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Abstract: GCM-SIV2 is a nonce-based beyond-birthday-bound (BBB)-secure authenticated encryption
(AE) mode introduced by Iwata and Minematsu at FSE 2017. However, it is built by combining two
instances of GCM-SIV1 and needs eight keys, which increases the costs of hardware and software
implementation. This paper aims to reduce these costs by optimizing components (such as key
materials, hash calls, and block cipher calls) and proposes an optimal tradeoff between GCM-SIV1
and GCM-SIV2 called GCM-SIV1.5. Moreover, we introduce the faulty nonce setting to AE and prove
the BBB security of GCM-SIV1.5 with graceful security degradation in the faulty nonce setting by
mirror theory. Finally, we discuss advantages of GCM-SIV1.5.

Keywords: nonce-based authenticated encryption; GCM-SIV1; GCM-SIV2; beyond-birthday-bound
security; faulty nonce setting; mirror theory

1. Introduction

The Galois Counter Mode (GCM) of operation introduced by McGrew and Viega
is a very famous authenticated encryption (AE) mode [1]. Due to its friendly hardware
implementation, superior software performance, no patent, and provable security, it has
been widely used in high-speed network application environments. For example, GCM
with the Advanced Encryption Standard (AES) has been used in IETF Transport Layer
Security protocol TLS 1.3. Now, GCM has been included in the recommendations of NIST,
ISO/IEC, IEEE, and IETF. As GCM is widely deployed, the CAESAR competition takes it
as the baseline algorithm, which further promotes the research of GCM. There exist a large
number of research results related to GCM [1–16].

GCM is a nonce-based AE mode. It takes a nonce as an extra input and requires that
the nonce used in the encryption oracle is distinct (nonce-respecting setting). If the nonce
length is restricted to 96 bits, GCM is provably birthday-bound secure up to approximately
2n/2 adversarial queries in the nonce-respecting setting [3,5], where n is the block-size of
the underlying block cipher.

However, the nonce-respecting assumption does not fit the actual situation. The nonce
is often misused in real life, bringing serious security threats. Joux found that, if the nonce
is misused, then the hash key of GCM can be leaked and the leaked hash key can be
utilized to achieve a universal forgery attack [2]. To settle the nonce misuse problem of
GCM at little cost, Gueron and Lindell introduced a nonce-misuse-resistant AE (NMAE
or MRAE) scheme GCM-SIV at CCS 2015 [11]. GCM-SIV covers GCM components and
follows the SIV approach by Rogaway and Shrimpton [17]. In fact, as the syntax and
the security model of NMAE became formalized, more and more NMAE schemes were
proposed, such as [11–23]. GCM-SIV is just the first NMAE scheme that introduces SIV
into GCM. GCM-SIV is proven secure even if the nonce is repeated. In 2016, Iwata and
Minematsu pointed out that there exists a trivial distinguishing attack with approximately
2(n−k)/2 adversarial queries in GCM-SIV, where k is the bits of keys, and then presented
an improved variant of GCM-SIV, called GCM-SIV1, which is proven secure up to 2n/2
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(birthday bound) adversarial queries in the nonce misuse setting [12]. Furthermore, they
considered a stronger security bound, and then proposed beyond-birthday-bound (BBB)-
secure GCM-SIVr schemes that combine r ≥ 2 instances of GCM-SIV1. BBB indicates that
cryptographic schemes can resist beyond O(2n/2) adversarial queries. The BBB-secure
AE schemes are very rich, such as CHM [24], GCM-SIVr [12], SCT [20], ZAE [21], and
PFBw [25]. GCM-SIVr is proven BBB-secure against O(2

rn
r+1 ) adversarial queries in the

nonce misuse setting. Later, an updated variant of GCM-SIV called AES-GCM-SIV was
proposed by Gueron et al., and AES-GCM-SIV was eventually accepted as a recommended
standardization of IETF Crypto Forum Research Group [13,15]. Iwata and Seurin also made
some important contributions to the promotion of standardization. They pointed out the
problems in the earlier version, corrected them, and gave some suggestions for improving
the key derivation function [14]. These problems and suggestions are accepted to further
improve AES-GCM-SIV [15]. Unlike GCM-SIV, AES-GCM-SIV utilizes a key derivation
function to generate the hash key and the encryption key, utilizes POLYVAL instead of
GHASH, and invokes the full authentication tag as an initial counter. At Eurocrypt 2018,
Bose et al. further considered the multi-user security, faster key derivation, and better
bounds of AES-GCM-SIV [16].

Although there exists a large amount of research literature on the nonce misuse setting,
the number of nonce misuse is often described vaguely. An effective measure of nonce
misuse is the maximum number of its multi-collisions. To specify the level of nonce misuse,
Dutta et al. introduced a quantitative index of nonce misuse for message authentication
code (MAC) algorithms called the number of faulty nonces [23]. In the faulty nonce setting,
a query is called as a faulty query if the nonce in this query is the same as the nonce in
the previous queries, i.e., the nonce is re-used. The symbol µ is usually used to indicate
the number of faulty nonces. Therefore, the faulty nonce setting covers nonce-respecting
and nonce misuse settings. For an adversary that makes, at most, µ faulty queries, (1) if
µ = 0, then the adversary is called a nonce-respecting adversary; (2) if µ ≥ 1, then the
adversary is called a nonce-misusing adversary. Dutta et al. presented a nonce-based MAC
scheme, nEHtM, that ensures BBB security with graceful degradation in the faulty nonce
setting [23]. Furthermore, they introduced an nEHtM-based AE scheme, CWC+, whose
privacy is optimally secure in the nonce-respecting setting and whose authenticity is BBB-
secure with graceful degradation in the faulty nonce setting. To ensure the faulty nonce
misuse resistance of privacy and authenticity, Choi et al. introduced the first fully faulty
nonce-misuse-resistant AE scheme SCM [22]. It utilizes a hash key and three encryption
keys. From the perspective of the security, SCM ensures close-to optimal n-bit security in
the nonce-respecting setting and supports graceful BBB security degradation (not only for
privacy but also for authenticity) in the faulty nonce setting. In recent years, the research
about the faulty nonce-misuse-resistant schemes mainly focuses on MACs [26,27]. This
paper aims to introduce the faulty nonce setting to GCM-SIVr, and presents an improved
AE scheme that ensures full BBB security with graceful degradation in the faulty nonce
setting and utilizes as few keys as possible.

