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Cardiac health diseases are one of the key causes of death around the globe. Te number of heart patients has considerably
increased during the pandemic. Terefore, it is crucial to assess and analyze the medical and cardiac images. Deep learning
architectures, specifcally convolutional neural networks have profoundly become the primary choice for the assessment of cardiac
medical images.Te left ventricle is a vital part of the cardiovascular systemwhere the boundary and size perform a signifcant role
in the evaluation of cardiac function. Due to automatic segmentation and good promising results, the left ventricle segmentation
using deep learning has attracted a lot of attention.Tis article presents a critical review of deep learning methods used for the left
ventricle segmentation from frequently used imaging modalities including magnetic resonance images, ultrasound, and computer
tomography. Tis study also demonstrates the details of the network architecture, software, and hardware used for training along
with publicly available cardiac image datasets and self-prepared dataset details incorporated. Te summary of the evaluation
matrices with results used by diferent researchers is also presented in this study. Finally, all this information is summarized and
comprehended in order to assist the readers to understand the motivation and methodology of various deep learning models, as
well as exploring potential solutions to future challenges in LV segmentation.

1. Introduction

Te capability of a machine to simulate and impersonate
human intelligence processes is referred to as artifcial in-
telligence. Machine learning is a subbranch of artifcial
intelligence which is based on the idea to enable machines or
computers to perform without being specifcally pro-
grammed.Temachine can learn from data and focus on the
use of the pattern and experience to improve the

performance of the computer in making decisions on its
own. In this way, the machine becomes capable of devel-
oping analytical models to adopt new situations
autonomously.

Deep learning (DL) is a subfeld of machine learning
associated with a process inspired by the formation and
function of the brain called an artifcial neural network
(ANN). DL is concerned with the interpretation of data
based on the mechanism of the human brain by developing
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and simulating the algorithm worked on human brain
analysis and learning. Te training data are fed into the
algorithm as input, and the successive layers of the DL al-
gorithm analyse the original data to extract the features
required for the targeted task. Te training data is fed into
the algorithm as input, and the successive layers of the DL
algorithm analyse the original data to extract the features
required for the targeted task. Te entire process is free of
human manipulation. One of the earliest practiced DL
techniques is ANN with a deep network structure [1]. Te
multilayer perceptron models [2] have been proposed with
the rapid progress in the research areas of computer vision
(CV) and human brain neurons.Tis yields the development
of other classical models such as back-propagation neural
network models, convolutional neural network (CNN)
models [3], bidirectional recurrent neural networks [4],
transformers [5], long short-term memory (LSTM) [6], and
deep belief network [7] models.

Tese research fndings have signifcantly helped the
expansion of DL architectures, fooring the way for its
substantial level applications in numerous areas, especially
in image processing. Image classifcation, image registration,
object detection, and image segmentation were among the
main tasks performed by the DL algorithms very efciently.

Tese image processing methods were applied in various
felds such as surveillance [8, 9], intelligent transportation
system [10, 11], wireless communication [12, 13], web mining
[14, 15], robotics [16, 17], civil [18], and the most important in
medical image processing [19]. In medical, DL is used for the
segmentation of various structures from the medical images
[20], detection of diferent diseases [21–23], and also for image
registration to have a better view of images [24].

Te cardiac images are one of the medical images used
for the assessment of patient health. Diferent cardiac images
are used for the analysis of cardiac function. Assessment of
cardiac function performs an essential part in medical
cardiology for patient supervision, risk estimation, disease
analysis, and therapy evaluation [25, 26]. For cardiac di-
agnosis, digital images are the basic tool used for the
computation of subsequent clinical indices from the shape
and structure of the heart. From the structure of the heart,
the assessment of the left ventricle (LV), right ventricle (RV),
and myocardium (MYO) are the main assessments. LV is
one of the central issues and the attention of cardiac function
study and disease diagnosis. Delineation of LV boundary is
of great clinical importance for the study of heart parameters
such as the ejection fraction (EF), stroke volume (SV), LV
mass (LVM), end-systolic volume (ESV), and end-diastolic
volume (EDV) [27].

Some studies have reviewed the segmentation of medical
and cardiac images. However, to the best of the author’s
knowledge, those investigations did not investigate LV
segmentation solely and explicitly. Keeping in mind the
importance of LV, the primary focus of this research is to
review only the segmentation of LV using DL models. Tis
paper provides a comprehensive overview of diferent DL
architectures used for the LV segmentation. Tis review has
been carefully summarized to present the state-of-the-art DL
algorithms focusing on the LV segmentation task. To fnd

out the quality research in the area, the Web of Science
database was used as a search engine. Te keywords, “left
ventricle”, “segmentation, and “deep learning” were used to
fnd out the related papers. Te articles which primarily do
not emphasize LV segmentation were excluded because the
scope of this review included an analysis of LV based seg-
mentation. Te review has been conducted using resources
published between 2018 and onwards until December 2021.

In this article frst, we discussed the three diferent
imaging modalities used for the LV assessment in Section 2.
Section 3 presents the basics concepts related to DL and
CNN. Diferent DL architectures used for the LV segmen-
tation are reviewed in Section 4. Te section is subdivided
based on the diferent approaches used with DL such as
preprocessing, deformable models, and clinical indices
calculation.Te discussion about the architecture, hardware,
software, and datasets used for training, and evaluation
matrices used to analyze the performance of models is
presented in Section 5. Te complete structure of the article
is depicted in Figure 1.

2. Medical Images for LV Assessment

Diferent medical imaging modalities were used for the
assessment of LV. Tese modalities include magnetic res-
onance images (MRI), echocardiography, computer to-
mography (CT) scan, myocardial perfusion imaging,
multiple gated acquisition scanning, gated blood-pool
SPECT, and fusion imaging. However, the most used im-
aging modalities in literature for LV segmentation are MRI,
US, and CT scans. Te detail of these images is presented in
this section.

2.1. Magnetic Resonance Images. MR imaging is a widely
used technique in the cardiac armamentarium. Te ofcial
name is recognized as “cardiovascular magnetic resonance
(CMR),” when the MRI is employed on the heart or car-
diovascular system. Its diagnostic precision has preceded it
to become the gold-standard for heart analysis [28].

MRI is suitable for the evaluation of heart chambers
[29, 30], size, and blood fow through major vessels [31],
heart valves [32], and pericardium [33]. In addition, for LV
size and mass measurement, the MRI is considered a ref-
erence standard [34, 35]. Its adaptability is incomparable to
other diferent imagingmethods. It provides not only precise
anatomic information but also gives functional information
that helps in fnding patients at risk. Tree-dimensional
geometric analysis of the LV by CMR provided more ap-
propriate information about the shape of the LV than the
traditional echocardiography with high fertility and low
variability [36]. CMR has also been successful in observing
LV hypertrophy in patients with apparently normal echo-
cardiographic results [37].

Besides these outstanding outcomes, a few important
limitations of CMR need to be remembered. It faces
problems with costs, limited availability, and lack of por-
tability. Tese constraints prevent the use of CMR normally.
Compared with other imaging modalities, CMR inspections
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are very costly and inadvisable for patients with metallic
implants such as graft stents and cardiac pacemaker devices.
Cardiac MRI may not be accessible immediately in all
centers, and it can be a difcult instrument to work out in
patients who require serial monitoring. Another condem-
nation of CMR is the period of examination to acquire LVM
data. It also has some minor issues such as device incom-
patibilities and patient tolerance. Figure 2 shows LV seg-
mentation in MRI images. Te red area is LV segmented
using a CNN. [38].

2.2. Echocardiography. Echocardiography used high-fre-
quency ultrasound waves to produce anatomical images of
the heart. Tat is why it is referred to as ultrasound (US)
imaging. It is the largely used imaging modality for the
examination of cardiovascular diseases [39]. Due to its easy
accessibility, outstanding temporal resolution, real-time
imaging, and noninvasive nature, the US is considered the
basic imaging for measuring the LV function. US has be-
come the primary preference for the analysis of LVM. A
regular LVM calculation is an essential part of the US ex-
amination [40]. US imaging is also used in measuring the
decrease in LVM after the treatment [41].

Temost used US imaging is two-dimensional US (2DE)
and three-dimensional US (3DE). An example of 2DE is
shown in Figure 3 and the LV boundary is shown by the red
line. Although M-mode US imaging is also in use, due to
diferent limiting factors of M-mode such as it only identifes
the function of the basal segment while 2D and 3D can
perform the whole LV segmentation, the use of M-mode is
very limited. Using the 2DE, LVM can directly be calculated.
Similarly, by attaining the pyramidal image, we can look at
the 3-dimensional image of the whole heart. Te 3D
imagining of heart anatomy can be obtained using 3DE and
it has also overcome the limitation of 2D imagining.
Terefore, 3DE has gained considerable importance over
2DE and M-mode in various patient populations [42]. In-
adequately, 3DE is not commonly available and costly
compared to 2D imagining. Te other limitation of the US
imaging is the speckle noise [43] and low contrast ratio [44],
which limits its performance.

2.3. Computer Topography. A computed tomography (CT)
scan of the heart provides a cross section of the structure of
the heart. It characterizes the X-ray attenuation features of
tissues being imaged [45, 46]. CT is a growing imaging
method for the noninvasive computation of heart anatomy
and function. LV size and mass estimation can be computed
using the CTmodality. CT is also found as a good alternative
for the LV size and mass calculation for those patients who
have contraindications to CMR [42]. Te study in [47]
compares CTand US and also fnds that CTcan be used as an
alternative to the US.

Tough CT has many advantages, a few constraints are
not ignorable. CT cannot be employed as real-time intra-
procedural assistance due to unavoidable ionization radia-
tion exposure called a stochastic efect [48]. Repetitive
regular use can raise the cancer risk. Te increase in image
quality results in a higher dose of radiation. Te left part of
Figure 4 is a CTscan of the heart and in the right part, the LV
is highlighted. [49].

3. Deep Learning

DL can be defned as a machine learning algorithm that deals
with neural networks. Neural networks with a deep structure
or with more than 2 hidden layers are also referred as deep
neural networks. A general architecture of DL is shown in
Figure 4. DL is a representation learning (subtype of ma-
chine learning) with multiple levels of representation [50].
For the past several years, DL has been developed as a
popular tool that attracts the attention of researchers from
several felds. It helps to overcome the weaknesses of tra-
ditional methods and solve complex problems to achieve
better results. Te popularity of DL is doable due to large
datasets, computational performance, training techniques
(ReLu), and advanced networks (CNN).With the increase in
databases, DL has exponentially achieved success both in
commercial and academia. Not only the software base ad-
vancement help DL to achieve success, the latest hardware
such as graphical processing units (GPU’s) improved the
ability of DL [51]. Deeper layers improve the system’s ex-
perience by learning the features from data and making
complex structures deeper and simple [52]. Terefore, it is a
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novel discovery for solving problems in those areas which
has high dimensional data. Inspired by brain function, deep
neural networks are built from many hidden layers

sandwiched between the input and output layers. Te
general architecture of a deep neural network is presented in
Figure 5.

