
Continuous Analysis, Monitoring,
and Comparison of Student

Project Portfolios in Software
Engineering Courses

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Manuel Stöger, BSc
Matrikelnummer 11775194

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 23. Jänner 2023
Unterschrift Verfasser Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Continuous Analysis, Monitoring,
and Comparison of Student

Project Portfolios in Software
Engineering Courses

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Manuel Stöger, BSc
Registration Number 11775194

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 23rd January, 2023
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Continuous Analysis, Monitoring,
and Comparison of Student

Project Portfolios in Software
Engineering Courses

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Manuel Stöger, BSc
Matrikelnummer 11775194

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 23. Jänner 2023

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Manuel Stöger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Jänner 2023
Manuel Stöger

vii

Danksagung

Ich möchte mich bei meiner Familie und meinen Freunden für die Unterstützung während
meines Studiums bedanken. Mein Dank gilt auch meinen Freunden, die diese umfangreiche
Arbeit korrekturgelesen und mir wertvolle Ratschläge für meine Arbeit gegeben haben.

Außerdem möchte ich mich bei dem Administrator des SEPM-Kurses bedanken, der
mir die Daten zur Verfügung gestellt hat und mir regelmäßig Informationen zu allen
organisatorischen und technischen Fragen des Kurses gab.

Zu guter Letzt möchte ich die Unterstützung meines Betreuers bedanken, der mir das
Thema zur Verfügung stellte und mir auch wertvolle Anregungen gab.

ix

Acknowledgements

I would like to thank my family and friends for their support throughout my studies. I
would also like to thank my friends who proofread this extensive work and gave valuable
advice on my writing.

In addition, I would like to thank the admin of the SEPM class who provided me with
the data and regularly gave me information on all organizational and technical issues of
the course.

Last but not least, I would like to thank the support of my supervisor who made the
topic available to me and also provided me with valuable input.

xi

Kurzfassung

Die Nutzung von Daten aus Software Repositories hat in den letzten Jahren an Bedeutung
gewonnen. Eine gute Gelegenheit, eine große Menge an Software Repositories zu analysie-
ren, bieten die Projekte von Studierenden einer Softwareengineering-Lehrveranstaltung
an der TU Wien. Da sich in einem Portfolio (einem Semester) ähnliche Projekte befinden,
kann der Einsatz von Data Mining in einem akademischen Umfeld wertvolle Erkennt-
nisse für Lehrende und Betreuende liefern. Werkzeuge, die im universitären Kontext
typischerweise zur Analyse von Software Repositories eingesetzt werden, haben meist
einen individuellen Fokus: Einerseits unterstützen sie zum Beispiel die Überprüfung und
Bewertung von Studierenden, andererseits steht die automatische Benotung der Studie-
renden im Mittelpunkt. Es besteht jedoch noch eine Nische für eine Lösung, um eine
fundierte Entscheidungsgrundlage bieten zu können, die grundlegende Visualisierungs-
sowie fortschrittliche, kontinuierliche Analysefunktionen kombiniert.

In dieser Arbeit wird der Einsatz von Data Mining für Software Repositories in Kombina-
tion mit Datenvisualisierung in einem universitären Umfeld vorgestellt, um die derzeitige
Lücke in diesem Bereich zu schließen. Das Ziel der Arbeit ist es, mithilfe eines Prototyps
für die kontinuierliche Analyse, Überwachung und den Vergleich von Software Reposito-
ries, ein datengestütztes Werkzeug zu schaffen, um eine Verbesserung der Qualität der
Lehre im Bereich des Softwareengineerings zu ermöglichen.

Hypothesen und Anforderungen für die Unterstützung der Lehre wurden aus den Limi-
tierungen bestehender Forschungsprojekte an der TU Wien abgeleitet. Basierend auf den
Anforderungen wurden zunächst Mockups erstellt und auf deren Nutzen evaluiert, parallel
dazu wurden die Hypothesen mit dem Informationsbedarf der Experten abgeglichen.
Die Ergebnisse und Rückmeldungen aus der ersten Interviewrunde flossen weiters in die
finale Umsetzung ein. Abschließend bestätigten fünf Fachleute in der Evaluierung des
Prototyps die Gültigkeit der Hypothesen.

Das System ist daher geeignet, datenbasierte Einblicke zu gewähren. Es ermöglicht
Lehrenden und Betreuenden, die Leistungen ihrer Studierenden objektiver zu bewerten
und zu verstehen. Damit liefert es wertvolle Erkenntnisse für die Lehre im Bereich des
Softwareengineerings.

Keywords: Softwareengineering-Lehre, Datenvisualization, Software Repository Mining,
Education Intelligence, Data-Mining

xiii

Abstract

The use of data from software repositories has gained significant attention in recent
years. Student projects of a software engineering class at TU Wien represent a unique
opportunity to analyze a large amount of software repositories. Having various similar
projects within one portfolio (one term), the use of data mining in an educational setting
can provide valuable insights for lecturers and supervisors. Tools commonly used in the
academic context for analyzing software repositories tend to have a specialized focus. On
the one hand, for example, they support inspection and assessment of students. On the
other hand, tools also center on grading students automatically. However, the niche for a
solution which combines basic visualization and advanced continuous analysis capabilities
to assist in making informed decisions, has not yet been filled.

This thesis suggests the use of software repository data mining in combination with data
visualization in a university setting to address the current gap in this area. The primary
objective is to prototype a data-driven tool for continuous analysis, monitoring, and
comparison of software repositories, with the goal of enhancing the quality of teaching in
the field of software engineering.

Existing research projects at the TU Wien were analyzed to derive hypotheses and
requirements for support in the context of a university class. Based on the requirements,
in a first step, mock-ups for the prototype were created and their practicality evaluated. At
the same time the hypotheses were verified by the experts to determine their information
needs. The results and feedback from the first round of interviews were incorporated
into the prototype and its visualizations. Finally evaluating the prototype, five experts
confirmed the validity of the hypotheses.

The findings demonstrate that the system is appropriate for facilitating data-driven
insights. It enables lecturers and supervisors to assess and comprehend the performance
of their students more objectively. As a result, the system provides valuable intelligence
in a software engineering education setting.

Keywords: Software Engineering Education, Data Visualization, Software Repository
Mining, Education Intelligence, Data Mining

xv

Contents

Kurzfassung xiii

Abstract xv

1 Introduction 1
1.1 Problem Description . 2
1.2 Motivation . 3
1.3 Research Questions . 4
1.4 Expected Results . 4
1.5 Contributions . 5
1.6 Structure . 5

2 Foundations 7
2.1 Domain Concepts . 7
2.2 Data Visualization . 12
2.3 Statistics . 13

3 State of the Art 19
3.1 Current State of Research . 19
3.2 Available Tools . 23
3.3 Distinction from Current Research . 29

4 Methodology 31
4.1 Research Questions . 31
4.2 Literature Review . 32
4.3 Technology Review . 32
4.4 Development Process . 33
4.5 Proof of Concept . 35
4.6 Evaluation . 35

5 Information Needs in Software Engineering Education 37
5.1 Concepts . 37
5.2 Study Design . 50
5.3 Results . 52

xvii

6 Extract, Transform, Load Implementation 63
6.1 Data Organization . 63
6.2 Transformation and Loading Implementation 67
6.3 Data Loading . 77

7 Education Intelligence Visualization 83
7.1 Data Visualization - Group Phase Data 83
7.2 Data Visualization - Individual Phase Data 89

8 Evaluation and Results 91
8.1 Execution Speed-up . 91
8.2 Expected Numbers . 92
8.3 Data Analysis . 96
8.4 Expert Evaluation . 116
8.5 Discussion . 118

9 Conclusion 123

List of Figures 127

List of Tables 129

List of Algorithms 131

List of Listings 131

Acronyms 133

Glossary 135

Bibliography 137
Print Resources . 137
Book References . 146
Online References . 147

A PostgreSQL Views 151

B PostgreSQL Materialized Views 155

C Expert Interview Survey 159

D Expert Evaluation Survey 203

CHAPTER 1
Introduction

Collecting and analyzing data from source code repositories of software projects has
gained importance in empirical software engineering research during the past decade [116,
121]. The scientific field of Mining Software Repositories (MSR) enables researchers to
examine information which originates during the software development process, such
as source code, Version Control Systems’ (VCSs) metadata, and issue reports [25, 63,
108, 109, 121, 126]. Hence, the focus of the MSR area is on extraction and analysis of
heterogeneous data, based on existing repositories [104]. On the one hand, MSR aims to
find interesting, practical, and helpful information to assist developers in making informed
decisions. This helps to improve the overall software development process [16, 94, 104].
On the other hand, MSR permits the empirical investigation of numerous aspects which
include software evolution, developer networks and characterization, bug prediction,
and effort estimation [73]. The aforementioned characteristics allow to answer tailored
(research) questions. For this purpose, MSR-based studies typically select repositories
which fit specific criteria [43].

Previous research on MSR has mainly focused on open-source software repositories [55,
121]. However, the application of MSR in the context of software engineering education to
assist in making informed decisions has received less attention. This thesis aims to bridge
this gap by examining the potential of using MSR-based data mining in combination
with data visualization techniques. Throughout this work this combination is referred to
as an “Education Intelligence (EI) system”.

The primary objective of the present thesis is to prototype and demonstrate a web-based
EI system to continuously analyze, monitor, and compare student project portfolios in
a software engineering course at TU Wien. In this context data-driven insights offer
instructors and supervisors the opportunity to more objectively evaluate, understand,
and gain valuable insights from their students’ work.

1

1. Introduction

Inspired by the term Business Intelligence (BI), the concept of Education Intelligence
(EI) — as used in this thesis — is outlined in Definition 1.1. Business Intelligence
provides principles and approaches for employing fact-based support systems to enhance
corporate decision-making [64] and so does EI in the context of a university course. An
“Education Intelligence system” can be used to support lecturers and supervisors in
evaluating students’ work based on available collected information.

Definition 1.1 Education Intelligence (EI) refers to the use of data-driven techniques to
gather, analyze, and interpret information from various sources in a software engineering
education context.

In the following subsections, the thesis’ topic is introduced in more detail: Section 1.1
illustrates the problem and Section 1.2 outlines the motivation behind the study. In
Section 1.3 the research questions are introduced, while Section 1.4 presents the expected
results. The scientific contributions come next in Section 1.5 and finally, Section 1.6
provides an overview of this thesis’ structure.

1.1 Problem Description
At the TU Wien, in a software engineering course like Software Engineering and Pro-
jectmanagement students start by working on an individual assignment, where each
student gets the same assignment specification, which once passed, is followed by a group
assignment. The groups then individually work on their projects, are graded by a teaching
assistant, and produce independent artifacts. Each group has its individual focus on,
for example User Interface (UI), Continuous Integration (CI) or testing, which results
in different valid solutions. Although each group uses the same programming language
and frameworks (Java, Spring Boot and Angular), these individual aspects made a direct
comparison impossible in the past.

Until now no viable solution was found for continuous portfolio-wide metric monitoring
to extract a basis of comparison for all groups’ project state regarding for example,
their work-breakdown, project development or software quality. Students also need to
track their time spent on the project during the group phase (110 hours are estimated),
however, the real effort of students and the effort distribution within and over groups
is not visualized yet. Another unknown aspect of the class is the groups’ constellation
and its influence. There was never any evaluation done on how a student’s performance
evolves from the Individual Phase to Group Phase, or how software-relevant metrics
differ between groups.

After passing the individual phase, each student joins a group by either forming a group
or by being assigned to a group by the course staff. A group is made up of five to six
students and may, thus, be self-arranged, randomly-arranged or both if a self-arranged

2

1.2. Motivation

group consists of fewer than five students. These groups are then distributed over two
research divisions:

Div. A All groups receive the same assignment specification, which consists (among other
elements) of seven mandatory User Stories (USs) and three extended User Stories
of which two need to be chosen. So, every group is limited to these nine User
Stories but is free to choose how to structure their work.

Div. B Groups are working on their own project idea and are only restricted by time: The
project’s effort must not exceed 110 hours per person. In contrast to Research
Division A, these groups must also deliver a project proposal and contract, which
is used as assignment specification.

The current situation does not allow the course staff team to get an overview of the
group’s current status without manually collecting the required information for each
group separately. In the past external tools were not integrated into the repository
instance for keeping an overview of the quality of the produced artifacts or of the
project progression due to administrative overhead. Another difficulty about integrating
common measurement tools for software projects is their typical focus on code quality1

or code contribution2,3. However, in an educational context, code quality as well as code
contribution are only parts of the grading scheme. Typical aspects of the grading scheme
also consider: workload-distribution, time effort distribution, code contribution, quality
of the outcome, consideration of feedback, fulfilling non-functional requirements, etc.
Nevertheless, the individuality of groups does not allow a direct comparison based on the
same set of criteria.

1.2 Motivation
A novelty of the examined course at the TU Wien is that all student groups of research
division — as previously described in Section 1.1 — are working on the same assignment
specification, are limited by time and therefore the produced data is very practical for
comparing and also ranking groups based on that.

Creating a tool to allow lecturers to investigate the student projects in rather little time
(compared to the current state) can provide meaningful benefits for both, lecturers and
students. When lecturers are able to analyze the development of a project, individual
controlling and steering of a group is easier and problems or workload imbalances might
come up earlier than they do now.

To deliver an appropriate visualization solution, however, the specific information require-
ments must first be examined, followed by the design, implementation, and evaluation of
a data mining and visualization prototype.

1https://www.sonarqube.org/, Accessed: 23.01.2023
2https://github.com/ejwa/gitinspector, Accessed: 23.01.2023
3https://github.com/Woutrrr/metricminer2, Accessed: 23.01.2023

3

https://www.sonarqube.org/
https://github.com/ejwa/gitinspector
https://github.com/Woutrrr/metricminer2

1. Introduction

1.3 Research Questions
Within the scope of the presented diploma thesis, the following questions will be answered:

RQ1 a) What is a suitable continuous mining process and architecture for continu-
ous analysis, monitoring, and comparison of software portfolios in software
engineering education?

b) How can this continuous process be implemented using GitLab?
c) What are the expert’s information needs?

RQ2 a) What is a suitable intelligence system for software engineering education?
b) How do experts rate the proposed prototype?

RQ3 a) What is the difference between student projects inside a project portfolio?
b) What is the difference between project portfolios of different terms?

In the context of this work, the term project portfolio, as will be defined later in
Definition 2.1 of Section 2.1, is, among others, characterized by the collection of several
similar student software projects within one term.

1.4 Expected Results
This thesis provides a viable tool-solution for course staff teams to keep an overview of
group projects using various metrics without any additional work and to compare terms
with each other easily. Thus, the proposed solution will adapt and build upon the idea of
the existing research project “Portfoliotrix”4 [53] by Genfer et al. and “Binocular” [56]
by Grabner et al.

The expected result of this diploma thesis is the development of a mining process
architecture to collect available data, which is then combined with an existing data
visualization (or Business Intelligence) system. The prototype is suitable to be used in a
software engineering course, assisting the staff team. As a result of the data mining and
visualization process, knowledge about the groups itself, its students and generally terms
regarding

• planned effort and real effort (Individual Phase and Group Phase),
• distribution of points during the Individual Phase, and
• distribution of grades (Individual Phase, Group Phase, and final grade)

becomes derivable. Using the final prototype, an easier monitoring and comparison of
the project’s progresses, a comparison of the projects based on metrics and comparing

4https://github.com/INSO-TUWien/portfoliotrix, Accessed: 23.01.2023

4

https://github.com/INSO-TUWien/portfoliotrix

1.5. Contributions

different terms based on these metrics should be possible. This should also allow to
draw conclusions about changes within the course, for example workload related changes
in the assignment specification over past terms. All these metrics are then integrated
in a visualization dashboard application to provide useful visual representations for
approximately 25-30 groups per term.

1.5 Contributions
This thesis establishes a data-driven approach in the software engineering education field,
allowing a semi-live monitoring of students and terms based on Git information. Secondly,
fundamental study of available data and visualizations show how data can be used in
the scientific education field to support course staff teams, link data and help to assure
educational quality. Overall, this thesis intends to indicate the necessity of more research
to be conducted in the software engineering education field. Education Intelligence (EI)
enhances data-driven evaluation of both student’s performances and class design and is
able to support staff in designing classes, exams, projects, etc. in the future.

1.6 Structure
The structure of this thesis follows the “Data Science Road Map” of Cady [17] describing
the steps required to solve a data science problem. Figure 1.1 illustrates the necessary
steps. Consequently, this thesis is structured as follows:

Frame the
Problem

Understand
the Data

Extract
Features

Model and
Analyze

Present
Results

Deploy
Code

Figure 1.1: Data Science Road Map [17]

• Chapter 1, the current chapter, describes the problem examined within this thesis,
followed by the motivation, research questions and expected results. Moreover,
the scientific contribution provided in the research area of data-driven software
engineering education is outlined. The pendant in Figure 1.1 is the first element
Frame the Problem.

5

1. Introduction

• Chapter 2 explains all fundamental concepts and terms of this study. First of
all, the required domain related concepts and terms are explained, followed by an
introduction of data visualization and relevant statistics.

• Chapter 3 then explains the current research state and introduces the most relevant
papers this thesis is based on. The first subsection is divided into the three main
research aspects of this thesis: Mining Software Repositories, Data Visualization
and Software Engineering Education. Section 3.2 is about already existing tools,
divided into Education-related and Data Visualization, describing their purpose
and advantages and disadvantages. Finally, the distinction to the current state of
the art is made in Section 3.3.

• The methodology used for this study, is described in Chapter 4. Firstly, the
approach separated per research question is outlined in Section 4.1, followed by the
methodological literature and technology review in sections 4.2 and 4.3. In addition,
the development process and the proof of concept are explained in sections 4.4 and
4.5, concluding with the evaluation approach in Section 4.6.

• Chapter 5 describes the interview process to collect the needs of domain experts
working in the study’s field. Firstly, the created basic visualization concepts are
presented in Section 5.1, followed by the study design in Section 5.2 and eventually
preparing the interview results in Section 5.3.

• The core of this thesis are Chapter 6 and 7. First of all, the organization of the data
is explained (Figure 1.1, Understand the Data) followed by the implementation
details of the Extract, Transform, Load (ETL) transformer (Figure 1.1, Extract
Features) and the data storage method (Figure 1.1, Model and Analyze). In Chapter
7 follows the visualizations of the underlying data using Apache Superset (Figure 1.1,
Present Results).

• Chapter 8 presents the findings of this thesis on a technical basis in achieved
during the development process in Section 8.1. Section 8.2 describes the data
baseline (that is what data to expect) and Section 8.3 illustrates the analysis of the
underlying data. Followed by Section 8.4 presenting an expert-based evaluation of
the visualizations of Chapter 7. Section 8.5 concludes this chapter with a discussion
of the results and the limitations of this work.

• Finally, Chapter 9 summarizes the findings and insights gathered during the research
process and provides an outlook on potential future study in this area.

6

CHAPTER 2
Foundations

On the pages that follow, an overview of the foundations is provided and crucial definitions
for understanding this thesis’ concept and purpose are presented.

2.1 Domain Concepts
(Software) Portfolio. According to Turner [117], projects which form a group and
being managed in a coordinated way for added benefit can be described as portfolio.
Elonen and Artto [39] and Simon et al. [105] extended that concept and defined a software
portfolio as a collection of individual projects competing for resources. In 2021 Genfer
et al. [53] extended that definition to include a quality management aspect. That is that
software portfolios are also meant to achieve a certain quality standard and process. In
accordance with the definitions outlined above, the term student project portfolio is used
in this thesis as defined in Definition 2.1.

Definition 2.1 A student project portfolio describes a group of software projects of a
software engineering course within one term. All projects within the portfolio may be
individual or group projects and are subject to a common quality standard, which ensures
that each project meets a certain level of excellence and meets the course’s objectives.

The classic objectives of portfolio management are, according to Cooper et al. [31]: value
maximization, tying to strategy, and balancing. These objectives can also be mapped to
teaching strategies:

• Value maximization can be turned into: maximizing the number of successful
students

• Tying to strategy can be compared to: improve the teaching quality
• Balancing can be mapped to: balance the expected effort of the class with the

student’s real effort

7

2. Foundations

Version Control System (VCS). Version control, commonly referred to as source
control, is the process of tracking and managing modifications to software code. Version
Control Systems (or also called revision control systems) are software tools which assist
software development teams in managing source code modifications over time [127]. It
is common practice for software engineers to make ongoing modifications to files and
code, including the addition and deletion of features, during the software development
process. Before creating the final edition, it is anticipated that there will be a number
of adjustments. Due to larger and more complex systems, there are increasingly more
revisions, making it challenging to manage and organize the codes and files. Consequently,
the VCSs presence is helpful to speed up and streamline the software development
process [127].

Software Repository. The central place to keep (software development) resources
that users can pull, track, watch and change when necessary. A software repository is the
core element of a VCS [11, 85]. In the context of this thesis, a software repository refers
to the storage location of a software project including all relevant data like ITS or VCS.

Git. Spinellis [110] describes Git as a distributed revision control system that is
accessible via a free software license on all popular development platforms. Git elevates
the software’s changes to the status of first-class citizens, which is a key distinction
between it and its ancestors. Software revisions are extremely important to developers,
which is why Git provides each developer with a full private copy of the software repository
and a variety of techniques to handle changes.

Mining Software Repository (MSR). The field of Mining Software Repositories
(MSR) targets the analysis of VCS’s repositories underlying data. The data examina-
tion allows researchers to empirically investigate and uncover insights from software
engineering [109].

Issue Tracking System (ITS). An Issue Tracking System is used to manage and
keep track of bug reports and feature requests — the issues. They are typically utilized
in collaborative situations, particularly in large or distributed collaborations. These
systems frequently integrate resource allocation, time accounting, priority management,
and supervisory processes while also being integrated into a VCS [8, 9].

Extract, Transform, Load (ETL). Extract, Transform, Load (ETL) stands for the
process of extracting, transforming and loading data from multiple, disparate sources
into a single, unified data repository [38, 119].

Business Intelligence (BI). Negash and Gray [88] describe Business Intelligence
(BI) as a data-driven system that integrates data collection, storage, and knowledge
management with analysis to offer input to decision-making. The term was first introduced
by Luhn [81] in 1958 in his article A Business Intelligence System. Business intelligence

8

2.1. Domain Concepts

is concerned with the analysis of huge quantities of data, often about a company and
its operations, in order to enable knowledge workers such as executives, managers, and
analysts to make smart decisions [19, 26, 88]. Business intelligence in computer-based
systems employs a big database as its source of information and the foundation for
advanced analysis. Analyses span from simple reporting to slice-and-dice, drill down, ad
hoc query response, real-time analysis, and forecasting [88].

Pseudonymization. The European Union defined the term of Pseudonymization in
2018’s General Data Protection Regulation (GDPR), Article 4(5) as the process of
administering personal data in such a way that it cannot be linked to a specific person
without additional information. In addition, it is important to keep this extra information
separate [52]. With the help of this technology, businesses may analyze personal data,
while at the same time respecting each individual’s right to privacy [66].

Pseudonymization vs. Anonymization. In contrast to Pseudonymization, according
to Hintze and El Emam [66], Anonymization is an even stronger form of de-identification.
When data is anonymized, the sensitive data elements are replaced with unrelated ones.
Which then results in data which cannot be used to re-identify the original data, or can
only be attributed to an identified or identifiable natural person with a considerable
effort in terms of time, cost and personnel [98]. In summary, pseudonymous data is where
identifying information has been replaced with a consistent, reversible value, whereas
anonymous data cannot be directly linked to an individual.

SQL. Initially introduced by Chamberlin and Boyce [21] at IBM5, the Structured
Query Language (SQL) is a domain-specific programming language developed to be
used in relational database management systems (RDBMSs) for data management. The
foundation of SQL is the relational model whose development dates back to Edgar F.
Codd and his paper “A Relational Model of Data for Large Shared Data Banks” [29]
published in 1970. In 2012 Chamberlin [20] reflected about the early history of SQL,
saying that initially the language was supposed to be just a simple language to “walk up
and use [...]” [20]. It became, however, the most widely used database language today [22,
47]. As of October 2022, RDBMSs also dominate the ranking of all database management
systems, according to the db-engines.com6 website.

REST. Fielding described the term Representational state transfer (REST) in his
dissertation as a coordinated set of architectural styles that tries to reduce latency
and network communication while making sure that component implementations are as
independent as possible and can scale as needed. In his work he discusses the design of
the Web in which each element (a so-called resource) can be named by a unique identifier,
the resource identifier or a Uniform Resource Identifier (URI) [46]. The following example

5https://ibm.com, Accessed: 23.01.2023
6https://db-engines.com/de/ranking, Accessed: 23.01.2023

9

https://ibm.com
https://db-engines.com/de/ranking

2. Foundations

by Richards [99] which illustrates the behavior of REST assists in understanding the
concept: When a browser requests a resource, a server sends the browser the Web page’s
current state to the browser. The representation can then be rendered by the browser
at that point. Simply put, the server renders the data after sending it along with the
requested page’s current state of the data. A state transition occurs when a user clicks
on one of the links on the displayed page because the browser has to render the next
page. Which could be thought of as another state of the application [99].

CRUD. Create, Read, Update, and Delete (CRUD) describes four basic HTTP (Hy-
pertext Transfer Protocol) operations used in a software application. Users must be able
to create data, (visually) access it in the UI, update or edit it, and delete it. The three
components that make up CRUD programs are an Application Programming Interface
(API) (or server), a database, and an UI7.

Course Concepts

As this thesis is about a course at the TU Wien, its concept, structure and terminology
are described in more detail.

European Credit Transfer and Accumulation System (ECTS). The European
Credit Transfer and Accumulation System (ECTS) is used in the European Higher
Education Area to make studies and courses more transparent. The idea is to define
a uniform representation of learning based on established learning outcomes and the
workload associated with those outcomes. One ECTS credit represents 25 hours of work
by a student8 [36].

The course is classified as a six ECTS class, which is equivalent to an effort of 150 hours
for students. During a term, the class is split into two main phases: a) Individual Phase
(IP) and b) Group Phase (GP).

Individual Phase. During the Individual Phase (IP) students work on a programming
assignment on their own for about three to four weeks, with an estimated effort of 40 hours.
The assignment is a scenario of a CRUD application, having a SQL database layer with
three tables, a REST layer for communication and a frontend. These components follow
the two-tier architecture, which involves a backend system to handle data storage and
processing, and a frontend interface for users to interact with the backend functionality.

7Source: https://www.freecodecamp.org/news/crud-operations-explained/, Accessed: 23.01.2023
8Source: https://www.bmbwf.gv.at/Themen/HS-Uni/Studium/Anerkennung/ECTS-System.html, Ac-

cessed: 23.01.2023

10

https://www.freecodecamp.org/news/crud-operations-explained/
https://www.bmbwf.gv.at/Themen/HS-Uni/Studium/Anerkennung/ECTS-System.html

2.1. Domain Concepts

1. Backend: The backend code for the assignment must be written in Java9 using
Spring Boot10 and H211, an in-memory database.

2. Frontend: The frontend, on the other hand, has to be written exclusively using
Angular12. The use of other external libraries is strictly forbidden.

To progress to the next stage, the so-called Group Phase, students must achieve a
minimum score of 40 out of 80 points on the Individual Phase.

Group Phase. During the Group Phase (GP), students form a group of typically five
to six people and work on a group assignment. This phase lasts about ten to eleven
weeks (that is, until the end of the semester) with an estimated effort of 110 hours per
student. Compared to the IP, the technology stack does not change, however, groups are
more free to switch certain elements, as, for instance, using a different database system.
During the Group Phase, each group works on their project, which is more complex and,
thus, more time-consuming than the project of the Individual Phase.

Grading. To better understand the evaluations in Chapter 8, the way the final grade
is determined, is described in more detail.

Firstly, at the very beginning of the class, students need to take an online Moodle exam
(a so-called entry test), where they can achieve a maximum of ten points.

Secondly, there are also some restrictions for the Individual Phase. Students need to
achieve at least 40 out of 80 points and additionally, at least 45 points in combination
with the entry test.

After passing the IP in the Group Phase students are graded with standard Austrian
grades ranging from 1 (Excellent) to 5 (Not sufficient). The points of the IP are converted
into Austrian grades using the standard grade distribution, as shown in Table 2.1. At the
end, the final grade is determined by weighting the grades of the IP by 0.25 and the GP
by 0.75. A more detailed description is later provided in Chapter 8.

Grade Verbal Definition
1 Excellent if x Ø 87.5%
2 Good if 75.0% Æ x < 87.5%
3 Satisfactory if 62.5% Æ x < 75.0%
4 Pass if 50.0% Æ x < 62.5%
5 Fail/Not Sufficient if 0% Æ x < 50%

Table 2.1: Standard grading scheme

9https://www.java.com/, Accessed: 23.01.2023
10https://spring.io/projects/spring-boot, Accessed: 23.01.2023
11https://www.h2database.com/, Accessed: 23.01.2023
12https://angular.io/, Accessed: 23.01.2023

11

https://www.java.com/
https://spring.io/projects/spring-boot
https://www.h2database.com/
https://angular.io/

2. Foundations

2.2 Data Visualization

In 1999 Card et al. [18] noted that data visualization is used to raise cognition of abstract
data. The task of data visualization, the practice of visual data presentation to assist
reader comprehension, has gained in popularity for decades. The visualization of data
comes in where useful information of often enormous datasets is extracted. The result
then may be shown graphically as an image, chart, or graph. This method increases
the usefulness of common data sources, such as Excel spreadsheets, by enabling users to
identify trends and patterns that are not easily apparent in a column of numbers [34]. As
Figure 2.1 illustrates, crucial insights can be gained by asking various types of questions
related to the visualization. Telea [115] defined that the term insight (of data) is used to
define two types of information:

a) Answers to problem-specific questions: Problem-specific questions regard
certain phenomena, procedures or datasets. The objective of visualization is to
efficiently and effectively answer these questions. A problem-specific question can,
for example, be about the minimum, maximum, or outliers of values or about the
distribution of values within a dataset.

b) Unknown facts concerning a problem: The idea of this type is to look at and
examine the data and, for example, compare it to similar data or datasets of the
past to gain knowledge about the dataset.

Figure 2.1: Questions that are targeted by the visualization procedure [115]

Furthermore, the field of data visualization can be divided into two areas: scientific
visualization (scivis) and information visualization (infovis) [18, 115]. While scivis is
concerned with realistic representations of the world, infovis focuses on the representation
of notions of an often abstract character [87].

In the 1980s the term of scientific visualization emerged, as a response to the growing
amount of computer generated data [18, 115]. Visualizations can lie within that field if
their primary concern is to realistically visualize some kind of phenomena. In addition, a
time component might also be part of such a visualization [50].

12

2.3. Statistics

In contrast to scivis, infovis’s aim is to enable data analysts developing internal mental
models of the information contained in datasets. This may then be utilized for character-
ization, prediction and/or decision-making [87]. The practice of visualizing data aims to
accomplish the following three primary objectives [75, 87]:

a) Exploratory Analysis: At the beginning, one has no hypothesis about the
viewed data. In that case, an exploratory analysis aims to potentially find useful
information.

b) Confirmatory Analysis: The starting point of this analysis are one or more
hypotheses. The visualization then either confirms or rejects these hypotheses.

c) Presentation: The presented facts are fixed beforehand, while the most suitable
presenting method primarily depends on the user.

In 2020 Midway [84] proposed the following ten principles for creating data visualizations:

1. Diagram First
2. Use the Right Software
3. Use an Effective Geometry and Show Data
4. Colors Always Mean Something
5. Include Uncertainty
6. Panel, when Possible (Small Multiples)
7. Data and Models Are Different Things
8. Simple Visuals, Detailed Captions
9. Consider an Infographic

10. Get an opinion

2.3 Statistics
The Model and Analyze stage of the Data Science Road Map in Figure 1.1 requires
fundamental understanding of statistical methods. In the following, the required concepts
are explained in more detail.

Population versus Sample. Härdle et al. [68] describe the difference between a
sample and a population in the following way: A population is the set of all elements that
are of relevance for statistical research. The population size, N , simply is the number
of items in the population. A population can be finite or infinite in size and can also
be artificial. A sample is any finite subset of observations gathered from the population.
The sample size, represented by n, is the number of elements in a sample [68]. Figure 2.2
illustrates the relation between these two terms.