Our Contribution. We focus on the optimization of GCM-SIVr in the faulty nonce
setting, and propose an optimal tradeoff between GCM-SIV1 and GCM-SIV2 called GCM-
SIV1.5, which ensures full BBB security with graceful degradation in the faulty nonce
setting. Specifically, our contribution includes:

1. From the point of view of the design, we introduce a BBB-secure sum of permutation
(SoP) construction to encryption and authentication parts of GCM-SIV1.5, which
makes GCM-SIV1.5 BBB secure. GCM-SIV1.5 follows “MAC-then-Encrypt” (MtE).
The authentication part of GCM-SIV1.5 utilizes the construction FSoP

B2 proposed by
Chen et al. [27] to ensure BBB security, and the encryption part of GCM-SIV1.5 is
generated by SoP-based counter mode with an initial vector and a nonce CTRSoP to
provide BBB security. Moreover, to minimize costs of key management and implemen-
tation on software and hardware, and to maximize the running speed, GCM-SIV1.5
just utilizes two block cipher keys and a hash key, invokes a hash function and twice
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plaintext blocks, and generates an authentication tag. More importantly, all encryption
operations involving the nonce can be carried out offline, which saves half of the
online computing resources.

2. From the point of view of the security, we prove that GCM-SIV1.5 enjoys BBB security
with graceful degradation in the nonce faulty setting by using mirror theory, alternat-
ing events lemma, and the H-coefficient technique. Assuming that the underlying
block cipher is a secure pseudorandom permutation (PRP) and the hash function
is XOR-universal, then GCM-SIV1.5 is proven secure up to approximately 3n/4-bit
query complexity and approximately n-bit forgery attempts for µ-nonce faulty adver-
saries with µ ≤ 2n/4. In the real world, if the underlying block cipher is instantiated
with AES-128, then GCM-SIV1.5 achieves, at most, approximately 96-bit security for
µ-nonce faulty adversaries with µ ≤ 232.

In order to better demonstrate the superiority of our design, we give a fair and thor-
ough comparison between GCM-SIV1.5 and existing typical blockcipher-based AE schemes
from the following aspects: the depended assumption (PRP means pseudorandom per-
mutation, PRF means pseudorandom function, TPRP means tweakable PRP, and ICM
means ideal cipher model), the number of the encryption keys (#Encryption keys), the
number of the hash keys (#Hash keys), the number of the underlying primitive (block
cipher) calls (#Primitive calls), the number of the hash calls (#Hash calls), the sizes of the
authentication tag and nonce, security bound under the nonce-respecting scenario (NR
security), security bound under the nonce misuse scenario (NM security), and graceful
degradation. The details are shown in Table 1. Compared with GCM-SIV, GCM-SIV1,
GCM-SIV2, and GCM-SIVr, GCM-SIV1.5 utilizes fewer keys, fewer blockcipher and hash
calls, and shorter sizes, provides a better security bound, and supports graceful security
degradation. Therefore, GCM-SIV1.5 reduces the costs of key management and communi-
cation throughput, increases the running speed, and ensures a graceful security. Compared
with CWC+, GCM-SIV1.5 provides a better security bound and supports fully faulty nonce
misuse resistance and graceful security degradation for both privacy and authenticity.
Compared with SCM, GCM-SIV1.5 saves an encryption key, supports offline operations
involving the nonce’s encryption, and saves half of the online computing resources. In a
word, our design has an excellent comprehensive performance.

Table 1. Comparison between GCM-SIV1.5 and existing typical nonce-based AE schemes, where PRP
means pseudorandom permutation, PRF means pseudorandom function, TPRP means tweakable
PRP, ICM means ideal cipher model, # means counting, m is blocks of the plaintext, a is blocks of
associated data, and n is the block-size of the underlying primitive.

Assumption #Encryption Keys #Hash Keys #Primitive Calls #Hash Calls

GCM [5] PRP 1 1 m + 1 1
ELmD [19] PRP 1 0 a + 2m + 2 0
OCB3 [28] PRP 1 1 1 a + m + 2 1 2

ΘCB3 [28] TPRP 1 1 1 a + m + 1 1 2

mGCM [29] PRP 1 1 m + 1 1
GCM-SIV [11] PRF 2 1 m + 1 1

AES-GCM-SIV [15] ICM 1 3 1 4 m + 1 1
GCM-SIV1 [12] PRP 2 1 m + 1 1
GCM-SIV2 [12] PRP 6 2 2m + 4 2
GCM-SIVr [12] PRP r2 + r r rm + r2 r

CWC+ [23] PRP 1 1 5 m + 3 1
SCM [22] PRP 3 1 m + 5 1

GCM-SIV1.5 PRP 2 1 2m + 2 1
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Table 1. Cont.

Tag Size Nonce Size NR Security NM Security Graceful Degradation

GCM [5] ≤n 3n/4 O(2n/2) - ×
ELmD [19] n n O(2n/2) O(2n/2) ×
OCB3 [28] ≤n ≤n O(2n/2) - ×
ΘCB3 [28] ≤n ≤n O(2n) - ×

mGCM [29] n n O(2n) - ×
GCM-SIV [11] n n O(2n/2) O(2n/2) ×

AES-GCM-SIV [15] n 3n/4 O(23n/4) O(2n/2) ∼ O(23n/4) X
GCM-SIV1 [12] n n O(2n/2) O(2n/2) ×
GCM-SIV2 [12] 2n n O(22n/3) O(22n/3) ×
GCM-SIVr [12] rn n O(2rn/r+1) O(2rn/r+1) ×

CWC+ [23] ≤n 3n/4 O(22n/3) O(2n/2) ∼ O(22n/3) 6 X
SCM [22] n n− 2 O(2n) O(2n/2) ∼ O(2n) X

GCM-SIV1.5 n 3n/4 O(23n/4) O(2n/2) ∼ O(23n/4) X

1 The hash key is the encryption key. 2 The hash function is achieved by invoking a underlying primitives. 3 The
encryption key is generated by invoking a key derivation function. 4 The hash key is generated by invoking a
key derivation function. 5 The hash key is generated by the encryption key. 6 This security bound is just that of
authenticity. The privacy of CWC+ is insecure in the nonce misuse setting.

The rest of this paper is organized as follows. Section 2 presents some preliminaries.
Section 3 introduces mirror theory and its graph description. Section 4 shows the decompo-
sition of nAE security. Section 5 described GCM-SIVr. Section 6 proposes our construction,
GCM-SIV1.5. Section 7 derives the security proof. Section 8 concludes this paper.

2. Preliminaries

Notations. Some notations are described in Table 2.

Table 2. Descriptions of notations.