Figure 2: Four examples of LV boundary in CMR images.

(a) (b)

Figure 3: US image (a) and its US image with LV boundary (b).

(a) (b)

Figure 4: CT scan of LV (a) and LV boundary (b).
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3.1. Convolutional Neural Network. DL architectures are
performing excellently in solving traditional artifcial in-
telligence problems. Te most established, progressive, and
widely used is CNN. Te following section discusses CNN,
its variants, and its applications.

Among all the models of neural networks, CNN is the
most dominant approach to solving problems of CV. Te
idea of CNN architecture was developed in the 1980s [53]
but due to the lack of computational ability of hardware,
high processing machines, and large storage devices to deal
with big images, the idea did not fourish. Te concept
accelerated as the processing of machines increased in terms
of computation and database to retrieve and store. Later in
[54], CNNs were successfully applied in classifcation
problems and performed brilliantly in CV applications. Te
gradient-based learning algorithm highly motivated CNN to
produce optimized weights. CNN performed far better than
other multi-layered perceptrons. Te CNN weights are
shared and are not needed to learn again for the same object
at diferent locations. It recognizes visual patterns, directly
from raw image pixels. Tis decreases the number of
learnable parameters. CNN performance is impressive on
2D and 3D images. CNN model has minimized the pre-
processing task and the back-propagation learning method
improved the performance as it has provided a solution to
deal with nonlinearity with the decrease in computation
process due to a smaller number of weights. CNN has been
producing better results in object recognition, behavior
recognition, audio recognition, detection, recommendations
localization, classifcation, and segmentation tasks.

3.1.1. Convolution. Convolution is a mathematical opera-
tion that involves the multiplication and addition
(weighted average) of two functions. Te frst function (x)
represents input data and the second function (w) rep-
resents kernel and together they produce the output,
called feature maps. CNN is similar to neural networks
that use weights and biases. It involves a convolutional
layer in the neural network that applies to input data of an
acceptable type. Te CNN architecture is divided into two
divisions: feature extractors and classifers. Each

convolution layer fnds specifc features from the input
data using a shared weight called kernels, and with n
number of kernels, the convolution layer determines n
features. Te input of each layer is the result of the
previous layer. A simple CNN consists of a convolutional
layer, pooling layer, rectifer unit, fully connected layer,
and classifer. Te convolutional layer is a building block
of CNN. Te input image convolves with the kernel
(learnable flter). Te kernel slides over the input image
and the size of the kernel are somehow learned from the
input image. Some parameters drive the size of output i.e.,
depth, stride, and padding. Te CNN compresses the fully
convolutional network by lessening the connections and
sharing the weight of the edge.

Figure 6 shows a general CNN structure; the input image
is convolved with kernels to extract the features.Te result of
convolution is then passed through the pooling layer (mostly
Max pooling). Te CNN extracts the features using these
layers and fnally a fully connected layer [55] gives the
predicted output.

Convolution performs 3 main tasks: sparse interaction,
parameter sharing, and equivariant representation.

(i) Sparse interaction: In a neural network, every
output unit interacts with every input having sep-
arate parameters. Tese parameters help to deter-
mine the relationship or interaction between the
input and output units. CNN uses kernels of dif-
ferent sizes which are smaller than input data in size.
Tis reduces the number of learning parameters and
the storage space and increases computation
efciency.

(ii) Parameter sharing: It uses the same parameter for
more than one chunk. In convolution, each kernel
value is used at every point of input other than
boundary values. It helps CNN to use only one set
instead of multiple parameters for every location.
It reduces the storage requirement further.

(iii) Equivariance: It refers to the shift in the feature map
by the same amount as the input shifts. Convolution
does the same but not naturally [50].

3.1.2. CNN Layers. For the past few decades, CNN is per-
forming intensely in CV (detection, recognition, tracking,
estimation, processing, analysis, learning, restoration, and
reconstruction) as the popular machine learning algorithm.
Te GPUs have also brought extra efciency in their results.
Te boost CNN gain is through several factors such as a large
labeled training dataset, rectifer linear unit, regularization
(dropout), and augmentation. Te strength of CNN is
extracting discriminative features at diferent levels. Te
CNN architecture consists of a convolutional layer, a
nonlinearity layer, and a polling layer followed by a fully
connected layer.

(i) Input layer: Tis layer understands the input data. It
gives the contents of input data and has no learnable
parameters. So, this layer has nothing to do with
learning.

Input

Output

Hidden Layers

Figure 5: A general architecture of a deep neural network with
three hidden layers.
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(ii) Convolutional layer: Convolutional layer per-
forms convolution operation which is the
trademark of CNN architecture. Tis layer holds
learnable parameters such as weights and biases.
Tis layer contains flters or kernels, used to
detect edges, shapes, and patterns of the given
input image. Kernels are convolved with each
input feature/image pixel to produce feature
maps as an output. A dot product between each
input and flter is performed, followed by sum-
ming each dot product output, and fnally, a bias
is added. Bias can be confgured according to
network requirements. Te convolutional layer
reduces the computational cost by reducing the
input size:

Z
l
i � 􏽘

Kl−1

J�1
W

l
i,j ∗Z

l−1
j + B

l
. (1)

Te kernel computes the product of weight and
input of kernel size. It also determines the desired
features based on kernel weights. Equation (1)
shows the operation of the convolutional layer,
where Zl

i and Zl−1
i are the outputs of the current

layer and previous layer, respectively, and Wl
i,j and

Bl represent flters and biases. Each neuron need not
be connected to all other neurons in the preceding
and following layer. Te input is convolved with
flters to produce an output where bias is added for
nonzero value. Te fnal output goes through a
nonlinear activation function which activates the
feature maps and forwarded the result to the next
layer.

(iii) Pooling layer: Te other name of this layer is the
subsampling layer. Tis layer reduces the dimen-
sions through downsampling operation. Average
(uses the average value) and Max (uses the highest
value) pooling are the two most used operations.
Te following subsampling function represents a
pooling operation:

Z
l
i � Sub − Sampling Z

l−1
j􏼐 􏼑. (2)

(iv) Nonlinearity layer: It applies the relevant nonlinear
activation function. Te most common functions
are sigmoid, rectifed linear unit (ReLU), hyperbolic
function, and SoftMax:

a
l

� f Z
l

􏼐 􏼑. (3)

(v) Dropout: Tis layer regularizes the CNN model,
decreases computation, and increases the general-
ization. It randomly drops the units by assigning the
zero weight to a set of units.Tis layer helps to avoid
the overftting problem.
Fully connected layer: Tis is a fattened layer with
each neuron of the previous layer connected to each
neuron of the current layer. Each neuron has a
separate weight for each connection. Tis layer has
the highest number of learnable parameters. Te
input data are linearly processed, passed through a
nonlinearity, and then propagated to the next layer.

4. LV Segmentation Using DL Architectures

CNN has performed several CV tasks efectively and pre-
cisely, that is why it is a widely used DL technique for image
segmentation, especially for medical images. In Section 4.1,
several CNN architectures are reviewed which are used for
the LV segmentation.

4.1. LV Segmentation Using Fully Convolutional Network.
Te fully convolutional network (FCN) [56] introduces the
fully convolutional layers instead of fully connected layers.
Terefore, FCN can handle the variable size of images and
fewer parameters to be learned which also make the network
faster. Te FCN and its variants used for LV segmentation
are explained below.

4.1.1. FCN with Pre/Postprocessing. A three-step (pre-
processing, LV segmentation, and postprocessing) LV seg-
mentation method is proposed in [57]. In the frst phase, LV
is localized using the over feat algorithm [58] to determine
the region of interest (ROI) which is then fed to the next

Prediction

LV

Convolutional Layer
Pooling Layer
Fully-connected Layer

Figure 6: General structure of deep convolutional neural network.
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phase where the segmentation is performed using a temporal
FCN (T-FCN) architecture. Te CNN model is pretrained
with GoogLeNet and fne-tuned using LV images. Te
T-FCN adds another hidden layer at the decoding path to
restore the original size. Te segmented LV boundary is
further refned in the third phase by using one of the two
algorithms: fully connected conditional random felds
(CRFs) with Gaussian edge potentials [59] and semantic fow
[60]. To train the network, the TWINS-UK database was
used which consists of more than 12,000 images. Te result
showed that T-FCN with CRF performs better segmentation
and achieved the dice similarity coefcient (DSC) value of
0.9815, average perpendicular distance (APD) of 6.2903, and
conformity index of 0.9610. Tis work only focused on the
LV segmentation.

One of the preprocessingmethods is to crop the ROI frst
and then apply the segmentation to the selected ROI. Tis
procedure for LV segmenting is presented in [61]. Te
clinical parameters such as LV volume (LVV), LVM, SV, and
EF were also analyzed by estimating the size of LV fromMRI
images. Te class imbalance challenge was tackled by frst
fnding out the ROI using an FCNmodel. A new FCNmodel
was applied to these ROI images for LV segmentation. Class
entropy and radial distance were used as loss functions. Te
model is trained and tested using two datasets: the Auto-
matic Cardiac Diagnosis Challenge (ACDC) 2017 publicly
available dataset and a local dataset. Te ACDC-2017 dataset
consists of 150 patients’ data, while the local dataset consists
of almost 6000 images. Te performance is evaluated using
the DSC and Hausdorf distance (HD) for cross-entropy loss
and radial distance loss. Te model is analyzed for both
datasets and achieves almost the same results, which yield
that the model is generalized and applicable to any dataset.
Te proposed model attained better DSC and HD values
than that of U-Net and ConvDeconv-Net.Te DSC value for
LV segmentation of the proposed model on the local dataset
is 0.95 and ACDC dataset is 0.94. Similarly, the HD value is
9.31 and 11.21 for the local and ACDC dataset, respectively.

4.1.2. Improved FCN for Clinical Index Calculation.
Chen Qin et al. [62] proposed a model that consists of two
branches: the motion estimation branch and the segmen-
tation branch. Te unsupervised Siamese style recurrent
spatial transformer network is utilized for motion estimation
and FCN is used for the segmentation. Motion estimation is
an unsupervised method that combined the motion esti-
mation and segmentation layer which can also be referred to
as a weakly supervised model. A total of 220 short-axis view
subjects were obtained from a UK biobank study. Te LV
segmentation is assessed by separately segmenting the LV
and also by combining the two models. Te DSC value of
0.9217 is achieved for only segmentation, while 0.9348 is
achieved for the combined model which depicts that the
model performs better in combine mode.