13Source: https://www.omniconvert.com/what-is/sample-size/, Accessed: 23.01.2023

13

https://www.omniconvert.com/what-is/sample-size/

2. Foundations

Figure 2.2: Population vs. Sample13

Normal Distribution. According to Bethea [10], the normal distribution — also
known as the bell-shaped error curve — is the most frequent continuous distribution. The
underlying assumption of the normal distribution is that contained errors in experimental
observations are a product of variation and numerous independent causes, each only
creating a small disturbance in the overall distribution. Based on the Central Limit
Theorem (CLT), the distribution of a sample mean x̄ approaches the normal distribution
with variance ‡2

n and population mean µ as the sample size of n grows [10]. The probability
density function f(x) for the normal distribution is shown by Equation 2.1

f(x) = 1
‡

Ô
2fi

e≠ 1
2 (x≠µ

‡
)2 for ≠ Œ < x < Œ (2.1)

In addition, when drawn as a plot, function f(x) looks as made apparent in Figure 2.3.
The bell curve is drawn with a mean µ = 0, within ±1‡ lie 68.2% of all data points,
within ±2‡ are 95% and within ±3‡ are 99.7%. This is the so-called 68–95–99.7 rule.

68.2%

95%

99.7%

34.1% 34.1% 13.6%13.6% 2.1%2.1%

≠3 ≠2 ≠1 0 1 2 3
Standard deviations

Fr
eq

ue
nc

y

Figure 2.3: Normal Distribution14

14

2.3. Statistics

2.3.1 Measures of Location
According to Chen [28], a basic step in data exploration is to get an estimate of a typical
value of a variable. However, when measured or counted, variables can have thousands
of different values. The idea of location estimates is to get an idea of where most of the
data is placed [28].

Mean. The mean — also known as average value, simple mean or the arithmetic mean
— is the sum of all values divided by the number of values. The symbol x̄ represents the
mean of a sample from a population, whereas the mean from a population is denoted by
µ. To calculate it for a set of n-values the formula of Equation 2.2 is used:

x̄n = 1
n

nÿ
i=1

xi (2.2)

It is important to distinct between a lowercase n and uppercase N . If capitalized, it
refers to a population, whereas the lowercase version regards only a sample from a
population [28]. For the population mean µ, the following formula of Equation 2.3 is
used:

µ = 1
N

Nÿ
i=1

xi (2.3)

Median. The median — also known as 50% percentile or 2nd quantile — is the value
where half of the data is above and half of the data is below. Equation 2.4 illustrates
how that value can be found:

x̃ =

Y][x n+1
2

, if n is odd
1
2(x n

2
+ x(n

2 +1)), if n is even
(2.4)

The advantage of using the median instead of the mean is that the former is not skewed
by a small number of very big or very small values. Thus, it gives a better picture of a
typical value [17, 28]. As there is no standard way of symbolizing the median, in this
thesis the symbol are used as defined in Definition 2.2.

Definition 2.2 The symbol of x̃ refers to the sample median and µ̃ refers to the popula-
tion median.

Mode. The mode, denoted by m̄ and defined as the most often occurring value in a
sample dataset, is a third measure of location [10, 68]. If the variable is discrete, the
mode simply is the highest frequency value. However, according to Härdle et al. [68],
with continuous data recorded with appropriate precision, most observations are likely to
be distinct. Hence, the concept of the most frequent value is rendered worthless.

14Source: https://johncanning.net/wp/?p=1202, Accessed: 23.01.2023

15

https://johncanning.net/wp/?p=1202

2. Foundations

2.3.2 Measures of Position
The relative position of a value within an ordered dataset is called the measurement of
position. In this thesis, only the concept of quantiles is considered, in the following it is
explained in more detail.

Quantile. Quantiles — also known as percentiles [28] — are a proportional representa-
tions of the entire number of observations. Typically, quantiles are named according to
the number of intervals into which the range is divided [90]. Common quantiles have
particular names, such as quartiles (four groups), deciles (ten groups) and percentiles (100
groups). To calculate any kind of quantile, it is important to sort the data in ascending
order.

Interquartile range (IQR). The middle 50% range of the data is called the Interquar-
tile range (IQR). It is calculated by subtracting the third quartile (Q3) from the first
quartile (Q1) of a set of data. The formulas for calculating the positions of Q1 and Q3
within an ascending ordered dataset are presented in Equation 2.5 and 2.6. For example,
if Q1 is 5, then the fifth data point within the dataset is the value of Q1.

Q1 = n + 1
4 (2.5)

Q3 = 3(n + 1)
4 (2.6)

2.3.3 Measures of Variability
After determining the location of the data using statistics such as the mean, median and
mode, the next important aspect of the data is the spread (or variability) around these
values [10].

Variance. According to Bethea [10], the sample variance s2 is the most popular method
to report variability. It is also known as mean-squared-error [28, 68]. Equation 2.7 shows
the formula to calculate the sample variance s2 for n values, where x̄ is the previously
defined sample mean.

s2
n = 1

n ≠ 1

nÿ
i=1

(xi ≠ x̄n)2 (2.7)

As the sample variance s2 is merely an estimation of the true population variance ‡2, as
to Bethea [10], a similar formula can be used when the variance of a population should
be derived. Similar to the mean, different symbols are used, as shown in Equation 2.8,
where µ is the population mean.

‡2 = 1
N

nÿ
i=1

(xi ≠ µ)2 (2.8)

16

2.3. Statistics

Standard deviation. A (sample’s) standard deviation is defined as the positive square
root of the variance [10]. For the sample variance the formula of Equation 2.9 is used,
for the population variance Equation 2.10. Since it is on the same scale as the original
data, the standard deviation is considerably easier to read than the variance [28].

s =
Ô

s2 (2.9)

‡ =
Ô

‡2 (2.10)

2.3.4 Measures of Shape
Characterizing the location and variability of a data collection is a fundamental task
in many statistical analyses. Skewness and kurtosis are two basic characteristics of the
data [112].

Skewness. Skewness is a measure of symmetry, or more precisely, the absence thereof.
A symmetric distribution is when both sides of the mean are mirror images [90, 112].
Three kinds of skewness can apply to a distribution: Right (or positive), left (or negative),
or zero skewness. Figure 2.4 illustrates a normal distribution when skewed in any of the
three ways. The right side of a right-skewed distribution is longer than its left side, and
vice versa for a left-skewed distribution. Equation 2.11 shows the formula to calculate
the skewness of a given sample.

g1 = 1
n

nÿ
i=1

3
xi ≠ x̄

s

43
(2.11)

A simpler calculation can be used, according to Gurker [59], as in Equation 2.12.

g
(2)
1 = Q3 ≠ 2Q2 + Q1

Q3 ≠ Q1
(2.12)

The following listing explains how to interpret the resulting value of g1.

1. g1 > 0: right-skewed (positive skewness)

2. g1 ¥ 0: symmetric

3. g1 < 0: left-skewed (negative skewness)

However, Gurker [59] mentions that there exist more formulas and measurements to
determine the skewness. Equation 2.11 is also more difficult to interpret when used with
a small sample size compared to Equation 2.12.

15Source: https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-scien
ce-skewness-\and-kurtosis-388fef94eeaa, Accessed: 23.01.2023

17

https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-%5Cand-kurtosis-388fef94eeaa
https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-%5Cand-kurtosis-388fef94eeaa

2. Foundations

Figure 2.4: Example of Skewness15

Kurtosis. Kurtosis determines whether the data is heavy-tailed or light-tailed in
comparison to a normal distribution. That is, datasets with a high kurtosis have a large
fraction of outliers, with a low kurtosis lack outliers [112]. Nisbet et al. [90] describe
kurtosis as the degree to which the data for a variable is grouped closely around the
mean. Equation 2.13 shows the formula to calculate the skewness of a given sample.

g2 = 1
n

nÿ
i=1

3
xi ≠ x̄

s

44
(2.13)

The resulting coefficient g2 can then be categorized as follows:

1. g2 < 3: Platykurtic (flat arched)

2. g2 ¥ 3: Mesokurtic (medium arched)

3. g2 > 3: Leptokurtic (steep peaked)

Figure 2.5 illustrates how kurtosis influences the trace of a bell curve.

Figure 2.5: Example of Kurtosis15

18

CHAPTER 3
State of the Art

This chapter presents the academic state of research in the areas of Mining Software
Repositories (MSR), Data Visualization and Software Engineering Education. After
outlining the current state of research and discussing how the thesis is distinguished from
existing research, this chapter concludes with a description of currently available and
appropriate tools and their capabilities for visualizing datasets.

3.1 Current State of Research
The present thesis’ topic essentially overlaps with the following three research fields of
software engineering: (a) Mining Software Repositories (MSR) (b) Data Visualization
(c) Software Engineering Education. In the following, the current research state in each
of these fields is outlined.

3.1.1 Mining Software Repositories
Data mining, Mining Software Repositories (MSR) and knowledge discovery have already
been studied extensively. Computing power, however, has advanced for the last 20
years and so rose the interest in these fields for mining large datasets [65]. In 1996
Fayyad et al. [42] noted the difficulty of finding patterns in genuine, innovative or at
least potentially helpful data. More precisely, according to Spadini et al. [109], extracting
information from Git repositories is a non-trivial task. As demonstrated in previous
work, this requires the analysis of huge amounts of data originating from many sources,
including source code, version control systems, and issue tracking systems [25, 108, 126].
Adapting these tools can be a genuine and valuable aid to researchers throughout their
development operations [89].

MSR is a new field which focuses on gaining basic and useful information about charac-
teristics from different, already existing repositories [76]. The extraction of data from

19

3. State of the Art

different contributors to a software project which aims to detect unknown facts gained
popularity in recent years [62, 125]. More so since the application of MSR techniques
include the prediction of bugs, as already studied by Vandecruys et al. [118] in 2008. In
this area, Zaidman et al. [126], for example, analyzed the co-evolution of production and
test code side by side. Hassan and Xie [64], on the other hand, proposed the concept of
Software Intelligence (SI). For software professionals, it provides relevant information to
help them make decisions every day [64].

Kalliamvakou et al. [72] mentioned, source code repositories are today typically hosted on
platforms such as GitHub and GitLab. These platforms offer numerous other features and
integrations and, thus, a great deal of additional information may be extracted through
the process of data mining. However, there are a number of new possible problems
associated with examining this newly accessible data [72]. For example, Bachmann
et al. [5] found that a set of bugs, tracked in a bug tracking system, can easily be biased
since not all kind of bugs might be collected. The aforementioned biases may undermine
the validity and generalizability of research that use source code repository datasets [72].

According to Nguyen et al. [89], although there exist free tools to mine software repositories,
as for example SonarCloud16, BlackDuck17 or CodeSense18, these platforms delete analyses
in short periods in order to save disk space. For this reason, Nguyen et al. proposed an
analytics and visualization tool, based on Apache Superset, called PANDORA19. This
tool is capable of automatically and continually mining data from different tools and
platforms and of visualizing its analysis results afterwards [89].

3.1.2 Data Visualization
Visualization is not only important for providing information, but also helps analysts
understand their data in greater detail [57].

The study of Kuipers and Visser [77] revealed that software portfolios can contain a great
number of projects with millions of lines of source code. The large number of source
code lines makes manual collection and analysis of portfolio data impractical due to the
large amount of time required. In order to collect sufficient portfolio metrics for further
analysis and visualization, data mining of software portfolios requires the creation of a
highly automated procedure.

As also identified by Kuipers and Visser [77], data visualization is an important part
of software portfolio management and, thus, has gotten some attention in research.
Grant [57] and Dumbach et al. [37] provide a broad overview of several data visualization
strategies. The identified fundamental concept of visually exploring data is to offer
insights into data, to draw conclusions and to allow direct interaction with data [74]. The

16https://www.sonarsource.com/products/sonarcloud/, Accessed: 23.01.2023
17https://www.synopsys.com/software-integrity/security-testing/software-composition-analy

sis.html, Accessed: 23.01.2023
18https://codescene.com/, Accessed: 23.01.2023
19http://sqa.rd.tuni.fi/superset/dashboard/1/, Accessed: 23.01.2023

20

https://www.sonarsource.com/products/sonarcloud/
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://codescene.com/
http://sqa.rd.tuni.fi/superset/dashboard/1/

3.1. Current State of Research

idea is that the flexibility, creativity, and general knowledge combined with the storage
capacity of computers are more likely to lead to success when people are involved in the
process of data exploration. According to Keim [74], an advantage of visually exploring
data are better results, in particular where algorithms fail. This process can also be
understood as hypothesis development, enabling the user to acquire insights into the data
and generate new ideas. The verification afterwards can be done applying automated
approaches from statistics or machine learning.

3.1.3 Software Engineering Education

In an educational context, information mining based on student’s Git repositories was
examined by Buffardi [16]. The setting used was similar to the class examined in this
thesis, as students used Git and User Stories for their group projects. Based on the group
project’s findings Buffardi concludes that a more objective contribution of evidence can
be derived from software artifacts. However, it is also explicitly stated that this allows
students to manipulate metrics. Hence, traditional assessment may be supported by such
information.

Parizi et al. [93] called the use of Git in software development a “gold mine of resources”
not yet used to its full potential. Particularly with regard to analyses and findings for
educational purposes. Chen et al. [27] and Parizi et al. [93] pointed out, teamwork is one
of the most crucial parts of software engineering. However, collaboration is still some sort
of black-box in the software engineering education field. Similarly to Buffardi, Parizi et
al. [93] pointed out that the most difficult task is to identify and demarcate the individual
work to a single member within a team. Besides that, Parizi et al. also emphasized the
aspects of manipulation and bias when using tools. In particular, due to the lack of
suitable performance tools which can freely be used [51, 61, 93, 106]. However, since only
quantitative metrics are considered in [93], the proposed “performance evaluation metrics”
are not capable of capturing the difficulty of the task solved by a team member. Hence, to
accurately assess student’s performance, it is essential to treat the tool-provided numbers
as an extended information base [32, 93]. Otherwise, in 2006 Patton and McGill [94]
added educational metrics to student portfolios and software quality metrics. They
added that such portfolios provide a quantitative rather than qualitative comparative
assessment of submission based on these metrics.

Teamwork skills in software engineering, often for international and interdisciplinary
teams, call for more and new requirements. Specifically for the development of software
applications as the field of software engineering continues to expand [27, 54, 107]. Chal-
lenges, as noted byChen et al. [27], are manifold. On the on hand, for example, students
need to learn how to collaborate as a team while being in different roles. On the other
hand, they need to learn how to collaborate as a team in order to address challenges in
software development. The development of skills in software engineering education is
crucial, as the industrial sector also demands the training of specialists in basic and vital
professional skills [14, 27, 102].

21

3. State of the Art

For a four-year period Wills [124] studied a course on how to introduce a group based
project activity in an undergraduate computer science setting at the Worcester Poly-
technic Institute (Worcester, Massachusetts, United States). In Wills’s setting, group
programming projects were introduced since he argues that the difficulty of single student
projects does not cover the needs in a real software engineering project. He found that,
in a large introductory class, it is beneficial for everyone involved — students as well
as lecturers and others — to conduct group programming exercises as compared to
individual ones.

Throughout their education, computer science students generally engage in several
collaborative projects. The group assignment design is motivated by a number of factors.
These include that forming groups helps courses scale to the increasing number of
students enrolled in computer science. While, at the same time, students are provided the
opportunity to work on software projects that are larger in scope than individual course
projects [2]. In terms of group performance, learning, cooperation patterns, and member
responsibility, the structure of group projects has a significant impact on the students’
success [70]. The influence of grading on students’ group work experience was shown in
the past [30]. In particular, task-grade inequality has a negative impact on student’s
attitudes toward group work [24]. Conversely, it has been shown that communication
and collaborative abilities are areas where computer science graduates commonly fail to
meet corporate standards and expectations [2, 33, 96].

The work of Le et al. [78] targets the problem that individual assessment of student
achievement might be difficult, specifically if not all members are contributing to the
project. Moreover, in an academic setting a supervisor may be responsible for a large
number of software engineering teams and also has to monitor the development and
performance of each individual student throughout the semester. Thus, Le et al. suggest
to provide a “weekly formative feedback” for both, teams as well as supervisors. The idea
of this generated feedback to assist in evaluating and supporting the team throughout
the entire term. Based on data mining techniques, the feedback is created by analyzing
the text content of the student’s work [78].

Pérez and Rubio [95] examined a software engineering class with a setup similar to the one
studied in this thesis. Each group is formed randomly by a teacher and consists of nine
students. These groups then work on a software development project made up of different
phases. The result of each phase in turn serves as input for the next phase. During one
of these phases groups either work in a conventional way or in a Project Based Learning
(PBL) way. The strategy of PBL is to actively incorporate students’ experiences into
the class to improve their academic performance as well as their educational skills and
learning experiences. Their study showed that groups which followed the PBL approach
improved their academic performance and, in addition, the experience of learning and
improving skills was positively evaluated.

22

3.2. Available Tools

3.2 Available Tools

There already exist numerous commercial and non-commercial tools which can be used to
analyze the quality of any codebase. In the following, the first three tools (MetricMiner,
gitinspector and TEAMSCOPE) are more academic and thus, appropriate in a university
context, whereas Section 3.2.2 only covers tools which specifically target companies. The
latter tools particularly target the visualization needs in an economic environment for
software and Business Intelligence (BI).

3.2.1 Education-related Tools

Education-related tools are specifically designed for the needs of software engineering
education classes. The following tools aim to support the lecturers in inspecting and
grading students. However, Bogarín et al. [13] underlined that, generally speaking, there
do not exist many tools which are capable of supporting specialists in an educational con-
text. In software engineering courses, in particular, is not a single specialized framework
which can be used without special knowledge [37].

MetricMiner

MetricMiner20[108], developed by Sokol et al., is a Java framework for mining software
repositories which includes functionality for automated cloning and metric extraction from
Git and SVN repositories. MetricMiner also presents data in a dashboard and facilitates
doing statistical analysis by the use of R scripts that are automatically developed and
performed [89, 108].

Gitinspector

Gitinspector21 is a tool for inspecting Git repositories which supports lecturers in grading
their students based on Git statistics. Along with a timeline showing the effort and activity
of each author, it visualizes the data of each contributor. Gitinspector was initially
created at Chalmers University of Technology and Gothenburg University to gather
data for student project statistics. The list of source file extensions can be customized,
however, by default only source files are included in the statistics. Multiple languages
are available, the results can be viewed as HTML (Hypertext Markup Language), JSON,
XML (Extensible Markup Language), or plain text. Figure 3.1 shows a screenshot of the
HTML output of gitinspector.

20https://github.com/Woutrrr/metricminer2, Accessed: 23.01.2023
21https://github.com/ejwa/gitinspector, Accessed: 23.01.2023
22Source: https://github.com/ejwa/gitinspector, Accessed: 23.01.2023

23

https://github.com/Woutrrr/metricminer2
https://github.com/ejwa/gitinspector
https://github.com/ejwa/gitinspector

3. State of the Art

Figure 3.1: gitinspector Screenshot22

TEAMSCOPE

TEAMSCOPE is a prototype developed by Ju and Fox [71] helping lecturers in a project-
based learning course. The system is able to monitor how successfully the team performs
certain procedures and results. Using the platform specific API of a team collaboration
technology, such as GitHub, teamwork telemetry can be collected from an arbitrary
number of team-based student projects. The developed prototype then computes and
visually provides numerous measures of interest based on collaborative telemetry.

3.2.2 Data Visualization Tools
This section focuses only on tools which are designed to be used for data visualization
or BI use cases in the industry. The capability, handling, and cost range of these tools
vary widely depending on their specific use case. In the following, four different tools —
which were carefully examined for suitability — are described in more detail: Apache
Superset, OpenSearch, Microsoft Power BI and Plotly.

24

3.2. Available Tools

Figure 3.2: Apache Superset Slack example dashboard

Apache Superset

Apache Superset23 is a powerful, code-free business intelligence tool for the visualization
of datasets and the creation of interactive dashboards. Founded by Maxime Beauchemin
at Airbnb24 it is now hosted by the Apache Software Foundation’s GitHub25. The tool
is written using Flask26, a Python27-based micro web framework. Figure 3.2 shows the
example dashboard, which is part of the example data provided by its Docker setup28.

23https://superset.apache.org/, Accessed: 23.01.2023
24https://airbnb.io/projects/superset/, Accessed: 23.01.2023
25https://github.com/apache/superset, Accessed: 23.01.2023
26https://flask.palletsprojects.com/, Accessed: 23.01.2023
27https://www.python.org/, Accessed: 23.01.2023
28https://superset.apache.org/docs/installation/installing-superset-using-docker-compose,

Accessed: 23.01.2023

25

https://superset.apache.org/
https://airbnb.io/projects/superset/
https://github.com/apache/superset
https://flask.palletsprojects.com/
https://www.python.org/
https://superset.apache.org/docs/installation/installing-superset-using-docker-compose

3. State of the Art

Interactive graphs (as in Figure 3.2) are made in superset with NVD329 (a JavaScript
library built on D3.js30), deck.gl31 (for geospatial charts) and Apache ECharts32. The
latter one will be the default implementation for future chart visualizations33.

A dashboard within Apache Superset is made of several graphs, called slices, which can
be moved, resized and rendered maximized (full-screen). Moreover, data displayed by one
graph can be downloaded as an image (jpg-format) or exported as a Comma-separated
values (CSV) file. The dashboard as a whole can also be exported as an image [83].

Superset consists of two main interfaces: A SQL-Integrated Development Environment
(IDE) called SQL Lab and the main interface for preparing and exploring data.

Semantic Layer. An essential concept of Apache Superset is the semantic layer which
is an abstraction to turn the underlying data to a simplified representation. It is often
housed in some form of SQL-speaking database or a data engine. A thin semantic layer’s
primary objective is to enable data modification for the specific purpose of visualization.
Apache Superset provides two kinds of datasets based on this semantic layer: physical
and virtual datasets. A physical dataset represents a table or View in a database whose
information can automatically be retrieved since a physical dataset reflects a true, physical
table (such as schema and column types). A virtual dataset, on the other hand, is a
conversion from any free-form SQL query against an existing database. The result set
is called a Virtual Dataset, behaves exactly like a physical dataset and can be used in
Apache Superset to create charts. The concept of a semantic layer and its virtual dataset
will later be relevant in Section 6.3.

OpenSearch

OpenSearch34 is a fork of Elasticsearch 7.10.2 and Kibana 7.10.2, licensed under Apache
2.0. Consisting of a search engine daemon, OpenSearch — similar to the well-known ELK
Stack — allows users to create visualizations based on ingested data. The OpenSearch
Dashboard provides a UI to search, aggregate, view and analyze data.

The OpenSearch project can be divided into two main components: The OpenSearch and
the OpenSearch Dashboards.

29https://nvd3.org/, Accessed: 23.01.2023
30https://d3js.org/, Accessed: 23.01.2023
31https://deck.gl, Accessed: 23.01.2023
32https://echarts.apache.org, Accessed: 23.01.2023
33https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces71,

Accessed: 23.01.2023
34https://opensearch.org/, Accessed: 23.01.2023

26

https://nvd3.org/
https://d3js.org/
https://deck.gl
https://echarts.apache.org
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces71
https://opensearch.org/

3.2. Available Tools

OpenSearch. Based on Apache Lucene35, the OpenSearch component is a distributed
search and analytics engine. It provides full-text searches on added data with features
such as searching by field, by multiple indices, boost fields, ranked results (by score) and
result aggregation.

Data must be indexed before it can be searched, the resulting structure is appropriately
called an index. A JavaScript Object Notation (JSON) document is the fundamental
data unit in OpenSearch and uses a unique ID to identify each document within an index.

OpenSearch Dashboards. The second main part is the OpenSearch Dashboards
component which is the default visualization tool for all provided data. The dashboard
also serves as a general interface for interacting with the OpenSearch service. Compared
to Apache Superset, the default available charts are more limited: 16 visualization types
are available in OpenSearch whereas in Apache Superset 60 are available. Figure 3.3
shows an example dashboard built by aiven.io.

Figure 3.3: OpenSearch example dashboard36

Microsoft Power BI

Power BI emerged from the Microsoft Excel add-ins Power Pivot, Power Query, and
Power View and may be used in combination with or without Excel and various other
datasources [45]. This tool targets businesses transforming their raw data into meaningful

35https://lucene.apache.org/, Accessed: 23.01.2023
36Source: https://developer.aiven.io/docs/products/opensearch/dashboards/, Ac-

cessed: 23.01.2023

27

https://lucene.apache.org/
https://developer.aiven.io/docs/products/opensearch/dashboards/

3. State of the Art

information that provides deeper insights and supports decision-making. The platform
connects to a number of Microsoft native and third-party sources. This allows enterprises
to quickly display and interpret their data through interactive, configurable dashboards
and reports37. Figure 3.4 demonstrates an example of a dashboard created with Microsoft
Power BI.

Figure 3.4: Microsoft Power BI example dashboard38

Plotly

Plotly — also known as plot.ly — was created using the Python and the Django framework.
Its capabilities include data analysis and visualization. It is free for users, but only with
restricted functionality; to access all functions, a professional membership is required.
As can be derived from Figure 3.5, it generates charts and dashboards online but may
also be used offline within Jupyter notebook39 and pandas40. There are several types of
charts accessible, such as statistical charts, scientific charts, 3D charts, multiple axes,
dashboards and so on. Plotly on premises is a service that, like plot.ly cloud, allows
hosting data on one’s own private cloud behind your own firewall to ensure full protection
of personal information. APIs for Python, R, MATLAB, and Julia are accessible.

37Source: https://powerbi.microsoft.com/en-us/why-power-bi/, Accessed: 23.01.2023
38Source: https://docs.microsoft.com/en-us/power-bi/consumer/mobile/mobile-windows-10-app

-presentation-mode, Accessed: 23.01.2023
39https://jupyter.org/, Accessed: 23.01.2023
40https://pandas.pydata.org/, Accessed: 23.01.2023
41Source: https://dash.gallery/Portal/, Accessed: 23.01.2023

28

https://powerbi.microsoft.com/en-us/why-power-bi/
https://docs.microsoft.com/en-us/power-bi/consumer/mobile/mobile-windows-10-app-presentation-mode
https://docs.microsoft.com/en-us/power-bi/consumer/mobile/mobile-windows-10-app-presentation-mode
https://jupyter.org/
https://pandas.pydata.org/
https://dash.gallery/Portal/

3.3. Distinction from Current Research

Figure 3.5: Plotly example dashboard41

3.3 Distinction from Current Research
Based on the literature review conducted within the scope of this thesis, there is no
directly comparable solution to the proposed idea in a software engineering education
context. The primary focus of typical tools for investigating student projects is more on
how to generate a quality overview of a vast amount of student projects and on how to,
consequently, grade them [69, 79].

There are solutions such as Codeboard.io42 which is designed as an online exercise grading
platform to be used in classrooms for the teaching of programming. Codeboard.io serves
as an exercise repository and provides an online IDE interface that allows students to
address the assignment directly from the web browser [23]. The instructor can upload
a problem and test cases to evaluate the student’s solution. This also implies that
the instructor has to specify a concrete expected result, as students will be assessed
automatically on the basis of (unit) tests. However, as the data source of this thesis is
not a programming class, students have already acquired at least basic programming
skills in preceding lectures. The proposed prototype in this thesis focuses on hard facts of
student projects. Whereas, as described in Section 1.1, the scope of the examined class
is also to teach soft skills necessary in the software engineering industry. As Devedzic
et al. [35] stated, the problem about measuring soft skills is the difficulty of measuring
and defining a certain metric Thus, the focus of the prototype will exclusively be the
support of lecturers during their grading process with an analysis tool. There are also
some critical studies about grading students automatically, as Baniassad et al. [7] show

42https://codeboard.io/, Accessed: 23.01.2023

29

https://codeboard.io/

3. State of the Art

in STOP THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder
Overreliance. They refer to the problem that, when students are aware of the autograding
mechanism and its expected outcome, their reliance on the tool’s feedback increases and
their personal, careful reflection decreases.

In the context of a software portfolio there already exists a research-based solution which
visualizes numerous software projects side by side [53]. Another solution widely used in
the industry is SonarQube43 which is highly configurable and extensible but does not
fulfil the low barrier-to-entry requirement since it is an additional service which needs to
be integrated and configured.

A recently published proof of concept by Weiß in his master thesis A Lightweight
and Integrated Software Repository Mining and Visualisation Approach for Software
Engineering Education [122] tries to extract information based on Git in a software
engineering education context. However, Weiß’s focus is on which information and how
it can be extracted, and less on how that information can also be combined with existing
project management data of GitLab and its visualization.

43https://www.sonarqube.org/, Accessed: 23.01.2023

30

https://www.sonarqube.org/

CHAPTER 4
Methodology

The methodological focus of this thesis is on the design and implementation of a prototype
for a visualization system as well as on the consultation of experts about their information
needs and a final evaluation. The prototype is divided into two parts: (a) The creation
of a visualization concept for several student groups’ software projects and (b) the
implementation of these visualizations and its corresponding architecture for mining
all necessary information. In a first step, the visualization conception was created. In
a second step, the implementation was added, which is also reflected in the thesis’s
structure. This chapter describes all extra methodological processes and activities which
accompanied the prototype’s visualization, implementation and assessment.

4.1 Research Questions
Referring to the research questions, as defined in Section 1.3, the following steps are
performed to answer the defined research questions. These steps follow the recommended
Design Science approach by Wieringa [123].

RQ1. Prior to developing a tailored program to extract the available repository informa-
tion, an exploratory analysis of archived the data must be done. To identify the needs of
experts and to gain a better understanding expert interviews are conducted (Section 5.2
and 5.3). The interviews are followed by the Treatment Design and Implementation
(Chapter 6 and 7) to store the data in a persistent datastore.

RQ2. To answer the second research question, a conception (mock-up) for visualizing
the data about the group projects is created (Section 5.1). After an initial evaluation of
existing tools, the proposed visualization concepts are implemented as far as possible in
the context of this thesis (Chapter 7). This prototype will be evaluated by qualitative
expert interviews (Section 8.4) to verify the compatibility of the visualization with the

31

4. Methodology

expert’s needs. In addition, all mock-ups which the tool is not capable of showing are
validated in terms of usability.

RQ3. The prototype intelligence system will be used to derive knowledge about the
groups and terms applying visual and statistical analytics (Section 8.3).

4.2 Literature Review
Based on the research questions, a systematic literature research was conducted, with
the following two objectives in mind:

• To find out whether there are any studies which already focus on data-driven
software engineering education

• To identify papers which serve as a solid basis for this study

The identified fields of research of the present thesis are: Software Engineering Education,
Information Needs, Data Visualization and Mining Software Repositories. For a broad
overview, the theses of Weiß [122] and Genfer et al. [53] served as a starting point
for literature research. The search engines Google Scholar44, IEEE Xplore45 and the
ACM Digital Library46 were used most often for keyword searches. Siddaway’s [103]
recommendations for finding the most representative results, synonyms were used for
individual terms. These search services have sophisticated capabilities, allowing a refined
research, such as for those publications which have several keywords in their abstract.

The Binocular publication of Grabner et al. [56] already contained useful references to
start with MSR. In addition, simple GitHub search functionality was used to identify
possible newer tools for MSR.

4.3 Technology Review
Based on the selected tools in Section 3.2.2, an analysis was conducted to find out how
capable they are for the prototype’s use case. The functionality was evaluated by simple,
small use cases to answer the following questions:

1. Is it possible to use the technology for free?

2. Is the use of the tool restricted by any license?

3. Is the tool sill actively under development?

4. Can the tool be extended/customized? Is source code documentation available?

44https://scholar.google.at/, Accessed: 23.01.2023
45https://ieeexplore.ieee.org/Xplore/home.jsp, Accessed: 23.01.2023
46https://dl.acm.org/, Accessed: 23.01.2023

32

https://scholar.google.at/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/

4.4. Development Process

Due to its small overhead, when compared to the other tools, to quickly create dashboards,
the final decision was to use Apache Superset. In addition, the choice was influenced by
its Open Source Community and its flexibility in implementation and extensibility.

4.4 Development Process

In the following section the development process and the tools applied the implementation
of the Python crawler are described in more detail.

4.4.1 Project Organization

The Python crawler was implemented applying an iterative workflow which was organized
using GitLab Issues and its Board – as made apparent in Figure 4.1. All tasks were
organized using these three stages, starting with the one most to the left. By default, each
new task was considered to be an Open issue. If a task was under active development, it
was placed in the In Progress column. When a task was completed, it was moved to the
Closed column.

Figure 4.1: GitLab’s development board

33

4. Methodology

4.4.2 Development Tools
The tools used during the development process are briefly described in the following.

Interface Design Tool. For creating the initial drafts of visualizations (as shown in
Section 5.1) and generating ideas, an Interface Design Tool named Figma47 was used.
Figma can be used to create high fidelity prototypes including interactions. The idea of
using a high fidelity prototype was, due to the limited time of this thesis, to create a
working demo within a relatively short time, as this kind of prototyping is highly suitable
for exploration and testing [101].