Notations Descriptions

⊕ the bitwise exclusive or (XOR)
+ addition modulo 2n

· the multiplication over the finite field
|| the concatenation of strings
{0, 1}∗ a set of all strings (including an empty string)
{0, 1}n a set of all strings whose bit-length is n
Perm(n) a set of all permutations whose workspace is n
Func(m, n) a set of all functions from m-bit inputs to n-bit outputs
K� K the key K randomly sampled from the key space K
AO = 1 an event where an adversary A outputs 1 after interacting with the oracle O
[i]m an m-bit binary representation of an integer i
[r] a set of consecutive integers {1, 2, · · · , r}
|X| the number of elements in the set X
(2n)q 2n · (2n − 1) · · · (2n − q + 1)

Nonce-Based Authenticated Encryption (nAE). A nonce-based authenticated encryption
(nAE) with associated data scheme Π = (K, E ,D) consists of an encryption algorithm
E and a decryption algorithm D, where K is a non-empty set of keys. Let K ∈ K. The
encryption algorithm E takes a key K, a nonce N, associated data A, and a message M
as the input and outputs a ciphertext and an authentication tag (C, T) = EK(N, A, M).
The decryption algorithm D takes a key K, a nonce N, associated data A, a ciphertext
C, and an authentication tag T as the input and outputs a message or a reject symbol
M/⊥ = DK(N, A, C, T). Here, DK(N, A, EK(N, A, M)) = M.

An nAE adversary A has access to encryption and decryption oracles (EK,DK) or
random and reject oracles ($,⊥), whose goal is to distinguish them. The random oracle
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$ takes (N, A, M) as the input and always outputs random strings (C, T)� {0, 1}|M|+|T|.
The reject oracle ⊥ takes (N, A, C, T) as the input and always outputs a reject symbol ⊥.
The nAE advantage of A against Π is defined as

AdvnAE
Π (A) = |Pr[K� K : AEK ,DK = 1]− Pr[A$,⊥ = 1]|.

We assume thatAmakes q encryption queries (N1, A1, M1), · · · , (Nq, Aq, Mq) to EK and
returns (C1, T1), · · · , (Cq, Tq), and then makes qv forgery attempts (N′1, A′1, C′1, T′1), · · · ,
(N′qv , A′qv , C′qv , T′qv) to DK. For a nonce-based AE scheme, we call an AE query a faulty
query if A has already queried its oracle with the same nonce, and assume that A can be
allowed to make, at most, µ faulty queries. Then, µ = 0 (N1, · · · , Nq are distinct) corresponds
to the nonce-respecting setting and µ ≥ 1 (there exists at least one collision in N1, · · · , Nq)
corresponds to the nonce misuse setting.

Nonce-Based Encryption (nE). A nonce-based encryption (nE) scheme E = (KE, E−E , E−D)
consists of an encryption algorithm E− E and a decryption algorithm E−D. The encryption
algorithm E− E takes a key KE, a nonce N, associated data A, and a message M as the input
and outputs a ciphertext C = E− EKE(N, A, M). The decryption algorithm E− D takes a
key KE, a nonce N, associated data A, and a ciphertext C as the input and outputs a message
M = E−DKE(N, A, C). Here, E−DKE(N, A, E− EKE(N, A, M)) = M.

An nE adversary A has access to encryption oracle E− EKE or a random oracle $,
whose goal is to distinguish them. The random oracle $ takes (N, A, M) as the input and
always outputs random strings C� {0, 1}|C|. We define the nE-advantage of A as

AdvnE
E (A) = |Pr[KE � KE : AE−EKE = 1]− Pr[A$ = 1]|.

Pseudo-Random Function (PRF). Let F : KF × {0, 1}m → {0, 1}n be a keyed function,
where KF is a non-empty set of keys. It takes K ∈ KF and X ∈ {0, 1}m as the input, and
returns Y = FK(X) ∈ {0, 1}n. Let R� Func(m, n).

A PRF adversary A has access to encryption oracle FK or a random oracle R, whose
goal is to distinguish them. The PRF advantage of an adversary A is defined as

Advpr f
F (A) = |Pr[K� KF : AFK = 1]− Pr[AR = 1]|.

Pseudo-Random Permutation (PRP). Let E : KE × {0, 1}n → {0, 1}n be a block cipher,
where KE is a non-empty set of keys. It takes a key K ∈ KE and a plaintext block
M ∈ {0, 1}n as the input, and returns a ciphertext block C = EK(M). For each key
K ∈ KE, the function EK : {0, 1}n → {0, 1}n is a permutation, i.e., EK ∈ Perm(n). Let
P� Perm(n).

A PRP adversaryA has access to encryption oracle EK or a random permutation oracle
P, whose goal is to distinguish them. The PRP advantage of an adversary A is defined as

Advprp
E (A) = |Pr[K� KE : AEK = 1]− Pr[AP = 1]|.

AXU Hash Functions [22,26,27,30]. Let H : KH × {0, 1}∗ → {0, 1}n be a hash function,
where KH is a non-empty hash key space. Let L be a hash key randomly drawn from KH .
If, for any distinct x, x′ ∈ {0, 1}∗ and y ∈ {0, 1}n, it holds that

Pr[HL(x)⊕ HL(x′) = y] ≤ ε,

then H is called ε almost XOR universal (ε-AXU). If ε = 2−n, H is called an XOR universal
(XU) hash function.
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Alternating Events Lemma [26,27,30]. For bounding the probability of an alternating event,
such as

HL(xi) = HL(xj) ∧ HL′(xj) = HL′(xk) ∧ HL(xk) = HL(xl),

the alternating events lemma is a vital technique in the security proofs.

Lemma 1 (Alternating Events Lemma [26,27,30]). Let qi, qj, qk, ql , q such that qi, qj, qk, ql ≤ q.
Let Xq = (X1, · · · , Xq) be a q-tuple of random variables, and let Xqi , Xqj , Xqk , Xql ⊆ Xq. For
distinct i ∈ [qi], j ∈ [qj], let Ei,j be events associated with Xi ∈ Xqi and Xj ∈ Xqj , possi-
bly dependent, which all hold with a probability of, at most, ε. For distinct i ∈ [qi], j ∈ [qj],
k ∈ [qk], l ∈ [ql ], let Fi,j,k,l be events associated with Xi ∈ Xqi , Xj ∈ Xqj , Xk ∈ Xqk and Xl ∈ Xql ,
which all hold with a probability of, at most, ε′. Moreover, the collection of events (Fi,j,k,l)i,j,k,l is
independent with the collection of event (Ei,j)i,j. Then, there exist i ∈ [qi], j ∈ [qj], k ∈ [qk], l ∈ [ql ]
such that

Pr[Ei,j ∧ Ek,l ∧ Fi,j,k,l ] ≤
√

qiqjqkqlε
√

ε′.