Similarly, the LVV is calculated using MRI images in
[63]. Te volume of LV is a very important feature to
evaluate the patient’s cardiac health which requires LV
segmentation.Temethod segments the LV for diastolic and

systolic to calculate the volume of LV. Te Sunnybrook
dataset is used to train and test the model. Data augmen-
tation is also applied by rotating the slice in diferent di-
rections. Te method used a local binary pattern in cascade
to detect the ROI. Ten, a CNN model is used to score the
ROI and select the one with the maximum score. Finally, LV
is segmented using hypercolumn FCN (HFCN) from the
ROI. Te HFCN features from diferent levels were con-
catenated to form a new layer, and segmentation was based
on this new layer. Te volume is calculated using both
manual and HFCN. Te variance estimation method is used
to estimate the fnal prediction.Tis algorithm ranked fourth
in the Second Annual Data Science Bowl competition or-
ganized by Kaggle. Although this algorithm performs very
well in segmentation, still sometimes the model generated
the irregular shape of LV as it does not use the prior
knowledge of the 3D shape of LV.

Te feasibility and accuracy of FCN to segment the scar
tissues in LV were analyzed in [64]. Te modifed version of
FCN, efcient neural network (ENet), is applied to cardiac
images. Te proposed network consists of 13 convolutional
layers with a 3× 3 kernel size and stride of 2, while a
parametric rectifed linear unit (PReLU) was used as an
activation function. Cross-entropy was used as a loss
function.Te two protocols, protocol-1 and protocol-2, were
used for the segmentation. In protocol-1, the ground-truth
and original images were directly fed to the network for
training and segmentation. Whereas, in protocol-2, the
desired LV area was cropped before training the network.
Te images were cropped using Hough transform [65]. Te
dataset consists of 250 images of 30 patients which is further
increased to 2000 images by applying the data augmentation
technique. Protocol-1 and protocol-2 achieved the accuracy
of 95.97% and 96.83%, the sensitivity of 97.31% and 87.89,
the specifcity of 68.77% and 88.07%, and the DSC value of
0.54 and 0.71, respectively. Te result demonstrated that
protocol-2 performs better than protocol-1, which depicts
that cropping the ROI gives better results in segmentation.

4.1.3. Loss Functions and Optimization Algorithm. Until
now, we have explained the FCN models and their per-
formance based on preprocessing or by applying some
changes in the model. Nevertheless, one very important
parameter is the loss function. In [66], the updated model of
FCN with diferent loss functions was analyzed. An iterative
multipath FCN (IMFCN) segmentation model for LV, RV,
and MYO from MRI images was proposed. To tackle the
class imbalanced problem, searching for ROI was performed
and images were cropped using the method proposed in
[67]. Te proposed model consists of an encoder, feature
fusion, decoder, and deep supervision. Encoder part used s
[i] current slice, previous slice s [i− 1], adjacent slice s [i+ 1],
and already predicted segmentation M [i] as input. Tese
features are inserted into the encoder part to extract new
features. Te new features are fed to the feature fusion which
consists of diferent convolution layers of diferent sizes. Te
output features from the fusion block are fed to the decoder
block which has unsampled features. Finally, the deep
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supervision part performs the segmentation. Te efciency
of the model is also compared using diferent loss functions.
Batch-wise class reweighting mechanism and batch-wise
weighted dice loss function were utilized for multiclass
segmentation. Te results of the proposed models were
evaluated and compared with U-Net and LVRV-Net. To
quantitatively evaluate the performance, three metrics: DSC,
average symmetric surface distance (ASSD), and HD were
employed. Batch-wise weighted dice loss function shows the
best results among all loss functions. In this research, the
most inaccuracies in segmentation have occurred in apical
and basal slices. Additional processing mechanisms can
lessen these errors.

Te focal loss was analyzed with the four skip connec-
tions in the FCN model [68]. Te model was referred to as
the focal residual network (FR-net). RestNet50 was used as a
backbone network. Cross-entropy loss was calculated across
the predicted probability and labeling. Focal loss was applied
to improve preliminary segmentation results. Sunnybrook
dataset was used. DSC and APD were used to evaluate the
performance. Te model results were also compared with
U-Net and FCN and other work based on the Sunnybrook
dataset. Te models attained the DSC value of 0.93 and APD
of 1.41.

In addition to the loss function, the optimization al-
gorithm is also a key feature of the CNN model. In [69], the
performance of optimization factors was analyzed for the
CNN model. Six diferent optimization algorithms, namely,
stochastic gradient descent (SGD), nesterov accelerated
gradient [70], RMSProp [71], Adam [72], AdaDelta [73], and
AdaGrad [74] were implemented to train CNN model. A
CNN model was proposed and trained separately using all
six optimization factors. Sunnybrook dataset was used for
training and testing. Te best performance was obtained by
the RMSProp optimization technique. Te model achieved
the DSC of 0.93, APD 2.13, and percentage of good contour
(GC) 95.64 using RMSProp optimization.

4.1.4. Other FCN Techniques. One key limiting factor in DL
is the amount of data. Training the FCN model using a large
dataset for LV segmentation is studied in [75]. Te FCN
model is trained on the UK Biobank dataset. Te images of
5,008 subjects (93,500 images) were used to train the model
after data augmentation. Te data were manually annotated
by eight diferent experts. DSC, mean counter distance, and
HD values of 0.94, 1.04, and 3.16 were achieved, respectively.
Te segmented LV is also used to measure the LV-EDV, LV-
ESV, and LVM.

Another technique to enhance the model performance is
to take advantage of the pretrained model. A pretrained
VGGmodel (trained on ImageNet) was combined with FCN
called FCN-all-at-once-VGG16 [49]. Te model used skip
connections to combine the hierarchical features from
convolutional layers with diferent scales. Adam was used as
an optimizer with an initial rate of 10−4. A dataset of a total of
1100 subjects was used by splitting the dataset of 100 subjects
into 50 training, 30 validations, and 20 tests images.Te next
1000 cases (diastolic) are segmented using a trained model

and compared by 1000 manually drawn by an expert
technician.Temanual drawing was performed using the in-
house software (A-view Cardiac, Asan Medical Centre,
Seoul, Korea). For quantitative analysis, sensitivity and
specifcity evaluation matrices were used. Te method is
limited when the number of pixels of background (i.e., image
pixels other than the LV mask) is large. Te model was
evaluated using four performance indices, i.e., DSC, Jaccard
similarity coefcient, mean surface distance (MSD), andHD.

FCNwas also used with a graphmatching algorithm.Te
motion estimation of LV from MRI images was studied in
[38]. Te method consists of four steps: (1) endocardial
contours of the LV were predicted using a FCN, (2) features
of points in short-axis cine MRI were extracted using an
FCN feature descriptor, (3) the correspondence between
contours of the LV myocardium was estimated by a novel
graph matching algorithm, and (4) the correspondence
between two LV contours and the LV motion feld was
estimated using the FCN feature descriptor into the graph
matching algorithm. Te Medical Image Computing and
Computer-Assisted Intervention (MICCAI) 2009 challenge
database and the 33 subject’s database [53] were employed to
evaluate the proposed method.

Consequently, FCN and its modifcations show very
decent results for LV segmentation. To enhance the per-
formance diferent preprocessing and postprocessing tech-
niques, loss functions, and data variability can be used.
Figure 7 illustrates examples of segmented images generated
by FCN models.

4.2. LV Segmentation Using U-Net. In medical images, the
required area to be segmented consists of a small area of the
entire image.TeU-Net [76] has shown substantial results in
the segmentation of medical images. Tis is possible due to
the ability of U-Net to continuously suppress the back-
ground region in training and emphasis the required areas
that need to be segmented. Tat is why the most used
network for LV segmentation is U-Net and its modifcation
models.

4.2.1. U-Net with Pre/Postprocessing. Studies applied the
postprocessing or preprocessing with DL methods to yield
good results. Guo et al. investigated the postprocessing efect
on MRI images in [77]. Input Cardiac MRI is fed to U-Net
and then labeling probabilities were generated. For the
postprocessing Kernel cut, a segmentation technique was
used. Te output of U-Net is the input of continuous kernel
cut which segments the desired part. LV,MYO, and RVwere
segmented using this approach. Te result shows that, with
less training data, reasonable segmentation results can be
achieved.

Te postprocessing on vivo difusion tensor CMR was
performed in [78]. A fve-layer U-Net architecture is used to
perform the LV segmentation followed by image registra-
tion.Tis helps to remove the bad images, and then, the fnal
segmentation was applied. To increase the size of the dataset,
data augmentation was used (translation and rotation).
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Batch normalization was used with U-Net to avoid over-
ftting. Te model achieved a 0.93 median value of DSC.

Te approach in [79] performs the preprocessing on the
images by selecting the ROI by using the SinMod method.
Te ROI contains the desired part of the heart that is fed to
the U-Net model for training. Te curriculum learning (CL)
strategy was utilized as a training strategy. Te proposed
methods were compared together with U-Net without CL,
FCN (with and without CL), and hybrid gradient vector fow
snake. Te DSC, overlap, and mean average distance (MAD)
were used as evaluation matrices.

In [80], the labeled images from the Kaggle database
were used before training.Te concept of transfer learning is
utilized by pretraining the 3D U-Net model using Harvard
data. Te U-Net model was used to segment the LV, MYO,
and RV. Te DSC value achieved for LV segmentation was
0.87 without transfer learning and 0.95 using transfer
learning.

Te determination of ROI makes the segmentation task
simple and accurate as the targets area is reduced to ROI
instead of a complete image. Tis strategy was used in [81]
and proposed for the three U-Net-based models. Te pro-
posed CNN architectures classify myocardial tissues and
detect LV-ROI before LV quantifcation. For this experi-
ment, the Sunnybrook cardiac dataset and the Cardiac Atlas
Project (CAP) were used, which consists of 45 and 95 cases,
respectively. Tree new CNN architectures were proposed
which are based on U-Net. Te main purpose of the pro-
posed models is to quantify the LV. Before LV quantifca-
tion, LV-ROI detection and myocardial tissue classifcation
were performed using the same U-Net architectures.

In the frst proposedmodel, the encoding path comprises
two 3× 3 convolution operations, batch normalization, and
residual learning. Te 2× 2 Max-pooling operation with
stride 2 was performed after the residual learning [24]. Te
second and third proposed architecture is named as uIn-
ception and uXception. Te network complexity was re-
duced in these networks. Te SGD was used as an

optimization factor and Jaccard distance as a loss function.
Te data augmentation was applied to increase the data size
from 4,048 to 20,000. Te segmentation accuracy was
measured using the DSC and achieved 0.870, 0.869, and
0.868 for the proposed networks, respectively. Mean square
errors of 0.0135, 0.0136, and 0.0138 were achieved while the
mean absolute error was 0.0137, 0.0136, and 0.0138. Fur-
thermore, EDV, ESV, SV, LVM, and EF were calculated as
clinical indices.

4.2.2. U-Net with Deformable Model. Te combination of
DL and deformable models as postprocessing can be
combined to segment the LV. Veni et al. trained the U-Net
model for LV segmentation from the A4C chamber view of
US [82]. Te segmented output is further refned using the
deformable model. Using this technique, high accuracy is
achieved by training the model with a very fewer amount of
data, i.e., 69 images. Te DSC value of 0.86± 0.06 was
achieved.