Source Code Versioning System. Git was used as a central place for all sources and
documentation during the development process. As this study was a one-man-project,
most Git strategies, as for example branching, only sometimes were useful since there
was no collaborative work to be done.

Online Repository Hoster. As a repository hoster for Git the private infrastruc-
ture of GitLab48 was used. Compared to the public GitLab instance, this allowed for
easier handling of all critical student data and information, especially in terms of data
documentation in the GitLab Wiki.

Integrated Development Environment. For all coding activities of this thesis,
Visual Studio Code49 was used as an IDE.

4.4.3 Implementation Process
Prior to starting the implementation process, the available data sources had to be
explored in terms of knowledge discovery and finding connections between different kinds
of datasources [91]. To describe the system architecture, the following diagrams were
used:

• Domain Model: Based on the explored data, an exploratory domain model [41]
was created to identify connections and relations of the data.

• Database Diagram: The identified elements of the domain model were then
transformed into a database diagram. This prototype uses, as required by Apache
Superset, a relational database. The diagrams are later presented in Figure 6.2 and
6.3 in Section 6.2.2.

Implemented features were verified only by manual acceptance tests since the implemen-
tation of automated tests would have been too complex considering the time constraints

47https://www.figma.com/, Accessed: 23.01.2023
48https://reset.inso.tuwien.ac.at/repo/, Accessed: 23.01.2023
49https://code.visualstudio.com, Accessed: 23.01.2023

34

https://www.figma.com/
https://reset.inso.tuwien.ac.at/repo/
https://code.visualstudio.com

4.5. Proof of Concept

and the scope of this thesis. As later shown in Section 8.2, the expected outcomes were
familiar, which is why the program output had to be compared to these outcomes only.

4.4.4 Data Visualization Process
As Apache Superset allows direct database access, the Materialized Views (MVs) and
Views of the PostgreSQL database were visualized using its own capabilities. The ten
principles of creating data visualizations (recall from Section 2.2) were followed during
the visualization process wherever and whenever appropriate and suitable.

4.5 Proof of Concept
Based on the initial investigation of the available data, the visualization concepts were
created, and the Python transformer was developed to build the data storage foundation
for the later Apache Superset prototype. The proof of concept was realized using a local
Docker infrastructure having the potential to be easily transformed into a Kubernetes-
based infrastructure.

4.6 Evaluation
The evaluation was done in two separated expert interview rounds which is a well estab-
lished method in research [120]. The first evaluation solely considered the visualization
concept, the second evaluation only beheld the prototype realization. The participating
experts were the core staff members of 188.909 Software Engineering and Projectman-
agement50 who are expected to work with the final version of this prototype in the
future.

Expert Interviews
An online tool51 was used to design the survey, allowing an iterative workflow compared
to an analogue survey. The questionnaire contains questions based on a Likert-scale [40]
as well as open questions, as suggested by A. and Pfleeger in “Personal Opinion Sur-
veys” [1]. Although open-ended questions might cause misinterpretation [1], possible
misunderstandings could be clarified during the interview. The manual evaluation effort
remained reasonable compared to closed-ended questions due to the modest number of
survey participants.

Expert Evaluation
Based on the idea of Technical Action Research, the proposed prototype was finally
evaluated by experts in a separate session [123]. The main aim of this survey was a)

50https://tiss.tuwien.ac.at/course/educationDetails.xhtml?dswid=6316&dsrid=388&courseNr=18
8909&semester=2022S&locale=en, Accessed: 23.01.2023

51https://www.google.com/intl/de_at/forms/about/, Accessed: 23.01.2023

35

https://tiss.tuwien.ac.at/course/educationDetails.xhtml?dswid=6316&dsrid=388&courseNr=188909&semester=2022S&locale=en
https://tiss.tuwien.ac.at/course/educationDetails.xhtml?dswid=6316&dsrid=388&courseNr=188909&semester=2022S&locale=en
https://www.google.com/intl/de_at/forms/about/

4. Methodology

to answer the research questions of Section 1.3 and b) to evaluate the usability of the
tool. For the evaluation itself, certain scenarios were presented to the experts, based
on the hypotheses of the first survey. Although the prototype’s usability was not the
primary objective of the survey — and cannot be modified easily — a system usability
scale questionnaire was used to evaluate the level of the experts’ satisfaction. [15].

36

CHAPTER 5
Information Needs in Software

Engineering Education

In this section the insights gained from the expert interviews, which were used to rate
and rank the proposed concepts, are provided. Firstly, the created concepts are explained
(Section 5.1), followed by the study design (Section 5.2) and, finally, the results of the
conducted interviews are presented (Section 5.3).

5.1 Concepts
Prior to creating the survey of the upcoming Section 5.2, the created mock-ups are
shown and discussed in more detail. The concepts for visualizing the available data were
designed using the Figma tool. The foundation of the design is an open source design
system named Carbon Design System52 developed by IBM53.

5.1.1 Single Views
This section introduces the single views which are later embedded into the full-screen
views in Section 5.1.2.

Group Overview Card

Figure 5.1 presents a summary of a single group’s data, divided into two main rows.

The first row consists of an overview of the time booking history on the left-hand side
and the distribution of the commits per student on the right-hand side. The former is

52https://carbondesignsystem.com/, Accessed: 23.01.2023
53https://www.ibm.com, Accessed: 23.01.2023

37

https://carbondesignsystem.com/
https://www.ibm.com

5. Information Needs in Software Engineering Education

Figure 5.1: Mock-up: Group status overview card

the sum of the hours booked by all the students, whereas the latter is the cumulated
number of commits per students represented as a pie chart.

The second row is again divided into two columns. The left one shows stats about the
project progress and artifact quality.

The first row displays the total time spent on the project in textual form as well as
a progress bar underneath. The maximum number of hours which should be spent
(represented as 550h in the respective case) reflects the maximum of 110 hours per
student (for six students it would be 660). In addition, their rank, compared to all
other groups regarding their time spent on the project, is textually displayed as
#1 of 15. In this example, the group is at the first position of 15 groups.

The second row shows tiles with the amount of time spent on the project per
student: the broader the tile, the more time was spent. The color of the tile
represents the student, as in the first row for the commit distribution.

The third row displays the total number of tests, including the number of successful
(green) and failed (red) tests. The ratio is also demonstrated in percentages above.

The last row illustrates the current code coverage of the existing tests; the wider
the green bar at the bottom, the more code is covered by tests.

38

5.1. Concepts

The right-hand side of the second row contains a more complex visualization of commits
and line changes, inspired by GitLens54. The x-axis represents a month — for example
09/21 meaning September 2021 — the left y-axis shows the names of each student in
the group. The right y-axis is a linear scale representing the sum of changed lines. For
each month, the number of lines changed are displayed as vertical bars. The green bar
represents insertions, the red bar deletions. For each student, for each month, a green
and/or red circle is shown, which means that the bigger the circle, the more changes
were performed by this particular student.

Code Contribution Distribution

Figure 5.2 visualizes the code contribution for each group using a box plot. The vertical
axis displays the groups and the y-axis the normalized values of each student’s code
contribution. The y-axis value for each student is simply normalized by considering
the percental ownership of the codebase. The smaller the gap between minimum and
maximum value, the better it is from a course’s point of view since every student should
contribute about the same amount to the project.

Figure 5.2: Mock-up: Code contribution distribution per group normalized in percent

Commit Distribution

Figure 5.3 shows the distribution of commit timestamps over 24 hours for all groups. The
x-axis corresponds to the daytime and the y-axis to the commit frequency per daytime.

Time Tracking History

Figure 5.4 demonstrates the history of time tracked for each group per week. This
perspective allows experts to identify peaks and bottoms over the time of several weeks.
Ideally, each student contributes ten hours per week to the project.

54https://gitlens.amod.io/, Accessed: 23.01.2023

39

https://gitlens.amod.io/

5. Information Needs in Software Engineering Education

Figure 5.3: Mock-up: Commit distribution per hour (24-hour format)

Figure 5.4: Mock-up: Time tracking history per group over time (weekly basis)

Time Distribution

Figure 5.5 shows a radar chart, each data point representing a group and the sum of
its booked hours. The scale ranges from zero to 100 percent and normalizes the time
spent on the project to the expected time so that each group can be represented the
same regardless of its size.

Quantile Coherence

Figure 5.6a categorizes groups, as displayed on the left-hand side, into 25, 50, 75 and 90%
quantiles regarding their worked hours, Lines of Code (LoC) and coverage. This allows
tracing groups over different categories. For example, groups with low effort producing a
high amount of LoC, or groups with a low number of LoC but a high coverage can be
identified.

Ranking of Spent Hours

Several concepts were created for ranking groups based on their time spent on the project.

Figure 5.7b shows an extended variant of Figure 5.7a with a box plot on top, which
allows an easier grouping.

40

5.1. Concepts

Figure 5.5: Mock-up: Time distribution radar chart for all groups

Figure 5.7c is another iteration of how to visualize and rank groups based on their working
hours.

Figure 5.7d is a modification of Figure 5.7c. In the former, the bars are arranged in
descending order according to the standard deviation of the time spent by the students
within a group. Compared to Figure 5.7c, in Figure 5.7d the standard deviation is also
displayed in text form in the diagram.

Ranking of Tests and Coverage

Figure 5.8 shows different variations of how to rank groups based on their number of
total number of tests, successful tests, failed tests and coverage. Figure 5.9 is a modified
variation of Figure 5.8 by an adding an x-axis at the top which displays the quantiles of
the number of tests. To illustrate, if, for example, a group is situated on the left-hand
side of the 25% mark, at least 75% wrote more tests than these groups.

41

5. Information Needs in Software Engineering Education

(a) Mock-up: Hours-LoC-Coverage quantiles for each group

(b) Mock-up: Variation of Figure 5.6a

Figure 5.6: Mock-up: Flow ranking

42

5.1. Concepts

(a) Mock-up: Simple ranking of groups based
on their time spent on the project

(b) Mock-up: Modification of Figure 5.7a, ex-
tending with a box plot

(c) Mock-up: Groups ranked descending by
working time

(d) Mock-up: Variation of Figure 5.7c, ranked
by standard deviation

Figure 5.7: Mock-up: Variations of ranking groups by their time spent on the project

43

5. Information Needs in Software Engineering Education

Figure 5.8: Mock-up: Variants of group rankings by their number of tests and coverage

44

5.1. Concepts

Figure 5.9: Mock-up: Variation of Figure 5.8, added quantiles

45

5. Information Needs in Software Engineering Education

5.1.2 Full-screen Views
This subsection visualizes the single views of the previous Section 5.1.1 in an integrated
full-screen way.

Each of the following figures were designed using a 16:9 ratio with 1920px in width and
1028px in height. At the top a navigation bar indicates the current active page. On the
left-hand side of each of the figures a control panel is shown to select single groups which
should be displayed. Hence, all other groups are not displayed. In addition, on the top
there are two date pickers placed to select a certain range of time.

Group Overview

The overview concept of Figure 5.10 is a collocation of multiple figures of Figure 5.1.
These figures were tailored so that at least eight cards are shown on one and the same
page.

46

5.1.
C

oncepts

Figure 5.10: Mock-up: Group overview of the current status

47

5. Information Needs in Software Engineering Education

Group Comparison

The Group Comparison view of Figure 5.12 consists of several single views. In addition,
the top left corner of this view shows general information about the selected groups. The
mock-up is a collocation of the following figures: Figure 5.2, 5.3, 5.4, 5.5 and 5.6a.

The general information given in Figure 5.11 shows

• the average commits per day, including the current trend,

• the average test coverage per group,

• a box plot representing the current success rate of all tests of the groups.

Figure 5.11: Mock-up: General group statistics

48

5.1.
C

oncepts

Figure 5.12: Mock-up: Group Comparison view

49

5. Information Needs in Software Engineering Education

Group Ranking

Figure 5.13 illustrates the idea of ranking different groups of a single term based on
various metrics extracted from available data or from deeper analysis of the current state
of their project. For this purpose, different variations of charts, as already mentioned in
the subsection Ranking of Tests and Coverage, are combined into a single view. This
allows the course staff to identify groups which are out of the expected values of a metric

— for example, by spending much more or less time than expected at a specific time
during the term.

Figure 5.13: Mock-up: Ranking view of all groups

5.2 Study Design
The survey (see Appendix C) was designed based on “Personal Opinion Surveys” [1] and
grouped into ten categories. These blocks contained both open and closed questions,
covering specific aspects of information needs relevant for comparing and ranking student
groups. The ten categories of the questionnaire were:

50

5.2. Study Design

1. Demographic
The purpose of this block was to collect information about the survey participant
in order to obtain additional information for the evaluation of the survey.

2. General Questions
To better identify the expert’s role within the class, this block concentrated on the
participant’s activities and experience.

3. Grading and Comparison
This section’s questions aimed to collect general data about the required information
in order to be able to grade students individually and groups as a whole and to
compare students as well as groups and terms with each other.

4. Group Comparison and Ranking
Similar to block three, this block centered on the information required for comparing
and ranking groups. In contrast to the third block, block four’s questions were
intended to serve as an information basis to derive the current status of groups.

5. Current situation
The questions of this block allowed the participant to fill in information about the
current information gathering situation.

6. Hypotheses
Based on the literature research, this block was used to validate hypotheses which
built the foundation of the mock-ups and prototype created. The questions in this
block were inspired by a preceding master thesis of Weiß [122].

7. Available Views
Based on the charts available in Apache Superset, the mock-ups, which were realized,
were presented in this block and rated using a Likert-scale [40].

8. Future Views
All mock-ups which could not be created in Apache Superset were grouped in this
block and rated by means of a Likert-scale [40]. The idea undermining this block is
to evaluate the usefulness and importance of certain new concepts and to come up
with a prioritization for future work.

9. Similar Views Comparison
All figures that visualize the same data source in different ways were compared in
this section, which allowed an easier prioritization for the future.

10. Full screen Views
Finally, the mock-ups also include visualizations of several charts combined in a
dashboard. The questions of this block are designed to identify possible missing
elements.

51

5. Information Needs in Software Engineering Education

In the pilot evaluation a first draft of the survey was presented to an expert who was asked
to validate the overall quality, outline misunderstandings and provide feedback. The first
evaluation revealed that some questions were misleading and, thus, easily misinterpreted.
Regarding the visualizations (as shown in Chapter 7) beneficial feedback was provided.
Some questions were edited by including more textual definitions, to the disadvantage
of a longer reading time and the advantage of avoiding ambiguous meanings. This was
especially necessary for the understanding of a) the proposed mock-up visualizations
and b) the Apache Superset tool and its functionality. To prevent any personal bias or
influence on the participants, the questions were formulated as neutrally as possible [1].

All interviews were conducted remotely via Zoom55. Based on the pilot, it was estimated
that each interview will last for about an hour. The interview was introduced providing a
short overview of the interview topic, if no further questions arose, the interview started.
The interviewer’s screen was shared so that the participant could read the questions
independently and ask for clarifications if something was unclear. Otherwise, the answer
was provided by the interviewee and filled in by the interviewer.

5.3 Results

In the following the results of the interviews conducted with five domain experts are
presented in more detail.

Demographic

The first two questions asked about basic demographic information so that the participants
could be classified. The domain experts interviewed were between 26 and 42 years old
and exclusively male.

General Questions

The second section about general questions contained six questions however, four of these
were depended on previous answers and were skipped if the participant’s role did not
match the prerequisite.

The participants’ experience, role and activities within the class were more varied. When
being asked about their years of experience, one participant answered with > 20 years,
one with 10-15 years, one with 5-10 years and two with 2-5 years. The participants’
answers to the question about their role (they were allowed to select multiple roles) can
be summarized as illustrated by Figure 5.14.

55https://zoom.us/, Accessed: 23.01.2023

52

https://zoom.us/

5.3. Results

0 1 2 3

Lecturer

Assistant

Admin

Tutor

2

3

2

2

Number of selections

Q
ue

st
io

n
4:

O
pt

io
ns

Figure 5.14: Roles of interview participants

The last question of this block was interested in the number of groups a participant is
working with. Based on the selected role(s), the following were the answers:

Role Lecturer : All groups (2x)
Role Assistant: 1, 3, All groups
Role Admin: All groups (2x)
Role Tutor : 1 group (2x)

Grading and Comparison

The third section contained four general questions about grading and comparing students
and groups. Starting with the information needs for grading student groups as a whole,
the result can be seen in Figure 5.15. It becomes clear that all of the participants consider
the code quality56 and the Git-Contribution for grading. Four out of five also consider
the quality of the implemented features. In addition, 60% also consider the time efforts
and the theoretical knowledge.

The tenth question asked about which additional information — based on the answer
possibilities of Figure 5.15 — is required to grade students individually. The answer was
essentially the same as for grading groups as a whole.

The final two questions of this block focused on group comparisons, which was answered
by two participants with Yes and by three with No. The following question about the
reasons why they did not compare groups in the past was answered by the three experts
with:

• objectivity (2x)
• individual project; unfair (1x)

56Code Quality = for example Test Coverage, Successful/Failed Tests, etc.

53

5. Information Needs in Software Engineering Education

0 1 2 3 4 5

Code Quality (e.g. Test Coverage,
Successful/Failed Tests, etc.)

Quality of implemented features

Working Hours (cumulated)

Lines of Code (LoC)

Git-Contribution (Number of
Commits)

Role conformance

Theoretical knowledge

5

4

3

1

5

2

3

Number of selections

Q
ue

st
io

n
9:

O
pt

io
ns

Figure 5.15: Information needs student group grading

Group Comparison and Ranking
Section 4 contained two questions about the experts’ needs to compare and rank groups.
As opposed to the previous section, the concept of group comparison and ranking was
aimed to serve as an information basis to derive the current status of groups.

The participants answered the first question about the number of relevant groups in two
ways:

• To see and compare/rank all groups
• To see and compare/rank only the relevant groups

The second question was again about which metrics are relevant; the answers can be
seen in Figure 5.16. It shows a notable difference for all options, when compared to
Figure 5.15. In this context the working hours are more important (since selected by all
participants) and generally four options were selected by at least 80% (compared to three
options in Figure 5.15). However, the quality of the implemented features or the student’s
theoretical knowledge, for example, is less important for ranking and comparing groups.
An additional answer was given by one participant who mentioned that Teamdynamics
should also be considered when comparing and/or ranking groups.

Current situation
The fifth section asked about the current situation of information gathering. Three
open-ended questions followed in this section. The first question, interested in how the
time spent is currently collected, was solely answered with GitLab Wiki. Followed by
the question of how the workload distribution is determined. It was answered with Issue

54

5.3. Results

0 1 2 3 4 5

Code Quality (e.g. Test Coverage,
Successful/Failed Tests, etc.)

Quality of implemented features

Working Hours (cumulated)

Lines of Code (LoC)

Git-Contribution (Number of
Commits)

Role conformance

Theoretical knowledge

Teamdynamics

4

2

5

4

5

2

2

1

Number of selections

Q
ue

st
io

n
14

:
O

pt
io

ns

Figure 5.16: Information needs student group comparing and ranking

distribution three times, Meetings (respectively jour fixe) twice and gitinspector once.
The third question asked was how Git information is collected. There was again only one
answer, namely gitinspector. Some participants added that they were using plain Git
and GitLab for this task in the past.

Hypotheses

The fifth block was about verifying the initial hypotheses of this thesis. Since all following
15 questions were based on a five-point Likert-scale [40], the resulting box plots are listed
in Figure 5.17. The scale was defined as Strongly Disagree (1) to Strongly Agree (5)57, the
diamond shape in each plot indicates the average value. Seven out of the 15 hypotheses
achieved a minimum score of 3, three were voted with at least Agree (value 4), only one —
question 25 — used the entire range and only question 23 got a rating of maximum 3. In
addition, six questions got a rating between 2 and 5, which shows a wide spread regarding
these questions and highly reflects personal opinions on these particular hypotheses.

571 Strongly Disagree; 2 Disagree; 3 Neutral; 4 Agree; 5 Strongly Agree

55

5. Information Needs in Software Engineering Education

1
Strongly
Disagree

2 3 4 5
Strongly

Agree

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Q
ue

st
io

n

Figure 5.17: Hypotheses results

56

5.3. Results

Available Views

The next block was about evaluating the already existing views and their purposefulness.
The scale ranged from Not useful at all (1) to Extremely useful (5)58. The block started
with a General visualizations subblock. Figure 5.18a shows the results as a box plot. It
demonstrates that only two of these five visualizations were rated better than 3, one
better than 2 and one between 2 and 4. The visualization of question 34 was rated as
irrelevant, with a maximum score of 3.

The last question of this subblock was an open one, aiming to find the kind of information
which should be visualized in a similar way, resulting in the following answers:

• Amount of time spent on the project
• Average time logged additional to the amount of time logs for a better overview

(lots of short times spent vs. lots of long times spent, ...)
• All what I want to know about the group
• Time spent in hours; LoC (diff, insertions, deletions)

The next subblock was about the Repository-related visualizations. The results are shown
in Figure 5.18b: the first two repository related visualizations were rated rather at the
lower end to the middle, whereas the subsequent were rated better. The visualizations
presented in questions 41 and 43 achieved an excellent rating: the former question got
twice a 4 and three times 5, the latter was solely rated with Extremely useful.

The last subblock was concerned with the Project Management related Visualizations.
The results are presented in Figure 5.18c, where all visualizations were rated at least
to be Slightly useful. However, the majority was rated with 3 being at least Somewhat
useful, the median of each question is at least located at 4, Moderately useful.

581 Not useful at all; 2 Slightly useful; 3 Somewhat useful; 4 Moderately useful; 5 Extremely useful

57

5. Information Needs in Software Engineering Education

1
Not useful

at all

2 3 4 5
Extremely useful

33

34

35

36

37

Q
ue

st
io

n

(a) General visualizations results

1
Not useful

at all

2 3 4 5
Extremely useful

39

40

41

42

43

44

45

Q
ue

st
io

n

(b) Repository-related visualizations results

1
Not useful

at all

2 3 4 5
Extremely useful

46

47

48

49

Q
ue

st
io

n

(c) Project Management related visualizations results

Figure 5.18: Available views evaluation result

58

5.3. Results

Future Views
The eight section focused on the evaluation of the importance of certain new concepts,
previously described in Section 5.1. The scale was defined ranging from Not important at
all (1) to Very important (5)59. The first question evaluated the visualization as shown
in Figure 5.1. Figure 5.19 shows the results in the form of a box plot using the full range.
Only one participant voted with Not important at all, the median conversely is located
at 5, Very important.

1
Not important

at all

2 3 4 5
Very important

Question 50

Figure 5.19: Evaluation of Figure 5.1

Since this type of visualization is a new concept, an open-ended question asked what
type of information was missing or should be changed for a comprehensive overview. The
following answers were given:

1. Test/Coverage and Total Spent should be differently visualized
2. Maybe display the relation between loc in project and number of commits (students

committing one liners or whole files)
3. Split timetracking into students (one graph each), timetracking summary at the

bottom
4. Hours per student
5. Survived lines of code (similar to gitinspector)

The third question regarded Figure 5.8 and 5.9, the resulting box plot can be seen in
Figure 5.20. The participants could evaluate all different modeled options, resulting in five
rankings for Tests (Green), Tests (Red)60, Coverage, Tests (sum), Group. Surprisingly,
the option for Tests (Red) got better results than the one for Tests (Green). The option
for coverage got the best result overall, except for the Group option. However, it should
be kept in mind that ranking groups by their name is just a listing, no ranking.

591 Not important at all; 2 Slightly important; 3 Neutral; 4 Moderately important; 5 Very important
60Tests (Red) is equivalent to failed tests

59

5. Information Needs in Software Engineering Education

1
Not important

at all

2 3 4 5
Very important

Tests (green)

Tests (red)

Coverage

Tests (sum)

Group
Q

ue
st

io
n

52

Figure 5.20: Evaluation of Figure 5.8 and 5.9

The remaining seven questions of this block were structured as follows:

Question 53 and 54 evaluated the concept of Figure 5.7c respectively Figure 5.7d.
Question 55 and 56 focused on Figure 5.6a and Figure 5.6b, followed by the radar
chart of Figure 5.5 (Question 57). Question 58 addressed the pie chart at the top
left of Figure 5.1 and the last question of this block asked about the visualization
of the Code Contribution as shown in Figure 5.2.

As can be derived from Figure 5.21, with the exception of questions 54 and 59, all
concepts achieved good results. Question 53, 55 and 58 were solely rated with Neutral or
better and more than 75% of the participants responded to question 57 with Neutral or
better.

1
Not important

at all

2 3 4 5
Very important

53

54

55

56

57

58

59

Q
ue

st
io

n

Figure 5.21: Evaluation of Figure 5.8 and 5.9

60

5.3. Results

Similar Views Comparison
The second to last block was about the evaluation of visualizations of the same data in
different ways. Starting with question 60, regarding different time tracking variations,
participants should select the top three (or less) out of four versions. The results are
that Figure 5.7d and Figure 5.5 were selected four times, Figure 5.7a three times and
Figure 5.7c twice.

The next comparison concerned the flow rankings where Figure 5.6b got four votes and
Figure 5.6b only one. This question was followed by the comparison of the test and
coverage rankings where Figure 5.8 was selected three times and Figure 5.9 twice. For
the already existing visualization of the time spent on the project by students, the weekly
sum, as shown in Figure 7.4, was selected four times and its cumulative variation once.
The votes for the commit timeline visualization were more varied as the weekly sum of
Figure 7.3 got three votes and the cumulative variation two.

Full screen Views
The focus of the last block the evaluation of the full screen concepts shown in Figure 5.10,
5.12 and 5.13. Since these three questions were open-ended, the answers were essentially
no different than those to the individual concepts of the previous blocks. The full screen
views also seemed a bit overwhelming for the participants. So, no additional value could
be derived from the participant’s answers.

61

CHAPTER 6
Extract, Transform, Load

Implementation

The following chapter describes the implementation of the Extract, Transform, Load
(ETL) process. Recall that ETL outlines the three processes of transforming raw data
from multiple locations into a unified schema suitable for analysis. The first chapter,
6.1 presents the overall format of the available data, followed by the description of the
transformation and loading implementation in 6.2. This chapter concludes with the
realization of data loading from the PostgreSQL database in 6.3.

6.1 Data Organization
Starting with the 19.2 GB data provided by the course admin, the first stage of the ETL
process is about extracting available data. A separate extraction process is not required
to be performed since it was already done in the past. Therefore, this section focuses on
exploring and describing the data and its structure.

When exporting a GitLab project to be archived, a export.tar.gz file is created, contain-
ing all relevant data of that respective project. All available repository- and wiki-data
is exported at the end of each term. Figure 6.1 shows the structure of the exported
files. However, it only shows the relevant files needed for this prototype to be built and
run. There are two important folders: At first the export/tree/project folder, which
contains all project management related data stored in GitLab directly, and the repo
folder which contains the codebase including the Git folder.

Besides the GitLab and Git related data, for each term, there are two additional Ex-
cel/CSV files. These contain information about all students attending the Individual
Phase (IP) in the respective term. The first file consists of the student’s forename,
surname, matriculation number and their achieved points. As explained in Section 1.1,

63

6. Extract, Transform, Load Implementation

project
export

tree
project

issues.ndjson
merge_requests.ndjson
project_feature.ndjson
project_members.ndjson
...

repo
.git
...

Figure 6.1: GitLab’s export structure

students need to track their time when working, which also applies for the IP, however,
in a simpler way: It is sufficient to write down the working hours in a plain text file
and add up the sum (which is done by the student). The second file contains the values
for the time spent on the project having the format: first name, last name, login (=
matriculation number), name (of the course), course year, term, hours.

GitLab’s Export Structure

Exporting a GitLab project results in many files having different information. All files
are in a ndjson format, which is some sort of extended JSON format. Instead of using
one root array at the top-level, ndjson just stores the objects separated by newlines so
that each individual line is a valid JSON object. In the following, all listings only show
the minimal properties necessary needed to create the database. All the other fields are
omitted due to their irrelevance for the data aggregation.

issues.ndjson and merge_requests.ndjson. The first two listed files in Figure 6.1,
contain the entire information regarding all the issues of a project and Merge requests
(MRs). They also include all time tracking entries of the project, which are the only
places where GitLab allows tracking time61. As can be derived from Listing 6.1, there
is an object called timelogs which stores time tracking information (so-called Timelogs)
belonging to that issue.

61https://docs.gitlab.com/15.0/ee/user/project/time_tracking.html, Accessed: 23.01.2023

64

https://docs.gitlab.com/15.0/ee/user/project/time_tracking.html

6.1. Data Organization

1 {
2 "id":9876,
3 "title":"Kickoff-Meeting",
4 "project_id":1234,
5 "created_at":"2021-04-14T14:17:26.887Z",
6 "updated_at":"2021-04-14T14:29:04.922Z",
7 "iid":1,
8 "closed_at":"2021-04-14T14:29:04.903Z",
9 ...

10 "timelogs":[
11 {
12 "id":887766,
13 "time_spent":3000,
14 "user_id":234,
15 "created_at":"2021-04-14T14:17:26.915Z",
16 "updated_at":"2021-04-14T14:17:26.915Z",
17 "spent_at":"2021-04-14T00:00:00.000Z",
18 "project_id":1234
19 },
20 ...
21],
22 ...
23 }

Listing 6.1: Example of an JSON object in issues.ndjson

In addition to issue-based time tracking, Timelogs can also be assigned to MRs. Hence,
the merge_requests.ndjson must also be processed to extract all timelogs entries of a
project. As made apparent in Listing 6.1 and 6.2, the entries for timelogs objects are
identical in its structure.

1 {
2 ...
3 "timelogs":[
4 {
5 "id":223344,
6 "time_spent":3600,
7 "user_id":234,
8 "created_at":"2021-06-14T10:32:27.093Z",
9 "updated_at":"2021-06-14T10:32:27.093Z",

10 "spent_at":"2021-06-14T10:32:27.063Z",
11 "project_id":1234,
12 ...
13 },
14 ...
15],
16 ...
17 }

Listing 6.2: Example of a timelogs object in merge_requests.ndjson

65

6. Extract, Transform, Load Implementation

Most properties of Listing 6.1 and 6.2 are rather self-explanatory, except for the following
two:

• iid: In addition to an ID of a MR or issue, GitLab stores an internal ID which is
displayed by the web UI. That ID is unique for a single project62 only.

• time_spent: This property stores the time spent on the project in seconds (time
added with by /spent command).

• spent_at: A user can potentially also set the date when they spent that amount of
time, which is stored in spent_at.

Although students are technically able to track time on a day different to the date the
entry is created (which can be identified if created_at and spent_at differ from each
other), the crawler always takes the value of the created_at field. Thereby, the course
staff team wants to force students to track their time when they really work and do not
add entries as they like. This facilitates identifying students which are lazy regarding
their time tracking.

project_feature.ndjson. The project_feature.ndjson solely contained one JSON
object for all exported projects. As Listing 6.3 shows, the only interesting property
is project_id since all other JSON objects within an export always refer to that ID.
Although one may assume that an ID should only be assigned once, the SQL model later
had to be designed to use its own IDs. IDs were reused by GitLab over time, which lead
to wrong matching of users to projects.

1 {
2 ...
3 "project_id":1234,
4 ...
5 }

Listing 6.3: Excerpt of project_feature.ndjson

project_members.ndjson. The last file listed in Figure 6.1 is the
project_members.ndjson which consists of all members of a project. Listing 6.4
displays the structure. The important part of these JSON objects are their access_level
properties. There are different roles in GitLab which can be assigned to any user in
a project. The crawler only needs the student information and can ignore all other
users, including, for example, admin, tutors or course assistants. Student user entries are
identified by their access_level value of 30. According to GitLab, this value represents
the Developer role63.

62Source: https://docs.gitlab.com/15.0/ee/api/#id-vs-iid, Accessed: 23.01.2023
63Source: https://docs.gitlab.com/15.0/ee/user/permissions.html, Accessed: 23.01.2023

66

https://docs.gitlab.com/15.0/ee/api/%23id-vs-iid
https://docs.gitlab.com/15.0/ee/user/permissions.html

6.2. Transformation and Loading Implementation

1 {
2 "id":4444,
3 "access_level":30,
4 "user_id":234,
5 ...
6 "user":{
7 "id":234,
8 "email":"<student_email_address>",
9 "username":"<student_username>"

10 }
11 }

Listing 6.4: Example of an JSON object in project_members.ndjson

6.2 Transformation and Loading Implementation
The following section discusses some of the implementation’s noteworthy features of
the data transformation and loading process. The implementation was performed in an
iterative process based on the available data. The tasks which needed to be implemented
were organized in GitLab’s Issue Board64. The preliminary task was to gather information
about the available data and its structure. Consequently, some manual data collection, an
initial architectural design and the fundamental database structure had to be completed
upfront. Although the data of Section 6.1 was organized to be easily useable, no data
cleansing nor cleaning was done. The implementation was held as flexible as possible.
Hence, handling missing information was part of the implementation and default values
are used.