H-coefficient Technique [31]. Patarin’s H-coefficient technique is one of the very useful
approaches to upper bound the distinguishing advantage of a cryptographic scheme. Given
a real system X and an ideal system Y, let A be a deterministic adversary whose goal is
distinguish X from Y. A interacts with X and Y and a series of query–response pairs are
recorded as a transcript τ. Let T be the set of all possible transcripts. Let Xre be the random
variable interacting with the real system X and Yid be the random variable interacting with
the ideal system Y. Then, the H-coefficient lemma is presented as follows.

Lemma 2 (H-coefficient Lemma). Let T = Tgood ∪ Tbad and ε, δ ∈ [0, 1]. If Pr[Yid ∈ Tbad] ≤ ε
and for all τ ∈ Tgood, Pr[Xre = τ]/Pr[Yid = τ] ≥ 1− δ, then

|Pr[AX = 1]− Pr[AY = 1]| ≤ ε + δ.

If an adversary makes q queries to an oracle O and obtains a transcript τ = {(x1, y1),
· · · , (xq, yq)}, then we say that the oracle O extends the transcript τ and write it as O ` τ,
i.e., if O(xi) = yi for all i ∈ [q], then O ` τ.

3. Mirror Theory

Patarin’s mirror theory is a vital tool for bounding the number of solutions of affine
systems of multivariate equations or non-equations, which can be applied in the security
proofs of BBB-secure cryptographic schemes [27,32–35]. Here, we consider an affine system
of bi-variate equations.

Let G =< V1, V2, E, W > be a bipartite graph satisfying the following affine system of
bi-variate equations E : 

X1 ⊕Y1 = λ1

X2 ⊕Y2 = λ2

· · · · · · · · · · · · · · ·
Xq ⊕Yq = λq

where Xi 6= Yj ∈ {0, 1}n for any i and j, and let the vertex sets V1, V2, the edge set E, and
the weighted (labeled) function W be

V1 = {X1, , · · · , Xq}, V2 = {Y1, · · · , Yq},
E = {ei = (Xi, Yi), i ∈ [q]},
W : E→ {0, 1}n \ {0n}, and W(ei) = λi, i ∈ [q].
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We assume that G can be divided into α components with more than two vertexes and
β components with just two vertexes, i.e., G = C1 ∪ · · · ∪ Cα ∪ D1 ∪ · · · ∪ Dβ.

For a bipartite graph G, we say that G is good if it satisfies the following conditions:

• Acylic. G must contain no cycle.
• Non-zero path label (NPL). W(P) 6= 0 for all paths P with an even length in the graph

G, where W(P) = ∑e∈P W(e).

Lemma 3 (Bipartite Graph Description of Mirror Theory [27,35]). Let G =< V1, V2, E, W >
be a good bipartite graph induced by E , and |V1| = q′ ≤ q, |V2| = q′′ ≤ q, |E| = q. Let qc be the
total edges of components with more than two vertexes. Then, the number of solutions to E that are
chosen from {0, 1}n is at least

(2n)q′(2n)q′′

2nq (1− δ),

where

δ =
9q2

c
8 · 2n +

9q2
c q + 12qcq2 + 8q2

8 · 22n +
8q4

3 · 23n .

4. Decomposition of nAE Security

Namprempre et al. explored the generic composition of nAE and revealed the de-
composition of nAE (security) from IV-based or nonce-based encryption and an MAC [36].
Now, let us focus on N3 type nAE schemes.

An N3 type nAE scheme Π = (K, E ,D) consists of a PRF F and an nE scheme
E, where K is the key space, E is the encryption algorithm, and D is the decryption

algorithm. Given K = (KF, KE)
$←− K = KF × KE, E takes (N, A, M) as the input

and returns (C, T) = EK(N, A, M). To be specific, first let T = FKF(N, A, M), and then
C = E− EKE(N, T, M). D takes (N, A, C, T) as the input and returns M/⊥ = DK(N, A, C, T).
To be specific, first let M = E−DKE(N, T, C) and T′ = FKF(N, A, M), and then return M if
T = T′ and ⊥ otherwise.

Type N3 nAE is secure if its tag generation function is a PRF and if the nE scheme is
secure [36]. We assume that an adversary Amakes, at most, q encryption queries and qv
forgery attempts; then, the security of Π is shown in the following lemma.

Lemma 4 (Decomposition of nAE Security [36]). Let F : KF ×N ×H×M → T be a tag
generation function and E : KE ×N × T ×M → C be an nE scheme, where T = {0, 1}τ . Let
Π = (K, E ,D) be an N3 type nAE scheme constructed by F and E. Let A be an nAE-adversary.
Then, there are two adversaries, B and C, such that

AdvnAE
Π (A) ≤ Advpr f

F (B) + AdvnE
E (C) + qv

2τ
.

The above lemma shows that the security proofs of nAE schemes are reduced to the
security proofs of the PRF and the nE scheme.

5. GCM-SIVr

Let us first review the specification of GCM-SIVr [12], where r ≥ 1 is an integer. It
utilizes a block cipher E : KE × {0, 1}n → {0, 1}n and a hash function H : KH × {0, 1}∗ →
{0, 1}n. The encryption algorithm E of GCM-SIVr takes a key K = (L1, · · · , Lr, K′1, · · · , K′r2 ,

K1, · · · , Kr) ∈ (KH)
r × (KE)

r2+r, a nonce N, associated data A, and a plaintext M as
the input, and returns a ciphertext C and an authentication tag T = T1|| · · · ||Tr, i.e.,
(C, T1|| · · · ||Tr) = EK(N, A, M). The decryption algorithm D of GCM-SIVr takes K, N,
A, C, and T as the input, and returns M/⊥ = DK(N, A, C, T). The details are shown in
Algorithms 1–5. GCM-SIV1 and GCM-SIV2 are degraded versions of GCM-SIVr when
r = 1 and 2.
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Algorithm 1 The key generation algorithm: KG
Input: a key parameter k
Output: a key K = (L1, · · · , Lr, K′1, · · · , K′r2 , K1, · · · , Kr)

