

Let LAB = 0, w~ = d10.
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Where v denotes the transmission rate, and LAB denotes the number of delayed
packet losses.

(2) Depicts a multi-node data task. We observe this for task 2 (r = 2), where the variable
m combined with the corresponding subscript number r indicates the number mr of nodes
of the corresponding data task, e.g., the number of nodes for the data task 2 (r = 2) is m2.
The variable d combined with the corresponding subscript numbers r and i denotes the
network delay dri of the corresponding task r and node i, e.g., the network delay for task
2 and node 1 is d21, as shown in Figure 10. The data tasks for multiple nodes are more
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complex because data passing through multiple nodes will generate network delays, and
there is an accumulation of multiple network delays starting with three nodes. The network
transmission of three nodes can be seen as two end-to-end network transmissions, i.e., node
1 to node 2 and node 2 to node 3. As the data causes one network delay after passing node 2
and another network delay when the data reaches node 3, then the sum of the two network
delays is the total network delay when the data comes to node 3. We can then calculate
the number of packet losses based on the total network delay, but it needs to be clear that
Equation (1) already provides the delayed packet loss for the first end-to-end network
transmission, so the delayed packet loss for the second end-to-end network transmission is
cumulative on top of that (see Figure 11). The delayed packet loss for the three nodes can
then be expressed as:

L2 = v·|d21 − w~|+ v·|d21 + d22 − w~| (2)

Based on the delayed packet loss for three nodes, we introduce the delayed packet loss for
m2 nodes, which can be expressed as:

L2 = v·|d21 − w~|+ v·|d21 + d22 − w~|+ . . . + v·|d21 + d22+ . . . + d2m2 − w~| (3)

Combining for (3), we get:

L2 = ∑m2
i=1 v·

∣∣∣∑i
κ=1 d2κ − w∼

∣∣∣
Let d2i = ∑i

κ=1 d2κ , we have:
L2 = ∑m2

i=1 v·|d2i − w∼|
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Based on Equation (3), we get:

f2 =
L2

T·v (4)

where f AB is the function of packet loss rate for hopping period T.
Let ∂ f2

∂w∼ = 0, we have:

∂

(
L2
v·T

)
∂w∼ = 0

∂

(
(d21−w∼)2

T

)
∂w∼ +

∂

(
(d22+d22−w∼)2

T

)
∂w∼ + · · ·+

∂

 (d21+d22+···+d2m2−w∼)
2

T


∂w∼ = 0

w∼ = 1
m2

[m2d21 + (m2 − 1)d22 + · · ·+ d2m2 ]

(3) Depicts multiple data tasks for the whole network. In the observable network,
any two or multiple nodes in the network are connected as a single path. Thus, there are
multiple paths (α) across the network, and in most cases, there are multiple data tasks (l) on
a single path. Then, after observing the data tasks on this one path, we can further examine
the data tasks on multiple paths. Since data tasks on multiple paths are more complex, we
first examine data tasks on one path. By observation, accumulating the network delay for
each data task can be used as the total network delay for the data tasks on this path. Then
similarly, based on (4), accumulating the delayed packet loss for multiple data tasks on the
path one can be used as the total delayed packet loss for this path (see Figure 12). The total
delayed packet loss on path one can be expressed as:

∑l
r=1 LAB(r) (5)

Based on the delayed packet loss for path 1, we introduce the delayed packet loss for the α

path expressed as:
Ll = ∑l

r=1 LAB(r) (6)

Based on (6), the data packet loss rate for period (T) can be expressed as:

fl =
Ll

v·T (7)

Let ∂ fl
∂w∼ = 0, we have:

∂ fα

∂w∼ = ∂

( Ll
v·T

)
∂w∼ = 0

∂

 l
∑

r=1

 (
ddr1

−w∼
)2

T +
(dr1+dr2−w∼)2

T +···+(dr1+dr2+···+drmr−w∼)2

T


∂w∼ = 0

∑l
r=1
[(

ddr1 − w∼
)
+ (dr1 + dr2 − w∼) + · · ·+ (dr1 + dr2 + · · ·+ drmr − w∼)

]
= 0

∑l
r=1
[
mrddr1 + (mr − 1)dr2 + · · ·+ drmr −mrw∼

]
= 0

w∼ = 1
∑l

r=1 mr

l
∑

r=1
[mrdr1 + (mr − 1)dr2 + · · ·+ drmr ]

The estimation of w∼ is to let w∼ = 1
∑l

r=1 mr

l
∑

r=1
[mrdr1 + (mr − 1)dr2 + · · ·+ drmr ].