4.2.3. Improved U-Net for Clinical Index Calculation.
Many studies focus on the calculation of various heart
parameters such as EF, global longitudinal strain, or LVM,
and for measurement of these parameters, LV segmentation
is one of the primary tasks to be performed. A study was
performed to validate that the DL methods can be used in
real-time software that streams images directly from an
ultrasound scanner [83]. A U-Net model was utilized for LV
segmentation. Te main goal was to calculate ventricular
volume, EF, and mitral annular plane systolic excursion
(MAPSE). All these parameters were based on the seg-
mentation of LV. Te accuracy of the model was evaluated
by Bland–Altman analysis. Te dataset of 75 patients was
used and a value of (−13.7± 8.6)% for EF and
(−0.9± 4.6) mm for MAPSE was achieved for Bland–Alt-
man. Te results show that DL is a feasible solution for the

[75] [66] [62] [61] [49]

[63] [76] [38] [69] [68]

Figure 7: Sample of segmented images using FCN.
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real-time calculation of clinical indices used for cardio
analysis.

Similarly, LV segmentation was also performed to
measure the GLS. Te work in [84] utilizes the standard
U-Net architecture and performs the four tasks on US
images: (i) classifcation of cardiac view, (ii) segmentation of
LV from the cardiac view, (iii) estimates of the regional
motion, and (iv) a fusion of measurement.Te segmentation
architecture comprises fve levels of upsampling and
downsampling. All levels consist of two convolution layers
with flters ranging from 32 to 128. Te 3× 3 flter size, 2× 2
Max pooling, and 2× 2 equal stride were utilized. Dice was
used as a loss function and Adam as an optimizer.

A method to achieve LV segmentation based on tem-
poral area correlation was proposed in [85]. U-Net was used
as a base CNN model, and then, the multitask module is
utilized for epicardium and endocardium segmentations.
Te output of the multitask module was fed to recurrent
neural network (RNN). Te RNN performs the temporal
area correlation optimization. Te average DSC of
0.90± 0.05 and average HD of 7.6± 4.5 was achieved. Te
LVM and EF have also been calculated to cross-validate the
results.

For the quantitative analysis of the LV, segmentation is
performed before quantifcation of LV parameters (area and
dimension) [86]. Te segmentation provides the structural
information of LV which is further used for quantifcation.
Initially, U-Net architecture was used as a segmentation
model. Furthermore, a Deep-CQ segmentation model was
proposed for LV segmentation that comprises the proposed
loss function. Te binary classifcation of each pixel as LV or
background was performed using the Gibbs distribution
function [87]. Te segmentation performance was evaluated
using DSC matrices and achieved 0.893± 0.05 value for
Deep-CQ models, while U-Net yields 0.897± 0.041. Te
main object of this research work is the quantifcation of LV,
and the Deep-CQ model performed better than U-Net for
quantifcation while U-Net performed better than the Deep-
CQ model in segmentation.

Estimation of myocardial perfusion is an essential step to
measure the blood fow through the heart muscle. Te ar-
terial input function (AIF) extraction is an important phase
for calculating the myocardial perfusion.Te AIF estimation
is highly dependent on detecting the LV size accurately. Te
LV segmentation to measure the AIF was performed in [88].
A U-Net model based on RestNet was designed to segment
the LV. RestNet consists of batch normalization, ReLU, and
convolution layers. To estimate the output probability,
sigmoid or SoftMax was used. Te kernel size used was 3× 3
with 1 stride and 1 padding in all convolution layers. A
weighted sum of cross-entropy and IoU was used as a loss
function. To fnd out the best hyperparameters, 45 training
sessions were performed and the best hyperparameters were
used for fnal training. Te labeling of LV and RV was
performed using an ad hoc algorithm and experts cross-
check the labeling. Te model was trained using two dif-
ferent sets of classes: (i) LV and background and (ii) LV, RV,
and background. Te model achieved DSC values of
0.87± 0.08 for three classes and 0.82± 0.22 for two classes.

Te performance of the model trained for three classes was
better than two classes because the contextual information
extracted from three classes improves the LV segmentation
performance.

From an entire echo cine, automatic LV segmentation
was performed in [89].TeUS images and optical fow of US
images were frst fed to the temporal window. Te optical
fow was calculated by the Horn–Schunck algorithm. Te
output of US image and optical fow US images act as input
to the two separate encoder parts of U-Net. Te output of
both the U-Nets was concatenated. In the third part of the
model, the concatenated data were passed to the bidirec-
tional LSTM. Te U-Net decoder fnally up-sampled and
segmented the LV. Te data of 563 patients were used with a
training and testing ratio of 80 and 20, respectively. Dice was
used as a loss function and Adam as an optimizer. Network
performance was compared with U-Net and U-Net Bi-Conv
LSTM using the DSC. Te model U-Net optical Bi-Conv
LSTM achieved the best DSC value of 0.936 and accuracy of
0.977.

4.2.4. Comparison of Diferent U-Net Models. Te com-
parison of three well-known CNN architectures was per-
formed by [90]. U-Net, wide U-Net, and U-Net++ were
trained using the data of 94 patients. Data augmentation was
used to increase the data size and to avoid the overftting
problem. Te U-Net has 32, 64, 128, 256, and 512 feature
maps, while the wide U-Net has 35, 70, 140, 280, and 560
feature maps. U-Net++ has an additional block of feature
maps and skip connections. Exponential linear units (ELU)
were used as an activation function in all layers except the
last layer, where sigmoid was used. Te model was trained
using the original dataset and augmented dataset and the
performance was assessed. Te U-Net++ model perfor-
mance was the best among the three models using an
augmented dataset. Te highest DSC value of 92.28 is ob-
tained. Moreover, U-Net++ was less overftted than U-Net
and wide U-Net.

4.2.5. U-Net Performance Based on Dataset Properties.
Although the comparison among diferent variants of U-Net
was performed in [90], the training dataset and data vari-
ability also afect the performance of the network. Te efect
of training datasets from diferent variability on the per-
formance of the CNN model was analyzed in [91]. U-Net
architecture was used as a segmentation model and assigned
the names CNN1, CNN2, and CNN3 based on the training
dataset variability. Tree diferent training sets were col-
lected for this research experiment. CNN1 was trained using
the data from single center and single vendors with 25,389
images. CNN2 was trained by the set consisting of images
from multiple centers by the single vendor and 27,488
images, while multiple centers and multiple vendor data
were used to train the CNN3 model with 41,593 images. Te
training images were preprocessed for normalizing the
resolution, cropping the images to 256× 256, and normal-
izing the signal intensity. APD was used as an evaluation
metric. CNN3 had the largest number of training samples
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and the highest variability, and it has achieved the best
performance on unseen heterogeneous testing data with the
highest value of 1mm for CNN3. While EDV, ESV, LVM,
and EF were used as clinical indices.

Similar and detailed research to analyze the impact of the
amount of data, quality of images, and infuence of expert
annotation on LV segmentation was executed in [92]. A US
images dataset that is openly available was also introduced in
this work. Te dataset consists of an apical 4-chamber view
of 500 patients and is called the Cardiac Acquisitions for
Multistructure Ultrasound Segmentation (CAMUS) dataset.
Te authors compared the performance of diferent CNN
models based on U-Net. Te models used for LV segmen-
tation were U-Net1, U-Net2, anatomically constrained
neural network, stacked hourglasses, and U-Net++. All these
architectures were based on encoder-decoder and the main
diference among these architectures is the use of diferent
layers and learning parameters. Te U-Net2 yields the best
segmentation results, and the performance was slightly
better than U-Net1, but U-Net1 needs fewer parameters to
learn, so the authors choose U-Net1 for further experiments.
Te model was trained to segment only LV and multi-
structure in which the model segments the LV endocardial
(endo), LV epicardial (epi), and left atrium (LA). Te model
performance was consistent for both LV segmentation and
LV segmentation in the context of LA.

Te efect of image quality on training was also tested.
Two diferent sets of images are given to the network for
training. One set comprises only high-quality images while
the other consists of high- and low-quality images. Te
output of both sets does not vary signifcantly. Te author
infers that the encoder-decoder-based techniques can cope
with variability in image quality. Te infuence of the size of
the training dataset on the performance was also tested.Te
U-Net1 model was trained by increasing the dataset from
50 patients to 400 patients. At each level, 50 more patients’
data are added for network training. Te results show that
the performance of the model increases to 250 patients and
slightly improved by increasing the training data further to
400. It is concluded that U-Net1 requires 250 patient data
to attain a good promising result. Te impact of expert
annotation was evaluated by annotating the data by three
diferent experts. Te network was trained each time using
the data of 50 patients labeled by every three diferent
experts. Te validation data were kept the same, and the
model was tested by the remaining 400 patients’ data. Te
network trained using the expert’s data showed better
results in testing. It is analyzed that the data contouring
images are cardiologist dependent. Furthermore, the en-
coder-decoder network can learn a specifc way of
segmenting.

Te labeling of large dataset problem was addressed in
[93]. A model was proposed to generate the ground-truth
images. Pseudoimages were generated using a graphical
model such as the principal component analysis. Te
CycleGAN model was employed to generate the labeled
images by using the pseudoimages and unlabeled original
images. Tese labeled images were utilized to train a U-Net
model. CAMUS dataset, EchoNet dataset, and synthetic

dataset were used to train and test the model. Te results
show that the model trained using the synthetic data also
performs very well.

4.2.6. Other Models Based on U-Net Architectures.
Segmentation of LV, RV, and MYO from apical 2 chamber
(A2C) view or apical 4-chamber (A4C) view has been
implemented using DL methods [94]. In this work, neural
network was tested to segment the LV, RV, and MYO from
the apical long axis view (ALAX). In ALAX the main dif-
ference is the LV outfow tract (LVOT) which restricts the
view. Four diferent approaches were used in this research.
First, U-Net1 was trained from scratch and used to segment
the ALAX. Tis model was referred as a baseline model in
this work. Secondly, the baseline network was trained on
A2C/A4C views, used as a transfer learning, and then trained
for ALAX segmentation. Tird, the baseline network was
trained using A2C, A4C, and ALAX data. As ALAX data are
less than A2C/A4C, so to compensate for this, ALAX data
were repeated ten times in each epoch. In the fourth ap-
proach, the network was fed with US images and binary
indicators. Te purpose of the binary indicator is to inform
the network about the input image whether it is ALAX or
A2C/A4C. As the U-Net model has no dense layer, so an
image is created from a binary indicator and fed to the
network. Te dataset of CAMUS challenge consisting of 500
patients was used for training, while for ALAX view, separate
data of 106 patients were collected. Te proposed multiview
segmentation network achieved the best DSC value of 0.921.