The following section provides an overview of the state of the crawler’s implementation,
the technologies used and the architecture chosen for the program’s database. This section
closes with a discussion of the implementation of the pseudonymization methodology for
the protection of sensitive student data.

6.2.1 Technology Stack
Before starting to implement the data mining program (also called crawler) into practice,
a decision about the concrete technology stack needed to be made. Due to the nature of
the data, Python was finally chosen as the programming language for the implementation.
Python is the most preferred language for — including but not limited to — data science
through enhancing both performance and productivity. This is achieved by the use of
low-level libraries and clean high-level APIs65 [97, 111]. It provides a large ecosystem
with a plethora of external libraries for a wide range of problems while using a dynamic
typing and multi-paradigm approach. For this reason, it is an excellent choice for rapid

64https://about.gitlab.com/blog/2018/08/02/4-ways-to-use-gitlab-issue-boards/, Ac-
cessed: 23.01.2023

65Source: https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platfor
ms.html, Accessed: 23.01.2023

67

https://about.gitlab.com/blog/2018/08/02/4-ways-to-use-gitlab-issue-boards/
https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html
https://www.kdnuggets.com/2019/05/poll-top-data-science-machine-learning-platforms.html

6. Extract, Transform, Load Implementation

prototype development. In addition, multiple libraries were used by the program to
extract all information relevant for this thesis.

The ndjson66 library was used to process the ndjson files. It allows iterating over
a file containing multiple JSON objects without manually opening and loading the
file for each object.

GitPython67 was used to iterate over Git repositories and read the available data.
Although there would have also been other libraries which build on top of GitPython
such as, for instance, PyDriller68 [109], GitPython was chosen due to pre-existing
knowledge about the library.

To access the data storage (as described later in this section) and to use an Ob-
ject–relational mapping (ORM) toolkit for creating and manipulating the database,
SQLAlchemy69 was used.

For the pseudonymization part, the pandas70 and Faker71 libraries were used.

Data storing was the second crucial part where considerations had to be made since
the database had to be compatible with the Apache Superset visualization tool. The
eventually chosen database was PostgreSQL since Apache Superset is shipped with the
PostgreSQL connector library psycopg272 if used with the docker-compose73 file74 (which
was done for this prototype) and pre-existing knowledge about PostgreSQL. However,
any other database which has a SQLAlchemy dialect implementation in Python could
have been used.

6.2.2 Implementation Details

The current prototype is specially designed to work with GitLab exports and to be
executed as a command line program using the Python interpreter. In the following, the
configuration options and requirements on how to use the program to extract and store
available data are presented.

66http://ndjson.org/, Accessed: 23.01.2023
67https://gitpython.readthedocs.io/en/stable/, Accessed: 23.01.2023
68https://github.com/ishepard/pydriller, Accessed: 23.01.2023
69https://www.sqlalchemy.org/, Accessed: 23.01.2023
70https://pandas.pydata.org/, Accessed: 23.01.2023
71https://faker.readthedocs.io, Accessed: 23.01.2023
72https://www.psycopg.org/docs/, Accessed: 23.01.2023
73https://docs.docker.com/compose/, Accessed: 23.01.2023
74https://superset.apache.org/docs/databases/postgres, Accessed: 23.01.2023

68

http://ndjson.org/
https://gitpython.readthedocs.io/en/stable/
https://github.com/ishepard/pydriller
https://www.sqlalchemy.org/
https://pandas.pydata.org/
https://faker.readthedocs.io
https://www.psycopg.org/docs/
https://docs.docker.com/compose/
https://superset.apache.org/docs/databases/postgres

6.2. Transformation and Loading Implementation

Program Configuration

The configuration of the command line tool is two-folded: On the one hand, there are
arguments which can be passed to the program and which are then evaluated during
runtime by the argparse75 library. On the other hand, the program needs a specific
JSON configuration file which contains all necessary information to extract and parse
the data.

The program arguments determine the extent to which the crawler processes the data
during its run. Table 6.1 lists all arguments and their meaning.

As already mentioned before, the crawler needs more information about where to find
which folder or file for the term to be processed. The --file specifies where to find that
particular file. Listing 6.5 shows the structure of the configuration file in question.

Option Description
--file FILE The JSON file to load all relevant data from
-p PROCS Number of cores to be used during runtime. Default is 1.
-db DATABASE The database to be used for storing all data.
--project Instructs the program to process all project management related data.

This processes all files in the export/tree/project folder.
--git Instructs the crawler to process the repo folder and its Git content.

The processing is limited to extracting commit information only (no
diff processing)

--stats In addition to the --git argument, the stats option then retrieves all
information of a commit, including additions, deletions and affected
files.

-h, --help Shows a simple help message

Table 6.1: Program arguments

75https://docs.python.org/3/library/argparse.html, Accessed: 23.01.2023

69

https://docs.python.org/3/library/argparse.html

6. Extract, Transform, Load Implementation

1 {
2 "term": "term",
3 "individual_phase": {
4 "csv_file": "/path_to_csv/file.csv",
5 "repos_root": "/path_to_project/project",
6 "timetracking_csv": "/path_to_csv/file.csv"
7 },
8 "group_phase": {
9 "grades_csv": "/path_to_csv/file.csv",

10 "projects_root_path": "/path_to_root_folder/folder"
11 },
12 "research_divisions": [
13 "Div. A",
14 "Div. B"
15],
16 "groups": {
17 "Div. A": [
18 {"01": "project_01"},
19 {"02": "project_02"}
20],
21 "Div. B": [
22 {"01": "project_01"},
23 {"02": "project_02"}
24]
25 }
26 }

Listing 6.5: Structure of the crawler’s JSON config file

In the following the elements of the configuration file are explained in more detail.

• term: This element specifies the term to which processed data belongs, for example,
20WS (winter term 2020).

• individual_phase: That object defines all relevant locations of IP files.

csv_file: Location of the file which contains all Individual Phase results.
repos_root: Location of the repository folders. Each folder inside must be in
the form of Listing 6.1.
timetracking_csv: Location of the file which includes time spent on the
project during the Individual Phase by each student.

• group_phase: This object specifies all relevant locations of Group Phase (GP) files.

grades_csv: Location of the file which contains all grades after finishing the
GP.
projects_root_path: Location of the repository folders. Each folder inside
must be in the form of Listing 6.1.

70

6.2. Transformation and Loading Implementation

• research_divisions: An array which includes the information about the research
divisions, as described in Section 1.1. The values used are based on the abbreviations
typically used by the course staff team.

• groups: A key-value object which is based on the values defined in
research_divisions. For each value of the research_divisions array, the pro-
gram expects a key in this object. Each value then contains an array of objects,
which can have an arbitrary key (typically a consecutive number) and the exact
folder name.

The design of the configuration file was chosen to support maximum flexibility of all
processed terms.

By convention, the name of a folder containing a student’s IP repository is their matric-
ulation number. Therefore, for the IP configuration, the root path for all repositories
is only specified once (value of individual_phase.repos_root). Based on the values
loaded from the CSV file (as specified by individual_phase.csv_file), the folders are
processed. Similarly, for the GP the projects_root_path specifies the root location,
the concrete path of a group’s repository is then the concatenated value of root path
and folder name, for example /path_to_root_folder/folder/project_01. The ongoing
number of the projects per research division is used by the crawler to create a short name
which is unique per term and usually used by the course staff when referring to student
groups, for example, resulting in Div. A 01.

Execution Flow

Listing 6.6 shows a schematic version of the crawler’s entry point. Before processing
any data, the program checks if the provided program argument value for the number of
processes (args.p) to be used later is not greater than the number of available Central
processing unit (CPU) cores (cpu_count()). The execution of the program always starts
with loading the available data of the IP since this is the most exhaustive and complete
information available. This is done by calling the __process_individual_phase_file
method. In a first step, it loads the file containing the matriculation numbers, names of
students and achieved points. Afterwards, the file including the information about time
spent on the project is loaded, assigned to each student and stored in combination with
the current term in the database.

The next step of the crawler is to process each group individually (using
the data as described in subsection GitLab’s Export Structure) by calling the
__process_individual_groups method. It extracts all available project information,
including data related to project management and GitLab user information. However, the
data related to project management was empty for all examined projects since students
are not enforced to use GitLab capabilities (see Section 8.2).

71

6. Extract, Transform, Load Implementation

In a next step, the __process_individual_phase_groups_async method processes ev-
ery student’s Git repository, transforming the complete history of the origin/main or
origin/master branches — GitLab switched the default branch naming in 202176. This
restriction is necessary because many repositories contain numerous remote references
that put additional load on the crawler. Especially since only the main branch is used
for grading. The processing of the repositories is done in parallel since each one is
independent from the others. See subsection Parallelization for more information about
the parallelism.

After having finished the processing of IP data, the program continues by processing the
GP data. For each research division provided in the configuration file, the program loads
all group names from the configuration file. Then the project-related information (done by
the ProjectTransformer) and the user-related information (done by UserTransformer)
is extracted. The __process_group_phase_groups_async is identical to its pendant for
the IP (method __process_individual_phase_groups_async).

1 def run(self):
2 num_cores = min(args.p, cpu_count())
3 __process_individual_phase_file(
4 _config.individual_phase_csv_file,
5 _config.individual_phase_timetracking_csv,
6 _term,
7)
8 __process_individual_groups(_config.individual_phase_repos_root)
9 __process_individual_phase_groups_async(num_cores,

_config.individual_phase_repos_root)
10
11 for research_div in _config.research_divisions:
12 _groups = _config.groups.get(research_div)
13 ProjectTransformer(_groups,research_div).run()
14 UserTransformer(_groups).run()
15 __process_group_phase_groups_async(num_cores)

Listing 6.6: MainCrawler Python schematic class

Parallelization

As previously demonstrated, the crawler can be configured to process available repositories
in parallel. This feature was implemented since processing more than 1200 repositories
(and more than 100,000 commits) is very time-consuming, even though the branches are
limited to one (except for the groups/students which used both main and master branch).

Before any optimization was done, possible parallelization tasks had to be identified [92].
The processing has to execute some long-running tasks, some sequential tasks as well as
to, finally, store the data in the database. The sequential tasks particularly affect loading
and processing of CSV files. Moreover, later processing of GP data is depends on this

76https://about.gitlab.com/blog/2021/03/10/new- git- default- branch- name/, Ac-
cessed: 23.01.2023

72

https://about.gitlab.com/blog/2021/03/10/new-git-default-branch-name/

6.2. Transformation and Loading Implementation

data. However, long-running tasks, such as data related to loading GitLab and Git are
easier to parallelize since critical information, as for instance, matriculation numbers,
first names or surnames are already present at time of processing. Using these parts, for
example by concatenating first name and surname, a commit with any non university
email address can be matched with simple email addresses.

Consequently, the following options were identified to be subject for parallelism:

1. Analyzing the commits of a single repository in parallel. Based on research about
thread-safety of the GitPython framework, iterating through commits did not turn
out to be thread-safe77. A workaround for non-thread-safe processing would be to
check out each revision individually. This, however, comes with impractical effects
of needing much more disk space.

2. Analyzing each student’s (for IP) and group’s (for GP) repository sequentially and
processing multiple students/groups at the same time.

The final decision regarding the prototype crawler fell on the latter variant. In particular,
the non-thread-safety of the framework used was not manageable in any way.

Python’s multiprocessing78 library — which is part of the language’s standard library
— provides an API to fully exploit the multiprocessor environment [67]. It implements
parallel process programming for shared memory systems. A process is an application’s
execution entity that can include numerous concurrent threads. As opposed to a process,
managing a thread is less costly [82]. To apply the multiprocessing principle to the crawler,
its input data must be distributed among different jobs which are then organized in a
pool. As a consequence, these workers are running, as aforementioned, simultaneously.

Referring to Listing 6.6, all async postfixed methods are designed in the same way to allow
parallel processing of the data. Listing 6.7 shows an example of how parallel processing
is implemented by using the multiprocessing Pool in combination with the apply_async
method. That method does not spawn a number of processes, it evaluates each call
within one process by spawning numerous threads. This principle is called task-based
parallelism [60]. As shown in line 8, the call to the async_process_call method is just
schematic. Algorithm 6.1 illustrates how the asynchronous processing and error handling
is done in an abstract way. After successful calls to the apply_async processing, the
main method waits for the arrival of return values. The waiting part is shown by line
13 and onwards, apply_async returns an AsyncResult object79 which provides the get
method to return the result when it arrives, or raises an exception if a timeout occurs.
If any exception occurs, it is caught (line 16) and the pool is forced to terminate. This
ensures that no data is corrupted, and the error tracing is easier. In the successful case
the join method is called so that the program waits until all threads are done.

77https://github.com/gitpython-developers/GitPython/issues/584, Accessed: 23.01.2023
78https://docs.python.org/3.10/library/multiprocessing.html, Accessed: 23.01.2023
79https://docs.python.org/3.10/library/multiprocessing.html#multiprocessing.pool.AsyncResu

lt, Accessed: 23.01.2023

73

https://github.com/gitpython-developers/GitPython/issues/584
https://docs.python.org/3.10/library/multiprocessing.html
https://docs.python.org/3.10/library/multiprocessing.html%23multiprocessing.pool.AsyncResult
https://docs.python.org/3.10/library/multiprocessing.html%23multiprocessing.pool.AsyncResult

6. Extract, Transform, Load Implementation

1 def __process_individual_phase_groups_async(self, num_cores: int, directory:
str):

2 p = Path(directory)
3 dir_list = [x for x in p.iterdir() if x.is_dir()]
4 results = []
5 with Pool(num_cores) as pool:
6 for group_path in dir_list:
7 results.append(
8 pool.apply_async(
9 async_process_call,

10 args=(0),
11)
12)
13 for result in results:
14 try:
15 result.get()
16 except Exception as e:
17 pool.terminate() # kill all processes in the pool
18 else:
19 # wait for all submitted tasks to complete:
20 pool.close()
21 pool.join()

Listing 6.7: __process_individual_phase_groups_async Python schematic Code

As mentioned before, Algorithm 6.1 schematically illustrates how methods are called and
errors are handled during parallel processing. This is especially necessary because, for
example, some terms have students assigned to multiple groups. The creation of the
corresponding GitLab user in the crawler database fails because two threads try to store
the same value, but they violate a constraint on unique values. However, a simple retry
(which is shown in the first catch-block; line 5-9) solved this problem.

Algorithm 6.1: async_process_call
Input : retry

1 try:
2 Process data with database access
3 return
4 catch sqlalchemy.Error :
5 if retry Æ 3 then
6 async_process_call(retry + 1);
7 else
8 raise exception
9 end

10 catch python.Exception:
11 raise exception
12 end

74

6.2. Transformation and Loading Implementation

The asynchronous implementation is, opposed to Listings 6.6 and 6.7, only provided as an
algorithm since the concrete implementation highly depends on the processed elements
and would not add additional value.

Database Schema

The database schema was divided into two main schemas: The csv and the gitlab schema.
The idea behind the division is to separate the data into logical groups based on their
origin.

Recall that, the base data was originally provided by the course staff and stored in a CSV
file. This can be split in basically three main domain objects, the student, their result in
the individual phase and the term in which they attended the class. These relations are
reflected in the schema, as illustrated in Figure 6.2.

student

individual_phase_result term

1

*

1

*

1*

Figure 6.2: csv Schema

Compared to the csv schema, the gitlab schema — as demonstrated in Figure 6.3 —
is more complex. Since it also stores more information. As already mentioned in the
Execution Flow subsection, the data extracted from GitLab is matched against the CSV
data. As Figure 6.3 shows, where connections between the two schemas ensure that the
stored data is valid. With these constraints, the program checks that no orphan data is
stored and that everything belongs to an available term and an available student. These
references are marked with the csv prefix.

gitlab_project

git_branchgit_commit

gitlab_project_user

git_commit_stats

gitlab_project_issue

gitlab_individual_project gitlab_group_project

“csv”.term“csv”.student

gitlab_timelog

* 1*1 **

1*
1

*

**11

*

1

1

*

1

*
1*

1*
«i
nh
er
it
»

«inherit»

Figure 6.3: gitlab Schema

75

6. Extract, Transform, Load Implementation

6.2.3 Pseudonymization

As already addressed in Section 6.2.1, for the pseudonymization part Python’s pandas-
and Faker-library were used. Foremost, the critical data elements had to be identified.
In fact they were as follows:

1. A student’s
a) First name
b) Last name
c) Matriculation Number
d) GitLab username
e) GitLab email

2. A group’s
a) full name
b) short name

3. Research Division
4. The name of a term

For many types the Faker library provides methods to create meaningful random values,
for example, first names, last names, etc. To provide an example, the anonymization of
the first name is shown in Listing 6.8.

Firstly, all available data is loaded from the database, using pandas’ read_sql_table
method. For this task to be possible, the method needs to know which table and which
connection should be used: The table is dynamically loaded by the __tablename__ value
of the StudentModel class, the connection con is reused. As at the time of calling that
method, there already is an open connection.

In a next step, lines 2 to 4 show that all values of the firstname column (denoted by the
square brackets) are mapped to an inline function where each value gets a random first
name from the Faker library assigned. Afterwards, the new values can be stored in the
database. Line 5 onwards shows how the data is finally stored. In addition, the to_sql
method allows to specify the name of the table, the connection and the schema. In fact,
only the schema changes, otherwise the program would override the original values (see
Section 6.3 for more information about the different schemas). In addition, there is also
the possibility to define a strategy if the table on that particular schema already exists.
The if_exists parameter specifies the behavior in that case: replace means that if that
table already exists, it is replaced by the one with the new values.

76

6.3. Data Loading

1 _all_students_df = pd.read_sql_table(f"{StudentModel.__tablename__}", con=engine)
2 _all_students_df["firstname"] = _all_students_df["firstname"].map(
3 {firstname: faker.first_name() for firstname in

_all_students_df["firstname"]}
4)
5 _all_students_df.to_sql(
6 name=StudentModel.__tablename__,
7 con=engine,
8 schema=INDIVIDUAL_PHASE_DBSCHEMA_ANONYMIZED,
9 if_exists="replace",

10)

Listing 6.8: Firstname anonymization

To transform the student’s last name, the same method as shown in Listing 6.8 is used.
All other identified properties at the beginning of this subsection are handled slightly
different: For example, if there are two students in the same group who share the same
last name, they get different last names with Listing 6.8’s principle, therefore, cannot
be identified anymore. The difference is that every other property listed should remain
unique, as it is in the original database. Thus, the inline mapping method is called
applying pandas’ unique() method, as demonstrated in line 7 of Listing 6.9.

1 [...]
2 _all_students_df["matriculation_number"] = _all_students_df[
3 "matriculation_number"
4].map(
5 {
6 mat_nr: faker.numerify(text="#########")
7 for mat_nr in _all_students_df.get("matriculation_number").unique()
8 }
9)

10 [...]

Listing 6.9: Unique property anonymization

It is similar with the research section and the term name. However, it is then still possible
to determine which group has taken the course in which term by means of the time
series data. For example, since the time tracking data or Git information is based on a
timestamp, and thus cannot be modified.

6.3 Data Loading
After completing the steps of the ETL process as outlined in Section 6.2, the data is
stored in the database. To make it accessible to be later used by Apache Superset, the
data has to be loaded from the database again. To allow maximum flexibility for the
future tools, the loading process was mostly implemented using PostgreSQL’s Views and
Materialized Views (MVs).

77

6. Extract, Transform, Load Implementation

PostgreSQL allows creating a view on table(s) either through materialization or view
expansion. However, the approach has to be chosen beforehand [114]. In contrast to
the classical PostgreSQL View, a Materialized View works in a similar way but persists
the result data in a table-like form. This leads to shorter access times, in particular for
a great number of database JOIN operations [12, 58]. The distinction if either a View
or a Materialized View should be used was made applying a simple rule: If there are
numerous, independent Views V1 and V2 based on the data which is provided by another
View Vm, then Vm is implemented as Materialized View. So only the top-most layer,
which is accessed by Apache Superset, is implemented as View.

6.3.1 Materialized Views
Listing 6.10 illustrates the PostgreSQL syntax for creating a MV:

• view_name: This element defines the name of the MV.
• query: The placeholder must be replaced with the concrete SQL query.
• WITH [NO] DATA: One can choose between two options when creating a MV:

– WITH DATA: This option populates the data into the MV at time of creation.
– WITH NO DATA: This option marks the MV as incomprehensible, meaning that

this MV cannot be accessed until the data is loaded (which must be done at a
later moment).

1 CREATE MATERIALIZED VIEW view_name AS query WITH [NO] DATA;

Listing 6.10: Create Materialized View syntax in PostgreSQL

After creating a MV, it can be accessed like a SQL tables, for example, SELECT * FROM

view_name. In the following query of Listing 6.11 only the query parameter is illustrated.

1 SELECT
2 _project.user_id AS user_id,
3 _project.user_username AS user_username,
4 _project.user_email AS user_email,
5 _project.student_matriculation_number AS student_matriculation_number,
6 _project.student_firstname AS student_firstname,
7 _project.student_lastname AS student_lastname,
8 _project.project_id AS project_id,
9 _project.project_name_filterable AS project_name_filterable,

10 _project.project_full_name AS project_full_name,
11 _project.project_short_name AS project_short_name,
12 _project.term_id AS term_id,
13 _project.term_name AS term_name
14 FROM "gitlab".gitlab_individual_project _ind_project
15 LEFT JOIN "individual".ind_user_project_mview _project ON _project.project_id =

_ind_project.id
16 LEFT JOIN "gitlab".git_branch _branch ON _project.project_id = _branch.project_id
17 WHERE _branch.id IS NULL

Listing 6.11: ind_empty_repos_mview Materialized View of empty repositories

78

6.3. Data Loading

6.3.2 Views

As already mentioned, the Materialized Views also serve as a basis for additional SQL
Views. Likewise, as shown in Listing 6.10, Listing 6.12 illustrates how to create a View
in PostgreSQL.

1 CREATE VIEW view_name AS query;

Listing 6.12: Create View syntax in PostgreSQL

Based on a MV called student_term_result_mview stored in the public schema, loading
the non-empty repositories, as shown in Listing 6.13, is done by removing the students
who are present in the result set of ind_empty_repos_mview. The part to remove the
respective students is located in the WHERE clause starting at line 4.

1 SELECT
2 *
3 FROM public.student_term_result_mview _strm
4 WHERE NOT EXISTS (
5 SELECT
6 *
7 FROM "individual".ind_user_empty_repos _empty_repo
8 WHERE _empty_repo.student_id = _strm.student_id AND
9 _empty_repo.student_matriculation_number =

_strm.student_matriculation_number AND
10 _empty_repo.term_id = _strm.term_id
11)

Listing 6.13: ind_results_non_empty_repos View of all non-empty Individual Phase
repositories

Listing 6.14 visualizes the SQL query which extracts the number of attempts per student.
Firstly, the attempts_per_student subquery of lines 5-9 counts the number of occurrences
of a student’s matriculation number Secondly, the outer SELECT statement counts the
number of students per attempt value.

Another notable View is ind_commits_points_cat, as displayed in Listing 6.15, which
categorizes each IP result by the number of commits and the achieved points. The
evaluation of Listing 6.15 is shown in Table 6.3.

For the sake of completeness, all remaining Views and Materialized Views are located in
Appendix A and B.

79

6. Extract, Transform, Load Implementation

1 SELECT
2 attempts_per_student.attempts AS attempt,
3 COUNT(DISTINCT(student_matriculation_number))
4 FROM (
5 SELECT
6 student_matriculation_number,
7 COUNT(*) AS attempts
8 FROM "public".student_term_result_mview
9 GROUP BY student_matriculation_number

10) AS attempts_per_student
11 GROUP BY attempts_per_student.attempts

Listing 6.14: student_attempts_view View
implementation

attempt count
1 560
2 203
3 43
4 10

Table 6.2: Result of List-
ing 6.14 for all four terms

1 SELECT
2 COUNT(DISTINCT(_ind.commit_hash)) AS ind_commits_count,
3 CASE
4 WHEN COUNT(DISTINCT(_ind.commit_hash)) < 9 THEN ’< 9’
5 WHEN COUNT(DISTINCT(_ind.commit_hash)) < 16 THEN ’10-15’
6 ELSE ’16+’
7 END AS ind_commits_count_cat,
8 _ind.committer_student_matriculation_number AS student_matriculation_number,
9 _ind.term_id AS term_id,

10 _ind.term_name AS term_name,
11 _results.result_points AS ind_result_points,
12 CASE
13 WHEN _results.result_points < 40 THEN ’5 (N5)’
14 WHEN _results.result_points < 50 THEN ’4 (G4)’
15 WHEN _results.result_points < 60 THEN ’3 (B3)’
16 WHEN _results.result_points < 70 THEN ’2 (G2)’
17 ELSE ’1 (S1)’
18 END AS grade
19 FROM "individual".ind_commit_user_mview _ind
20 JOIN "individual".ind_results_non_empty_repos _results
21 ON _results.student_matriculation_number =

_ind.committer_student_matriculation_number
22 AND _results.term_id = _ind.term_id
23 GROUP BY _ind.committer_student_matriculation_number, _ind.term_name,

_ind.term_id, _results.result_points

Listing 6.15: ind_commits_points_cat View of all Individual Phase students with
categorized points and commits

6.3.3 Pseudonymization
As discussed in Section 6.2.3, the pseudonymized data is stored in a schema post-
fixed with _pseudonymized, namely csv_pseudonymized and gitlab_pseudonymized. The
structure of the tables is identical since pandas’ DataFrame clones and alters the data.

80

6.3. Data Loading

ind_commits_count ind_commits_count_cat student_matriculation_number term_id term_name ind_result_points grade
29 16+ 12345678 3 21SS 40 4 (G4)
98 16+ 23456789 3 21SS 3 5 (N5)
52 16+ 34567890 4 21WS 70 1 (S1)
52 16+ 45678901 1 20SS 70 1 (S1)

...

Table 6.3: Result of View ind_commits_points_cat

Therefore, any of the following tables can be interchanged without losing information
but anonymizing critical data. However, all other constraints are lost, so data of this
table(s) cannot be verified for integrity.

Non-pseudonymized table Pseudonymized table
“csv”.student “csv_pseudonymized”.student
“gitlab”.gitlab_project “gitlab_pseudonymized”.gitlab_project
“gitlab”.gitlab_project_user “gitlab_pseudonymized”.gitlab_project_user

Table 6.4: Pseudonymized SQL tables lineup

These pseudonymized tables, as listed in Table 6.4, force the necessity to create new Views
and Materialized Views. All of them are implemented as their non-pseudonymized siblings,
but the critical tables are changed. Each View and MV is prefixed with anon_. For exam-
ple, in Listing 6.13 line 7 is swapped with FROM "individual".anon_ind_user_empty_repos

_empty_repo.

Non-anonymized (Materialized) Views Pseudonymized (Materialized) Views
“individual”.ind_empty_repos_mview “individual”.anon_ind_empty_repos_mview
“individual”.ind_user_empty_repos “individual”.anon_ind_user_empty_repos
“individual”.ind_results_non_empty_repos “individual”.anon_ind_results_non_empty_repos
“individual”.ind_commits_points_cat “individual”.anon_ind_commits_points_cat
“individual”.ind_commit_stats_user_mview “individual”.anon_ind_commit_stats_user_mview
“group”.grp_commits_cat “group”.anon_grp_commits_cat
“group”.grp_user_timelog_view “group”.anon_grp_user_timelog_view
“group”.grp_commit_stats_user_mview “group”.anon_grp_commit_stats_user_mview
“public”.student_grades_view “public”.student_grades_view
“public”.student_term_result_mview “public”.anon_student_term_result_mview

Table 6.5: Pseudonymized SQL (Materialized) Views lineup

Any other SQL-View which is not mentioned in Table 6.5 is, therefore, not affected by
any critical data and does not need a sibling View. This clear separation of Views and
Materialized Views allows a relatively easy integration into Apache Superset, which was
achieved by using a virtual dataset combined with the Jinja templating. Jinja80 is a web
templating library for Python that is designed to be flexible, fast and secure, modeled
on Django’s81 templates. It is fast, widely used and secure with the optional sandboxed

80https://jinja.palletsprojects.com/en/3.1.x/, Accessed: 23.01.2023
81https://www.djangoproject.com/, Accessed: 23.01.2023

81

https://jinja.palletsprojects.com/en/3.1.x/
https://www.djangoproject.com/

6. Extract, Transform, Load Implementation

template execution environment to create HTML, XML or other markup formats that
can be sent via HTTP requests [80, 100].

The SQL templating functionality allows getting the ID of any logged-in user before
executing a Query. Hence, one can distinguish between different Views based on the
user’s ID only. Listing 6.16 illustrates how templating is implemented in the prototype.
For this prototype only two users were present: the default superset and a public user.
The public user has ID 2 and, therefore, the system always loads the table as specified in
line 3 whereas any other user always gets access to the view of line 5.

1 SELECT * FROM
2 {% if (current_user_id() == ’2’) %}
3 "schema".<anon_table>
4 {% else %}
5 "schema".<original_table>
6 {% endif %}

Listing 6.16: Jinja templating functionality example

82

CHAPTER 7
Education Intelligence

Visualization

Successful visualization is essential for the comprehension, examination and sharing of
analysis results. For this reason, virtually all analytical components have visualization
features. However, using additional special visualization components or reporting systems
with powerful visualization capabilities are advisable [4].

The subsequent section provides a summary of the prototypical Education Intelligence
(EI) visualization system. Based on the concepts of Section 5.1, using Apache Superset
and its plug’n’play nature of creating charts and dashboards, the built-in capabilities were
used to recreate all mock-ups which do not require additional tools and also no coding.

7.1 Data Visualization - Group Phase Data
Based on the idea of the Group Overview Card as shown in Figure 5.1 and 5.10 a Group
Phase dashboard was created, which is demonstrated in Figure 7.1, 7.2 and 7.3. At the
top of Figure 7.1 general information tiles can be seen, which simply show numbers for
orientation:

• Students: The number of unique students whose data is currently display

• Timelogs: The number of timelogs which represents the basis of the time tracking
graph in Figure 7.4

• Issues: Overall number of GitLab Issues

• Open Issues: Number of Issues which do not have a closed_at date set

• Timelogs per week: History of added timelogs over time

83

7. Education Intelligence Visualization

At the top left-hand side there is a tabular information representation of the selected
students. Below these tiles, two tabs are placed: the Repository Statistics and Project
Statistics tab. The first tab shows the entire information which resulted from the MSR-
process, as in Figures 7.2 and 7.3. The second tab shows the extracted information
related to project management, as in Figures 7.4 and 7.5.

7.1.1 Repository Statistics
The repository statistics shown in Figure 7.1 start with general information tiles and
two stacked bar charts, summarizing the commits per week and commits per daytime
(24-hour format). The general information is followed by Figure 7.2, which shows a table
on the left side presenting all commit orphans82 and a bar chart on the right side which
demonstrates the number of commit orphans per group. At the bottom there are box
plots showing the number of commits per User for each group, similar to the mock-up in
Figure 5.2.

Lastly, for the repository statistics, Figure 7.3 shows simple Git statistics on a timeline
(always based on the selected time granularity): The first line chart illustrates the commits
per time grain. The second shows on the positive x-axis the insertions per commit and
on the negative x-axis the deletions per commit. The last chart represents the number of
files affected per commit and time grain.

7.1.2 Project Statistics
The second section of the Group Phase dashboard focuses on the project related visualiza-
tions. As shown in Figure 7.4, the top most time series line graph shows the time tracked
based on the existing Timelog-entries per group, inspired by the concept of Figure 5.4.
An additional tab allows switching between the representation as Total per week and
Running Total. Similarly to the commit Distribution box plot, there is a box plot for the
time spent on the project per group, as shown at the bottom.

Secondly, Figure 7.5 shows additional statistics based on the time tracking information.
A funnel chart is displayed at the top of the left column, with terms sorted in descending
order by total time spent. To allow comparison of a winter term (which has fewer
students) with a summer term, the values are presented in percentages. One can see that
the order shown is: Term 4 (124%), Term 2 (122%), Term 1 (120%) and Term 3 (115%).
Below the Funnel chart there is a simple pie chart indicating the distribution of group
sizes, where three different group sizes occurred: groups of five, six or seven students.