When w∼ = 1
∑l

r=1 mr

l
∑

r=1
[mrdr1 + (mr − 1)dr2 + · · ·+ drmr ], then La = 0 satisfies 0 packet

loss for data tasks on r. According to [19] as the basis for w∼ estimation, the results ob-
tained by Bolot’s [19] tests are consistent with those obtained by [20–22] using simulation
and experimental methods. Under the assumption that using bulk traffic for large pack-
ets and traffic for small packets in internet traffic estimation is consistent, the structure
of the delay time distribution can be described as the relationship between the waiting
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time wn and wn+1 for packets n and n + 1. It influences the network traffic (bits) b, the
packets (bits) P, the service rate of the network (bits/ms) µ, and the packet queuing
time δ. Their relationship can be expressed as wn+1 − wn = (b + P)/µ− δ. Taking Fig-
ure 13 as an example, it shows the distribution of wn+1 − wn − δ for n (n ≤ 800) UDP
(32 bts) packets with wn+1 − wn − δ at δ = 20 ms. wn+1 − wn − δ is the network load
received by the server within [nδ, (n + 1)·δ] and is measured in ms. From Figure 13, it
can be seen that the time is mainly distributed in the area covered by the dashed line.
Therefore, our proposed strategy is to select the larger data tasks. This is because they
take up more time (delay time = receive time (atrκ) − send time (strκ)) through multi-
hop routes [23,24]. For example, in Figure 13, assuming that the largest data task r = 2,
i = 1, . . . , m2, then the maximum delay time is m2d21 + (m2 − 1)d22 + · · ·+ d2m2 , and the

amount of lost data is L2 = ∑m2
i=1 v·

∣∣∣∑i
κ=1 d2κ − w∼

∣∣∣ (see Equation (3)). Let d2i = ∑i
κ=1 d2κ ,

d2κ = at2κ − st2κ . When w∼ = d2i, then L2 = 0, i.e., w∼ = ∑i
κ=1 at2κ−st2κt. Our approach

is to use max{∑i
κ=1 at2κ−st2κ , 0} as an estimate for w~, i.e., w∼ = max{∑i

κ=1 at2κ−st2κ , 0},
w∼ ⊂ {0, (b + P)/µ− δ}.
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4. Performance

In this section, we give the error and experimental evaluation of our two proposed de-
lay time window schemes. For error evaluation, we mainly analyze the difference between
estimated and optimal values of the delay time window. For experimental evaluation, we
test the data loss rate of our schemes.

4.1. Error Evaluation

In this section, to assess the validity of our proposed estimates of the delay time
window, we thus present the error assessment of the delay time window. The error is a
key part of the error assessment. The error is defined as δ = w~ − w, and the mathematical
expectation of the error (E(δ)) reflects the magnitude of the mean of the error between the
estimated and optimal values of the delay time window. Therefore, it can be used as an
indicator for error assessment. In the error evaluation, let the variables x1, x2, . . . , x2k+1
denote the network delay, and x1, x2, . . . , x2k+1 ~ N (0,1), and let them be independent of
each other, w = (x1, x2, . . . , x2k+1)/2k + 1. Let med (x1, x2, . . . , x2k+1) denote the function
that returns an optimal value based on the proposed method. According to [25,26], the
probability density distribution for end-to-end delayed packet loss shows gamma distri-
bution. Thus, we consider that its probability density can be viewed as density function

f (t) = 1√
2π

e−
t2
2 , and its distribution may be viewed as F(x) =

∫ x
−∞

1√
2π

e−
t2
2 dt. Firstly, the

analysis of multiple network delays is more complex, so we start with three network delays,
x1, x2, and x3. According to this, we have δ = (x1 + x2 + x3)/3−med(x1, x2, x3).

E(δ) =
t

x1<x2<x3

(x1 + x2 − 2x2) f (x1) f (x2) f (x3)dx1dx2dx3

=
∫ ∞
−∞ f (x2)

[∫ ∞
x2

f (x3)dx3
∫ x2
−∞ x1 f (x1)dx1 +

∫ x2
−∞ f (x1)dx1

∫ ∞
x2

x3 f (x3)dx3 − 2x3
∫ ∞

x2
f (x3)dx3

∫ x2
−∞ f (x1)dx1

]
dx2

=
∫ ∞
−∞ f (x2)[(1− F(x2))(− f (x2)) + F(x2) f (x2)− 2x2(1− F(x2))F(x2)]dx2

=
∫ ∞
−∞

[
f 2(x2)(2F(x2)− 1) + 2x2(F(x2)− 1)F(x2)

]
dx2

=
∫ ∞
−∞

[
f 2(x2)(2F(x2)− 1)

]
dx + (F(x2)− 1)F(x2) f (x2)|∞−∞ −

∫ ∞
−∞ f 2(x2)2x2(F(x2)− 1)dx2

= 0

Similarly, δ = med (x1, x2, . . . , x2k+1) − (x1, x2, . . . , x2k+1)/2k + 1.