(L1, · · · , Lr, K′1, · · · , K′r2 , K1, · · · , Kr)
$←− (KH)

r × (KE)
r2+r

return K = (L1, · · · , Lr, K′1, · · · , K′r2 , K1, · · · , Kr)

Algorithm 2 The encryption algorithm: E
Input: a key K, a nonce N, associated data A, and a plaintext M
Output: a ciphertext C and a tag T
Partition M into M1‖ · · · ‖Mm, |Mi| = n, 1 ≤ i ≤ m− 1, 0 < |Mm| ≤ n
for i = 1 to r do

Vi = HLi (N, A, M) = GHASHLi (A, M)⊕ N
Ti = 0n

endfor
for i = 1 to r do

for j = 1 to r do
Ti = Ti ⊕ EK′i+r(j−1)

(Vj)

endfor
endfor
for i = 1 to r do

Si = CTRKi (Ti, m)
M = M⊕msb|M|(Si)

endfor
C ← M
T = T1|| · · · ||Tr
return (C, T)

Algorithm 3 The decryption algorithm: D
Input: a key K, a nonce N, associated data A, a ciphertext C, and a tag T
Output: a plaintext M or ⊥
Partition C into C1‖C2‖ · · · ‖Cm, |Ci| = n, 1 ≤ i ≤ m− 1, 0 < |Cm| ≤ n
for i = 1 to r do

Si = CTRKi (Ti, m)
C = C⊕msb|C|(Si)

endfor
M← C
for i = 1 to r do

Vi = HLi (N, A, M) = GHASHLi (A, M)⊕ N
Ti = 0n

endfor
for i = 1 to r do

for j = 1 to r do
Ti = Ti ⊕ EK′i+r(j−1)

(Vj)

endfor
endfor
T′ = T1|| · · · ||Tr
if T′ = T, return M
else return ⊥ (INVALID)
endif
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Algorithm 4 GHASH algorithm: GHASHL(A, M)

Input: a key L, associated data A, and a plaintext M
Output: a hash value h
A+ ← A||0n−|A| mod n, M+ ← M||0n−|M| mod n

X ← A+||M+||[|A|]n/2||[|M|]n/2
X1‖ · · · ‖Xx ← X, |Xi| = n, 1 ≤ i ≤ x
h← 0
for i = 1 to x do

h← (h⊕ Xi) · L
endfor
return h

Algorithm 5 CTR algorithm: CTRK(T, m)

Input: a key K, an initial vector T, and the number of plaintext blocks m
Output: a key stream S
S1 = EK(T)
for i = 2 to m do

Si ← EK(T + i− 1)
endfor
return S = S1|| · · · ||Sm

6. GCM-SIV1.5
6.1. Specific Description of GCM-SIV1.5

Both GCM-SIV1 and GCM-SIV2 are nonce-based authenticated encryption with associ-
ated data modes by combining a PRF and an ivE scheme. GCM-SIV1 enjoys birthday-bound
security up to almost 2n/2 adversarial queries by using an n-bit authentication tag. GCM-
SIV2 utilizes two instances of GCM-SIV1 to achieve beyond-birthday-bound (BBB) security
by increasing the number of keys, authentication tags, and block ciphers. However, these
methods greatly affect the implementation cost and operation efficiency of cryptographic
algorithms. In real life, cryptographic algorithms that provide BBB security, as low as possi-
ble hardware and software implementation costs, and high enough operational efficiencies
are much more desirable.

Given an ε-AXU-hash function H : KH ×N ×H×M→ {0, 1}n and a block cipher
E : KE × {0, 1}n → {0, 1}n, where KH and KE are two non-empty sets of keys, and n
is the block-size, we construct a new two-pass parallelizable nAE mode, GCM-SIV1.5.
GCM-SIV1.5 is an optimal tradeoff between GCM-SIV1 and GCM-SIV2 for supporting BBB
security with graceful degradation, as low as possible hardware and software implementa-
tion costs, and high enough operational efficiencies in nonce-faulty settings. We introduce
a sum of permutation (SoP) construction to encryption and authentication parts of GCM-
SIV1.5, which makes GCM-SIV1.5 BBB-secure. The authentication part of GCM-SIV1.5
is generated by FSoP

B2
, which ensures BBB security. The encryption part of GCM-SIV1.5 is

generated by CTRSoP with an initial vector and a nonce, which ensures BBB security.
The overview of GCM-SIV1.5 is illustrated in Figure 1.
GCM-SIV1.5 consists of a key generation algorithm KG, an encryption algorithm E ,

and a decryption algorithm D. The key generation algorithm KG takes a key parameter k
as the input and returns a key K = (K1, K2, L) (two encryption keys K1, K2 and a hash key
L) from an entropy pool of a set of keys K = (KE,KE,KH) = {0, 1}k. The encryption algo-
rithm E takes a key K = (K1, K2, L), a nonce N, associated data A, and a plaintext M as the
input, invokes the tag generation algorithm FSoP

B2
and CTR with the SoP algorithm CTRSoP,

and outputs the corresponding ciphertext and authentication tag (C, T) = EK(N, A, M).
The decryption algorithm D takes a key K = (K1, K2, L), a nonce N, associated data A, a
ciphertext C, and an authentication tag T as the input, invokes the tag generation algorithm
FSoP

B2
and CTR with the SoP algorithm CTRSoP, and outputs the corresponding plaintext

M or a reject symbol ⊥, i.e., M/⊥ = DK(N, A, C, T). The key generation, encryption, and
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decryption algorithms are described in Algorithms 6–8. The tag generation algorithm FSoP
B2

and CTR with the SoP algorithm CTRSoP are described in Algorithms 9 and 10.

N ||[0]n
4

EK2

N,A,M

HL

EK1

T

N ||[1]n
4

EK2

T + 1

EK1

M1

C1

N ||[2]n
4

EK2

T + 2

EK1

M2

C2

· · ·

· · ·

N ||[m]n
4

EK2

T +m

EK1

Mm

Cm

Figure 1. GCM-SIV1.5: An optimal tradeoff between GCM-SIV1 and GCM-SIV2.