To achieve the accurate and precise LV boundary and
size, diferent studies modify the U-Net to elevate its per-
formance. Gutierrez-Castilla et al. [95] improved the U-Net
model by applying the changes in skip connections. Te
features’ maps from each decoder layer were selected and
upsampled according to the size of the fnal decoder output.
After upsampling each decoder feature map, all feature maps
were concatenated or added together. Using these dense skip
connections, the decoder can fow directly to the fnal layer
from each decoder layer. As no extra layers or flter is added,
so this model does not add any extra parameters. For
training, the model two datasets ACDC and Sunnybrook
were used which consist of 150 and 45 patients’ data, re-
spectively. LV, RV, and MYO were segmented for diastolic
and systolic. DSC and HD were used as evaluation matrices.
As a clinical index, EF was also calculated by segmenting the
LV for ED and ES. For ED, 0.968 and 4.855 (mm) values of
DSC and HD were achieved, respectively. Likewise, DSC of
0.944 and HD of 6.254(mm) were attained for ES.

In the same way, a CNN model, named batch-nor-
malization-U-Net (BNU-Net) was designed for LV seg-
mentation from MRI images [96]. Te proposed model was
based on U-Net architecture, where the successive layers in
the encoding path were followed by an ELU as an activation
function and batch normalization was applied after con-
volutional flters. Te BNU-Net has 4 layers in the con-
traction path and 7 layers in the expansion path. Te 2× 2
Max pooling was used after a pair of convolutional layers in
the contraction path. Te model was also trained using the
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ReLU activation function and was found that the model
gives better performance with the ELU activation function.
Te model was trained using the publicly available Sun-
nybrook dataset and the training data size was increased by
applying the afne method for data augmentation. DSC and
sensitivity matrices were used to compare the performance
of BNU-Net with U-Net (with and without data augmen-
tation). Te BNU-Net performed better with data aug-
mentation and gave a value of 0.93 for DSC and 0.97 for
sensitivity.

Also, a novel U-Net-based method, CNN module, named
the “OF feature aggregation network” (OF-Net) as integrated
temporal information from cine MRI into LV segmentation
[97]. Te proposed model integrates the motion information
with the U-Net model. Furthermore, two more CNN models
were used to localize (ROI-Net) and then segment the LV
(called attention module). Te model is trained using a fying
chair dataset and fne-tuned using the MRI datasets. Two
diferent publicly available datasets, Statistical Atlases and
ComputationalModelling of theHeart (STACOM) andACDC
datasets, were used. Out of 100 subjects, 66 were used for
training and 34 for testing. Total of 12,720 images for training
and 6972 for testing (from the STACOMdataset). ADSC value
of 94.8± 3.3 was achieved.

In [98], a graphical user interface is developed for LV
segmentation from MRI images using PyQT libraries. Im-
ages were labeled manually, and the labeled LV images were
fed to train the CNNmodel. A publicly available dataset and
the internal dataset were used to train the model with 13,535
images and test the model with 4,148 images. Te model
achieved the DSC of 0.87± 0.02.

Te sonographers also used the point-of-care ultrasound
(POCUS), which is portable ultrasonography used for di-
agnosis. Te feasibility of translating the POCUS echo
images to the high-quality traditional echo images was
studied in [99]. To improve the quality of POCUS data
according to the level of cart-based US data, the mapping
from POCUS images to cart-based US images was an
obligatory task. To achieve this goal, the POCUS images were
analyzed, compared, and mapped with the traditional US
images. Te dataset of 5000 POCUS images and 16000 US
images was used for the mapping purpose. Te anatomy of
LV was extracted from POCUS (using A2C view) using the
DL method and then mapped with high-quality US images.
Te images were classifed as low quality (fair +medium)
and high quality. Tis classifcation was performed based on
the visibility of the anatomy of the desired region. Fully
convolutional encoder-decoder networks based on U-Net
architecture were utilized for the translation of images. Te
size of the input image was 128×128. Te model comprises
ten encodings and eight decoding convolutional layers.
ReLU activation, batch normalization, and dropout with
ratio� 0.2 were used. In the frst layer, batch normalization
was not employed. Max-pooling and transpose convolution
layers with stride 2× 2 were used in downsampling and
expansive paths, respectively. Te average DSC value ob-
tained is 82.6± 12.3 and 88.3± 5.0 for low- and high-quality
images, respectively. Similarly, 2.6± 2.7 and 1.9± 0.8mm
values of HD for low- and high-quality images.

Despite the several advantages of using the U-Net in
medical images, it ignores the efects of features maps on
diferent scales directly. To solve this problem, a pyramid
network is combined with the dilated U-Net model and
named as multifeature pyramid U-Net (MFP-UNet) [100].
In dilated U-Net model, two more downsampling layers
were added to extract more dense details of an image. As the
US images were usually low contrast images, the images were
preprocessed to enhance the contrast of US images using
Niblack’s method for global thresholding. Te model was
trained using a self-collected dataset of 137 2D-US sequences
which yields 1080 training images and 290 test images.
Furthermore, the model was also trained using the publicly
available CAMUS dataset. Te proposed model did not only
yield good segmentation results but also took less runtime.
Te model was compared with U-Net, dilated U-Net, and
DeepLabv3. It takes about 1.2 sec for the classic U-Net,
1.33 sec for DeepLabv3, and 0.81 sec for MFP-UNet to
segment a test image. DSC, HD, Jaccard distance, and mean
absolute distance were used to compare the performance of
the model.

Another concerning issue is, while computing the pa-
rameters, most of the DL models extract similar features at
low levels. To avoid this problem, modifcation in the at-
tenuation U-net model was proposed by introducing the
attention gates mechanism [101]. Tis model focuses on the
desired region of varying size and shape automatically.
Furthermore, the class imbalance problem was addressed by
introducing the Tversky loss. Te model achieves 0.75, 0.87,
and 0.92 for Jaccard index, sensitivity, and specifcity,
respectively.

One of the main problems which arise in DL architec-
tures is gradient vanishing.Te research [102] focuses on the
gradient vanishing problem and proposed a model residual
of residual (ROR) U-Net model. Te encoding path of the
proposed model is similar to ResNet-U-Net, but three
shortcut levels are introduced in the ResNet-U-Net model.
Te First 3× 3 convolutions and zero padding on the input
image are applied. At the second level ResNet, the identity
and convolutional blocks of ResNet are divided into three
branches, while, at the third level, convolutional blocks and
identity blocks are used. Te proposed model was trained
and tested using the Sunnybrook dataset and compared with
U-Net and ResNet-Unet models. Te 0.866, 0.926, 0.923,
0.120, and 0.945 of Jaccard index, DSC, precision, false
positive rate (FPR), and recall are achieved by the model.

Te study [103] used the unsupervised learning method
to segment the LV, RV, and MYO. A U-Net model was
trained using ACDC and tetralogy of fallot dataset (TOF)
dataset on short-axis (SAX) view of MRI images.Ten, using
the transformation network, the model segment the LV, RV,
and MYO from the SAX view. Te model has never seen the
SAX view of images before.

In [104], the localization and detection of the area
containing LV and RV were performed by a network known
as the Left Ventricle Localization NET (LVLNET). Tis
model is a lightweight encoder-decoder such as CNN. Tis
CNNmodel contains two 3× 3 kernels, batch normalization,
and Max pooling in each layer having four layers in total.
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Tis localization model identifes the central part containing
the LV and RV. Te image is cropped and then pass to the
next proposed CNN model called multigate dilated incep-
tion architecture (MGDIB). Te MGDIB is based on U-Net
architecture, but the kernel weights are expanded by the
dilation factor and called a dilated convolution. Te number
of parameters does not increase using the dilated convo-
lution. Two publicly available datasets, LV segmentation
challenge (LVSC) +ACDC, were used. LVSC is used for the
frst part for localization while ACDC is for the segmen-
tation of LV and RV. Diferent clinical measurements such
as EDV, ESV, EF, and LVM are also calculated. DSC and HD
values obtained were 0.900 and 0.910 for ED and ES, while
HD values were 8.330 and 11.040 for ED and ES. Figure 8
depicts instances of segmented images by the U-Net model.

4.3. LV Segmentation Using Other CNN Networks. Several
studies also used various CNN models other than FCN and
U-Net. Te detail of other CNN models utilized for LV
segmentation is explained in this section.

4.3.1. CNN Models with Preprocessing. US imaging was also
used for the heart analysis of children. For this analysis, the
segmentation of LV and LA was performed on the paediatric
US images [105]. Preprocessing was applied to the images
before the training. Te meaningless background was re-
moved by resizing the images to 512× 512. Furthermore,
image augmentation was also used by rotating, random
cropping, using salt and paper, and speckle noise with a
probability of 0.01. To extract the spatial features, a spatial
path module was designed. Te spatial path is a convolu-
tional network consisting of three layers with stride� 2,
followed by batch normalization and ReLU activation
function. It extracts a large amount of low-level spatial
information. A submodule spatial attention was added to
exploit the interspatial information and it focused on the
“where” information part. Te second parallel part of the
network extracts the contexture information using fve
convolutional layers. RestNet50 was used as a backbone
network. Te submodule contextual attention was used at
the end of this part to refne the extracted information and to
know the “what” information part in an image is important.
Te context attention submodule focuses on “what” to look
at, whereas the spatial attention submodule focuses on
“where.”Te authors compare the results of each submodule
and conclude that “where” is more important in LV seg-
mentation rather than focusing on “what.” In the last part,
the features of both the parts are fed into another module
called feature fusion module that generates the fnal refne
features. A self-collected dataset of 127 4CH videos (100 for
training and 27 for testing) was used. Images were extracted
from the videos and 3654 images were used for training and
831 for testing. Te segmentation results were evaluated step
by step by adding each model, and fnally, full Attention-
guided Dual-path Network shows the best result. Addi-
tionally, well-known CNN architectures (FCN, U-Net,
DeepLab, PSP Net, and BiSeNet) were also trained and
results were compared with the proposed network. Te DSC

coefcient achieved a score of 0.951 and 0.914, in the LV and
atrium segments, respectively.

4.3.2. Hybrid Segmentation Methods. Some researchers
analyzed the performance of hybrid CNN models for LV
segmentation. Te morphological models, snake models,
and active shape model (ASM) were combined with CNN
models in diferent studies. A hybrid model using DL and
morphological methods was employed in [106].Te ROI was
detected using a CNNmodel; then, LV was segmented using
a multiscope CNN model. Tree diferent patches were used
for training the network, i.e., 8× 8, 16×16, and 24× 24,
covering diferent scopes. Finally, morphological fltering
was used to refne the boundary segmented by CNN. Te
LUMC dataset was utilized for this work. Te model
achieved the DSC value of 0.71.

Another hybrid approach based on CNN and the double
snake model was proposed to segment the LV from MRI
images [107]. A SegNet architecture was used for the initial
segmentation result. Ten, ROI was plotted around the
coarsely segmented region taking the center point of the
segment object and rectangular ROI was formed using polar
transform. Output from SegNet was fed to the snake models
which perform the fnal segmentation of LV. For training,
the model 45 subjects were used and accessed from the
MICCAI challenge. Te DSC value of 0.96 and 0.97 was
achieved for endo and epi. EF and LVM were calculated as
clinical indices. Additionally, regression and Bland–Altman
analysis was also performed.