E(δ) = E
((

2k+1
∑

i=1
xi/2k + 1

)
− x∗

)
=
∫

x∗=med(x1,x2,...,x2k+1)

(
2k+1
∑

i=1
xi − (2k + 1)x∗

)
f (x1) f (x2) · · · f (x2m+1)dx1dx2 · · · dx2m+1

=
∫ ∞
−∞

{
k[1− F(x∗)]kFk−1(x∗)(− f (x∗)) + k[1− F(x∗)]k−1Fk(x∗) f (x∗)− kx∗Fk(x∗)[1− F(x∗)]

}k
f (x∗)

=
∫ ∞
−∞ k[F(x∗)(1− F(x∗))]k−1[2F(x∗)− 1] f 2(x∗)dx∗ −

∫ ∞
−∞ kx∗[F(x∗)(1− F(x∗))]k f (x∗)dx

= 0

Therefore, E(δ) = 0, from which it follows that the estimated value of w~ is an unbiased
estimated value.

4.2. Experimental Evaluation

The experimental assessment consists of two parts, one for the simulation experiment
and the other for the actual examination.

For the simulation experiments, we developed the simulated hopping network pro-
gram SHN (similar to NS-2) using Dev-C++5.11 and C++, which consisted of seven hopping
network nodes, including one transmitter node, one receiver node, and five intermediate
nodes, as well as network delays (X) and 14 IP addresses (192.168.1.10 to 192.168.1.13).
The host with the SHN is DESKTOP-B4VQAPP, which was configured with CPU Intel (R)
Xeon (R) e-2124 3.31ghz, 16GB of RAM, and Windows 10 OS. The experiments were imple-
mented on DESKTOP-B4VQAPP. In our experiments, we first set up the system’s initial
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values, including the network hopping period T = 2000, the delay time window w = 50, the
number of intermediate nodes σ = 5, the mean value mu = 50 of the random variable X, and
the variance sigma = 5, 10, 15, 20, bandwidth (100 Mbit/s). Our first experiment was an
end-to-end hopping network packet loss rate experiment. The second experiment was a
packet loss rate experiment for a multi-node hopping network. In both experiments, we
sent 105 data (32 bytes) from the sending node to the receiving node and counted the data
loss rate at period T based on the data received by the receiving node after the data reached
the receiving node. All experiments were repeated 5000 times. For end-to-end networks,
as shown in Figure 14 and Table 1, because in this method, the size of the time window
was set by sending interaction information to the receiving node and feedback from it.
The methods of [15–17] are better than the method presented in this paper. In addition, as
shown in Figure 15, we experimented with the proposed delayed time window approach,
and the experimental results show that the packet loss rate is better for time windows of
10 ms, 20 ms, and 30 ms compared to no time window.
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Figure 14. (a) Port hopping, (b) IP address hopping, the packet loss rates for end-to-end network.
Refs [16,17].

Table 1. Comparison of packet loss rates for different time window methods.

Method m = 1 m = 2 m = 3 m = 4 m = 5

Ours 0.3 0.35 0.5 0.6 0.8
ODRT [14] 0.6 0.7 0.8 0.9 1.0
FDTT [15] 0.8 0.9 1.1 1.2 1.4
FDTT [16] 0.9 1.2 1.4 1.6 1.7

For the actual examination environment, the physical connection topology of the
network is shown in Figure 16. The system is composed of two hopping subnets; hopping
subnet 1 and hopping subnet 2 are connected through the IP bearer network. After the start
of the network hopping, the source address and source port of the IP packet of the data
platform in hopping subnet 1 after the hopping process are transmitted through the two
WAN ports of the S5700 router through the IP bearer network to the hopping equipment in
hopping subnet 2 after restoration, and then they are transmitted by the visitors in the data
plane, thus completing an ordinary network transmission process.
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The test environment is built with two hopping subnets, each of which is connected
through an IP bearer network. Each hopping subnet is simulated by the relevant equipment
in a physical cabinet. Each cabinet includes eight physical servers and three switches; the
eight servers, respectively, achieve service hopping, network hopping, posture display, and
other functions. The IP bearer network is simulated by an independent cabinet. The IP
bearer network consists of four switches with three-layer routing function. The hardware
equipment of the test environment mainly includes servers, switches, routers, etc., whose
functions and performance indicators are shown in Table 2.