Algorithm 6 The key generation algorithm: KG
Input: a key parameter k
Output: a key K = (K1, K2, L)

(K1, K2, L) $← K = (KE,KE,KH)
return K = (K1, K2, L)

Algorithm 7 The encryption algorithm: E
Input: a key K = (K1, K2, L), a nonce N, associated data A, and a plaintext M
Output: a ciphertext C and a tag T
Partition M into M1‖ · · · ‖Mm, |Mi| = n, 1 ≤ i ≤ m− 1, 0 < |Mm| ≤ n
T = FSoP

B2
(K, N, A, M)

S = CTRSoP
K1,K2

(N, T, m)

C = M⊕msb|M|(S)
return (C, T)

Algorithm 8 The decryption algorithm: D
Input: a key K = (K1, K2, L), a nonce N, associated data A, a ciphertext C, and a tag T
Output: a plaintext M or ⊥
Partition C into C1‖C2‖ · · · ‖Cm, |Ci| = n, 1 ≤ i ≤ m− 1, 0 < |Cm| ≤ n
S = CTRSoP

K1,K2
(N, T, m)

M = C⊕msb|C|(S)
T′ = FSoP

B2
(K, N, A, M)

if T′ = T, return M
else return ⊥ (INVALID)
endif

Algorithm 9 The tag generation algorithm: FSoP
B2

(K, N, A, M)

Input: a key K = (K1, K2, L), a nonce N, associated data A, and a plaintext M
Output: a tag T
V = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
T = EK1(V)⊕ EK2(N||[0] n

4
)

return T
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Algorithm 10 CTR with SoP algorithm: CTRSoP
K1,K2

(N, T, m)

Input: a key K = (K1, K2), a nonce N, an initial vector T, and the number of plaintext
blocks m
Output: a key stream S
for 1 ≤ i ≤ m

Si = EK1(T + i)⊕ EK2(N||[i] n
4
)

endfor
return S = S1|| · · · ||Sm

6.2. Security of GCM-SIV1.5

We present the information-theoretic security of GCM-SIV1.5 under the assumption
that the underlying block cipher is a secure pseudorandom permutation.

GCM-SIV1.5 is an N3 type nAE scheme (and it can also be seen as an A7 type nAE
scheme); therefore, it can be decomposed into a PRF F and an nE scheme E, where F :
KF ×N ×H ×M → T , E : KE ×N × T ×M → C, KF = KH × KE × KE = K, and
KE = KE ×KE.

F takes a key KF = (L, K1, K2) ∈ KF, a nonce N ∈ N , associated data A ∈ H, and
a message M ∈ M as the input and returns an authentication tag T = F(KF, N, A, M) =
FSoP

B2
(K, N, A, M). E takes the key KE = (K1, K2) ∈ KE, the nonce N ∈ N , the authen-

tication tag T ∈ T , and the message M ∈ M as the input, computes a key-stream
S = CTRSoP

KE
(N, T, m), and then encrypts M to return the corresponding ciphertext

C = E(KE, N, T, M) = M⊕msb|M|(S).
According to Lemma 4, the nAE security of GCM-SIV1.5 can be decomposed into the

PRF security of F and the nE security of E. Therefore, we have the following lemmas.

Lemma 5. Let A be an µ-fault adversary and HL be ε-AXU. Let µ ≤ q
1
3 . If A makes at most

q ≤ 23n/4 queries, then there exist adversaries A1 and A2 with the same query complexity against
the block cipher E such that

Advpr f
F (A) ≤Advprp

E (A1) + Advprp
E (A2) +

µ2

2n + µ2ε +
q2ε

2n

+ 4µ2ε +
3µq3/2ε

2n/2 + q4/3ε +
18q4/3

2n +
6q8/3

22n

+
18q7/3

22n +
q2

22n +
8q4

3 · 23n .

Lemma 6. Let A be an µ-fault adversary that makes at most q ≤ 23n/4 queries and generates
at most σ blocks, and let µ ≤ q

1
3 and m be the maximum block of the plaintext; then, there exist

adversaries A1 and A2 with the same query complexity against the block cipher E such that

AdvnE
E (A) ≤Advprp

E (A1) + Advprp
E (A2) +

6mµ2

2n

+
σ2

22n +
3µσ

2n

√
σ

2n +
19σ

4
3

2n +
6σ

8
3

22n +
18σ

7
3

22n

+
σ2

22n +
8σ4

3 · 23n .

The security proof of Lemma 5 is the same as that of Theorem 4 in the study by
Chen et al. [27]. The security proof of Lemma 6 is shown in Section 7.

By combining Lemmas 4–6, we present the security of GCM-SIV1.5 as follows.

Theorem 1. LetA be an µ-fault adversary and HL be ε-AXU. Let µ ≤ q
1
3 and m be the maximum

block of the plaintext. If A makes at most q ≤ 23n/4 queries and generates at most σ blocks,
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then there exist adversaries A1 and A2 with the same query complexity against the block cipher E
such that

AdvnAE
GCM−SIV1.5(A) ≤Advprp

E (A1) + Advprp
E (A2) +

10mµ2

2n

+
3qµε

2n +
q2ε

2n + 5µ2ε + q
4
3 ε

+
(3µ + 2)σ

2n +
46σ

4
3

2n +
qv

2n .

Theorem 1 shows that, if the underlying block cipher E is a secure PRP and ε = 2−n,
GCM-SIV1.5 offers BBB nAE security up to approximately 3n

4 -bit query complexity and
approximately n-bit forgery attempts for µ-nonce faulty adversaries with µ ≤ 2

n
4 .

7. Proofs of Lemma 6

The proof is similar to that of Theorem 4 in Chen et al. [27]. Let K1, K2 � KE. The adver-
sary Amakes q encryption queries (N1, T1, m1), · · · , (Nq, Tq, mq) to the real world E or the
ideal world R (R is an ideal version of E and always random strings) and returns S1, S2, · · · , Sq,
and then encrypts plaintexts M1, · · · , Mq to obtain ciphertexts C1 = M1 ⊕msb|M1|(S

1), · · · ,
Cq = Mq ⊕msb|Mq |(Sq). First, we replace EK1 and EK2 with two independent random permu-
tations P1 and P2, and the replacements cost us Advprp

E (A1) + Advprp
E (A2), whereA1 andA2

are PRP adversaries against the underlying block cipher. Then, we consider AdvnE
E[P1,P2]

(A).
Let τ = {(N1, T1, m1, S1), · · · , (Nq, Tq, mq, Sq)}. Let Xre be the random variable interacting
with the real world X = E[P1, P2] and Yid be the random variable interacting with the ideal
world Y = R.