The right-hand side of Figure 7.5 has a tab-pane with bar charts, allowing to switch
between views. The default tab consists of two bar charts: the top graph shows the
absolute value of time spent on the project per term and group and the bottom graph
shows the value in relation to the 110 hours in percentage. When switching the tab, the

82A commit orphan is a commit where neither the committer nor the author could be assigned to any
student in that group and term.

84

7.1. Data Visualization - Group Phase Data

bar chart is finer, showing the same bar chart per term, group and student. Figure 7.6
demonstrates the difference in detail.

Figure 7.1: Group Phase dashboard (Part 1)

85

7. Education Intelligence Visualization

Figure 7.2: Group Phase dashboard (Part 2)

Figure 7.3: Group Phase dashboard (Part 3)

86

7.1. Data Visualization - Group Phase Data

Figure 7.4: Group Phase dashboard (Part 4)

Figure 7.5: Group Phase dashboard (Part 5)

87

7. Education Intelligence Visualization

(a) Time spent on the project per term and group

(b) Time spent on the project per term, group and student

Figure 7.6: Time spent on the project during the Group Phase (Bar charts)

88

7.2. Data Visualization - Individual Phase Data

7.2 Data Visualization - Individual Phase Data

A similar dashboard, as for the Group Phase data, was also created to visualize the data
of the Individual Phase, as shown in Figure 7.7 and 7.8. These visualizations follow
the same principles as the ones for the Group Phase. Since students track their time
manually, no project related statistics can be extracted. Hence, only repository statistics
are considered for the IP.

Starting with Figure 7.7, at the top there are four general information tiles, followed
by two histograms below on the left. In addition, there is a line chart illustrating the
submissions per semester and a box plot graph to the right that visualizes the points
achieved per semester during the IP.

Secondly, Figure 7.8 starts with a bar chart at the top left visualizing the attempts per
students and a pie chart on the right side illustrating the students per attempt. The
second row shows the distribution of commits per weekday on the left side and per
daytime on the right side as stacked bar charts. Lastly, the time series line chart at the
bottom visualizes the moments of commits as sum per day or as running total, depending
on the selected tab.

Figure 7.7: Individual Phase dashboard (Part 1)

89

7. Education Intelligence Visualization

Figure 7.8: Individual Phase dashboard (Part 2)

90

CHAPTER 8
Evaluation and Results

This chapter presents the results of the prototype’s crawler implementation of Chapter 6
and the data analysis. First, Section 8.1 outlines the result of the execution speed-up of
the implementation. In Section 8.2 a data exploration step is presented to draw a baseline
about the expectations within the data. The last part of the results demonstrates an
analysis of visualized data in Section 8.3. The chapter concludes with the evaluation of
the prototype in Section 8.4 and a discussion of the results in Section 8.5.

8.1 Execution Speed-up
The extraction process was executed on an iMac (Retina 5K, 27-inch, Late 2015) using a
3.4 GHz Quad-Core Intel Core i7 processor, 16 GB 2666MHz DDR4 RAM with macOS
Catalina 10.15.7 installed.

The program was implemented, as aforementioned in Section 6.2, using the Python
interpreter version 3.10.4 of March 24, 2022. The program was executed using Python’s
venv83 module. The venv module allows creating lightweight virtual environments which
can be isolated from the system. Each virtual environment has its own Python binary
and can have its own independent collection of Python packages installed in its directories
[86]. As already mentioned in the Program Configuration subsection, the crawler can be
configured to use several threads to speed up program execution and data processing.

To measure the surplus value of the parallelization as suggested in the Parallelization
subsection, the following program configurations were executed using the time tool on
macOS measuring the execution time:

1 python3 main.py --file <file> -p <np> --project -db "<db>" --git --stats

Listing 8.1: Program execution

83https://docs.python.org/3.10/library/venv.html, Accessed: 23.01.2023

91

https://docs.python.org/3.10/library/venv.html

8. Evaluation and Results

Listing 8.1 shows how to start the program using placeholder for the program arguments.
Where <np> was replaced with 1 and 8, and <file> with the values of the following:
2020SS.json, 2020WS.json, 2021SS.json, 2021WS.json. These combinations resulted in
eight different program executions. The <db> option is only a placeholder (and irrelevant
in this context) since every run simply got a new database. This configuration is as
extensive as possible in terms of time, as the Git processing already takes some time and
evaluating stats per commit (meaning insertions, deletions and affected files) adds extra
processing time on top. The time command line tool provides the following three values
as output:

• real - duration of the call from start to finish. It refers to the time elapsed between
pressing the Enter key and the completion of the command.

• user - amount of CPU time spent in user mode.
• sys - amount of CPU time spent in kernel mode.

To calculate the speed-up, the value of the real output is considered only. Table 8.1
shows the time measured and the number of threads used to process the data. The fourth
column is the calculated speed-up which compares the time of one thread t1 with eight
threads t8: Sp = t1

t8
.

Term Threads ti Avg. elapsed time Sp

SS20 1 46m 48.268s 3.405
8 13m 44.634s
1 11m 33.315sWS20
8 3m 19.296s

3.478

SS21 1 43m 18.307s 3.476
8 12m 27.425s
1 15m 59.821sWS21
8 4m 35.849s

3.479

Table 8.1: Measured speed up using parallel data processing

To sum up, the implemented parallelization as suggested in subsection Parallelization
lead to an average speed up of 3.405+3.478+3.476+3.479

4 = 3.4595 (based on ten runs each).

8.2 Expected Numbers
To verify the correctness of the extracted values and numbers (for example, when counting
the database rows), the raw data was analyzed using different tools. For simple CSV
files, the wc84 command line tool was used, for json/ndjson files the jq85 command line
tool was used.

84https://linuxize.com/post/linux-wc-command/, Accessed: 23.01.2023
85https://stedolan.github.io/jq/, Accessed: 23.01.2023

92

https://linuxize.com/post/linux-wc-command/
https://stedolan.github.io/jq/

8.2. Expected Numbers

The wc [-clmw] [file ...] command accepts input files while having various program
options available. To verify the exact number of entries in a CSV file, it is sufficient to
call it as wc -l <file>, which simply prints the number of lines.

For processing ndjson files, the lightweight processing tool called jq was used to extract
certain properties of the JSON. This tool is a small and lightweight open-source program
for displaying, filtering, processing and transforming the contents of files. It is very
useful for iterating through JSON array items, such as the stored objects in GitLab’s
exported ndjson files. It is also possible to filter the contents of a file to show only certain
values or to traverse all objects in an array. As jq supports comparisons, conditional and
regular expressions as well as various data transformation methods, it is highly suitable
for extracting available information for verification purposes.

In the following listings the commands used to extract the numbers, which were used as
baseline, are shown. To extract the number of issues per project, the bash commands of
Listing 8.2 can be used.

1 cat "./<foldername>/*/export/tree/project/issues.ndjson" | wc -l

Listing 8.2: Count issues using wc

Listing 8.3 counts the number of time tracking entries of Issues and MRs. As already
mentioned in Section 6.1, GitLab allows time tracking for both, so values must be summed
up at the end. The jq program is called with the -c option, which results, according to
the man-page, in a “compact instead of pretty-printed output.” That results in a single
line output for each JSON object instead of a more readable one. However, it makes a
significant difference since the “pretty-printed output” prints an object with newlines
after each property, whereas compact print everything in one line. The .timelogs[] then
selects the all array elements of the JSON object.

1 cat "./<foldername>/*/export/tree/project/issues.ndjson" | jq -c ’.timelogs[]’ |
wc -l

2 cat "./<foldername>/*/export/tree/project/merge_requests.ndjson" | jq -c
’.timelogs[]’ | wc -l

Listing 8.3: Count timelogs using jq and wc

93

8. Evaluation and Results

Listing 8.4 counts the number of users with the Developer role. Counting is done by taking
the unchanged input (with the dot argument) and piping the output of the respective
object into the select function. As a consequence, objects can be filtered based on the
access_level property.

1 cat "./<foldername>/*/export/tree/project/project_members.ndjson" | jq -c ’. |
select(.access_level==30)’ | wc -l

Listing 8.4: Count GitLab project user using jq and wc

The number of commits of a project can easily be extracted using the Git command line
tool itself, as in Listing 8.5. As proposed in Section 6.2, only commits of origin/main
and origin/master were considered. Therefore, a distinction was done by specifying the
respective remote branch.

1 COMMITS=0;
2 for d in ./<projects_root>/*/repo ; do
3 cd $d
4 VALUE_MASTER=$(git rev-list --count origin/master)
5 VALUE_MAIN=$(git rev-list --count origin/main)
6 echo "$d", "origin/master", $VALUE_MASTER, "origin/main", $VALUE_MAIN
7 COMMITS=$((COMMITS+VALUE_MAIN+VALUE_MASTER))
8 cd ../../../
9 done;

10 echo $COMMITS

Listing 8.5: Count commits of origin/main and origin/master branch

In the following, based on the exported archives, the expected numbers of each term are
discussed in more detail. As Tables 8.2 and 8.4 show, in summer terms (denoted with
prefix SS) more students take the class than in winter terms (denoted with prefix WS).
The high number of students in the summer term does not come as a surprise as it is
scheduled for the summer term in the university’s recommended path of study.

8.2.1 Individual Phase
With regard to the IP, Table 8.2 and 8.3 show the values for all available terms. As
expected, due to the course design, there are no entries found for Issues or time tracking
(Timelogs). For the sake of completeness these columns (Issues and Timelogs) are also
shown in Table 8.2. The Results column shows the number of entries in the Excel file
which is used to store the student’s points achieved during the grading phase. In addition
to the term-wise values of Table 8.2, in the course of the four terms examined in this
study, 816 students attended the IP of the class. Since for every term a new Excel file
is created, and students might retake the class, the number of the Results column is
different to the number of attended students.

Special attention should be given to the Empty repos column or Table 8.3. This number
indicates how many students were registered for the course at the beginning of the

94

8.2. Expected Numbers

semester but did not push any Code on the remote repository. To be more specific, a
repository is treated as empty if no commits have been pushed to the origin/main or
origin/master branch.

Notable differences are also found in the data about the summer term 2020: First of all,
399 students were registered to the class at the beginning of the term. In the exported
GitLab projects, however, only 389 students were found. The Excel file, on the other
hand, listed only 350 graded students. Hence, 39 out of the 49 students who did not
complete or pass the class logged in at least once. As the user management of GitLab is
based on a university wide authentication provider, the GitLab user is not created before
the user first signs in86.

Taking a closer look at Table 8.2, one can see that for both terms SS21 and WS21 the
number of results is one higher than the number of identified GitLab users (414 vs. 413
and 171 vs. 170). This indicates again that at least one student did not log in. One user
also committed Code into the repository (and therefore was graded), the other did not
push any code into the codebase.

Term Results Issues Timelogs Commits GitLab User
SS20 350 0 0 14265 389
WS20 151 0 0 4228 151
SS21 414 0 0 17523 413
WS21 171 0 0 6839 170q 1086 0 0 42855 1123

Table 8.2: Expected numbers for the Individual Phase

Term Results Empty repos Graded results ... thereof negative
SS20 350 23 (6.57%) 327 80 (24.46%)
WS20 151 25 (16.56%) 126 59 (46.83%)
SS21 414 33 (7.97%) 381 185 (48.56%)
WS21 171 28 (16.37%) 143 68 (47.55%)q 1086 109 (10.04%) 977 392 (40.12%)

Table 8.3: Grading numbers of the Individual Phase

86https://docs.gitlab.com/15.0/ee/user/profile/account/create_accounts.html#create-users-t
hrough-authentication-integrations, Accessed: 23.01.2023

95

https://docs.gitlab.com/15.0/ee/user/profile/account/create_accounts.html%23create-users-through-authentication-integrations
https://docs.gitlab.com/15.0/ee/user/profile/account/create_accounts.html%23create-users-through-authentication-integrations

8. Evaluation and Results

8.2.2 Group Phase
Similarly to the IP, the extracted reference values for the GP are listed in Table 8.4.

Noteworthy discrepancies of extracted numbers are also found in this dataset. The
dataset of summer term 2020, in particular, contains several inconsistencies:

Firstly, the total number of Timelogs is 22146. However, 5 are not from a user with
the Developer role, so they are not considered.

The number of GitLab users is exactly 250 but as there is a user which is in
two projects the unique number is 249. Moreover, since the COVID-19 pandemic
allowed young people to volunteer for social or military service, one student dropped
out after the IP but still appeared in GitLab as a user for the GP. In addition, a
tutor is in one project listed with Developer role. Thus, the number of students
graded after the Group Phase is three less than the number of users.

Otherwise, no more disparity was found.

Term Projects Issues Timelogs Commits GitLab User Graded students
SS20 41 5317 22141 25942 249 246
WS20 12 1338 4676 5977 67 67
SS21 34 4641 17471 22340 196 196
WS21 13 1126 5707 7239 75 75q 100 12422 49995 61498 587 584

Table 8.4: Expected numbers for the Group Phase

8.3 Data Analysis
As already mentioned at the beginning of this thesis, the proposing Education Intelligence
(EI) in a software engineering education context encloses the entire information required
to support lecturers and supervisors in evaluating the student’s performance. Therefore,
the following analyses can also be used in a productive environment as a fact-based
intelligence system for software engineering courses. Within the scope of the present
thesis, Within the scope of this study, a detailed analysis of the collected data is provided
in the following subsections so that RQ3 can be answered accordingly.

In addition to the visualization and analysis capabilities of Apache Superset, firstly,
Python was used in combination with Matplotlib87 to create the Violin plots and,
secondly, Tableau88 was used to generate advanced visualizations which exceed the
capabilities of Apache Superset and Python.

87https://matplotlib.org/, Accessed: 23.01.2023
88https://www.tableau.com/, Accessed: 23.01.2023

96

https://matplotlib.org/
https://www.tableau.com/

8.3. Data Analysis

8.3.1 Grade Analysis

Recall from Section 2.1 that students receive two grades, one grade for the Individual
Phase and one for the Group Phase. The student attending the IP only receive feedback
by means of the number of points they have achieved. Based on the standard grade
distribution, their results, however, can be transformed into artificial grades, which allows
easier comparison. In addition to the points for the submission of the assignment, the
points of the entry test are added to the sum of the total achievable points.

Individual Phase Grades. A student can receive a maximum of 90 (80 + 10) points
in the IP. Based on the standard grade distribution of Table 2.1, the grading of the IP is
structured as shown by Table 8.5. The sum of achieved submission points xS and entry
test points xE are denoted as x: x := xS + xE

AT Grade AT Code ECTS Grade Verbal Definition
1 S1 A Excellent if x Ø 77.5 points
2 G2 B Good if 65.0 Æ x < 77.5 points
3 B3 C Satisfactory if 52.5 Æ x < 65.0 points
4 G4 D,E Pass if 40.0 Æ x < 52.5 points
5 N5 F,FX Fail if xS < 40 points

Table 8.5: Individual Phase grading scheme

The limits of the Definition column in Table 8.5 are constructed as follows: at least 40
points must be achieved, which means that 40 + 10 points remain, resulting in 50

4 = 12.5
equal steps. Recall that it is required that the submission is graded with at least 40
points, otherwise a negative course certificate is issued. In the past, students were also
required to achieve at least five points in the entry test. Since data on student’s entry
test points is incomplete, they are awarded with five points to be comparable. Only if
the submission is positively graded, the additional entry test points are considered for
the grading scheme.

Based on the explained grading scheme, the grades as shown in Table 8.6 are derivable
for all submissions which were not empty. It demonstrates the distribution of each grade
per term in percentages. Table 8.6a shows each grade in relation to all students over
all terms, and Table 8.6b presents each grade in relation to all students of the respective
term. During these four terms 977 submissions were graded.

It is evident that there is a change between the term 20SS and the subsequent terms.
Whereas in 20SS the number of excellent and good grades is relatively high. The number
of excellent grades fell below five percent, followed by a steady increase up to nearly
ten percent. The situation was similar for good grades, with the proportion halving but
remaining almost constant, as shown in Table 8.6b. The observed values can be traced
to the fact that the summer term 2020 was the last semester without a grading scheme

97

8. Evaluation and Results

Term 1 2 3 4 5
20SS 5.94 10.03 6.65 2.66 8.19

20WS 0.61 2.15 1.94 2.15 6.04
21SS 2.76 6.24 6.45 4.61 18.94

21WS 1.33 2.76 2.97 0.61 6.96
All 10.64 21.19 18.01 10.03 40.12

(a) Sum as fraction of total

Term 1 2 3 4 5
20SS 17.74 29.97 19.88 7.95 24.46

20WS 4.76 16.67 15.08 16.67 46.83
21SS 7.09 16.01 16.54 11.81 48.56

21WS 9.09 18.88 20.28 4.20 47.55

(b) Sum as fraction of rows

Table 8.6: Distribution of grades in Individual Phase (%)

designed for online-only submissions89. After this term the course staff team provided
the tutors with a 70-page grading plan with the intention to standardize the assessment
process. The new grading scheme resulted, on the one hand, in a high rate of negative
grades (nearly about 50%) and, on the other hand, in a way lower ratio of excellent
grades.

When visualizing the All-row of Table 8.6a in absolute numbers, as in Figure 8.1, it can
be seen that the data does not follow a normal distribution, as argued in the past by
scientists [3, 44, 113]. The illustration of Figure 8.1 becomes even more comprehensible
if, instead of grades, the points x are directly considered, as shown in Table 8.7 and
Figure 8.2.

For each term a sample based statistical analysis was done which resulted in a very
low mode value. On the other hand, mean and median followed a similar evolution to
the general grades shown in Table 8.6b: Term 20SS differs from the following terms,
whose values remain constant. However, the standard deviation s is different, it increased
steadily by about five over time. The 25 and 75%-Quantiles Q1 and Q3 indicate a high
spread of the points achieved by the students. In winter term 2021 25% even received
less than 2 points on the submission. The skewness of Figure 8.1 towards the negative
grade direction, can also be observed by the raw data in Table 8.7 where all values for
each term and the overall value denote a Left-Skewed (Negatively Skewed) distribution.

The last two rows of Table 8.7 show the overall analysis without grouping by term. The
population based statistical analysis substantiate the trend of each term with similar
values. While students with zero points do receive a course certificate, when these
students are excluded, as shown in the very last row, the picture is different. In this
context the mode is 56, mean and median are relatively close to each other. To conclude,
the 0-point-students falsify the overall student performance.

89In previous terms, grading took place at the university where the course staff team was present and
a much shorter grading plan was used. Since the summer term 2020 the grading procedure is done by
each tutor at home.

98

8.3. Data Analysis

Figure 8.2 illustrates the values of Table 8.7 per term using a Violin plot. The red dot
indicates the mean, the black bar represents the Interquartile range (IQR) and the blue
bars on top and bottom represent the minimum and maximum values for each plot. In
addition, the dashed line indicates the value of 40, representing the minimum value to
pass the Individual Phase. The distribution of points is easier to see in Figure 8.2 than in
Table 8.7. The values around the minimum score, are very waisted for the 2021 semester,
while they are almost unnoticeable for the 2020 semester.

Figure 8.1: Individual Phase grades distribution

Term Mode m̄ Mean x̄ Median x̃ Standard deviation s Q1 Q3 Skewness g1 Sample Size n

20SS 0 55.28 63 25.10 45.00 75.00 -1.02 327
20WS 0 39.02 48 27.28 13.25 61.75 -0.16 126
21SS 0 39.09 48 27.35 14.00 61.00 -0.03 381
21WS 0 39.14 48 30.64 2.00 67.50 -0.09 143

µ µ̃ ‡ N

All 0 44.51 52 28.13 19.00 69.00 -0.35 977
†90 56 52.26 56.50 22.88 31.00 71.00 -0.54 823

Table 8.7: Statistical analysis of Individual Phase points x

90Filtered results with 0 points on submission

99

8. Evaluation and Results

Figure 8.2: Individual Phase’s achieved points per term (Violin plot)

Group Phase Grades. As for the IP, the distribution of the grades for the Group
Phase can be analyzed as shown in Table 8.8. This table is structured as before: Table 8.8a
shows each grade relative to all students across all terms, and Table 8.8b lists each grade
relative to all students of the respective term. These tables only consider students who
passed the IP, all other students are excluded, resulting in 584 students91. However,
in this particular case only the grade is available. It can be seen that both subtables
are very right-skewed (positively skewed, Table 8.10 g1-column), having a high focus on
excellent and good grades. In both terms of 2020, not a single student received a grade
of 4 or 5, and in 2021, only a few students received these grades: three in the summer
term and one in the winter term. Besides the skewness, it becomes evident that, with the
exception of winter term 2020, the percentage values for each grade is relatively steady
for 1s and 2s, and even decreasing for 3s. Due to the nature and design of the GP, the
4’s and 5’s are insignificant low as opposed to the overall values — 0.85% of the overall
distribution.

A similar picture is drawn when statistically analyzing the grades, as shown in Table 8.9.
The most common value is — as expected when considering Table 8.8 — a 1, and also
the mean x̄ respectively µ and the median x̃ respectively µ̃ all show the grade of 1.
Furthermore, the standard deviation s and ‡ is rather low, indicating that the values are
very close to each other.

The distribution of the grades can also be determined either for each term, as in Figure 8.3,
or per research division, as in Figure 8.4. Figure 8.3 simply represents a visualization
of the absolute values of Table 8.8b. Figure 8.4, however, is more interesting in that

91977 ≠ 392 = 585 ”= 584 (according to Table 8.3). As one student dropped out in SS20 due to
mandatory military service during the first COVID-19 lockdown and, therefore, this student is missing in
the data.

100

8.3. Data Analysis

particular case. While the 2s in both departments are essentially identical, Research
Division B has more 3s and Division A has about the same proportion more 1s. It is also
notable that the negatively graded students exclusively were part of Research Division A.

Term 1 2 3 4 5
20SS 34.25 6.51 1.37 0.00 0.00

20WS 7.71 2.23 1.54 0.00 0.00
21SS 28.77 3.42 0.86 0.17 0.34

21WS 10.96 1.37 0.17 0.34 0.00
All 81.68 13.53 3.94 0.51 0.34

(a) Sum as fraction of total

Term 1 2 3 4 5
20SS 81.30 15.45 3.25 0.00 0.00

20WS 67.16 19.40 13.43 0.00 0.00
21SS 85.71 10.20 2.55 0.51 1.02

21WS 85.33 10.67 1.33 2.67 0.00

(b) Sum as fraction of rows

Table 8.8: Distribution of grades in Group Phase (%)

Term m̄ x̄ x̃ s g1 n

20SS 1 1.22 1 0.49 2.16 246
20WS 1 1.46 1 0.72 1.21 67
21SS 1 1.21 1 0.61 3.81 196
21WS 1 1.21 1 0.60 3.30 75

µ µ̃ ‡ N

All 1 1.24 1 0.58 2.84 584

Table 8.9: Statistical analysis of Group Phase grades

Figure 8.3: Group Phase grade distribution per term

101

8. Evaluation and Results

Figure 8.4: Group Phase grade distribution per research division

Final Grades. When, the data of the IP and GP are combined finally, the final grade
can be calculated. The final value is a weighted calculation of the two grades: 0.25úIP
grade + 0.75úGP grade. Thus, the value of the Individual Phase does not influence
the final grade much, except for a 4. If that is the case the final grade is one lower
than the GP grade, otherwise the GP grade also determines the final grade. Table 8.10
visualizes the grades as fraction of total over all terms and in relation to all students of
the respective term.

Although the evaluation of the course shows a high rate of negative grades, at approxi-
mately 40% as in Table 8.10a, the rate of excellent and good grades is about 15% higher
than the negative ones. Therefore, the majority of the students’ overall performance in
this course can be considered passing, with emphasis on the very good grades.

The observed phenomenon, as aforementioned in the Individual Phase Grades paragraph,
of the negative grades is also reflected in both subtables of Table 8.10. Since students
who fail the IP receive a negative certificate and must not participate in the GP.

Figure 8.5 visualizes the values of Table 8.10b in absolute numbers per term.

With regard to the statistical analysis of Table 8.11, the trends of Table 8.10a and 8.10b
are reflected in the mode value m̄ and mean x̄ respectively µ and also the standard
deviation s and ‡. The value of the median x̃ respectively µ̃ represents the overall values
as shown in Table 8.10a. Approximately half of the students received a grade better
than a 3 and half received a grade worse. Another interesting trend can be seen in the
skewness column g1 where the overall evaluation as well as the winter term 2020 are
positively-skewed and the subsequent terms are all negatively-skewed.

102

8.3. Data Analysis

Term 1 2 3 4 5
20SS 12.90 11.26 1.02 0.00 8.29

20WS 1.74 3.89 1.23 0.00 1.23
21SS 7.88 10.85 1.02 0.10 19.14

21WS 3.68 3.38 0.41 0.20 6.96
All 26.20 29.38 3.68 0.31 40.43

(a) Sum as fraction of total

Term 1 2 3 4 5
20SS 38.53 33.64 3.06 0.00 24.77

20WS 13.49 30.16 9.52 0.00 46.83
21SS 20.21 27.82 2.62 0.26 49.08

21WS 25.17 23.08 2.80 1.40 47.55

(b) Sum as fraction of rows

Table 8.10: Distribution of final grades (%)

Figure 8.5: Distribution of grades per term

Term m̄ x̄ x̃ s g1 n

20SS 1 2.39 2.0 1.58 0.86 327
20WS 5 3.37 3.0 1.61 -0.12 126
21SS 5 3.30 3.0 1.72 -0.13 381
21WS 5 3.23 3.0 1.77 -0.11 143

µ µ̃ ‡ N

All 5 2.99 2.0 1.72 0.18 977

Table 8.11: Statistical analysis of final grades

103

8. Evaluation and Results

8.3.2 Time Spent Analysis
In the following section the time spent on the project by students during the IP, GP and
in total are analyzed in more detail. By means of an easier comparison, the time planned
for each stage tp is divided into three categories in which x is the student’s time:

• Low: CL: x < tp ú 0.9

• Target: CT : tp ú 0.9 Æ x Æ tp ú 1.1

• High: CH : x > tp ú 1.1

The value of tp is different in the following paragraphs: for the paragraph about the
Individual Phase it is 40 hours, for the paragraph about the Group Phase it is 110 hours
and for the last paragraph it is 150 hours.

Individual Phase. For the summer term 2020 does not exist any data about the
IP time spent on the project anymore, so this term is ignored in the following tables.
Thus, 650 students remain (see Table 8.7). Table 8.12 illustrates the distribution of
time spent on the project for the available terms in relation to all students and the
respective students in a semester. With regard to Table 8.12a, it can be concluded that
the absolute majority of students lies within the highest category CH . Moreover, 7.54% of
all students (49 people in absolute numbers) did not manage to provide the timesheet in
their submission. Table 8.12b indicates that for both terms in 2021 the relative number of
students in the highest category decreased, while the lowest category increased. However,
two-thirds of all students are still in category CH .

Term CL CT CH n.a.
20SS / / / /

20WS 1.85 2.00 14.31 1.23
21SS 9.85 6.62 37.54 4.62

21WS 3.38 2.77 14.15 1.69
All 15.08 11.38 66.00 7.54

(a) Sum as fraction of totals

Term CL CT CH n.a.
20SS / / / /

20WS 9.52 10.32 73.81 6.35
21SS 16.80 11.29 64.04 7.87

21WS 15.38 12.59 64.34 7.69
(b) Sum as fraction of rows

Table 8.12: Distribution of the categorized time spent on the project during the Individual
Phase (%)

When analyzing the time tracking records, as in Table 8.13, it becomes evident that
the numbers highly differ from the planned time of 40 hours. Mean and median are
approximately 20 hours higher than the planned value. The standard deviation value of
20 hours shows a high degree of dispersion within a semester between students. This is
also reflected in the visualization of these numbers (without the 0-hour-students) using a

104

8.3. Data Analysis

histogram, as in Figure 8.6. Based on the Freedman-Diaconis rule [49], the histogram is
divided into 30 bins each seven hours wide and also shows a normal distribution around
the median of 57.95 hours. Furthermore, the positive skewness g1, as demonstrated in
the ‡-row of Table 8.13, can be observed. The histogram also shows that there are some
extreme outliers with more than 100 as well as more than 200 hours.

Term m̄ x̄ x̃ s g1 n

20WS 92.00 67.62 61.75 28.81 1.50 118
21SS 0.00 55.87 55.00 27.01 0.32 351
21WS 42.00 56.63 56.00 23.68 -0.05 132

µ µ̃ ‡ N

All 0.00 58.35 57.00 27.02 0.57 601
‡92 56.0 60.46 57.95 25.07 0.95 580

Table 8.13: Statistical analysis of time spent on the project during the Individual Phase

Figure 8.6: Histogram of the time spent on the project during the Individual Phase (‡92)

92Excluding the students who spent zero hours on the Individual Phase

105

8. Evaluation and Results

Group Phase. The distribution of time spent on the project during the Group Phase
is slightly different compared to the Individual Phase. As demonstrated in Table 8.14 —
in particular in the last row — the number of students within the target category CT is
approximately three times higher compared to Table 8.12a. In addition, the outlier in
the lower category CL as well as in CH marginally decreased. Table 8.14b also shows
steady values for each category over all terms. From this, it can be inferred that students
did not put in more effort over time, as measured by hours.

Term CL CT CH n.a.
20SS 5.31 15.07 21.75 0.00

20WS 0.86 4.28 6.34 0.00
21SS 5.31 11.47 16.61 0.17

21WS 1.54 3.94 7.36 0.00
All 13.01 34.76 52.05 0.17

(a) Sum as fraction of totals

Term CL CT CH n.a.
20SS 12.60 35.77 51.63 0.00

20WS 7.46 37.31 55.22 0.00
21SS 15.82 34.18 49.49 0.51

21WS 12.00 30.67 57.33 0.00
(b) Sum as fraction of rows

Table 8.14: Distribution of the categorized time spent on the project during the Group
Phase (%)

The statistical analysis of all terms, shown in Table 8.15, also demonstrates that the
planned time of 110 hours is exceeded by about 20-25 hours (when referring to the mean
and median), but is relatively persistent. However, the standard deviation value of about
30-35 is rather high. Another interesting value is the mode m̄ which is 107 hours, and,
thus, located nearly at the target. Figure 8.7 shows the histogram of all terms combined,
having 31 bins with a width of nine hours. At this point, the skewness of 0.95 is again
clearly observable as the values are normally distributed tending towards the 110 planned
hours. Again, the histogram shows extreme outliers with more than 200 and even 300
hours spent on the GP.

Term m̄ x̄ x̃ s g1 n

20SS 160.25 131.47 122.28 35.82 1.23 246
20WS 129.25 133.66 129.83 36.28 1.03 67
21SS 88.0 126.03 121.0 30.16 0.38 19593

21WS 116.0 136.35 129.21 35.46 0.63 75
µ µ̃ ‡ N

All 107.0 130.53 123.38 34.1 0.95 583

Table 8.15: Statistical analysis of time spent on the project during the Group Phase

93196 students were officially part of the Group Phase. Although one student passed the Individual
Phase, he dropped out before the start of the Group Phase.

106

8.3. Data Analysis

Figure 8.7: Histogram of the time spent on the project during the Group Phase

Overall. To calculate the total time spent on the project by students, the sum of
both IP and GP is taken into account. Recall that, as shown in Table 8.11, there are
977 students who received a certificate, 327 out of these participated in the summer
term 2020. Since there is no data about the IP for this term, the data is excluded from
the following results, resulting in 650 remaining data points. Out of these records, all
students who failed the IP are also excluded as, consequently, there are no records for
the GP, resulting in 338 students. As shown in Table 8.14, again one student did not
complete the Group Phase resulting in 337 students who can be analyzed.

Table 8.16 demonstrates the distribution of the time spent on the project in the categories
CL, CT , CH and n.a. Considering the planned 150 hours for the class, it can be seen in
Table 8.16a that only about one-fifth truly lies within ±10% of the expected time, and
more than two-thirds put in more effort than planned. The relation between real and
planned effort is even worse for both winter terms, as in Table 8.16b, and paltry better
for the summer term. In addition to these values, it becomes evident that 3.56% (which
corresponds to an absolute number of 12) of the students were not able to provide the IP
timesheet, resulting in a n.a categorization. These students exclusively took the class in
summer term 2021.