Table 2. List of hardware devices and their configuration parameters for Cabinet 1, Cabinet 2 and
Cabinet 3.

Device Name Device Type Hardware Parameter Network Interface

1 Cloud computing and
cloud storage server (Think-station) CPU: E5-2609; memory: 16G;

harddisk: 500G*5 2* Gigabit Ethernet port

2 Cloud computing and
cloud storage server (Think-station) CPU: E5-2609; memory: 16G;

harddisk: 500G*5 2* Gigabit Ethernet port

3 Cloud computing and
cloud storage server (Think-station) CPU: E5-2609; memory: 16G;

harddisk: 500G*5 2* Gigabit Ethernet port

4 Management platform server (Think-station) CPU: E5-2609; memory: 16G;
harddisk: 500G*3 2* Gigabit Ethernet port

5 Network hopping
controller server (Think-station) CPU: E5-2609; memory: 16G;

harddisk: 500G*3 2* Gigabit Ethernet port

6 Service hopping
controller server (Think-station) CPU: E5-2609; memory: 16G;

harddisk: 500G*3 2* Gigabit Ethernet port

7 Service hopping agent server (FitServer) CPU: E5-2609; memory: 16G;
harddisk: 500G*2 2* Gigabit Ethernet port

8 Address hopping
devices server (FitServer) CPU: E5-2609; memory: 16G;

harddisk: 500G*2 2* Gigabit Ethernet port

11 Control plane
connection Switche S3026 24-port 2-Layer switch 2* Gigabit Ethernet port

12 Control plane
connection Switche S5700 (Li) 24-port 2-Layer switch 2* Gigabit Ethernet port

13
Cloud computing
and cloud
storage connection

Switche S5700 (Li) 24-port 2-Layer switch 2* Gigabit Ethernet port

The maximum network transmission rate is 100 Mbit/s under the national standard for
category 5 network cables. Network hopping is initiated at one hop/10 s, one hop/5 s, and
one hop/2 s, respectively. In addition, a network transmission stress test was conducted
(see Figure 17. Moreover, the performance test of the router hopping was carried out at a
network transmission pressure of 500 Mb/s (Figures 18 and 19). The experimental results
show that the performance of the router still has a relatively large improvement based on
various indicators with the use of delay time windows.
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5. Summary and Future Research

In this paper, we construct a multi-node delay time window estimation method. The
delay time window and the delay time window compensation mechanism are proposed
in the method, as well as the estimation of the delay time window length. A series of
experiments were performed to test the effectiveness of the delay time window estimation
method. In the SHN simulation experiments, the network transmission packet loss rate was
less than 0.6% at 50 ms network delay. At 100 ms network delay, the network transmission
packet loss rate was less than 1.1%. In the actual test, the test environment network cable
was lower than the super category five standard, and the maximum network transmission
rate was 100 Mbit/s. Taking the network transmission speed pressure of 500 Mbit/s as
an example, the packet loss rate of network transmission using the delay time window
method is less than 0.8% under 30 ms network delay. This is an improvement compared to
the packet loss rate of network transmission without delay time windows. This proves the
effectiveness of the method in this paper.

The first suggestion for future research relates to the later ones concerning the plau-
sibility of the period of change of the network parameters. In the delay time window
estimation method, an estimate of the delay time window is proposed based on the calcu-
lated value of the network delay for data services. This reduces the network transmission
packet loss rate to a certain extent. However, many factors affect the network transmission
packet loss rate, including in hopping networks; one of the important factors is the effect of
the hopping period on the network transmission packet loss rate. Therefore, the second
recommendation for future research is that we will consider setting a reasonable hopping
period. There are two main aspects of a reasonable period. The first is that setting the
hopping period length should not consume too many system resources or cause too much
packet loss. The second is that setting the hopping period length should not have too great
an impact on the resistance to external attacks. It is necessary to analyze the effect of the
hopping period on these factors and then propose a reasonable hopping period scheme.
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In future research, we will continue to evaluate the impact of the hopping period on the
transmission performance of the system.

6. Patents

Zhengquan Xu, Zhu Fang. A method for calculating delay time windows in multi-node
networks of hopping networks. National Invention Patent, Patent number 2021107766.
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STW sending time window
RTW receiving time window
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