For the real world, the transcript with q queries corresponds to the following mirror
system of bi-variate equations:

E=



P1(T1 + 1)⊕ P2(N1||[1] n
4
) = S1

1

P1(T1 + 2)⊕ P2(N1||[2] n
4
) = S1

2

· · · · · · · · · · · · · · ·
P1(T1 + m1)⊕ P2(N1||[m1] n

4
) = S1

m1

· · · · · · · · · · · · · · ·
P1(Tq + 1)⊕ P2(Nq||[1] n

4
) = Sq

1

P1(Tq + 2)⊕ P2(Nq||[2] n
4
) = Sq

2

· · · · · · · · · · · · · · ·
P1(Tq + mq)⊕ P2(Nq||[mq] n

4
) = Sq

mq

As P1, P2 are two independent random permutations, let Xi,j = P1(Ti + j), Yi,j = P2(Ni||[j] n
4
),

and λi,j = Si
j, where j ∈ [mi], i ∈ [q]. Let σ = ∑

q
i=1 mi.

Let V1 be the set of vertices X1,1, · · · , Xq,mq , V2 be the set of vertices Y1,1, · · · , Yq,mq ,
E = {ei,j = (Xi,j, Yi,j), j ∈ [mi], i ∈ [q]}, and W : E → {0, 1}n. The above mirror system
{Xi,j ⊕ Yi,j = λi,j, j ∈ [mi], i ∈ [q]} with a transcript τ can be described as an undirected
weighted bipartite graph Gτ =< V1, V2, E, W >. As T is random, there exist collisions in
Xi,j = P1(Ti + j) for any j ∈ [mi], i ∈ [q]. Let m be the maximum block of the plaintext.
According to the fact that the nonce is µ-fault, V2 is µ ·m-fault.

In order to utilize the mirror theory, we first define a bad transcript.

Definition 1 (Bad Transcript). A transcript τ is called bad if one of the following events occurs:

• Gτ covers a circle of length 2 or a path of length 2 such that the weight of this path is zero.
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– B1: There exist distinct i, k ∈ [q] such that Xi,j = Xk,l and Yi,j = Yk,l , where j ∈
[mi], l ∈ [mk], i.e., Ti + j = Tk + l and Ni||[j] n

4
= Nk||[l] n

4
(it implies j = l).

– B2: There exist distinct i, k ∈ [q] such that Xi,j = Xk,l and λi,j ⊕ λk,l = 0, where
j ∈ [mi], l ∈ [mk], i.e., Ti + j = Tk + l and Si

j ⊕ Sk
l = 0.

– B3: There exist distinct i, k ∈ [q] such that Yi,j = Yk,l and λi,j ⊕ λk,l = 0, where
j ∈ [mi], l ∈ [mk], i.e., Ni||[j] n

4
= Nk||[l] n

4
(it implies j = l) and Si

j ⊕ Sk
l = 0.

• Gτ covers a path of length 4 starting at the Y-shore, or a path of length 4 starting at the X-shore
such that the weight of this path is zero (this condition satisfies the fact that Gτ covers a circle
of length 4 or a path of length 4 such that the weight of this path is zero).

– B4: There exist distinct i, k, w, y ∈ [q] such that Yi,j = Yk,l , Xk,l = Xw,x, and
Yw,x = Yy,z, i.e., Ni||[j] n

4
= Nk||[l] n

4
, Tk + l = Tw + x, and Nw||[x] n

4
= Ny||[z] n

4
(it

implies j = l, x = z).
– B5: There exist distinct i, k, w, y ∈ [q] such that Xi,j = Xk,l, Yk,l = Yw,x, Xw,x = Xy,z,

and λi,j ⊕ λk,l ⊕ λw,x ⊕ λy,z = 0, i.e., Ti + j = Tk + l, Nk||[l] n
4

= Nw||[x] n
4
,

Tw + x = Ty + z, and λi,j ⊕ λk,l ⊕ λw,x ⊕ λy,z = 0 (it implies l = x).

• The number of edges in components with a size of more than 2 is qc ≥ q̃c. Each vertex in the
components is associated with two edges in the average case. Let us assume that it may be
evenly amortized to the two vertex sets of the bipartite graph.

– B6: |{(i, k)|i 6= k, j ∈ [mi], l ∈ [mk], Xi,j = Xk,l}| ≥ q̃c/4, i.e, |{(i, k)|i 6= k,
j ∈ [mi], l ∈ [mk], Ti + j = Tk + l}| ≥ q̃c/4.

– B7: |{(i, k)|i 6= k, j ∈ [mi], l ∈ [mk], Yi,j = Yk,l | ≥ q̃c/4, i.e, |{(i, k)|i 6= k,
Ni = Nk}| ≥ q̃c/4.

Let Γbad be bad transcripts, Γ be all attainable transcripts, and Γgood = Γ\Γbad.

Next, we upper bound the probability of bad transcripts in the ideal world
Pr[Yid ∈ Γbad].

For B1, the probability that Ti + j = Tk + l occurs for any fixed i, j, k, l is 2−n, and the
number of pairs (i, k) such that Ni||[j] n

4
= Nk||[l] n

4
is at most µ2, where j ∈ [mi], l ∈ [mk];

then, we have

Pr[B1] = Pr[Xi,j = Xk,l , Yi,j = Yk,l ]

= Pr[Ti + j = Tk + l, Ni||[j] n
4
= Nk||[l] n

4
]

≤ mµ2

2n .

For B2, the probability that Ti + j = Tk + l occurs for any fixed i, j, k, l is 2−n, and the
probability that Si

j ⊕ Sk
l = 0 occurs for any fixed i, j, k, l is 2−n; then, we have

Pr[B2] = Pr[Xi,j = Xk,l , λi,j ⊕ λk,l = 0]

= Pr[Ti + j = Tk + l, Si
j ⊕ Sk

l = 0]

≤ σ2

22n .

For B3, the probability that Si
j ⊕ Sk

l = 0 occurs for any fixed i, j, k, l is 2−n, and the

number of pairs (i, k) such that Ni||[j] n
4
= Nk||[l] n

4
is at most µ2, where j ∈ [mi], l ∈ [mk];

then, we have
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Pr[B3] = Pr[Yi,j = Yk,l , λi,j ⊕ λk,l = 0]

= Pr[Ni||[j] n
4
= Nk||[l] n

4
, Si

j ⊕ Sk
l = 0]

≤ mµ2

2n .

For B4, the probability that Tk + l = Tw + x occurs for any fixed k, l, w, x is 2−n and
the number of pairs (i, k, w, y) such that Ni||[j] n

4
= Nk||[l] n

4
and Nw||[x] n

4
= Ny||[z] n

4
for

any fixed i 6= k, w 6= y is at most 4µ2 (as the number of queries using any repeated nonce is
at most 2µ); then, we have

Pr[B4] =Pr[Yi,j = Yk,l , Xk,l = Xw,x, Yw,x = Yy,z]

≤4mµ2

2n .