Similarly, the work in [108] combines the ASM and
neural network to segment the LV. A difusion flter was
applied to the images as a preprocessing step before feeding
the data to the model. Tis flter used eight neighboring
edges to preserve the edge information along with noise
removal. A CNN architecture, Faster-RCNN, was used to
determine the position of LV, and ASM used this location to
segment the LV. As the ASM needs the initial position of the
object to determine the position, so the region proposal
network (RPN) was used to propose the regions that might
contain the LV. Ten, Faster-RCNN located the LV in the
proposed ROI. Both RPN and Faster-RCNNwere fne-tuned
with ImageNet. Te dataset of 30 patients was used for this
work. Te DSC, MAD, and HD were used to evaluate the
performance. Furthermore, the models were also compared
with other models proposed in the literature. Te proposed
model yields a DSC value of 0.921, MAD 1.95, HD 6.29mm,
and Jaccard 0.86.

One more hybrid approach was proposed consisting of
the CNN model and dynamic programming [109]. Initially,
SegNet [110] with 17 stacked convolution layers was used for
coarse segmentation which segments the boundaries of LV.
Te batch normalization, ReLU activation function, and four
MaxPool layers were used after the frst four convolution
layers. Secondly, the segmented results from SegNet were
refned for endocardial contour. In the last step, a dynamic
programming model was used to calculate the epicardium
and endocardium of the heart. Te 900 subjects from Hubei
hospitals were used for this study. Jaccard and DSC were
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used for the evaluation. Te DSC of 0.90 (0.03) and 0.93
(0.02) were obtained for endo and epi, respectively. Simi-
larly, 0.80± 0.06 and 0.76± 0.09 average value of Jaccard was
obtained. Te LV-EDV, LV-ESV, SV, EF, LVM in the di-
astolic phase, and LVM in the systolic phase were also
measured. Te Bland–Altman analysis was performed for
the comparison of these clinical indices.

4.3.3. CNN+LSTM. A combination of encoder-decoder
network and LSTM was used in [111] with Fire dilated and
D-Fire dilated layers as a replacement for standard con-
volutional layers. Te Fire dilated modules add an extra
dilation rate in the kernel by inserting zeros between the
consecutive values of the kernel and skip connections were
applied to keep the temporal information of the image.
Using the Fire dilated module, the network extracted more
image information by adding extra parameters. Between the
encoder and decoder, an LSTM module is added which is a
special RNN structure. LSTM along with propagating the
characteristics also captures the temporal dependencies
between consecutive frames. Images were preprocessed by
cropping the image based on ROI and resized to 80× 80. A
total of 2900 images from 145 subjects were used to evaluate
the performance of the model and two experts manually
labeled the images. DSC, Jaccard distance, accuracy, and
positive predictive value (PPV) were used as evaluation
metrics. Te model achieved the DSC 0.960, Jaccard 0.903,
accuracy 0.991, and PPV of 0.960 for LV. Te proposed
model was compared with simple Conv-Deconv, SegNet,
FCN, and U-Net architectures.

A segmentation-based deep multitask regression
learning model (Indices-JSQ) was proposed in [112]. Te
model is mainly divided into two parts. Te frst part is a
segmentation network named Img2Contour and the second
part is a multitask regression model (Contour2Indices). Te

segmentation model is based on deep convolutional en-
coder-decoder architecture with three convolution layers.
Te ReLU activation function along with Max-pooling was
employed. Feature maps were generated by the use of the
convolution layers with the kernel size of 5× 5. Tis part
segmented the LV and then passed the information to the
next part of the model.Te second part consists of RNNwith
LSTM. Tree parallel CNN architectures were used that
difer in kernel size and pool size. For the 1st CNN model,
kernel size and pool size were 3× 3 and 2× 2, the 2nd model
was 3× 3 and 5× 5, and the 3rd model have the same size of
kernel and pool, i.e., 5× 5. Te dropout layer was used to
avoid the overftting problem. Information was passed to the
LSTM which further quantifes the indices. A total of 2900
short-axis views of 145 subjects were used for training. DSC
and mean absolute error (MAE) were used for the perfor-
mance evaluation, and the performance is compared with
other CNN models. Area, dimension, and wall thickness
were also calculated as clinical indices. Te proposed model
automatically calculates these indices which is one of the
major contributions of the model.

Te tumor extraction using the convolutional LSTM
network was performed in [113]. To prove the generalization
of the proposed ST-ConvLSTM model, it was applied on 4D
ultrasound for LV segmentation. Te model was trained on
the publicly available 3D+ time ultrasound dataset challenge
on Endocardial Tree-dimensional Ultrasound Segmenta-
tion (CETUS) consisting of data from 15 patients. Te
proposed model achieved the DSC of 0.868 and 0.859 for ED
and ES phases, respectively.

Te classifcation and segmentation of LV from multi-
view (A2C, A3C, A4C) US images were implemented in
[114]. Initially, pyramid dilated dense convolution
(PDDConv) was used to extract multilevel and multiscale
features. PDDConv network consists of batch normaliza-
tion, ReLU, and dilated convolution. After extracting the

[83] [92] [91] [96] [97]

[82] [99] [101] [103] [90]

Figure 8: Sample of segmented images using U-Net.
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features, hierarchical convolutional layers with LSTM re-
current units (hConvLSTM) were used for segmentation.
Te fully connected layers were used to perform the clas-
sifcation task using 3DCNN. Data of three diferent views,
i.e., A2C, A3C, and A4C with 150 patients for each view
yielding a total of 450 patients’ data consisting of 13,500
frames, were utilized for training and testing. Furthermore,
the model was trained and tested using the publicly available
CAMUS dataset which has 1800 frames. To evaluate the
performance of the models, MAD, DSC, and HD matrices
were used. DSC of 0.92 for all A2C, A3C, and A4C views was
obtained. Te mean HD of 6.06mm, 5.96mm, and 6.06 and
mean MAD of 2.80mm, 2.77mm, and 2.83 were achieved
for A2C, A3C, and A4C views, respectively. Te proposed
model was compared with U-Net, ACNN, and U-Net++ and
achieved better results. Te EDV, ESV, and EF for the
CAMUS dataset were also estimated using the segmented
LV.

4.3.4. Alternative CNN Models. A DL model was proposed
to segment the LV and calculate such as cavity area, MYO
area, cavity dimension, and wall thickness [115]. Te model
is named cascaded segmentation and regression network
(CSRNet) and has two parts: a CNNmodel that segments the
LV and a regression model to quantify the LV metrics. Te
dense connected convolutional neural network (DenseNet)
was employed to reduce the number of learning parameters.
Te network mainly consists of three dense and three
transition blocks. It generates three diferent probability
maps for background, MYO, and cavity. Output from the
last layer was fed to the regression component and passes to
a CNN model with three convolution layers and two fully
connected layers. To train the network, 2900 images (145
subjects) were used. Tese images were parted into 2320
training and 580 for testing. Several preprocessing methods
such as landmark labeling, rotation, ROI cropping, and
resizing were also applied to the images. DSC is calculated
and compared with U-Net. Te performance of DenseNet
was better and achieved 0.989, 0.886, and 0.959 for back-
ground, MYO, and cavity. Similarly, the number of pa-
rameters, training, and testing time of CSRNet were
compared with U-Net and DenseNet.Te CSRNet has 0.6M
learning parameters with 17.62 training time and 1.20 sec
testing time in 100 epochs.

A good initialization is a key parameter that optimizes
the CNN model quickly. In [116], an initialization method
was designed for the DCNN model to segment LV using
MRI images. Te model was trained and tested using two
initialization methods: random initialization and Gabor
flter initialization. Gabor flters can provide an accurate
description of most spatial characteristics of simple receptive
felds. Furthermore, spectral and spatial domains were si-
multaneously optimized in these flters which minimized the
number of features. Te authors demonstrated that using
Gabor flter initialization requires less amount of training
data and less complexity due to lower parameters. Te York
Cardiac Segmentation database (5011 images) was used for
training. Te model achieved the DSC of 0.798 with random

initialization and 0.80 with Gabor initialization, while if
Gabor fltered was maintained, the value further increased to
0.803.

A dense V-Net model was proposed which is based on
V-Net architecture [117]. Few dense layers were added to the
original V-Net model to improve the performance. For
training, 30 patients’ data (86 frames and each frame con-
taining 73 images) were collected and manually labeled by 3
experts.Te improvement of the proposedmodel was shown
by comparing it with U-Net, FCN, and V-Net. Te proposed
model achieved a DSC of 0.90.

A transformers-based [5] DL model was designed to
handle the sequential data. Transformers were mainly used
for natural language processing and in [118] it is used to
learn the image parameters. In the frst part, 3D LV volume
was passed to the transformer net which consists of 3D Conv
layers, batch normalization, ReLU, Max-pooling layers, and
fully connected layers. Tese layers extracted the transform
parameters from the LVV and were inserted into AtlasNet, a
new shape generation framework. Te Atlas network has
several advantages such as improved precision and gener-
alization capabilities, and the possibility to generate a shape
of arbitrary resolution without memory issues. AtlasNet
consists of deformable layers and generates the 3D LV shape
using the parameters achieved from the transformer. DSC,
MSD, and HD were used for evaluation and achieved
0.91± 0.027, 1.99± 0.64, and 8.92± 7.16 respectively.

Te CNN models such as FCN and U-Net focused on
single-frame image processing. While, in the study [119], a
dense RNN was proposed to segment the LV from a four-
chamber view of the MRI time sequence. RNN can deal with
sequential information. In RNN, information from the
previous cell was transmitted to the next LSTM cell, but the
frst cell does not get any previous information. Te pro-
posed model used the two RNNmodels.Te frst layer of the
second RNN model, which performs the segmentation,
receives the information from the frst RNN model. In this
experiment, data from 137 patients were used. Te per-
formance of the model was compared with state-of-the-art
CNN models. Te proposed model achieved the IoU of
92.13%. Few examples of the segmented LV by CNNmodels
are depicted in Figure 9.

5. Discussion

Te performance of DL methods depends on various pa-
rameters, and the time for the data processing is based on
hardware. Te details of the several modifed models and
proposed architectures are explained in Section 4. Here, in this
section, some important data from the reviewed literature are
presented. Te section is divided into fve sections and con-
veyed in a tabular form so that readers can have an overview of
all important information related to hardware, software, im-
aging modality, database, architecture, and results.

5.1. Imaging Modality. For the analysis of cardiac diseases,
diferent imaging modalities have been used such as the US,
CTscan, andMRI. Due to its high resolution,MRI is the gold
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standard and is mostly used. On the contrary, US images are
also highly recommended due to their ease of use and low
cost. Te third type of image used for the cardiac analysis is
CT.

5.2. Architectures. Several CNN architectures are used by
researchers for LV segmentation. Te U-Net architecture
is specifcally designed for medical images; therefore, the
use of U-Net and its variants are mostly used for the
segmentation of LV. Besides U-Net architecture, FCN is
the second most used network architecture for LV seg-
mentation. Table 1 shows the CNN architectures used for
LV segmentation.