The categories under observation become even more evident when viewing the concrete
statistical parameters, as in Table 8.17. The mean and median values for all terms and,
in general, are clearly above the planned time. In some cases, these values are up to 50
hours higher, which corresponds to 2 ECTS. Moreover, the standard deviation is also
around 50 hours. The indicated skewness g1 of 1.03 is also observable in the histogram

107

8. Evaluation and Results

Term CL CT CH n.a.
20WS 0.89 3.86 15.13 0.00
21SS 2.97 13.65 37.69 3.56

21WS 1.78 3.86 16.62 0.00
All 5.64 21.36 69.44 3.56

(a) Sum as fraction of totals

Term CL CT CH n.a.
20WS 4.48 19.40 76.12 0.00
21SS 5.13 23.59 65.13 6.15

21WS 8.00 17.33 74.67 0.00
(b) Sum as fraction of rows

Table 8.16: Distribution of the categorized total time spent on the project (%)

Term m̄ x̄ x̃ s Q1 Q3 g1 n

20WS 112.75 203.75 191.92 55.43 168.35 223.37 1.65 67
21SS 147.00 188.47 188.17 38.85 156.58 214.74 0.33 183
21WS 154.33 196.48 191.42 45.54 164.67 228.25 0.56 75

µ µ̃ ‡ N

All 149.75 193.47 190.0 44.49 162.33 217.50 1.03 325

Table 8.17: Statistical analysis of total time spent on the project

of Figure 8.8, which has 22 bins, each 16 hours wide. It also shows that the outliers are
again over 300 and even 400 hours of total time spent. These high numbers result from
the aggregation of previously observed outliers.

The histogram values of Figure 8.8 do not distinguish between terms and their trend over
time. Thus, when visualizing the time spent on the project for each term using a Violin
plot as in Figure 8.9, some trends can clearly be identified. Recall that for each plot in
Figure 8.9 the red dot represents the mean value, the black bar represents the IQR, and
the blue bars at the top and bottom represent the maximum and minimum values. In
addition, the dashed vertical line indicates the planned 150 hours. The difference between
minimum and maximum time definitely decreased during these terms. However, also in
the winter term 2020 there can be found blatant outlier, as shown in Figure 8.8. The
subsequent terms were much closer together when the minimum and maximum values
are considered.

In addition to the term, the data can also be categorized regarding the respective research
division, as demonstrated in Section 1.1. The overall trend of Figure 8.9 can also be
detected in this chart, however, the range of the students’ efforts is smaller for Research
Division B (Div. B) than for Research Division A (Div. A). Based on the design of the
course — keep in mind that the groups of Division A get a predefined project, whereas
the groups of Division B need to come up with their own project ideas — it becomes
evident that the groups working on the predefined project need a lot more time as the
other groups.

108

8.3. Data Analysis

8.3.3 Commit Time Analysis

In the following the commit timestamps are analyzed in more detail. For the IP the
whole timespan is considered (since it is only about four weeks), for the GP only the
weekday and daytime are analyzed and visualized in this chapter.

Figure 8.8: Histogram of the total time spent on the project

Figure 8.9: Total time spent on the project per term (Violin plot)

109

8. Evaluation and Results

Figure 8.10: Total time spent on the project per research division (Violin plot)

Individual Phase

Figure 8.11 visualizes the course of the commits based on the timestamp provided by the
commit. Hence, every commit which was authored later and, therefore, has a second,
authored timestamp will also only have the creation timestamp taken into account. The
x-axis shows the timeline, the y-axis represents the number of commits on a particular
day. In addition, the thickness of the line indicates the number of individual students on
that respective day, therefore, the thicker the line, the more individual students.

Looking at the graphs of Figure 8.11, it can be seen clearly that at the beginning of each
term there is little progress. After approximately the first quarter the number of commits
increases. The number continues to rise until about three-fourths of the time has elapsed,
followed by a steep increase lasting until the deadline. Each subfigure of Figure 8.11
has vertical lines denoting the deadline. However, in the summer term 2020 the initial
deadline was postponed for seven days due to the first COVID-19 lockdown, which is why
Figure 8.11a has two vertical lines. The first vertical line denotes the official date when
the students were notified about the deadline extension. Figure 8.11a is interesting as
the students back then did not continue to commit Code, which resulted in a decrease of
the number of commits after the notification. Around the last quarter of the Individual
Phase, the number of commits began to rise again.

72 hours before the deadline. The charts of Figure 8.11 are of even greater interest
when zooming into the peak and analyzing the last 72 hours before the final deadline.
The course of the commits are visualized in Figure 8.12 which displays even more crucial
features. It can be seen at which time the students work on the assignment: the peak
values are reached exclusively during the day, while the number of commits decreases
and reaches its lowest point at night. For all four terms the daily peak increased steadily
and reached its highest (and last) peak in the last 24 hours.

Table 8.18 shows that the absolute number of commits in the last 72 hours before
the deadline is reached, also deserves careful attention. The table illustrates that

110

8.3. Data Analysis

approximately 30% of all IP commits are made. The value of the first column of
Table 8.18 shows different values than Table 8.2, but the former only considers valid
commits (before the deadline). The values of Table 8.2, on the other hand, take into
account all commits made.

Term q Commits Commits72h Ratio (%)
20SS 14150 3931 27.78
20WS 4205 1162 27.63
21SS 17538 5534 31.55
21WS 6824 2160 31.65

All 42717 12787 29.93

Table 8.18: Ratio of the last 72h to the total amount of commits

(a) 20SS (b) 20WS

(c) 21SS (d) 21WS

Figure 8.11: Individual Phase Commit timestamps

111

8. Evaluation and Results

(a) 20SS (b) 20WS

(c) 21SS (d) 21WS

Figure 8.12: Last 72 hours before the deadline

Group Phase

The commit distribution of the Group Phase based on the weekday and daytime is
visualized in Figure 8.13. The figure shows the daytime on the x-axis, based on the date
of the creation of a commit, and the weekday on the y-axis. In addition, each square
is colored according to the distinct number of students. The bluer the tile the smaller
the number of students. The more orange the tile, the greater the number of students
who committed on the respective day and at timeframe. The third dimension shown in
Figure 8.13 is the size of a tile. The number of commits made on a particular weekday
and daytime define the size.

According to Figure 8.13, Monday to Thursday early afternoon until about eight o’clock
in the evening is a rather busy time, having the absolute peak on Thursday between
three and four pm. Moreover, on Friday a relatively small number of commits are made
and that students tend to stop working on the assignment earlier. On Saturday at the
same time, students start later than on other days and also end earlier than on weekdays.
On Sundays students seem to start working on the project shortly after noon and having
a relatively steady number of commits between four and eight pm.

112

8.3. Data Analysis

Figure 8.13: Commits per weekday and daytime, colored by no. of active students

8.3.4 Advanced Analysis
The combination of certain extracted features based on the commits during the GP
resulted in a newly calculated measure, as shown in Listing 8.1. Where q

Changes is
the sum of insertions and deletions (= changes) of all commits on day x, #|Students| is
the number of distinct students who committed on day x and q

tx is the sum of the
time spent on the project on day x in hours. For example, for an arbitrary day xa the
calculation of CTR(xa) results in the ratio of changes per student per hours spent on
the project. Hence, the value is also called Changes-Timelog-Ratio (CTR).

CTR(x) =
Σ Changes

|Students|
Σ tx

(8.1)

Figure 8.14 shows two line plots for each term. The upper row always denotes the number
of commits on a seven-day average. The second row displays the calculated CTR value
as shown in Equation 8.1. Again, the thicker the line, the more different students worked
during this time. The gray areas on top of each chart serve as a reference, indicating the
review periods of the groups with their respective course assistant.

All figures in 8.14 start with a decreasing curve, which can be explained easily as before
the first review meeting students are mostly required to complete project management
tasks. After this initial phase, as be seen in Figure 8.14, particularly the terms of 2020
are relatively steady (at very high values) but sharply increase at the end. Summer term
2020 additionally has a brief peak just before the second review date. The 2021 terms
indicate lower values as opposed to the previous year; the winter term also is, as a matter
of fact, the one with the smallest increase at the end.

113

8. Evaluation and Results

Ideally, the CTR value remains constant over time. However, all illustrations of Figure 8.14
at least have a slight increase at the end of the term. The idea of the CTR value is to
visualize changes over time in the workload (= Source Code changes) per student in
relation to the student’s effort (= time spent on the project). Since these values are also
aggregated by their seven-day average, increases at the end of a term can be interpreted
as follows: The students realize that they underestimated the workload and the end of
term is ahead. Based on the nature of Equation 8.1, the number of changes in relation
to the time effort on the project must be remarkably higher to create a notable increase.
Moreover, the lines of the CTR value in Figure 8.14 get thinner at the end of a term,
which indicates a smaller number of students working at this time than during a term.

Figure 8.14b also shows a slight decrease, which according to Equation 8.1, should quite
be the opposite: The changes decrease while the amount of time spent on the project
increases. This might indicate that time is artificially added to align the total time spent
within a group. To detect this kind of data manipulation an additional analysis of the
time spent history must be carried out. This can be done, for example, by using the
features presented in Figure 7.4.

However, it has to be kept in mind that by considering a relation of three different
variables only, it cannot be proven if students manipulated their time. The CTR value is
merely an indicator that there are measurable changes, compared to the rest of the term.

114

8.3.
D

ata
A

nalysis

(a) 20SS (b) 20WS

(c) 21SS (d) 21WS

Figure 8.14: Group Phase CTR value

115

8. Evaluation and Results

8.4 Expert Evaluation

In the following the evaluation of the prototype’s usability and the thesis’ initial hypotheses
is presented. As the latter were also part of the first survey (Appendix C), in this survey
the hypotheses were evaluated if the prototype matches the expert’s expectations. Similar
to the first survey of Section 5.2, the interviewer’s screen was shared during the whole
interview. To evaluate the usability, the most frequent use cases of the past were presented
to the interviewee. This showcase lasted for about ten minutes at the beginning of each
interview. The presented scenarios covered all possibilities to derive knowledge about
groups, with respect to the available data. Thus, only the dashboard of the Group Phase
was demonstrated.

8.4.1 Hypotheses evaluation

For the sake of simplicity, the following enumeration lists all hypotheses of the first survey
(Appendix C). However, the hypotheses numbered XIII and XIV were not evaluated.
These two would have required knowledge of the entire architecture that could not have
been provided in the time available for the survey. For the complete expert evaluation
survey see Appendix D.

I The visualization artifacts are portable and cross-platform
II The administration of the architecture should be possible within the existing GitLab

infrastructure.
III Visualization artifacts should be viewable offline (that is without being hosted on a

server)
IV It is important to select multiple semester to compare them against each other
V It is important to only show the current semester

VI It is important to quickly get an overview of all groups’ project state of the current
semester

VII Assuming you are responsible for multiple groups in the current semester, it is
important to quickly get an overview of all of your group’s project state

VIII Assuming you want to compare multiple groups, it is important to filter by research
divisions

IX Assuming you want to compare multiple groups, it is important to filter by groups
(only display a subset of all)

X It is important to customize the time granularity (i.e. display time series data per
day or week)

XI It is important to customize the timeframe, for example zooming into the last X
weeks while hiding the rest

XII It is important to filter by specific students

116

8.4. Expert Evaluation

XIII A software repository visualization architecture for software engineering education
should not require initial configuration

XIV A software repository visualization architecture for software engineering education
should be configurable during operation

Each hypothesis could be rated from one to five94 on the extent to which the expectation
was met. Figure 8.15 shows the results as a box plot per question, the diamond shape
indicates the average value. In general, eleven hypotheses were rated on average with at
least Satisfied, the median was five (Very satisfied) with the exception of hypothesis XI.
In addition, eight hypotheses were evaluated with no worse than a Neither. On average,
all hypotheses were rated with approximately 4.5 which is exactly between Satisfied and
Very satisfied.

1
Very dissatisfied

2 3 4 5
Very satisfied

XII

XI

X

IX

VIII

VII

VI

V

IV

III

II

I

Figure 8.15: Hypotheses evaluation results94

8.4.2 System Usability Scale
The System Usability Scale (SUS), developed by Brooke et al. [15] in 1996 as a “quick
and dirty” scale for surveys to swiftly assess a product or service’s usability. The survey
gives a single score on a scale that is easy to understand by a wide range of people, even
if they don’t know much about human factors or usability [6]. The scale ranges from zero

941 Very dissatisfied; 2 Dissatisfied; 3 Neither; 4 Satisfied; 5 Very satisfied

117

8. Evaluation and Results

to 100, however Bangor et al. [6] designed a 7-point adjective grading scale to provide
a more absolute assessment for SUS scores. These adjectives are: “Worst Imaginable”,
“Awful”, “Poor”, “OK”, “Good”, “Excellent” and “Best Imaginable.”

Four of the five participated experts rated the prototype with at least 92.5 points, while
one participant saw the usability more critical and rated it with 80. The average score of
the prototype’s is 91.5 points, as shown in Figure 8.16. Hence, the proposed prototype
can be rated as “Best Imaginable”, assuming the System Usability Scale is divided into
seven parts of equal size. Overall, the feedback on the prototype was very positive. The
main criticisms were that some parts of the UI were not as clear as they could be, for
example, to select a timeframe a date picker should be provided. In addition, some also
criticized that such an expert system should be complex since otherwise it may lack
capabilities to derive certain (complex) knowledge. However, the SUS explicitly asks if
one thought the system is easy to use.

0 10 20 30 40 50 60 70 80 90 100

SUS

Figure 8.16: System Usability Score results

8.5 Discussion
In this section, firstly, Section 8.5.1 discusses the results of this work in light of the
research questions defined in Section 1.3, and secondly, Section 8.5.2 further discusses
the analyses of Section 8.3.

8.5.1 Answering the Research Questions
Recall from Section 1.3 that RQ1 can be divided in two parts: RQ1a and RQ1b are about
the implementation of the data mining process and RQ1c is about the information needs
of the experts. RQ2 is about the implementation of the charts and dashboards and RQ3
is about the data analysis tasks.

re RQ1. The implementation of the data mining process and the collection of the
information needs of the experts was the first part of this work. As both sub-questions
(RQ1a and RQ1b) were independent of RQ1c, they were worked on in parallel. The
first two sub-questions, which are the first main research aspect, could be implemented
to address duplicate, incomplete, or mislabeled data in a flexible and reliable form, as
demonstrated in Chapter 6. In addition, it is also possible to speed up the processing of
more than 1200 repositories and 100,000 commits (on the main/master branch only) by
using the parallelization capabilities of the machine, as discussed in Section 8.1. Since this
thesis builds on the ideas of existing research projects [53, 56], the expert’s information

118

8.5. Discussion

needs were first derived from these two theses and formulated as hypotheses. These
hypotheses were agreed with a median score of 4 and an average score of 3.92 out of
5 points on the Likert-scale [40] (as Figure 5.17 illustrates). The identified needs and
requirements of the experts can be considered relevant and correct. Furthermore, the
experts verbally shared personal opinions to better understand their results.

re RQ2. Various tools were reviewed for the implementation of the prototype, and
Apache Superset was finally selected based on feedback from the expert interviews. The
created diagrams and dashboards were then evaluated in a final survey (as already
discussed in Section 8.4) to provide enough information for answering the second main
question of the thesis (RQ2a): What is an appropriate intelligence system for software
engineering education? The prototype was rated with a median score of 5 and an average
score of 4.48 out of 5 on the Likert scale [40] (as shown in Figure 8.15). In addition to
expert satisfaction, the SUS section of the expert evaluation resulted in a median score of
92.5 or an average score of 91.5 out of 100 points. Therefore, RQ2b can be answered with
confidence: the prototype meets the experts’ needs and perceptions of an intelligence
tool in a software development class to a high degree.

re RQ3. The analysis was mainly divided into two parts focusing on different granular-
ities, as shown in Section 8.3. To answer RQ3a for the features studied, a similar picture
emerges in terms of students’ grades and time spent: There are measurable differences
within a term. Scores for the Individual Phase use the full range of the possible 90 points,
with almost equal numbers of students scoring negatively as positively. At the same time
the results in the Group Phase are very skewed towards good and excellent grades. In
terms of time spent on the project during the course, the results are widely distributed.
The IQR is relatively constant, but the absolute values vary greatly within a semester.
There are students who spent less than 100 hours and some who spent almost 450 hours.

Comparing the analyses of individual terms with others, RQ3b can be answered in the
same way: there are measurable differences between different terms and research divisions.
During the IP, students of the summer term of 2020 performed slightly better (in terms
of grades) than in subsequent terms. The number of achieved points in the Individual
Phase was high in the first term and remained constant at about 50 thereafter. However,
the IQR slightly widened over time, and the relative number of students who achieved
a negative score remained constant at about 48%. The results in Group Phase, on the
other hand, remained relatively constant over time, with the exception of the winter term
2020. In terms of time spent on the project, as shown in Figure 8.9, there is a noticeable
trend of the median value being constant at around 190 hours. The maximum value was
constant in both terms of 2021 at around 300 hours. The IQR did not change either
over time. Another interesting fact emerges when the data are further broken down by
research division, as shown in Figure 8.10. It can be seen that students of Div. B spent
less time than students of Div. A.

119

8. Evaluation and Results

8.5.2 Interpretation of the Results of the Data Analysis
The results of Section 8.3 can be discussed and interpreted beyond the boundaries of the
previously answered research questions.

Points and Grades. First of all, the results presented in Section 8.3.1 might suggest
that the class has a very high failure rate, as about 40%95 of all submissions of the IP are
graded negatively. On the other hand, however, 95%96 of all students manage to pass
the IP no later than the second attempt. According to the course staff, the roots of these
values are the new online format: before the pandemic all submissions were reviewed
in so-called lab-sessions on site at the university. If a student did not show up, they
were not graded nor was their work evaluated (regardless of how many submissions they
had made at that time). Since the introduction of the online format, submitted work is
assessed as soon as at least one submission has been pushed to the remote repository. As
a result, the number of assessed submissions is much higher than it was years ago, and
even students who were not sure they would pass the exam before the pandemic are now
assessed.

The second aspect of the grade analysis is the high number of excellent grades in the GP.
Despite the high failure rate in the IP, with a probability of more than 80% students
will be graded with an 1 in the GP when they eventually pass the exam. Then, the
final grade is usually equals also the grade of the final certificate, as already explained in
the Final Grades paragraph of Section 8.3. More precisely, 543 of 977 graded students,
representing about 55% of all students at the time, received a course certificate with a 1
or 297. Furthermore, as shown in Table 8.4, 584 students attended the GP during this
period. Since students can only receive a positive certificate if they have passed the GP,
these 543 students must be put in proportion to the 584 students of the GP. Thus, the
probability is approximately 93%97 of receiving a 1 or 2 for the class when passing the
IP.

Time spent. The second major part of Section 8.3 which is about the time spent
by students on the project can be summarized as follows: the students’ effort is bigger
than expected and, thus, it is not valued enough. This starts with the IP, where the
median is 57.95 hours, almost 18 hours (or 44%) higher than planned. The situation
is slightly better for the GP where the median value of 123.38 hours is only about 14
hours (or 21%) higher than planned. However, when these numbers are broken down by
semester of study and research department, a different picture emerges. As can be seen
in Figure 8.10, the median value of students of Div. B is lower (and also closer to the
expected value) than the value of students of Div. A. At the same time, the students of
Div. A invest at least more time (if the minimum values are compared), but at the same
time the maximum value of Div. B is significantly lower in comparison. This result was

95392 out of 977 submissions were graded negatively
96767 of 810 students; 582 on the first attempt and 185 on the second attempt
97256 (43.84%) got a 1; 287 (49.14%) got a 2

120

8.5. Discussion

generally very surprising because students usually want to avoid Div. B, as they often
do not have a suitable project idea and do not want to have additional workload. On
the other hand, the already planned extension of the assignment of Div. A should be
carefully thought through. The general tenor of the students that the overall effort is too
high is supported by the results of Section 8.3.2.

Commit Time. With regard to the third main analysis stage, the analysis of commit
timestamps reveals highly interesting as well as insignificant findings. The latter could
simply be summed up as confirming the expected. To start with these, the easiest aspect
to identify is represented in Figure 8.11. All instructors in the course, as well as the
assignment for the IP, recommend starting early as the assignment is not designed for a
late start with a heavy workload. However, it is observed, and this is also confirmed by
the values of Table 8.18, that students do not follow this approach. To set the numbers
of Table 8.18 in relation: The average period of the IP was about 29 days. Within the
first 26 days 70.07% (or 29.930) of all valid commits98 were made (which is equivalent to
about 1151 per day). On the other hand, within the last 3 days about 4262 commits are
created per day, which is about 3.7 times higher.

One surprising insight that has emerged is that, unlike the comparatively short period of
the IP, during the GP the groups do not commit the code just before the meetings with
the lecture assistant (who is also responsible for grading the respective group).

The third interesting finding obtained is the one described in Section 8.3.4. The formula
of Equation 8.1, which takes changes, students, and effort in hours into account, serves
as a first attempt to relate these otherwise unrelated characteristics. However, this work
lacks a mathematical proof confirming that the result of CTR(x) is correct under all
circumstances. As discussed at the end of Section 8.3.4, the regression of this value is
suggested to serve as an initial indicator and needs to be improved and further explored
in the future.

8.5.3 Threats to Validity
This section describes the threats to the validity of the expert evaluations.

Number of Participants. The evaluation of this thesis only used five people and
was both quantitative and qualitative. This sample may be too small to generalize the
quantitative results of the evaluation, as this would usually require a larger number of
randomly chosen participants. According to Francis et al. [48], at 13, the minimum
sample size, it is likely that almost all the beliefs about Attitude, Subjective Norm, and
Perceived Behavioral Control will be covered.

Two out of seven staff members from Research Division A and one out of five from Division
B participated in the survey. In relative numbers, they represent 28% respectively 20%,

98Bear in mind that a commit is considered as valid if it is made before the deadline

121

8. Evaluation and Results

and overall, they represent 25% of all class staff core members. The number of tutors
varies from term to term, so it cannot be considered absolute. At the time of the
interviews, the two participating tutors accounted for about 15% of all tutors.

Participant Selection. All interviewees were part of the (core) staff team for the
class at TU Wien at the time of the interview. As this prototype tool is intended to be
used in the respective class, the amount of possible participants was very limited. Thus,
there is definitely a selection bias and should be considered if these results are mapped
to other classes. In the future, when new versions of the established prototype are used
for research, participants should also be chosen from other, similar classes to generate a
more uniform result.

Performance and Usability Issues. The prototype’s underlying project, Apache
Superset, sometimes was not as performant as needed to render the number of charts
created in the dashboards. That is, it resulted in timeout’s or other connectivity issues.
However, in case it happened, all these charts could have been restored quickly.

122

CHAPTER 9
Conclusion

In this work a comprehensive prototype was proposed for aggregating and visualizing
various data from different sources generated during a term in a software engineering
class. With the help of a data store and a visualization tool, the possibility of data
preparation and analysis was demonstrated. This topic unites three main scientific fields:
Mining Software Repositories, Data Visualization and Software Engineering Education.
Data-driven software engineering systems have, however, mostly been overlooked in
previous research. Existing solutions mainly focus on two of these fields, leaving the
space for a niche. For this reason, the term Education Intelligence was suggested to fill
the gap of a missing scientific method in software engineering education. Although the
system was created with the intention of assisting course staff in an educational context,
its broad usefulness is not confined to software engineering education only.

The literature and technology reviews revealed that there are already existing solutions
for educational purposes which all, however, focus on different aspects in education.
There is hardly any research conducted regarding MSR in an educational context. The
same accounts for data visualization, whose focus is mostly on business or scientific needs.

Based on the dataset exported from GitLab, the literature and technology research,
conceptual visualizations were created and a solution for the Extract, Transform, Load
(ETL) tasks was developed. In order to address the first research question (RQ1) about
the expert’s information needs and a suitable process and architecture for data collection,
the relevant information is described in Section 5.3 and Chapter 6. As this thesis is
built upon previous scientific research [53, 56], the initially derived hypotheses had to be
evaluated and the concepts had to be rated in expert interviews. Based on the results
of these interviews, which were conducted with the undergraduate software engineering
course staff at the TU Wien, the ETL implementation could be tailored to the identified
needs.

123

9. Conclusion

The feedback provided in the first interviews served as a solid basis for the prototype
refinement round. In an interview experts evaluated the Apache Superset based prototype
of Chapter 7 and also validated the hypotheses about a suitable intelligence system for a
software engineering class. In Section 8.4, the insights gained from the second round of
interviews were presented. These insights were used to determine the level of satisfaction
that the experts had with the implementation of charts and dashboards (RQ2). On a
Likert scale [40], the experts rated the system an average of 4.48 out of 5 in terms of
appropriateness. The system’s usability was evaluated as 91.5 out of 100 points.

In order to answer the data analysis related questions as specified for RQ3, Section 8.5
discusses the findings of Section 8.3 greater detail. This thesis examined student’s grades
and time spent of both course phases (Individual Phase and Group Phase) and on class
level. On the one hand, there were significant differences within a term between groups
and students, with some extreme outliers being measured. On the other hand, when
comparing terms as a whole, these outliers were balanced out by the overall results,
leading to smaller differences. However, the data for both cases indicates that the
expected effort in terms of time for both phases exceeded the expectations of the course
staff.

Future Work
Due to this study’s time constraints, not all ideas and analyses proposed by experts
could be realized. Thus, this thesis has given rise to many aspects in need of further
investigation. In the following, possible future research in this field is outlined.

As this thesis is built upon the GitLab archived data, there is currently no live monitoring
possible. GitLab provides two options for live monitoring, based on a modified program:
The data can either be accessed during CI pipeline runs or based on Webhooks99. As
both options definitely have advantages and disadvantages, no suggestion can be made
without more research.

As mentioned at the beginning of this thesis, the idea of creating a EI system is based
on the “Portfoliotrix” [53] and “Binocular” [56] systems. The capabilities of these two
systems in combination with the visualizations proposed by this study allows lecturers to
gain even more and also different insights.

Section 3.1 describes the experience report by Pérez and Rubio [95] about Project Based
Learning (PBL) in software engineering classes. The application of PBLs show significant
improvements over time, as discussed. The proposed analyses and visualizations might
serve as a sound starting point for a similar PBL format in the future. However, this
also requires some course redesign.

Lastly, from a technical perspective, due to the fact that the architecture was implemented
as a proof of concept, the system should also be deployable in a state-of-the-art manner,

99https://docs.gitlab.com/ee/user/project/integrations/webhooks.html, Accessed: 23.01.2023

124

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html

interacting with the GitLab system in the existing Kubernetes environment. Furthermore,
the prototype implementation can still be improved at some points for a more stable and
faster data transformation. The loading process of the stored information is currently
based on PostgreSQL. However, since various data sources and future metrics might not
work well in a relational database environment, Apache Drill100 should be considered as
a data connector application.

100https://drill.apache.org/, Accessed: 23.01.2023

125

https://drill.apache.org/

List of Figures

1.1 Data Science Road Map . 5

2.1 Questions that are targeted by the visualization procedure 12
2.2 Population vs. Sample . 14
2.3 Normal Distribution . 14
2.4 Example of Skewness . 18
2.5 Example of Kurtosis . 18

3.1 gitinspector Screenshot . 24
3.2 Apache Superset Slack example dashboard 25
3.3 OpenSearch example dashboard . 27
3.4 Microsoft Power BI example dashboard 28
3.5 Plotly example dashboard . 29

4.1 GitLab’s development board . 33

5.1 Mock-up: Group status overview card . 38
5.2 Mock-up: Code contribution distribution per group normalized in percent 39
5.3 Mock-up: Commit distribution per hour (24-hour format) 40
5.4 Mock-up: Time tracking history per group over time (weekly basis) 40
5.5 Mock-up: Time distribution radar chart for all groups 41
5.6 Mock-up: Flow ranking . 42
5.7 Mock-up: Variations of ranking groups by their time spent on the project 43
5.8 Mock-up: Variants of group rankings by their number of tests and coverage 44
5.9 Mock-up: Variation of Figure 5.8, added quantiles 45
5.10 Mock-up: Group overview of the current status 47
5.11 Mock-up: General group statistics . 48
5.12 Mock-up: Group Comparison view . 49
5.13 Mock-up: Ranking view of all groups . 50
5.14 Roles of interview participants . 53
5.15 Information needs student group grading 54
5.16 Information needs student group comparing and ranking 55
5.17 Hypotheses results . 56
5.18 Available views evaluation result . 58
5.19 Evaluation of Figure 5.1 . 59

127

5.20 Evaluation of Figure 5.8 and 5.9 . 60
5.21 Evaluation of Figure 5.8 and 5.9 . 60

6.1 GitLab’s export structure . 64
6.2 csv Schema . 75
6.3 gitlab Schema . 75

7.1 Group Phase dashboard (Part 1) . 85
7.2 Group Phase dashboard (Part 2) . 86
7.3 Group Phase dashboard (Part 3) . 86
7.4 Group Phase dashboard (Part 4) . 87
7.5 Group Phase dashboard (Part 5) . 87
7.6 Time spent on the project during the Group Phase (Bar charts) 88
7.7 Individual Phase dashboard (Part 1) . 89
7.8 Individual Phase dashboard (Part 2) . 90

8.1 Individual Phase grades distribution . 99
8.2 Individual Phase’s achieved points per term (Violin plot) 100
8.3 Group Phase grade distribution per term 101
8.4 Group Phase grade distribution per research division 102
8.5 Distribution of grades per term . 103
8.7 Histogram of the time spent on the project during the Group Phase . . . 107
8.8 Histogram of the total time spent on the project 109
8.9 Total time spent on the project per term (Violin plot) 109
8.10 Total time spent on the project per research division (Violin plot) 110
8.11 Individual Phase Commit timestamps . 111
8.12 Last 72 hours before the deadline . 112
8.13 Commits per weekday and daytime, colored by no. of active students . . 113
8.14 Group Phase CTR value . 115
8.15 Hypotheses evaluation results . 117
8.16 System Usability Score results . 118

128

List of Tables

2.1 Standard grading scheme . 11

6.1 Program arguments . 69
6.2 Result of Listing 6.14 for all four terms 80
6.3 Result of View ind_commits_points_cat 81
6.4 Pseudonymized SQL tables lineup . 81
6.5 Pseudonymized SQL (Materialized) Views lineup 81

8.1 Measured speed up using parallel data processing 92
8.2 Expected numbers for the Individual Phase 95
8.3 Grading numbers of the Individual Phase 95
8.4 Expected numbers for the Group Phase 96
8.5 Individual Phase grading scheme . 97
8.6 Distribution of grades in Individual Phase (%) 98
8.7 Statistical analysis of Individual Phase points x 99
8.8 Distribution of grades in Group Phase (%) 101
8.9 Statistical analysis of Group Phase grades 101
8.10 Distribution of final grades (%) . 103
8.11 Statistical analysis of final grades . 103
8.12 Distribution of the categorized time spent on the project during the Individual

Phase (%) . 104
8.13 Statistical analysis of time spent on the project during the Individual Phase 105
8.14 Distribution of the categorized time spent on the project during the Group

Phase (%) . 106
8.15 Statistical analysis of time spent on the project during the Group Phase . 106
8.16 Distribution of the categorized total time spent on the project (%) 108
8.17 Statistical analysis of total time spent on the project 108
8.18 Ratio of the last 72h to the total amount of commits 111

129

List of Algorithms

6.1 async_process_call . 74

List of Listings

6.1 Example of an JSON object in issues.ndjson 65
6.2 Example of a timelogs object in merge_requests.ndjson 65
6.3 Excerpt of project_feature.ndjson 66
6.4 Example of an JSON object in project_members.ndjson 67
6.5 Structure of the crawler’s JSON config file 70
6.6 MainCrawler Python schematic class 72
6.7 __process_individual_phase_groups_async Python schematic Code . 74
6.8 Firstname anonymization . 77
6.9 Unique property anonymization . 77
6.10 Create Materialized View syntax in PostgreSQL 78
6.11 ind_empty_repos_mview Materialized View of empty repositories . . . 78
6.12 Create View syntax in PostgreSQL . 79
6.13 ind_results_non_empty_repos View of all non-empty Individual Phase

repositories . 79
6.14 student_attempts_view View implementation 80
6.15 ind_commits_points_cat View of all Individual Phase students with cate-

gorized points and commits . 80
6.16 Jinja templating functionality example 82
8.1 Program execution . 91
8.2 Count issues using wc . 93
8.3 Count timelogs using jq and wc . 93
8.4 Count GitLab project user using jq and wc 94

131

8.5 Count commits of origin/main and origin/master branch 94
A.1 grp_commits_cat View . 151
A.2 grp_issue_project_view View . 151
A.3 student_grades_view View . 152
A.4 grp_user_timelog_view View . 152
B.1 commit_branch_mview Materialized View 155
B.2 grp_project_mview Materialized View 155
B.3 student_term_result_mview Materialized View 156
B.4 grp_user_project_mview Materialized View 156
B.5 grp_commit_user_mview Materialized View 156
B.6 grp_commit_stats_user_mview Materialized View 157

132

Acronyms

API Application Programming Interface. 10, 24, 28, 67, 73

BI Business Intelligence. 2, 4, 8, 23, 24

CI Continuous Integration. 2, 124

CPU Central processing unit. 71, 92

CRUD Create, Read, Update, and Delete. 10

CSV Comma-separated values. 26, 63, 71, 72, 75, 92, 93

ECTS European Credit Transfer and Accumulation System. 10, 107

EI Education Intelligence. 1, 2, 5, 83, 96, 123, 124

ETL Extract, Transform, Load. 6, 8, 63, 77, 123

GP Group Phase. 2, 4, 10, 11, 70–73, 83, 84, 89, 96, 97, 100, 102, 104, 106, 107, 109,
112, 113, 116, 119–121, 124

HTML Hypertext Markup Language. 23, 82

HTTP Hypertext Transfer Protocol. 10, 82

IDE Integrated Development Environment. 26, 29, 34

IP Individual Phase. 2, 4, 10, 11, 63, 64, 70–73, 79, 89, 94, 96, 97, 99, 100, 102, 104–107,
109–111, 119–121, 124

IQR Interquartile range. 16, 99, 108, 119

ITS Issue Tracking System. 8

JSON JavaScript Object Notation. 23, 27, 64, 66, 68–70, 93, 131

133

LoC Lines of Code. 40

MR Merge request. 64–66, 93, Glossary: Merge request

MSR Mining Software Repositories. 1, 8, 19, 20, 32, 84, 123

MV Materialized View. 35, 77–79, 81

ORM Object–relational mapping. 68

PBL Project Based Learning. 22, 124

REST Representational state transfer. 9, 10

SI Software Intelligence. 20

SQL Structured Query Language. 9, 10, 26, 66, 78, 79, 81, 82

SUS System Usability Scale. 117–119

UI User Interface. 2, 10, 26, 66, 118

US User Story. 3, 21

VCS Version Control System. 1, 8

XML Extensible Markup Language. 23, 82

134

Glossary

ELK Stack The abbreviation ELK stands for Elasticsearch101, Logstash102, and
Kibana103, three open source projects. Elasticsearch is a data analytics and search
engine. Logstash is a server-side data processing pipeline and transfers it to a stash
like Elasticsearch. In Elasticsearch, Kibana allows users to view data using charts
and graphs104 . 26

Git Distributed version control system . 5, 8, 19, 21, 23, 30, 34, 53, 55, 63, 68, 72, 73,
77, 84, 92, 94

GitLab GitLab is a source code hosting platform105. 4, 20, 30, 33, 34, 54, 55, 63, 64,
66–68, 71–76, 83, 93–96, 116, 123–125, 131

Merge request A merge request is a way of integrating a source branch A into a target
branch B. Such a merge request may include an unlimited number of commits.
When the (optional) reviewer approves the merge request, the code will be merged
into the targeted branch . 64, 134

Timelog A timelog is defines as a single entry of spent time, and can either be positive
(adding time) or negative (removing time)106. 64, 65, 84, 94, 96

101https://www.elastic.co/elasticsearch/, Accessed: 23.01.2023
102https://www.elastic.co/logstash/, Accessed: 23.01.2023
103https://www.elastic.co/kibana/, Accessed: 23.01.2023
104Source: https://www.elastic.co/what-is/elk-stack, Accessed: 23.01.2023
105https://gitlab.com/, Accessed: 23.01.2023
106https://docs.gitlab.com/15.0/ee/user/project/time_tracking.html, Accessed: 23.01.2023

135

https://www.elastic.co/elasticsearch/
https://www.elastic.co/logstash/
https://www.elastic.co/kibana/
https://www.elastic.co/what-is/elk-stack
https://gitlab.com/
https://docs.gitlab.com/15.0/ee/user/project/time_tracking.html

Bibliography

Print Resources
[1] Shari L Kitchenham Barbara A. and Pfleeger. “Personal Opinion Surveys”. In:

ed. by Janice, Sjøberg Dag I K Shull Forrest, and Singer. Springer London, 2008,
pp. 63–92. isbn: 978-1-84800-044-5. doi: 10.1007/978-1-84800-044-5_3. url:
https://doi.org/10.1007/978-1-84800-044-5_3.