For B5, let Fi,j,k,l,w,x,y,z : λi,j⊕λk,l⊕λw,x⊕λy,z = 0, the probability that Ei,j,k,l : Ti + j =
Tk + l occurs for any fixed i, j, k, l be 2−n (the same for Ew,x,y,z : Tw + x = Ty + z), and
the probability that Fi,j,k,l,w,x,y,z occurs for any fixed i, j, k, l, w, x, y, z be 2−n. According to
alternating event lemma and σ = mq, we have

Pr[B5] =Pr[Ei,j,k,l , Yk,l = Yw,x, Ew,x,y,z, Fi,j,k,l,w,x,y,z]

≤3µσ

2n

√
σ

2n .

For B6, according to Markov’s inequality, the probability of B6 is upper bounded by

Pr[B6] = Pr[|{(i, k)|i 6= k, j ∈ [mi], l ∈ [mk], Xi,j = Xk,l}| ≥ q̃c/4]

≤ E[|{(i, k)|i 6= k, j ∈ [mi], l ∈ [mk], Xi,j = Xk,l}| ≥ q̃c/4]
q̃c/4

≤
σ2

2n

q̃c/4
≤ 4σ2

q̃c · 2n .

In order to obtain 3n
4 -bit security, we choose q̃c = 4σ

2
3 . Then,

Pr[B6] ≤ 4σ2

q̃c · 2n =
σ

4
3

2n .

For B7, as µ2 < q
2
3 ≤ σ

2
3 = q̃c/4, the probability of B7 being upper bounded by

Pr[B7] = Pr[|{(i, k)|i 6= k, j ∈ [mi], l ∈ [mk], Yi,j = Yk,l | ≥ q̃c/4]

= Pr[µ2 ≥ q̃c/4] = 0.

To summarize, the probability of bad transcripts is

Pr[Yid ∈ Γbad] = Pr[
7⋃

i=1

Bi]

≤ 6mµ2

2n +
σ2

22n +
3µσ

2n

√
σ

2n +
σ

4
3

2n .

Then, we consider the ratio Pr[X=τ]
Pr[Y=τ]

between the real world X and the ideal world
Y in the good transcript. In the good transcript, Gτ meets (1) acyclic, (2) NPL, and (3)
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qc ≤ q̃c = 4σ
2
3 . Let q′ = |V1| and q′′ = |V2|; according to the mirror theory, the number of

solutions is at least
(2n)q′ (2

n)q′′
2nσ (1− δ), where

δ =
9q̃2

c
8 · 2n +

9q̃2
c σ + 12q̃cσ2 + 8σ2

8 · 22n +
8σ4

3 · 23n

=
18σ

4
3

2n +
18σ

7
3 + 6σ

8
3 + σ2

22n +
8σ4

3 · 23n .

In the real world X, we have

Pr[X = τ] = Pr[P1, P2 ∈ Perm(n) : E[P1, P2] ` τ]

=
|P1, P2 ∈ Perm(n) : E[P1, P2] ` τ|

|Perm(n)|2

≥
(2n)q′ (2

n)q′′
2nσ (1− δ)(2n − q′)!(2n − q′′)!

(2n!)2

=
1

2nσ
(1− δ).

In the ideal world Y, we have

Pr[Y = τ] = Pr[R ∈ Func(2n, ∗) : R ` τ] =
1

2nσ
.

Therefore, the ratio between Pr[X = τ] and Pr[Y = τ] is

Pr[X = τ]

Pr[Y = τ]
≥ 1− δ.

According to the H-coefficient technique, we have

AdvnE
E (A) ≤Advprp

E (A1) + Advprp
E (A2) +

6mµ2

2n

+
σ2

22n +
3µσ

2n

√
σ

2n +
19σ

4
3

2n +
6σ

8
3

22n +
18σ

7
3

22n

+
σ2

22n +
8σ4

3 · 23n .

So far, we have completed the proof of Lemma 6.

8. Discussions and Conclusions

GCM-SIV1.5 is one of the favored generic nAE constructions described in [36], which
combines a PRF F and an nE or ivE scheme E. Here, the PRF F is a BBB-secure FSoP

B2 scheme
and the nE scheme E is a BBB-secure CTRSoP scheme.

GCM-SIV1.5 offers an optimal tradeoff to GCM-SIV1 and GCM-SIV2 for supporting
BBB security, as low as possible implementation costs, and high enough operational effi-
ciencies. From the perspective of the security strength, if the underlying block cipher E is
a secure PRP and ε = 2−n, GCM-SIV1.5 offers approximately 3n/4-bit nAE security for
µ-fault nonce-misusing adversaries and supports graceful security degradation, which is
better than those of GCM-SIV1 and GCM-SIV2. From the perspective of implementation
costs, compared with GCM-SIV2 and GCM-SIVr, GCM-SIV1.5 utilizes fewer keys (just
two block cipher keys and a hash key) and lower storage and communication costs or
throughput (just n-bit authentication tag). From the perspective of operational efficien-
cies, GCM-SIV1.5 utilizes just a hash function call and two plaintext blocks calls. More
importantly, all encryption operations involving the nonce can be carried out offline, which
saves half of the online computing resources. To sum up, our design achieves the optimal
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tradeoff to GCM-SIV and GCM-SIVr from the security strength, implementation costs, and
software performance aspects.

In order to further demonstrate the superiority of our design, Table 1 shows a fair
and thorough comparison between GCM-SIV1.5 and other similar schemes. Compared
with CWC+, GCM-SIV1.5 provides a better security bound and supports fully faulty nonce
misuse resistance, but the number of the encryption keys and the number of the block
cipher calls are slightly inferior. Compared with SCM, GCM-SIV1.5 saves an encryption key,
supports offline operations involving the nonce’s encryption, and saves half of the online
computing resources, but other aspects, such as the number of block cipher calls, nonce
size, and security bound, are slightly inferior. Besides that, SCM utilizes the finite field
multiplication operations in the encryption part, although these multiplication operations
can be quickly calculated using the double point technique. However, our design just
utilizes some XOR and finite field addition operations.

GCM-SIV1.5 utilizes three keys. A natural future direction is to reduce the number
of keys and to obtain a single-key BBB-secure variant. Besides that, GCM-SIV1.5 utilizes
two plaintext blocks calls. Another future direction is to decrease the invocations of block
ciphers and to improve the operational efficiencies. Our security is based on the condition
that µ ≤ 2n/4. We leave considering the case of µ > 2n/4 as an open problem.
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