5.3. Hardware. During the training process, the neural
networks learn millions of weights. It may take several days
to train such a huge number of weights on CPUs. Te
training time taken by the machine is one of the parameters
to be focused on while implementing the models. Terefore,
for the processing of DL models, hardware confguration
plays an important role. A striking option for DL is a GPU.
Te use of GPUs makes the training and testing process fast,
and results can be attained and compared in a short time.
Hardware confgurations used by authors for LV segmen-
tation are listed in Table 2.

5.4. Software. An appropriate software framework is
necessary to execute the complex DL architectures.
Various frameworks have been used to implement the LV
segmentation through DL architectures. Tese frame-
works are generally used in Python programming. Python
is an open-source programming language; furthermore, it
supports a remarkable set of easy to utilize library
functions for the execution of DL models; therefore,
Python is widely used in DL-based applications. Te

software frameworks described in this section are pri-
marily developed in Python language. Te most general
among them are TensorFlow, Teano, Keras, CAFFE,
Torch, and Deeplearning4j. Few researchers have also
used MATLAB as a programming language. Software used
by researchers is enlisted in Table 3.

5.5. Dataset. Te performance of DL models is highly af-
fected by the dataset. Te number of images or number of
patient data used to train and test the model is one of the key
attributes of LV segmentation. Most researchers have used
self-collected data, but, at the same time, several public
datasets are also available. Te details of the datasets are
explained below and summarized in Table 4.

Data are from the 2009 Cardiac MR Left Ventricle
Segmentation Challenge, often known as the Sunnybrook
Cardiac Data. Te data collection includes 45 cine-MRI
images from a variety of diferent people and pathologies.

After registering on a website dedicated to the online
evaluation, the ACDC database is made accessible to par-
ticipants through two datasets. One dataset, referred to as
the training dataset, contains 100 patients and manual
references based on the study of one clinical expert. Second
is a testing dataset consisting of ffty additional cases without
manual annotations.

Te MICCAI 2009 database contains 45 samples of
short-axis cine MR images, 15 training cases, 15 test cases,
and 15 online cases, which are randomly divided. Te
MICCAI 2018 challenge dataset comprises 145 participants’

[107] [112] [108] [109] [113]

[110] [106] [124] [108] [115]

Figure 9: Sample of segmented images using other CNN models.

Table 1: Studies used diferent CNN models for LV segmentation.

Architecture Study
FCN [38, 49, 49, 57, 61–63, 66, 68, 69, 75]
U-Net [77–86, 88–104, 120]
Other CNN models [64, 105–109, 111–119, 121, 122]
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Table 2: Details of hardware for LV segmentation.

Study Hardware
[75] Nvidia Tesla K80 GPU
[63] CPU: Intel 4790k, GPU: NVIDIA TitanX
[66] Intel Xeon(R) E5-2640 CPU @ 2.60GHz, NVIDIA Tesla K40c GPU, 128GB RAM

[38] Intel (R) Core (TM) i7-6700 CPU @ 3.40GHz with 4 cores and 32GB RAM; the graphics processing unit used was an Nvidia GTX
1080Ti model with 11GB RAM and 3584 CUDA cores

[69] Intel (R) Xeon (R) processor ES-1650 at 3.50GHz with 12 cores; Nvidia Quadro K4200 model with 4GB of RAM and 1440CUDA
cores

[82] NVIDIA DIGITS DevBox
[83] Intel i7-6700 CPU and an NVIDIA GeForce GTX 980M GPU
[84] Nvidia GTX 1070 GPU
[85] 3.4GHz Core i7 CPU, 64GB RAM, Nvidia TiTan X (12GB memories)
[91] GeForce GTX 1080; Nvidia, Santa Clara, Calif
[90] Nvidia GTX 1080Ti
[95] Titan Xp GPU donation from NVIDIA Corporation
[96] NVIDIA GeForce Titan X Pascal GPU
[81] NVidia GTX 1080 Ti (12GB)
[120] Nvidia 11GM RAM
[98] 8GB GPU (NVIDIA GeForce GTX 1080).
[92] Nvidia Tesla M60 GPUs (8G RAM).
[100] 12GB of RAM, a GPU-based graphic card with 2496 CUDA cores (Tesla K80), and an Intel Xeon CPU.

[77] (Intel(R) CPU i7-7770K, 4.2GHz, 16G RAM) with an NVIDIA GPU (GeForce, GTX TITAN X, NVIDIA Corp., Santa Clara, CA,
USA)

[78] Two Intel Xeon 8 core CPUs, 12GB of RAM, and an NVIDIA Quadro P6000 GPU
[88] Four NVIDIA GTX 2080Ti GPU cards, each with 11GB RAM
[101] 3 Nvidia GTX 1080 Ti GPU
[80] NVIDIA Titan GPU
[104] NVIDIA GeForce GTX 1080 Ti GPU
[111] Intel Core i5-7400 CPU. Te graphics card is an NVIDIA GeForce GTX 1060
[115] GeForce GTX 1080 ti GPU
[107] Pentium dual-core 2.60GHz hardware
[108] CPU of AMD Phenom II X6 1055T Processor 2.8GHz, 8G RAM, and VGA card of NVIDIA GeForce GTX 960 (CUDA v6.5)

[64] GeForce GTX 1050 (4GB GDDR5 dedicated) on an Intel Core i7-7700HQ (2.8GHz, 6MB cache, 4 cores) computer with 16GB
DDR4-2400 SDRAM

[105] GTX 1080Ti graphic processor
[121] GTX 1080Ti graphic processor
[117] GTX 1080Ti graphic processor
[118] NVIDIA Titan X GPU on Dell T7920 (GPU is Core I7, and memory size is 24GB)

[113] DELL TOWER 7910 workstation with 2.40GHz Xeon E5-2620 v3 CPU, 32GB RAM, and an Nvidia TITAN X Pascal GPU of 12GB
of memory

[114] Two Intel Xeon 2.10GHz CPU and four 12GB Nvidia Titan XP GPU
[122] GTX 1080Ti
[119] NVIDIA Tesla P100

Table 3: Detail of software used for LV segmentation.

Study Software
[57] TensorFlow
[75] TensorFlow
[63] Not reported
[66] Keras
[38] MATLAB R2015b
[69] Café
[82] Keras
[83] TensorFlow
[84] TensorFlow
[85] Café
[91] TensorFlow
[81] Keras
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Table 3: Continued.

Study Software
[120] MATLAB 2019a
[98] TensorFlow
[92] Python/Keras
[100] TensorFlow r1.12 and Keras 2.2.4.
[86] Keras
[77] MATLAB 2013a
[99] Python with Keras-TensorFlow
[78] TensorFlow/Ubuntu 18.04
[88] Pytorch/Ubuntu18.04
[101] Keras
[102] Keras
[80] MATLAB R2020
[89] Keras
[106] TensorFlow
[111] Keras
[115] TensorFlow
[107] MATLAB
[108] MATLAB R 2016b
[64] TensorFlow
[105] TensorFlow
[121] TensorFlow
[116] MatConvNet, an open-source library in MATLAB
[117] TensorFlow
[118] Pytorch
[113] TensorFlow
[114] TensorFlow
[122] Anaconda 5.0.1 (python 3.5), TensorFlow, and Tensorlayer environment
[119] PyCharm

Table 4: Te detail of datasets used for LV segmentation.

Study Dataset
[63, 68, 69, 81, 95, 96, 102], Sunnybrook
[57] TWINS-UK
[61, 66, 77, 95, 97, 103, 104, 120], ACDC
[38, 61, 66, 85, 86, 107, 121], MICCAI
[92, 94, 100, 114] CAMUS
[101, 104] LVSC
[97, 101] STACOM
[77] (UKBB)
[81] Cardiac Atlas
[113] CETUS
[103] TOF
[62] Own dataset (220 subjects)
[75] Own dataset (5008 subjects and 93,500 images)
[61] Own dataset
[49] Own dataset 1100 subjects
[49] Own dataset 1100 subjects
[82] Own dataset (69 images)
[83] Own dataset (500 patients)
[84] Own dataset (250 patients)
[91] Own dataset (596 subjects)
[90] Own dataset (94 cases)
[98] York + own dataset (17,683 images)
[100] Own dataset (1080 + 290) +
[99] Own dataset (5000 Pocus + 16000 cart base)
[78] Own dataset: 492 scans
[88] Own dataset 25,027 scans (N� 12,984 patients)
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processed CMR sequences. Te ages of the individuals range
from 16 to 97, with an average of 58.9 years.

Te CAMUS dataset includes clinical exams performed
on 500 patients at the University Hospital of St. Etienne
(France).Te LVSC dataset is accessible to the general public
as part of the 2011 STACOM short-axis cine MRI semi-
automatic LV myocardial segmentation challenge. Tis
dataset is comprised of 200 individuals with myocardial
infarction and coronary artery disease.

Te short-axis steady-state free precession cine MRI
from the Cardiac Atlas Project database is used to make up
the STACOM dataset. In total, 100 individuals with post-
myocardial infarction and coronary artery disease are in-
cluded in the dataset. Every image contains a ground truth
annotation.

Te TWINS-UK is a volunteer register consisting of
more than 12,000 twins. One thousand four hundred and
sixty eight consecutive female volunteers (mean age 62 9
years) were recruited for this investigation. Each dataset had
12 to 14 short-axis cine that were continuous and evenly
spaced from the atrioventricular (AV) ring to the apex,
covering both ventricles.

Te UKBB dataset is comprisedmostly of a large number
of healthy volunteers. By stacking a series of 2D cine images,
3D images of the LV and RV were created. LV, MYO, and
RV were manually segmented in the ES and ED phases by 8
observers under the direction of 3 lead investigators, and
hundred subjects were chosen.

Te Cardiac Atlas Project ofers CMR for 95 individuals
with coronary artery disease and mild-to-moderate left
ventricular dysfunction from prospective, multicenter, and
randomised clinical studies. Sufcient slices along the short
axis were collected to cover the whole heart in SAX. Also
included in these acquisitions was the manual segmentation
of the myocardium. Te CETUS dataset came from 15
patients. Each patient had 13–46 3D volumetric imaging
sequences, and each sequence had two manually segmented
volumes at the end-diastole (ED) and end-systole (ES)

phases. Figure 10 is an illustration of original and labeled
image taken from four distinct datasets.

5.6. Results. Te segmentation performance of models is
evaluated using well-known evaluation matrices such as
DSC, HD, and Jaccard distance, although some authors also
used other matrices for accuracy, sensitivity, etc.

Te DSC [123] is overlap based and calculated using
equation (1). In the equation, SGT represents the ground-
truth image that represents the original LV size and
boundary. SSeg is the segmented mask by the model. To
calculate the DSC, the intersection region of two masks is
divided by the total region of both masks. Te range of DSC
is 0 and 1, where 0 represents no similarity or overlap and 1
represents exact overlap:

DSC �
 SGT ∩ SSeg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

SGT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + SSeg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (4)

Te HD [124] is a spatial distance-based index to
measure the “closeness” of two sets of points. Te HD be-
tween two-point sets A and B is defned by equation (2).

dH(A, B) � max(h(A, B), h(B, A)), (5)

where h (A, B) is direct Hausdorf distance, and it can be
calculated by equation (3).

h(A, B) � max
aϵA

min
b∈B

‖a − b‖, (6)

where ‖a − b‖ is any norm value, e.g., Euclidean distance.
Te Jaccard distance [123] can be calculated using the

formula presented in equation (4).