[2] Efthimia Aivaloglou and Anna van der Meulen. “An Empirical Study of Students’
Perceptions on the Setup and Grading of Group Programming Assignments”. In:
ACM Trans. Comput. Educ. 21.3 (2021). doi: 10.1145/3440994. url: https://d
oi.org/10.1145/3440994.

[3] Noah Arthurs et al. “Grades are not Normal: Improving Exam Score Models Using
the Logit-Normal Distribution”. In: EDM. 2019.

[5] Adrian Bachmann et al. “The Missing Links: Bugs and Bug-Fix Commits”. In:
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. FSE ’10. Santa Fe, New Mexico, USA: Association
for Computing Machinery, 2010, 97–106. isbn: 9781605587912. doi: 10.1145/188
2291.1882308. url: https://doi.org/10.1145/1882291.1882308.

[6] Aaron Bangor, Philip T. Kortum, and James T. Miller. “An Empirical Evaluation
of the System Usability Scale”. In: International Journal of Human-Computer
Interaction 24 (6 July 2008), pp. 574–594. issn: 1044-7318. doi: 10.1080/1044731
0802205776.

[7] Elisa Baniassad et al. “STOP THE (AUTOGRADER) INSANITY: Regression
Penalties to Deter Autograder Overreliance”. In: ACM, Mar. 2021, pp. 1062–1068.
isbn: 9781450380621. doi: 10.1145/3408877.3432430.

[8] Olga Baysal, Reid Holmes, and Michael W Godfrey. “Situational awareness:
personalizing issue tracking systems”. In: 2013 35th International Conference on
Software Engineering (ICSE). IEEE. 2013, pp. 1185–1188. doi: 10.1109/ICSE.20
13.6606674.

137

https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1145/3440994
https://doi.org/10.1145/3440994
https://doi.org/10.1145/3440994
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1109/ICSE.2013.6606674
https://doi.org/10.1109/ICSE.2013.6606674

[9] Dane Bertram et al. “Communication, collaboration, and bugs: the social nature
of issue tracking in small, collocated teams”. In: Proceedings of the 2010 ACM
conference on Computer supported cooperative work. 2010, pp. 291–300. doi:
10.1145/1718918.1718972.

[11] Michael Blaha, David LaPlant, and Erica Marvak. “Requirements for repository
software”. In: Proceedings Fifth Working Conference on Reverse Engineering (Cat.
No. 98TB100261). IEEE. 1998, pp. 164–173. doi: 10.1109/WCRE.1998.723186.

[12] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. “Efficiently updating
materialized views”. In: ACM SIGMOD Record 15 (2 June 1986), pp. 61–71. issn:
0163-5808. doi: 10.1145/16856.16861.

[13] Alejandro Bogarín, Rebeca Cerezo, and Cristóbal Romero. “A survey on educa-
tional process mining”. In: Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 8 (1 Jan. 2018), e1230. issn: 19424787. doi: 10.1002/widm
.1230.

[14] David Bowen et al. “Team Skills of Engineers–Do We Teach What Industry
Wants?” In: Proceedings, International Conference on Engineering Education.
2004, pp. 16–21.

[15] John Brooke et al. “SUS-A quick and dirty usability scale”. In: Usability evaluation
in industry 189.194 (1996), pp. 4–7.

[16] Kevin Buffardi. “Assessing Individual Contributions to Software Engineering
Projects with Git Logs and User Stories”. In: Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. SIGCSE ’20. Portland, OR,
USA: Association for Computing Machinery, 2020, 650–656. isbn: 9781450367936.
doi: 10.1145/3328778.3366948. url: https://doi.org/10.1145/3328778.33669
48.

[19] Stephanie Carlisle. “Software: Tableau and Microsoft Power BI”. In: Technol-
ogy|Architecture + Design 2 (2 July 2018), pp. 256–259. issn: 2475-1448. doi:
10.1080/24751448.2018.1497381.

[20] Donald D. Chamberlin. “Early History of SQL”. In: IEEE Annals of the History
of Computing 34.4 (2012), pp. 78–82. doi: 10.1109/MAHC.2012.61.

[21] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured En-
glish Query Language”. In: Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control. SIGFIDET ’74.
Ann Arbor, Michigan: Association for Computing Machinery, 1974, 249–264. isbn:
9781450374156. doi: 10.1145/800296.811515. url: https://doi.org/10.1145/8
00296.811515.

[22] Hock Chuan Chan, Hong Jun Lu, and Kwok Kee Wei. “A Survey of SQL Language”.
In: Journal of Database Management 4 (4 Oct. 1993), pp. 4–16. issn: 1063-8016.
doi: 10.4018/jdm.1993100101.

138

https://doi.org/10.1145/1718918.1718972
https://doi.org/10.1109/WCRE.1998.723186
https://doi.org/10.1145/16856.16861
https://doi.org/10.1002/widm.1230
https://doi.org/10.1002/widm.1230
https://doi.org/10.1145/3328778.3366948
https://doi.org/10.1145/3328778.3366948
https://doi.org/10.1145/3328778.3366948
https://doi.org/10.1080/24751448.2018.1497381
https://doi.org/10.1109/MAHC.2012.61
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.4018/jdm.1993100101

[23] Miguel Morales Chan et al. “Perceived usefulness and motivation students towards
the use of a cloud-based tool to support the learning process in a Java MOOC”.
In: Proceedings of the International Conference MOOC-MAKER. 2017, pp. 73–82.

[24] Kenneth J. Chapman and Stuart van Auken. “Creating Positive Group Project
Experiences: An Examination of the Role of the Instructor on Students’ Perceptions
of Group Projects”. In: Journal of Marketing Education 23 (2 Aug. 2001), pp. 117–
127. issn: 0273-4753. doi: 10.1177/0273475301232005.

[25] K.K. Chaturvedi, V.B. Sing, and Prashast Singh. “Tools in Mining Software
Repositories”. In: IEEE, June 2013, pp. 89–98. isbn: 978-0-7695-5045-9. doi:
10.1109/ICCSA.2013.22.

[26] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. “An overview of
business intelligence technology”. In: Communications of the ACM 54 (8 Aug.
2011), pp. 88–98. issn: 0001-0782. doi: 10.1145/1978542.1978562.

[27] Jian Chen et al. “Assessing Teamwork Performance in Software Engineering
Education: A Case in a Software Engineering Undergraduate Course”. In: 2011
18th Asia-Pacific Software Engineering Conference. 2011, pp. 17–24. doi: 10.1109
/APSEC.2011.50.

[28] Li-Pang Chen. “Practical Statistics for Data Scientists: 50+ Essential Concepts
Using R and Python”. In: Technometrics 63 (2 Apr. 2021), pp. 272–273. issn:
0040-1706. doi: 10.1080/00401706.2021.1904738.

[29] Edgar Frank Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (1970), 377–387. issn: 0001-0782. doi: 10.1145/362384
.362685. url: https://doi.org/10.1145/362384.362685.

[30] Carol L. Colbeck, Susan E. Campbell, and Stefani A. Bjorklund. “Grouping in
the Dark”. In: The Journal of Higher Education 71 (1 Jan. 2000), pp. 60–83. issn:
0022-1546. doi: 10.1080/00221546.2000.11780816.

[31] Robert Gravlin Cooper, Scott J Edgett, and Elko J Kleinschmidt. “Portfolio
management for new products”. In: (2001).

[32] Julio César Cortés Ríos et al. “A Methodology for Using GitLab for Software
Engineering Learning Analytics”. In: 2019 IEEE/ACM 12th International Work-
shop on Cooperative and Human Aspects of Software Engineering (CHASE). 2019,
pp. 3–6. doi: 10.1109/CHASE.2019.00009.

[33] Michelle Craig et al. “Listening to Early Career Software Developers”. In: J.
Comput. Sci. Coll. 33.4 (2018), 138–149. issn: 1937-4771.

[34] Ilka Datig and Paul Whiting. “Telling your library story: tableau public for data
visualization”. In: Library Hi Tech News 35 (4 Aug. 2018), pp. 6–8. issn: 0741-9058.
doi: 10.1108/LHTN-02-2018-0008.

[35] Vladan Devedzic et al. “Metrics for Students’ Soft Skills”. In: Applied Measurement
in Education 31 (4 Oct. 2018), pp. 283–296. issn: 0895-7347. doi: 10.1080/08957
347.2018.1495212.

139

https://doi.org/10.1177/0273475301232005
https://doi.org/10.1109/ICCSA.2013.22
https://doi.org/10.1145/1978542.1978562
https://doi.org/10.1109/APSEC.2011.50
https://doi.org/10.1109/APSEC.2011.50
https://doi.org/10.1080/00401706.2021.1904738
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1080/00221546.2000.11780816
https://doi.org/10.1109/CHASE.2019.00009
https://doi.org/10.1108/LHTN-02-2018-0008
https://doi.org/10.1080/08957347.2018.1495212
https://doi.org/10.1080/08957347.2018.1495212

[37] Philipp Dumbach et al. “Exploration of Process Mining Opportunities In Educa-
tional Software Engineering - The GitLab Analyser”. In: EDM. 2020.

[39] Suvi Elonen and Karlos A. Artto. “Problems in managing internal development
projects in multi-project environments”. In: International Journal of Project
Management 21 (6 Aug. 2003), pp. 395–402. issn: 02637863. doi: 10.1016/S0263-
7863(02)00097-2.

[40] Robert Wall Emerson. “Likert Scales”. In: Journal of Visual Impairment & Blind-
ness 111 (5 Sept. 2017), pp. 488–488. issn: 0145-482X. doi: 10.1177/0145482X17
11100511.

[42] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “Knowledge
Discovery and Data Mining: Towards a Unifying Framework”. In: Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining.
KDD’96. Portland, Oregon: AAAI Press, 1996, 82–88.

[43] Michael Felderer and Fabian Jeschko. “A Process for Evidence-Based Engineer-
ing of Domain-Specific Languages”. In: ACM, June 2018, pp. 169–174. isbn:
9781450364034. doi: 10.1145/3210459.3210479.

[44] Lynn Fendler and Irfan Muzaffar. “THE HISTORY OF THE BELL CURVE:
SORTING AND THE IDEA OF NORMAL”. In: Educational Theory 58 (1 Feb.
2008), pp. 63–82. issn: 0013-2004. doi: 10.1111/j.1741-5446.2007.0276.x.

[46] Roy Thomas Fielding and Richard N. Taylor. “Architectural Styles and the Design
of Network-Based Software Architectures”. AAI9980887. PhD thesis. 2000. isbn:
0599871180.

[48] Jill J. Francis et al. “What is an adequate sample size? Operationalising data
saturation for theory-based interview studies”. In: Psychology & Health 25 (10
Dec. 2010), pp. 1229–1245. issn: 0887-0446. doi: 10.1080/08870440903194015.

[49] David Freedman and Persi Diaconis. “On the histogram as a density estimator:L2
theory”. In: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57
(4 1981). issn: 00443719. doi: 10.1007/BF01025868.

[50] Michael Friendly. “Milestones in the History of Data Visualization: A Case Study
in Statistical Historiography”. In: Classification — the Ubiquitous Challenge. Ed.
by Claus Weihs and Wolfgang Gaul. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 34–52. isbn: 978-3-540-28084-2.

[51] Rose F. Gamble and Matthew L. Hale. “Assessing individual performance in Agile
undergraduate software engineering teams”. In: 2013 IEEE Frontiers in Education
Conference. 2013, pp. 1678–1684. doi: 10.1109/FIE.2013.6685123.

[53] Patric Genfer et al. “Visualizing Metric Trends for Software Portfolio Quality
Management”. In: 2021 Working Conference on Software Visualization (VISSOFT).
2021, pp. 88–99. doi: 10.1109/VISSOFT52517.2021.00018.

[54] Carlo Ghezzi and Dino Mandrioli. “The Challenges of Software Engineering
Education”. In: 2006, pp. 115–127. doi: 10.1007/11949374_8.

140

https://doi.org/10.1016/S0263-7863(02)00097-2
https://doi.org/10.1016/S0263-7863(02)00097-2
https://doi.org/10.1177/0145482X1711100511
https://doi.org/10.1177/0145482X1711100511
https://doi.org/10.1145/3210459.3210479
https://doi.org/10.1111/j.1741-5446.2007.0276.x
https://doi.org/10.1080/08870440903194015
https://doi.org/10.1007/BF01025868
https://doi.org/10.1109/FIE.2013.6685123
https://doi.org/10.1109/VISSOFT52517.2021.00018
https://doi.org/10.1007/11949374_8

[55] Nicolas E. Gold and Jens Krinke. “Ethics in the mining of software repositories”.
In: Empirical Software Engineering 27 (1 Jan. 2022), p. 17. issn: 1382-3256. doi:
10.1007/s10664-021-10057-7.

[56] Johann Grabner et al. “Combining and Visualizing Time-Oriented Data from the
Software Engineering Toolset”. In: 2018 IEEE Working Conference on Software
Visualization (VISSOFT). 2018, pp. 76–86. doi: 10.1109/VISSOFT.2018.00016.

[58] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. “Maintaining
views incrementally”. In: ACM SIGMOD Record 22 (2 June 1993), pp. 157–166.
issn: 0163-5808. doi: 10.1145/170036.170066.

[60] P.E. Hadjidoukas et al. “torcpy: Supporting task parallelism in Python”. In:
SoftwareX 12 (July 2020), p. 100517. issn: 23527110. doi: 10.1016/j.softx.202
0.100517.

[61] Matthew Hale, Noah Jorgenson, and Rose Gamble. “Predicting individual perfor-
mance in student project teams”. In: 2011 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T). 2011, pp. 11–20. doi: 10.1109
/CSEET.2011.5876078.

[62] Maria Halkidi et al. “Data mining in software engineering”. In: Intelligent Data
Analysis 15.3 (2011), pp. 413–441.

[63] Ahmed E. Hassan. “The road ahead for Mining Software Repositories”. In: IEEE,
Sept. 2008, pp. 48–57. isbn: 978-1-4244-2654-6. doi: 10.1109/FOSM.2008.4659248.

[64] Ahmed E. Hassan and Tao Xie. “Software Intelligence: The Future of Mining
Software Engineering Data”. In: Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research. FoSER ’10. Santa Fe, New Mexico, USA:
Association for Computing Machinery, 2010, 161–166. isbn: 9781450304276. doi:
10.1145/1882362.1882397. url: https://doi.org/10.1145/1882362.1882397.

[65] Marc Hesenius et al. “Towards a Software Engineering Process for Developing
Data-Driven Applications”. In: 2019 IEEE/ACM 7th International Workshop on
Realizing Artificial Intelligence Synergies in Software Engineering (RAISE). 2019,
pp. 35–41. doi: 10.1109/RAISE.2019.00014.

[66] Mike Hintze and Khaled El Emam. “Comparing the benefits of pseudonymisation
and anonymisation under the GDPR”. In: Journal of Data Protection & Privacy
2.2 (2018), pp. 145–158.

[67] John Hunt. “Multiprocessing”. In: 2019, pp. 363–376. doi: 10.1007/978-3-030-2
5943-3_31.

[69] David Jackson. “A software system for grading student computer programs”. In:
Computers & Education 27.3 (1996), pp. 171–180. issn: 0360-1315. doi: https:
//doi.org/10.1016/S0360-1315(96)00025-5. url: https://www.sciencedirect
.com/science/article/pii/S0360131596000255.

141

https://doi.org/10.1007/s10664-021-10057-7
https://doi.org/10.1109/VISSOFT.2018.00016
https://doi.org/10.1145/170036.170066
https://doi.org/10.1016/j.softx.2020.100517
https://doi.org/10.1016/j.softx.2020.100517
https://doi.org/10.1109/CSEET.2011.5876078
https://doi.org/10.1109/CSEET.2011.5876078
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.1145/1882362.1882397
https://doi.org/10.1145/1882362.1882397
https://doi.org/10.1109/RAISE.2019.00014
https://doi.org/10.1007/978-3-030-25943-3_31
https://doi.org/10.1007/978-3-030-25943-3_31
https://doi.org/https://doi.org/10.1016/S0360-1315(96)00025-5
https://doi.org/https://doi.org/10.1016/S0360-1315(96)00025-5
https://www.sciencedirect.com/science/article/pii/S0360131596000255
https://www.sciencedirect.com/science/article/pii/S0360131596000255

[71] An Ju and Armando Fox. “TEAMSCOPE: Measuring Software Engineering
Processes with Teamwork Telemetry”. In: Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. ITiCSE
2018. Larnaca, Cyprus: Association for Computing Machinery, 2018, 123–128.
isbn: 9781450357074. doi: 10.1145/3197091.3197107. url: https://doi.org/10
.1145/3197091.3197107.

[72] Eirini Kalliamvakou et al. “The Promises and Perils of Mining GitHub”. In:
Proceedings of the 11th Working Conference on Mining Software Repositories.
MSR 2014. Hyderabad, India: Association for Computing Machinery, 2014, 92–101.
isbn: 9781450328630. doi: 10.1145/2597073.2597074. url: https://doi.org/10
.1145/2597073.2597074.

[73] Yasutaka Kamei and Andy Zaidman. “Guest editorial: Mining software repositories
2018”. In: Empirical Software Engineering 25 (3 May 2020), pp. 2055–2057. issn:
1382-3256. doi: 10.1007/s10664-020-09817-8.

[74] D.A. Keim. “Information visualization and visual data mining”. In: IEEE Trans-
actions on Visualization and Computer Graphics 8.1 (2002), pp. 1–8. doi: 10.110
9/2945.981847.

[75] D.A. Keim et al. “Challenges in Visual Data Analysis”. In: Tenth International
Conference on Information Visualisation (IV’06). 2006, pp. 9–16. doi: 10.1109
/IV.2006.31.

[76] Iman Keivanloo et al. “A Linked Data platform for mining software repositories”.
In: 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).
2012, pp. 32–35. doi: 10.1109/MSR.2012.6224296.

[77] Tobias Kuipers and Joost Visser. “A Tool-based Methodology for Software Portfolio
Monitoring”. In: Software Audit and Metrics. 2004.

[78] Khoa Le, Caslon Chua, and Rosalind Wang. “Mining Software Engineering Team
Project Work Logs to Generate Formative Assessment”. In: 2017 24th Asia-Pacific
Software Engineering Conference Workshops (APSECW). 2017, pp. 78–83. doi:
10.1109/APSECW.2017.19.

[79] Ronald J. Leach. “Using Metrics to Evaluate Student Programs”. In: SIGCSE
Bull. 27.2 (June 1995), 41–43. issn: 0097-8418. doi: 10.1145/201998.202010. url:
https://doi.org/10.1145/201998.202010.

[80] PS Lokhande et al. “Efficient way of web development using python and flask”.
In: (2015).

[81] H. P. Luhn. “A Business Intelligence System”. In: IBM Journal of Research and
Development 2 (4 Oct. 1958), pp. 314–319. issn: 0018-8646. doi: 10.1147/rd.24
.0314.

[82] Ami Marowka. “Python accelerators for high-performance computing”. In: The
Journal of Supercomputing 74 (4 Apr. 2018), pp. 1449–1460. issn: 0920-8542. doi:
10.1007/s11227-017-2213-5.

142

https://doi.org/10.1145/3197091.3197107
https://doi.org/10.1145/3197091.3197107
https://doi.org/10.1145/3197091.3197107
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1007/s10664-020-09817-8
https://doi.org/10.1109/2945.981847
https://doi.org/10.1109/2945.981847
https://doi.org/10.1109/IV.2006.31
https://doi.org/10.1109/IV.2006.31
https://doi.org/10.1109/MSR.2012.6224296
https://doi.org/10.1109/APSECW.2017.19
https://doi.org/10.1145/201998.202010
https://doi.org/10.1145/201998.202010
https://doi.org/10.1147/rd.24.0314
https://doi.org/10.1147/rd.24.0314
https://doi.org/10.1007/s11227-017-2213-5

[83] Petito Michele, Francesca Fallucchi, and Ernesto William De Luca. “Create
Dashboards and Data Story with the Data & Analytics Frameworks”. In: 2019,
pp. 272–283. doi: 10.1007/978-3-030-36599-8_24.

[84] Stephen R. Midway. “Principles of Effective Data Visualization”. In: Patterns 1
(9 Dec. 2020), p. 100141. issn: 26663899. doi: 10.1016/j.patter.2020.100141.

[85] Nuthan Munaiah et al. “Curating github for engineered software projects”. In:
Empirical Software Engineering 22.6 (2017), pp. 3219–3253. doi: 10.1007/s10664
-017-9512-6.

[86] Sandeep Nagar. “Introduction to Python Basics”. In: Apress, 2018, pp. 13–30.
doi: 10.1007/978-1-4842-3204-0_2.

[87] Henrik R Nagel. “Scientific visualization versus information visualization”. In:
Workshop on state-of-the-art in scientific and parallel computing, Sweden. Citeseer.
2006, pp. 8–9.

[88] Solomon Negash and Paul Gray. “Business Intelligence”. In: Springer Berlin
Heidelberg, 2008, pp. 175–193. doi: 10.1007/978-3-540-48716-6_9.

[89] Hung Nguyen et al. “PANDORA: Continuous mining software repository and
dataset generation”. In: EEE International Conference on Software Analysis,
Evolution and Reengineering (SANER2022). IEEE. 2022.

[90] Robert Nisbet, Gary Miner, and Ken Yale. Chapter 6 - Accessory Tools for
Doing Data Mining. Ed. by Robert Nisbet, Gary Miner, and Ken Yale. 2018. doi:
https://doi.org/10.1016/B978-0-12-416632-5.00006-2. url: https://www.sc
iencedirect.com/science/article/pii/B9780124166325000062.

[91] M.C. Ferreira de Oliveira and H. Levkowitz. “From visual data exploration to visual
data mining: a survey”. In: IEEE Transactions on Visualization and Computer
Graphics 9.3 (2003), pp. 378–394. doi: 10.1109/TVCG.2003.1207445.

[93] Reza M. Parizi, Paola Spoletini, and Amritraj Singh. “Measuring Team Members’
Contributions in Software Engineering Projects using Git-driven Technology”.
In: 2018 IEEE Frontiers in Education Conference (FIE). 2018, pp. 1–5. doi:
10.1109/FIE.2018.8658983.

[94] Arnold L. Patton and Monica McGill. “Student Portfolios and Software Quality
Metrics in Computer Science Education”. In: J. Comput. Sci. Coll. 21.4 (2006),
42–48. issn: 1937-4771.

[95] Beatriz Pérez and Ángel L. Rubio. “A Project-Based Learning Approach for En-
hancing Learning Skills and Motivation in Software Engineering”. In: Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. SIGCSE
’20. Portland, OR, USA: Association for Computing Machinery, 2020, 309–315.
isbn: 9781450367936. doi: 10.1145/3328778.3366891. url: https://doi.org/10
.1145/3328778.3366891.

143

https://doi.org/10.1007/978-3-030-36599-8_24
https://doi.org/10.1016/j.patter.2020.100141
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/978-1-4842-3204-0_2
https://doi.org/10.1007/978-3-540-48716-6_9
https://doi.org/https://doi.org/10.1016/B978-0-12-416632-5.00006-2
https://www.sciencedirect.com/science/article/pii/B9780124166325000062
https://www.sciencedirect.com/science/article/pii/B9780124166325000062
https://doi.org/10.1109/TVCG.2003.1207445
https://doi.org/10.1109/FIE.2018.8658983
https://doi.org/10.1145/3328778.3366891
https://doi.org/10.1145/3328778.3366891
https://doi.org/10.1145/3328778.3366891

[96] Alex Radermacher and Gursimran Walia. “Gaps between industry expectations
and the abilities of graduates”. In: ACM Press, 2013, p. 525. isbn: 9781450318686.
doi: 10.1145/2445196.2445351.

[97] Sebastian Raschka, Joshua Patterson, and Corey Nolet. “Machine Learning in
Python: Main Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence”. In: Information 11 (4 Apr. 2020), p. 193.
issn: 2078-2489. doi: 10.3390/info11040193.

[99] Robert Richards. Representational State Transfer (REST). 2006. doi: 10.1007/9
78-1-4302-0139-7_17.

[100] Daniel Rubio. “Jinja Templates in Django”. In: Apress, 2017, pp. 117–161. isbn:
978-1-4842-2786-2. doi: 10.1007/978-1-4842-2787-9_4.

[101] Jim Rudd, Ken Stern, and Scott Isensee. “Low vs. High-Fidelity Prototyping
Debate”. In: Interactions 3.1 (1996), 76–85. issn: 1072-5520. doi: 10.1145/22350
0.223514. url: https://doi.org/10.1145/223500.223514.

[102] Larry J. Shuman, Mary Besterfield-Sacre, and Jack McGourty. “The ABET
“Professional Skills” - Can They Be Taught? Can They Be Assessed?” In: Journal
of Engineering Education 94 (1 Jan. 2005), pp. 41–55. issn: 10694730. doi: 10.10
02/j.2168-9830.2005.tb00828.x.

[103] Andy Siddaway. “What is a systematic literature review and how do I do one”.
In: University of Stirling 1.1 (2014), pp. 1–13.

[104] Tamanna Siddiqui and Ausaf Ahmad. “Data Mining Tools and Techniques for
Mining Software Repositories: A Systematic Review”. In: 2018, pp. 717–726. doi:
10.1007/978-981-10-6620-7_70.

[105] Daniel Simon, Kai Fischbach, and Detlef Schoder. “Application Portfolio Man-
agement—An Integrated Framework and a Software Tool Evaluation Approach”.
In: Communications of the Association for Information Systems 26 (2010). issn:
15293181. doi: 10.17705/1CAIS.02603.

[106] J.E. Sims-Knight et al. “Teams in software engineering education”. In: 32nd Annual
Frontiers in Education. Vol. 3. 2002, S3G–S3G. doi: 10.1109/FIE.2002.1158712.

[107] J.E. Sims-Knight et al. “Teams in software engineering education”. In: 32nd Annual
Frontiers in Education. Vol. 3. 2002, S3G–S3G. doi: 10.1109/FIE.2002.1158712.

[108] Francisco Zigmund Sokol, Mauricio Finavaro Aniche, and Marco Aurélio Gerosa.
“MetricMiner: Supporting researchers in mining software repositories”. In: 2013
IEEE 13th International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM). 2013, pp. 142–146. doi: 10.1109/SCAM.2013.6648195.

144

https://doi.org/10.1145/2445196.2445351
https://doi.org/10.3390/info11040193
https://doi.org/10.1007/978-1-4302-0139-7_17
https://doi.org/10.1007/978-1-4302-0139-7_17
https://doi.org/10.1007/978-1-4842-2787-9_4
https://doi.org/10.1145/223500.223514
https://doi.org/10.1145/223500.223514
https://doi.org/10.1145/223500.223514
https://doi.org/10.1002/j.2168-9830.2005.tb00828.x
https://doi.org/10.1002/j.2168-9830.2005.tb00828.x
https://doi.org/10.1007/978-981-10-6620-7_70
https://doi.org/10.17705/1CAIS.02603
https://doi.org/10.1109/FIE.2002.1158712
https://doi.org/10.1109/FIE.2002.1158712
https://doi.org/10.1109/SCAM.2013.6648195

[109] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. “PyDriller: Python
framework for mining software repositories”. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering - ESEC/FSE 2018. New York, New
York, USA: ACM Press, 2018, pp. 908–911. isbn: 9781450355735. doi: 10.1145/32
36024.3264598. url: http://dl.acm.org/citation.cfm?doid=3236024.3264598.

[110] Diomidis Spinellis. “Git”. In: IEEE software 29.3 (2012), pp. 100–101. doi: 10.11
09/MS.2012.61.

[111] KR Srinath. “Python–the fastest growing programming language”. In: Interna-
tional Research Journal of Engineering and Technology 4.12 (2017), pp. 354–
357.

[113] Robert J. Sternberg. “The School Bell and The Bell Curve. Why They Don’t
Mix”. In: NASSP Bulletin 80 (577 Feb. 1996), pp. 46–56. issn: 0192-6365. doi:
10.1177/019263659608057710.

[114] Michael Stonebraker et al. “On rules, procedure, caching and views in data base
systems”. In: ACM SIGMOD Record 19 (2 May 1990), pp. 281–290. issn: 0163-5808.
doi: 10.1145/93605.98737.

[116] Fabian Trautsch et al. “Addressing problems with replicability and validity of
repository mining studies through a smart data platform”. In: Empirical Software
Engineering 23 (2 Apr. 2018), pp. 1036–1083. issn: 1382-3256. doi: 10.1007/s106
64-017-9537-x.