J �
|X∩Y|

|X U Y|
, (7)

where X and Y are the ground-truth and segmented output
images, respectively.

Table 4: Continued.

Study Dataset
[79] Own dataset 23 sequences (670 images)
[93] Four diferent datasets
[80] Kaggle, 484 examinations
[89] Own dataset 563 patients
[106] 143 postinfarction patients, LUMC
[111] Own dataset (2900 2D short-axis cine MR images of 145 subjects)
[115] Own dataset (2900 2D short-axis cine MR images of 145 subjects)
[108] Own dataset
[64] Own dataset (30 scans and 2000 images)
[112] Own dataset (2900 short-axis cardiac MR images of 145 subjects)
[109] Own dataset (900 cases)
[105] Own dataset (127 videos)
[116] York cardiac segmentation database
[117] Own dataset (30 patients)
[118] Own dataset (50 scans)
[122] Cap a total of 2490 images from 83 subjects
[119] Own dataset 137 patients
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Similarly, the precision, specifcity, and IoU can be
computed with the use of equations (5)–(7), respectively:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Specif icity �
TP

TP + FP
,

IoU �
overlapping area
combined area

.

(8)

Te assessment matrices and theoretical values attained
by researchers are shown in Table 5.

6. Challenges and Future Outlook

Te article shows that DL approaches have equally per-
formed or outperformed the previous state-of-the-art LV
segmentation techniques. DL algorithms are expected to
completely replace the current LV segmentation techniques.
Given this, it is reasonable to consider whether DL tech-
niques can be directly applied to real-world applications to
reduce medical practitioners’ workload. However, there are
still challenges to make the existing DL methods viable for
real-time applications.

In medical images and, particularly, cardiac images,
acquiring the annotated images is the most prevalent
challenge. As this article demonstrates, most of the research
employed supervised learning, which necessitates the usage
of a signifcant number of annotated images. To properly
label, the LV needs both specialised knowledge and a sig-
nifcant investment of time. As a result, the datasets of the

annotated LV are quite limited in comparison to other
publicly available datasets in other felds, such as natural
images.

Moreover, the performance of DL on data that difers
from the training dataset is another challenge. Even though
the trained DL model is tested on unseen data, the training
and testing data are received from the same source, such as
the same sort of scanner. Te model does not provide the
anticipated outcome if new types of data, e.g., from multiple
scanners or diferent disease patients, are used to test the
model. A few studies have utilized training data for LV
segmentation from diferent sources and scanners to train
the model to get over this problem.

Also, the DL performance is highly dependent on the
quality of the training images. Many imaging modalities
such as CT and US are of low quality due to many factors
such as speckle noise and poor contrast ratio. To produce
high-quality images, many researchers use some sort of data
preprocessing.

Terefore, further studies are required to investigate the
methods to improve the image quality. Terefore, the ef-
ciency of the DLmodel and the accuracy of LV segmentation
may be signifcantly boosted by improving the image quality.
Tere is a signifcant demand for a DL-based system that has
the ability to improve image quality in an efcient and ef-
fective manner while simultaneously reducing noise.
Terefore, the LV segmentation will be considerably more
accurate when the segmentation and enhancing methods are
combined.

In addition, the integration of LV segmentation algo-
rithms with additional patient data, such as patient history,
age, and demographics, is an important area of the article

(a) (b) (c) (d)

Figure 10: Example of the original image (top) and ground truth (bottom) of (a) ACDC, (b) Sunnybrook, (c) CAMUS, and (d) MICCAI
datasets.
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Table 5: Te details of results achieved for LV segmentation.

Study Results
[57] DSC (0.981± 0.025), APD (6.290± 8.381) mm, and conformity index (0.961± 0.0551)
[62] DSC (0.934± 0.041)
[75] DSC (0.94± 0.04), HD (3.16± 0.98), and MCD (0.35)
[63] Volume estimation
[66] DSC (0.963± 0.026) and (0.932± 0.075) and HD (5.58± 3.75) and (6.92± 4.69) for ED and ES, respectively
[61] DSC (0.93 and 0.94) and HD (9.52 and 6.71) with cross-entropy loss and radial distance, respectively

[49] DSC (0.883± 0.062), JD (0.795± 0.07), HD (13.4± 12.2) mm, MSD (1.0± 2.4) accuracy (0.883), sensitivity (0.921), and specifcity
(0.997)

[38] APD (1.71)

[69] DSC (0.93± 0.02) and (0.92± 0.01), APD (2.23± 0.31) and (2.13± 0.28) mm, and good contour (94.19± 7.38) and (95.64± 7.11) for
endo and epi

[68] DSC (0.93± 0.03) and APD (1.41± 0.24)
[49] DSC (88.3± 6.2), Jaccard (79.5± 7.0), MSD (1.0± 2.4) mm, and HD (13.4± 12.2) mm
[82] DSC (0.86± 0.06)
[83] A bland-altman analysis mean diference of -13.7% and a standard deviation of 8.6% for EF
[84] DSC (0.87± 0.03)
[85] DSC (0.90± 0.05) and (0.81± 0.005) and HD (7.6± 4.5) and (0.91± 0.018) for endo and epi, respectively
[91] Accuracy (0.93± .006) and (0.94± 0.005) for endo and epi
[90] DSC (0.923± 0 : 03) and (0 : 924± 0 : 04) for ALAX and A2C/A4C
[95] DSC (0.968) and (0.944) and HD (4.855) and (6.245) mm for ED and ES, respectively
[96] DSC (0.93± 0.03) and sensitivity (0.97)

[81] DSC (0.87± 0.0053), (0.869± 0.0051), and (0.868± 0.0047), MSE (0.0135± 0.0006), (0.0136± 0.0008), and (0.0138± 0.0007), and
MAE (0.0137± 0.0006), (0.0138± 0.0008), and (0.0140± 0.0007) for U-net-BN-RL, uInception, and uXception, respectively

[120] DSC (0.919) and IOU (0.860)
[97] DSC (94.8± 3.3)
[98] DSC (0.87± 0.02)
[92] DSC (0.95± .023) and (0.95± 0.039), HD (5.3± 3.6) and (5.5± 3.8) mm, MSD (1.6± 1.3) and (1.6± 1.6) for ED and ES, respectively
[100] DSC (0.94± 0.12), HD (1.62± .05), JD (0.98± .01), and MSD (1.32± .53)
[86] DSC (0.893)
[77] DSC (0.921), HD (3.9mm), and ASSD (1.43mm)
[99] DSC (82.6± 12.3) and (88.3± 5.0) for low- and high-quality images, respectively
[78] DSC (0.94)
[88] DSC (0.87± 0.08) (3CS) and (0.82± 0.22) (2CS)
[101] Jaccard (0.75), sensitivity (0.87), and specifcity (0.92)
[102] DSC (0.926), Jaccard (0.866), precision (0.87), FPR (0.120), and recall (0.945)
[103] DSC (0.93± 0.04)
[79] DSC (0.917), MAD (1.66 pixels), and overlap (85.57%)
[93]
[80] DSC (0.87 and 0.95) with and without transfer learning
[104] DSC (0.900 and 0.901) and HD (8.330 and 11.040) for ED and ES
[94] DSC (0.921)
[89] DSC (93.6) and accuracy (97.7)
[106] DSC (0.71± 0.09)
[111] DSC (0.960± 0.008), JD (0.903± 0.026), accuracy (0.991± 0.005), and PPV (0.960± 0.040)
[115] DSC (0.959) and HD (3.557),
[107] DSC (0.97 and 0.96) for endo and epi
[108] DSC (0.921± 1.87), JD (0.86± 0.007), and HD (6.29± 2.01mm)
[64] DSC (0.712± 0.031), sensitivity (0.881± 0.17), accuracy (0.968± 0.032), and specifcity (0.978± 0.029)
[112] DSC (0.87± 0.06)
[109] DSC (0.90± 0.03) and (0.93± 0.02) and JD (0.80± 0.06) and (0.76± 0.09) for endo and epi
[105] DSC (0.951± 0.031), accuracy (0.987± 0.007), precision (0.960± 0.050), specifcity (0.996± 0.006), and sensitivity (0.950± 0.050)

[121] DSC (0.803± 0.204), JD (0.706± 0.214), sensitivity (0.859± 0.2), specifcity (0.998± 0.002) PPV (0.771± 0.206), and NPV
(0.999± 0.001)

[116] DSC (0.803), pixel accuracy (0.973), specifcity (0.984), sensitivity (0.841), and mean accuracy (0.903)
[117] DSC (0.9± 0.12)
[118] DSC (0.91± 0.027), HD (8.92± 7.16), and MSD (1.99± 0.64)
[113] DSC (0.868± 0.021) and (0.859± 0.016) for ES and ED, respectively

[114] DSC (0.92± 0.04), HD (6.06± 2.11), (5.96± 2.07), and (6.06± 2.04) mm, MSD (2.80± 1.02), (2.77± 1.05), and (2.83± 1.04) mm for
A2C, A3C, and A4C, respectively

[122] Localization accuracy (6.45± 4.53mm)
[119] IoU (92.13%)
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that might further improve the performance of clinical
decision making and assist physicians in calculating clinical
indices.

As discussed above, one of the main challenges is the
availability of large datasets, and there is abundant new
research aimed at levitating the limited dataset size
problem, and some LV datasets are publicly available.
Tere is a pressing need for architectures and algorithms
that have been purposed and built for the segmentation of
medical images and, therefore, LVs, and that can also
perform admirably when applied to limited datasets.

7. Conclusion

In this article, a comprehensive review of the literature
focused on the analysis of cardiac images using DL for LV
segmentation is presented. In the feld of image processing
CNN, a subbranch of DL has shown very promising re-
sults for diferent types of identifcation including clas-
sifcation, object detection, and segmentation. CNN is also
seen as a futuristic approach specifcally in image pro-
cessing. Te application of CNN in medical images is
extensive. Terefore, this work details and summarizes the
uses of CNN for LV segmentation. Te most common
imaging modalities (MRI, US, and CT scan) were briefy
introduced in the article. Te basics of CNN architectures
were also discussed to have a better understanding of these
models. Among the diferent CNN models, FCN, U-Net,
and modifed model two are mostly used for LV seg-
mentation. Tis work also gives a detailed discussion of
hardware, software, and dataset used for LV segmenta-
tion. Te diferent evaluation matrices used for the per-
formance analysis of the models were also discussed. A
comparative summary was tabulated to ease the com-
parison for the readers.Tis work lays a foundation for the
readers for an instinctive understanding of DL methods
used for LV segmentation specifcally for medical and
cardiac images.
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