[117] John Rodney Turner. “The handbook of project-based management: improving
the processes for achieving strategic objectives”. In: (1999).

[118] Olivier Vandecruys et al. “Mining software repositories for comprehensible software
fault prediction models”. In: Journal of Systems and Software 81 (5 May 2008),
pp. 823–839. issn: 01641212. doi: 10.1016/j.jss.2007.07.034.

[119] Panos Vassiliadis. “A Survey of Extract-Transform-Load Technology”. In: Inter-
national Journal of Data Warehousing and Mining 5 (3 July 2009), pp. 1–27. issn:
1548-3924. doi: 10.4018/jdwm.2009070101.

[120] J.M. Verner et al. “Guidelines for industrially-based multiple case studies in
software engineering”. In: IEEE, Apr. 2009, pp. 313–324. isbn: 978-1-4244-2864-9.
doi: 10.1109/RCIS.2009.5089295.

[121] M. Vidoni. “A systematic process for Mining Software Repositories: Results from a
systematic literature review”. In: Information and Software Technology 144 (Apr.
2022), p. 106791. issn: 09505849. doi: 10.1016/j.infsof.2021.106791.

[122] Matthias Weiß. “A Lightweight and Integrated Software Repository Mining and Vi-
sualisation Approach for Software Engineering Education”. MA thesis. Technische
Universität Wien, 2022. doi: https://doi.org/10.34726/hss.2022.102022.

145

https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://doi.org/10.1109/MS.2012.61
https://doi.org/10.1109/MS.2012.61
https://doi.org/10.1177/019263659608057710
https://doi.org/10.1145/93605.98737
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1016/j.jss.2007.07.034
https://doi.org/10.4018/jdwm.2009070101
https://doi.org/10.1109/RCIS.2009.5089295
https://doi.org/10.1016/j.infsof.2021.106791
https://doi.org/https://doi.org/10.34726/hss.2022.102022

[124] C.E. Wills. “Group-based software engineering in an introductory computer science
course”. In: Proceedings. 1998 International Conference Software Engineering:
Education and Practice (Cat. No.98EX220). 1998, pp. 26–33. doi: 10.1109/SEEP.1
998.707630.

[125] Tao Xie, Jian Pei, and Ahmed E. Hassan. “Mining Software Engineering Data”.
In: 29th International Conference on Software Engineering (ICSE’07 Companion).
2007, pp. 172–173. doi: 10.1109/ICSECOMPANION.2007.50.

[126] Andy Zaidman et al. “Mining Software Repositories to Study Co-Evolution of
Production & Test Code”. In: 2008 1st International Conference on Software
Testing, Verification, and Validation. 2008, pp. 220–229. doi: 10.1109/ICST.2008
.47.

[127] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. “Version control system:
A review”. In: Procedia Computer Science 135 (2018), pp. 408–415. doi: 10.1016
/j.procs.2018.08.191.

Book References
[4] Henning Baars and Hans-Georg Kemper. Business Intelligence & Analytics –

Grundlagen und praktische Anwendungen. Springer Fachmedien Wiesbaden, 2021.
isbn: 978-3-8348-1958-1. doi: 10.1007/978-3-8348-2344-1.

[10] Robert M. Bethea. Statistical Methods for Engineers and Scientists. CRC Press,
Apr. 2018. isbn: 9781351414388. doi: 10.1201/9780203738580.

[17] Field Cady. The data science handbook. John Wiley & Sons, 2017. isbn:
9781119092940.

[18] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, eds. Readings in In-
formation Visualization: Using Vision to Think. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999. isbn: 1558605339.

[36] Directorate-General for Education, Youth, Sport and Culture (European Commis-
sion). ECTS users’ guide 2015. Publications Office, 2017. doi: doi/10.2766/87192.
url: https://op.europa.eu/s/wAMi.

[41] Eric Evans and Eric J Evans. Domain-Driven Design: Tacking Complexity In the
Heart of Software. USA: Addison-Wesley Longman Publishing Co., Inc., 2003.
isbn: 0321125215.

[45] Alberto Ferrari and Marco Russo. Introducing Microsoft Power BI. Microsoft
Press, 2016.

[47] Ben Forta. SQL in 10 Minutes, Sams Teach Yourself. en. 4th ed. Indianapolis,
IN: Sams Publishing, 2012. isbn: 9780672336072.

[57] Robert Grant. Data Visualization. Chapman and Hall/CRC, Dec. 2018. isbn:
9781351781756. doi: 10.1201/9781315201351.

146

https://doi.org/10.1109/SEEP.1998.707630
https://doi.org/10.1109/SEEP.1998.707630
https://doi.org/10.1109/ICSECOMPANION.2007.50
https://doi.org/10.1109/ICST.2008.47
https://doi.org/10.1109/ICST.2008.47
https://doi.org/10.1016/j.procs.2018.08.191
https://doi.org/10.1016/j.procs.2018.08.191
https://doi.org/10.1007/978-3-8348-2344-1
https://doi.org/10.1201/9780203738580
https://doi.org/doi/10.2766/87192
https://op.europa.eu/s/wAMi
https://doi.org/10.1201/9781315201351

[59] Werner Gurker. Statistik und Wahrscheinlichkeistheorie using R. TU Verlag, 2015.
isbn: 9783903024793.

[68] Wolfgang Karl Härdle, Sigbert Klinke, and Bernd Rönz. Introduction to Statistics.
Springer International Publishing, 2015. isbn: 978-3-319-17703-8. doi: 10.1007/9
78-3-319-17704-5.

[70] David W Johnson and Roger T Johnson. Learning together and alone: Cooperative,
competitive, and individualistic learning. Prentice-Hall, Inc, 1987.

[92] Jan Palach. Parallel programming with Python. Packt Publishing Ltd, 2014. isbn:
9781783288397.

[98] G. Recht. Bundesdatenschutzgesetz (BDSG). G. Recht, 2014. isbn: 978-1-500-
10002-5.

[115] Alexandru Telea. Data visualization: principles and practice. New York: CRC
Press, 2014. isbn: 9780429074080. doi: 10.1201/b17217.

[123] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014. isbn: 978-3-662-43838-1. doi: 10.1007/978-3-662-43
839-8.

Online References
[38] IBM Cloud Education. ETL (Extract, Transform, Load). Apr. 2020. url: https:

//www.ibm.com/topics/etl (Accessed: 23.01.2023).
[52] GENERAL DATA PROTECTION REGULATION (GDPR). European Com-

mission. May 25, 2018. url: https : / / gdpr - info . eu / art - 4 - gdpr/ (Ac-
cessed: 23.01.2023).

[112] National Institute of Standards and Technology. NIST/SEMATECH e-Handbook
of Statistical Methods. Apr. 2012. doi: https://doi.org/10.18434/M32189. url:
https://www.itl.nist.gov/div898/handbook/ (Accessed: 23.01.2023).

147

https://doi.org/10.1007/978-3-319-17704-5
https://doi.org/10.1007/978-3-319-17704-5
https://doi.org/10.1201/b17217
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://www.ibm.com/topics/etl
https://www.ibm.com/topics/etl
https://gdpr-info.eu/art-4-gdpr/
https://doi.org/https://doi.org/10.18434/M32189
https://www.itl.nist.gov/div898/handbook/

Appendices

149

APPENDIX A
PostgreSQL Views

1 SELECT _grp.committer_student_matriculation_number AS
student_matriculation_number,

2 _grp.term_id,
3 _grp.term_name,
4 count(_grp.commit_hash) AS grp_commits_count,
5 CASE
6 WHEN count(DISTINCT _grp.commit_hash) < 63 THEN ’< 63 (Q1)’
7 WHEN count(DISTINCT _grp.commit_hash) < 96 THEN ’< 96 (Q2)’
8 WHEN count(DISTINCT _grp.commit_hash) < 139 THEN ’< 139 (Q3)’
9 ELSE ’>= 139 (Q4)’

10 END AS grp_commits_cat
11 FROM "group".grp_commit_user_mview _grp
12 WHERE _grp.committer_student_matriculation_number IS NOT NULL
13 GROUP BY _grp.committer_student_matriculation_number, _grp.term_id,

_grp.term_name

Listing A.1: grp_commits_cat View

1 SELECT
2 _issue.id AS issue_id,
3 _issue.issue_id AS issue_gitlab_id,
4 _issue.issue_internal_id AS issue_gitlab_internal_id,
5 _issue.title AS issue_title,
6 _issue.created_at AS issue_created_at,
7 _issue.updated_at AS issue_updated_at,
8 _issue.closed_at AS issue_closed_at,
9 _project.project_id AS project_id,

10 _project.project_name_filterable AS project_name_filterable,
11 _project.project_full_name AS project_full_name,
12 _project.project_short_name AS project_short_name,
13 _term.id AS term_id,
14 _term.term_name AS term_name,
15 _project.project_research_division AS project_research_division

151

A. PostgreSQL Views

16 FROM "gitlab".gitlab_project_issue _issue
17 LEFT JOIN "group".grp_project_mview _project ON _project.project_id =

_issue.project_id
18 JOIN "csv".term _term ON _term.id = _project.project_term_id

Listing A.2: grp_issue_project_view View

1 CREATE VIEW "public".student_grades_view AS
2 SELECT
3 sub.*,
4 CASE
5 WHEN sub.grp_grade_num IS NOT NULL THEN

ROUND(sub.ind_grade_num*0.25+sub.grp_grade_num*0.75)
6 ELSE 5
7 END AS lecture_grade
8 FROM (SELECT
9 _ind_repos.student_matriculation_number,

10 _ind_repos.term_name,
11 _ind_repos.result_points,
12 CASE
13 WHEN _ind_repos.result_points < 40 THEN ’5 (N5)’
14 WHEN _ind_repos.result_points < 50 THEN ’4 (G4)’
15 WHEN _ind_repos.result_points < 60 THEN ’3 (B3)’
16 WHEN _ind_repos.result_points < 70 THEN ’2 (G2)’
17 WHEN _ind_repos.result_points >= 70 THEN ’1 (S1)’
18 END AS ind_grade_str,
19 CASE
20 WHEN _ind_repos.result_points < 40 THEN 5
21 WHEN _ind_repos.result_points < 50 THEN 4
22 WHEN _ind_repos.result_points < 60 THEN 3
23 WHEN _ind_repos.result_points < 70 THEN 2
24 WHEN _ind_repos.result_points >= 70 THEN 1
25 END AS ind_grade_num,
26 CASE
27 WHEN _grp_upv.grade = 5 THEN ’5 (N5)’
28 WHEN _grp_upv.grade = 4 THEN ’4 (G4)’
29 WHEN _grp_upv.grade = 3 THEN ’3 (B3)’
30 WHEN _grp_upv.grade = 2 THEN ’2 (G2)’
31 WHEN _grp_upv.grade = 1 THEN ’1 (S1)’
32 END AS grp_grade_str,
33 _grp_upv.grade AS grp_grade_num
34 FROM "individual".ind_results_non_empty_repos _ind_repos
35 LEFT OUTER JOIN "group".grp_user_project_mview _grp_upv ON
36 _ind_repos.student_matriculation_number =

_grp_upv.student_matriculation_number AND
37 _ind_repos.term_id = _grp_upv.term_id
38) AS sub
39 ORDER BY "lecture_grade";

Listing A.3: student_grades_view View

1 SELECT

152

2 _timelog.id AS timelog_id,
3 _timelog.timelog_id AS timelog_timelog_id,
4 _timelog.time_spent AS timelog_time_spent,
5 _timelog.spent_at AS timelog_spent_at,
6 _timelog.issue_id AS timelog_issue_id,
7 _upv.user_id,
8 _upv.student_matriculation_number,
9 _upv.student_firstname,

10 _upv.student_lastname,
11 _upv.user_username,
12 _upv.user_email,
13 _upv.project_id,
14 _upv.project_name_filterable,
15 _upv.project_full_name,
16 _upv.project_short_name,
17 _upv.term_id,
18 _upv.term_name,
19 _upv.project_research_division
20 FROM "gitlab".gitlab_timelog _timelog
21 LEFT JOIN "group".grp_user_project_mview _upv ON
22 _upv.user_id = _timelog.user_id AND
23 _upv.project_id = _timelog.project_id

Listing A.4: grp_user_timelog_view View

153

APPENDIX B
PostgreSQL Materialized Views

1 SELECT
2 _commit.id AS commit_id,
3 _commit.authored_date AS commit_authored_date,
4 _commit.committed_date AS commit_committed_date,
5 _commit.commit_id AS commit_hash,
6 _commit.committer_id AS commit_committer_id,
7 _commit.author_id AS commit_author_id,
8 _commit.project_id AS commit_project_id,
9 _branch.id AS branch_id,

10 _branch.name AS branch_name
11 FROM "gitlab".git_commit _commit
12 JOIN "gitlab".git_branch_commit_association _ass ON _ass.commit_id = _commit.id
13 JOIN "gitlab".git_branch _branch ON _branch.id = _ass.branch_id

Listing B.1: commit_branch_mview Materialized View

1 SELECT
2 _project.id AS project_id,
3 _project.full_name AS project_full_name,
4 COALESCE(_group_project.short_name, split_part(_project.full_name, ’/’, 3))

AS project_short_name,
5 _group_project.research_division AS project_research_division,
6 _project.term_id AS project_term_id,
7 concat(_term.term_name, ’, ’, COALESCE(_group_project.short_name,

split_part(_project.full_name, ’/’, 3))) AS project_name_filterable
8 FROM "gitlab".gitlab_project _project
9 JOIN "gitlab".gitlab_group_project _group_project ON _group_project.id =

_project.id
10 JOIN "csv".term _term ON _term.id = _project.term_id

Listing B.2: grp_project_mview Materialized View

155

B. PostgreSQL Materialized Views

1 SELECT
2 _student.id AS student_id,
3 _student.matriculation_number AS student_matriculation_number,
4 _student.firstname AS student_firstname,
5 _student.lastname AS student_lastname,
6 _term.id AS term_id,
7 _term.term_name AS term_name,
8 _ipr.id AS result_id,
9 _ipr.points AS result_points

10 FROM "csv".student _student
11 JOIN "csv".student_term_association _sta ON _student.id = _sta.student_id
12 JOIN "csv".term _term ON _term.id = _sta.term_id
13 JOIN "csv".individual_phase_result _ipr ON _ipr.student_id = _student.id AND

_ipr.term_id = _term.id

Listing B.3: student_term_result_mview Materialized View

1 SELECT
2 _user.id AS user_id,
3 _user.username AS user_username,
4 _user.email AS user_email,
5 _student.matriculation_number AS student_matriculation_number,
6 _student.firstname AS student_firstname,
7 _student.lastname AS student_lastname,
8 _project.project_id AS project_id,
9 _project.project_name_filterable AS project_name_filterable,

10 _project.project_full_name AS project_full_name,
11 _project.project_short_name AS project_short_name,
12 _term.id AS term_id,
13 _term.term_name AS term_name,
14 _project.project_research_division AS project_research_division,
15 _ass.grade AS grade
16 FROM "gitlab".gitlab_project_user _user
17 JOIN "gitlab".gitlab_project_user_association _ass ON _ass.user_id = _user.id
18 JOIN "group".grp_project_mview _project ON _project.project_id = _ass.project_id
19 LEFT OUTER JOIN "csv".student _student ON _student.id = _user.student_id
20 JOIN "csv".term _term ON _term.id = _project.project_term_id

Listing B.4: grp_user_project_mview Materialized View

1 SELECT _cbv.commit_id AS commit_id,
2 _cbv.commit_authored_date AS commit_authored_date,
3 _cbv.commit_committed_date AS commit_committed_date,
4 _cbv.commit_hash AS commit_hash,
5 _upv_committer.user_id AS committer_user_id,
6 _upv_committer.student_firstname AS committer_student_firstname,
7 _upv_committer.student_lastname AS committer_student_lastname,
8 _upv_committer.student_matriculation_number AS

committer_student_matriculation_number,
9 _upv_committer.user_username AS committer_user_username,

10 _upv_committer.user_email AS committer_user_email,
11 _upv_author.user_id AS author_user_id,

156

12 _upv_author.student_firstname AS author_student_firstname,
13 _upv_author.student_lastname AS author_student_lastname,
14 _upv_author.student_matriculation_number AS

author_student_matriculation_number,
15 _upv_author.user_username AS author_user_username,
16 _upv_author.user_email AS author_user_email,
17 _cbv.branch_id AS branch_id,
18 _cbv.branch_name AS branch_name,
19 _project.project_id AS project_id,
20 _project.project_name_filterable AS project_name_filterable,
21 _project.project_full_name AS project_full_name,
22 _project.project_short_name AS project_short_name,
23 _term.id AS term_id,
24 _term.term_name AS term_name,
25 _project.project_research_division AS project_research_division
26 FROM "public".commit_branch_mview _cbv
27 JOIN "group".grp_project_mview _project ON _project.project_id =

_cbv.commit_project_id
28 LEFT JOIN "group".grp_user_project_mview _upv_committer ON
29 _cbv.commit_committer_id = _upv_committer.user_id AND
30 _project.project_term_id = _upv_committer.term_id AND
31 _upv_committer.project_id = _project.project_id
32 LEFT JOIN "group".grp_user_project_mview _upv_author ON
33 _cbv.commit_author_id = _upv_author.user_id AND
34 _project.project_term_id = _upv_author.term_id AND
35 _upv_author.project_id = _project.project_id
36 JOIN "csv".term _term ON _term.id = _project.project_term_id

Listing B.5: grp_commit_user_mview Materialized View

1 SELECT
2 _cuv.*,
3 _commit_stats.insertions AS commit_insertions,
4 _commit_stats.deletions AS commit_deletions,
5 _commit_stats.files AS commit_files
6 FROM "group".grp_commit_user_mview _cuv
7 JOIN "gitlab".git_commit_stats _commit_stats ON _cuv.commit_id =

_commit_stats.commit_id

Listing B.6: grp_commit_stats_user_mview Materialized View

157

APPENDIX C
Expert Interview Survey

159

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 1/42

Demographic
A pesson's visual pesception can be influenced by a vasiety of factoss.
Because this psototype is psimasily based on diffesent visualization concepts, gathesing
additional demogsaphic infosmation may be beneficial fos the evaluation.
The data collected will only be used to evaluate the visualization psototype.
It is optional to sespond to these questions.

1.

2.

Mark only one oval.

Othes:

Female

Male

Psefes not to say

General
Questions

These question should identify the stakeholdess in the asea of
student gsoup psojects.

SEPM Analytics Survey
*Requised

What is your age?

What is your gender?

C. Expert Interview Survey

160

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 2/42

3.

Mark only one oval.

< 1 yeas

1-2 yeass

2-5 yeass

5-10 yeass

10-15 yeass

15-20 yeass

> 20 yeass

4.

Othes:

Tick all that apply.

Lectuses
Assistant
Admin
Tutos

How long have you been working in software engineering education? *

What is your current role in this course? *

161

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 3/42

5.

Mark only one oval.

0

1

2

3

4

5

6

7

8

9

10

> 10

All gsoups

As an administrator: How many groups are you administrating during a semester?
Please skip this question if you are not an administrator.

C. Expert Interview Survey

162

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 4/42

6.

Mark only one oval.

0

1

2

3

4

5

6

7

8

9

10

> 10

All gsoups

As a tutor: How many groups are you supervising during a semester? Please skip
this question if you are not a tutor.

163

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 5/42

7.

Mark only one oval.

0

1

2

3

4

5

6

7

8

9

10

> 10

All gsoups

As an assistant: How many groups are you supervising during a semester?
Please skip this question if you are not a lecturer/assistant.

C. Expert Interview Survey

164

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 6/42

8.

Mark only one oval.

0

1

2

3

4

5

6

7

8

9

10

> 10

All gsoups

Grading and Comparing

9.

Othes:

Tick all that apply.

Code Quality (e.g. Test Covesage, Successful/Failed Tests, etc)
Quality of implemented featuses
Wosking Houss (cumulated)
Lines of Code (LoC)
Git-Contsibution (Numbes of Commits)
Role confosmance
Theosetical knowledge

10.

As a lecturer: How many groups are you supervising during a semester? Please
skip this question if you are not a lecturer/assistant.

Which of the following information is considered for grading student groups? *

Which information is considered for grading students individually? *

165

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 7/42

11.

Mark only one oval.

Yes

No

12.

Group
Comparing
& Ranking

The following questions ase not selevant fos gsading; compasing
and sanking gsoups is intended to sesve as infosmation basis to
desive the cussent status of gsoups.

13.

14.

Othes:

Tick all that apply.

Code Quality (e.g. Test Covesage, Successful/Failed Tests, etc)
Quality of implemented featuses
Wosking Houss (cumulated)
Lines of Code (LoC)
Git-Contsibution (Numbes of Commits)
Role confosmance
Theosetical knowledge

Do you usually compare groups against each other? *

If you answered the previous question with no: Why did you not compare/rank
groups against each other in the past?

How many groups would you like to/need to be able to display, rank, and/or
compare?

*

Which categories would you need to rank groups regarding their project state &
progress?

*

C. Expert Interview Survey

166

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 8/42

Current situation

15.

16.

17.

Hypotheses

18.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

How do you currently collect information about the spent time per student? *

How do you currently collect information about the workload distribution? *

How do you currently collect information about the Git contribution? *

A software repository visualization architecture for software engineering
education should not require initial configuration

*

167

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 9/42

19.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

20.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

21.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

22.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

A software repository visualization architecture for software engineering
education should be configurable during operation

*

It is sufficient for grading to consider git-related data from main/master and dev
branch only

*

The visualization artifacts are portable and cross-platform *

The administration of the architecture should be possible within the existing
GitLab infrastructure.

*

C. Expert Interview Survey

168

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 10/42

23.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

24.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

25.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

26.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

Visualization artifacts should be viewable offline (i.e. without being hosted on a
server)

*

It is important to select multiple semester to compare them against each
other

*

It is important to only show the current semester *

It is important to quickly get an overview of all groups' project state of the
current semester

*

169

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 11/42

27.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

28.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

29.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

30.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

Assuming you are responsible for multiple groups in the current semester, it is
important to quickly get an overview of all of your group's project state

*

Assuming you want to compare multiple groups, it is important to filter by
research divisions

*

Assuming you want to compare multiple groups, it is important to filter by
groups (only display a subset of all)

*

It is important to customize the time granularity (i.e. display time series data per
day or week)

*

C. Expert Interview Survey

170

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 12/42

31.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

32.

Mark only one oval.

Stsongly Disagsee

1 2 3 4 5

Stsongly Agsee

Available
Views

In the following, all visualizations which ase shown ase alseady past of
an implemented data visualization dashboasd.

General visualizations
These visualizations show data, which is basically genesal infosmation about the available data

Please note that, fos all shown gsaphs, it is possible to filtes by tesm, gsoup, seseasch division
and students. Due to the amount of diffesent filtes vasiations, unless stated diffesently, no filtes
is applied.
If one is applied, it can be seen in the top sight cosnes's filtes icon indicating the numbes of
applied filtes (if it is gsay, nothing is applied)

It is important to customize the timeframe, e.g. zooming into the last X weeks
while hiding the rest

*

It is important to filter by specific students *

171

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 13/42

33.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

34.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following tiles, how useful is the presented information for you?

Based on your currently selected filter, that tile shows the number of all issues
and open ones which match your filter(s)

*

Consider the following tile, how useful is the presented information for you?

A timelog is one entry in GitLab created by the /spent command.

Based on your currently selected filter, that tile shows the number of timelogs
which match your filter(s)

*

C. Expert Interview Survey

172

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 14/42

35.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

36.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following tile, how useful is the presented information for you?

A timelog is one entry in GitLab created by the /spent command.

Based on your currently selected filter, that tile shows the trace of timelogs per
week which match your filter(s)

*

Consider the following tiles, how useful is the presented information for you?

Based on your currently selected filter, that tile shows the number of students
which match your filter(s)

*

173

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 15/42

37.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

38.

Repository-related visualizations
The following visualization ase about the available data of the sepositosies which can be
extsacted out of the git sepositosy

Consider the following tiles, how useful is the presented information for you?

Hint: A "Commit orphan" is a Commit where neither the Committer nor the
Author could be assigned to any student in that group and semester

*

Based on the previous shown tiles, which information would you like to see
visualized in such a way?

*

C. Expert Interview Survey

174

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 16/42

39.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

This chart shows the distribution of commits (y-axis) per daytime (x-axis) in 24h
format.

Please note that this chart shows all semester.

Please note that, as a user, you can filter to only display relevant groups.

*

175

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 17/42

40.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following table and chart, how useful is the presented information for
you?

The table on the left shows the semester (term), project and commit hash of a Commit
orphan and the bar chart on the right side shows the amount of orphans per group.

Recall, a "Commit orphan" is a Commit where neither the Committer nor the Author
could be assigned to any student in that group and semester

*

C. Expert Interview Survey

176

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 18/42

41.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

This chart shows the timeline on the x-axis and the sum of Commits per day on the
y-axis of one group.
The vertical bars indicate the weeks when a Management Review was planned.

*

177

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 19/42

42.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

This chart shows the timeline on the x-axis and the cumulative sum of Commits per
day on the y-axis of one group.
The vertical bars indicate the weeks when a Management Review was planned.

*

C. Expert Interview Survey

178

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 20/42

43.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

This chart shows the timeline on the x-axis and the cumulative sum of Commits per
week per student of one group on the y-axis.
Students are distinguished by the color.

The vertical bars indicate the weeks when a Management Review was planned.

*

179

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 21/42

44.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

This chart shows the timeline on the x-axis and the cumulative sum of Commits per
week per group on the y-axis.
Groups are distinguished by the color.
The vertical bars represent the week when a Management Review was planned.

Please note that this chart shows all groups of a semester. As a user, you can filter to
only display relevant groups.

*

C. Expert Interview Survey

180

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 22/42

45.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Project Management related Visualizations
The following visualizations ase about psoject management selated data like spent time pes
issue, etc. and is typically disectly stosed in GitLab.

Consider the following chart, how useful is the presented information for you?

This box plot visualizes the Commits per student.

*

181

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 23/42

46.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

The chart shows the timeline on the x-axis and the sum (in hours) of one group's
spent time on a weekly basis.

The vertical bars indicate the weeks when a Management Review was planned.

*

C. Expert Interview Survey

182

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 24/42

47.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following chart, how useful is the presented information for you?

The chart shows the timeline on the x-axis and the cumulative sum (in
hours) of one group's spent time on a weekly basis.

The vertical bars indicate the weeks when a Management Review was planned.

*

183

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 25/42

48.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Consider the following table and chart, how useful is the presented information for
you?

The chart shows the timeline on the x-axis and the cumulative sum (in hours) of each
student's spent time on a weekly basis.

The vertical bars indicate the weeks when a Management Review was planned.

*

C. Expert Interview Survey

184

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 26/42

49.

Mark only one oval.

Not useful at all

1 2 3 4 5

Extsemely useful

Future
views

In the following, images ase shown visualizing cestain infosmation which
can be extsacted fsom students sepositosies (and its Code sespectively),
but ase not yet available.

Consider the following table and chart, how useful is the presented information for
you?

The chart shows the timeline on the x-axis and the cumulative sum (in hours) of all
groups' spent time on a weekly basis.

The vertical bars indicate the weeks when a Management Review was planned.

Please note that, as a user, you can filter to only display relevant groups.

*

185

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 27/42

50.

Mark only one oval.

Not impostant at all

1 2 3 4 5

Vesy impostant

Consider the image below, how important is a visualization of the correlation of
student's commits and its changes (in % line changed) per week?

*

The image shows on the left-hand side the name of the students, on the sight-hand side these's a
scale of lines changed in pescent.
The bottom x-axis shows the week. The stacked bass fsom the bottom sepsesent the pescentage
of lines changed, meaning sed ase deleted lines and gseen ase added lines. Fusthesmose, each
ciscle fos each student sepsesents the pescentage of contsibution, the bigges the cycle the bigges
the changes (gseen = added, sed = deleted).

C. Expert Interview Survey

186

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 28/42

51. Which information is missing in this frame below, you would need to have an overview
about the current project state?

*

The shown visualization combines on a pes-gsoup basis multiple sousce into diffesent chasts.
The colosing is chosen to be consistent pes student.

The top left chast shows the ovesall tsace of the spent time on a weekly basis in houss.

The top sight chast displays the distsibution of Commits pes student as a pie chast. The bigges
the slice, the mose Commits wese made by the student.

At the bottom left, these ase multiple sousces combined:

The fisst line shows the sum of spent houss as a bas chast in selation to the planned 550
houss (110h*5 students) and a sanking compased to all othes gsoups (this gsoup is
cussently at the fisst place of 15 gsoups in this semestes)
The second sow shows the absolute amount of time spent pes student, whese each colos
matches the top left chast's coloss.
The thisd sow indicates the total numbes of Tests and theis cussent success-failuse-satio
The fousth sow displays the cussent Test-Covesage based on the available Tests

The bottom sight chast is the integsation of the student's Commit cosselation of the psevious
question.

187

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 29/42

C. Expert Interview Survey

188

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 30/42

52.

Mark only one oval per row.

Consider the image below, comparing groups by their number of tests and coverage.
How important are the listed ranking categories for you?

*

The following chast shows exemplasily a sanking of gsoups based on theis covesage. By the
dsopdown at the top sight, Tests (Green), Tests (Red), Coverage, Tests (sum) and Group can be
selected

Legend

The x-axis defines the gsoup
The left y-axis (bas chast) sepsesents the numbes of tests, whese the gseen past sepsesents
the successful tests and the sed past the failed tests. Additionally, the sespective numbes
and sum of tests is shown
The sight y-axis (line chast) sepsesents the cussent Covesage of the available tests in
pescent.

1 (Not impostant at all) 2 3 4 5 (Vesy impostant)

Tests (Gseen)

Tests (Red)

Covesage

Tests (sum)

Gsoup

Tests (Gseen)

Tests (Red)

Covesage

Tests (sum)

Gsoup

189

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 31/42

53.

Mark only one oval.

Not impostant at all

1 2 3 4 5

Vesy impostant

Consider the image below, ranking groups by their spent hours.
How important is it for you that the sum of spent hours is displayed in combination with
the standard deviation of the student?

*

The yellow lines inside the bass show the standasd deviation of the student's book houss. The
nassowes min and max value ase, the shostes the vestical line.
The standasd deviation is calculated pes gsoup.

C. Expert Interview Survey

190

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 32/42

54.

Mark only one oval.

Not impostant at all

1 2 3 4 5

Vesy impostant

Consider the image below, how important is it for you to rank groups by the standard
deviation of the student's spent hours?

*

The standasd deviation is calculated pes gsoup.

191

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 33/42

55.

Mark only one oval.

Not impostant at all

1 2 3 4 5

Vesy impostant

Consider the image below, how important is it for you to rank groups by hours, test
coverage and LoC in a correlating way?

*

100% is cossesponding to the maximum, 0% to the minimum value of the gsoups

C. Expert Interview Survey

192

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 34/42

56.

Mark only one oval.

Not useful at all

1 2 3 4 5

Vesy useful

Consider the image below showing all groups and their corresponding quantiles (25-
50-75-90%) of Hours, LoC and Coverage. How useful is this diagram for you?

*

193

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 35/42

57.

Mark only one oval.

Not useful at all

1 2 3 4 5

Vesy useful

Consider the image below, how useful do you find this radar chart? *
100% cossesponds to the max. intended houss pes gsoup (110h pes student)

C. Expert Interview Survey

194

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 36/42

58.

Mark only one oval.

Not impostant at all

1 2 3 4 5

Vesy impostant

Consider the commit distribution pie-chart below, how important is that
information for you?

*

The bigges the slice, the mose commits ase assigned to one student.

195

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 37/42

59.

Mark only one oval.

Not impostant at all

1 2 3 4 5

Vesy impostant

Similar
Views
Comparison

In the following, similas visualizations of the same undeslying data
ase psesented. Please select the one(s) you would psefes the
most.

Consider the image below, showing the distribution of code ownership (in percent)
displayed as a box plot. How important is that information for you?

Hint: "normalized" means that the number of commits is relative to the sum of
Commits within a group

*

C. Expert Interview Survey

196

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 38/42

60.

Tick all that apply.

Ranked by Standasd Deviation Standasd deviation shown, sanked by
houss

Ranked by houss Radas chast

61.

Mark only one oval.

Gsoup-Houss-LoC-
Covesage_Quantiles

Houss-Covesace-LoC Ranking

Regarding time tracking, please select the top 3 most informative graphs.

Please select the more informative graph.

197

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 39/42

62.

Mark only one oval.

Ranking with test quastiles shown
at the top

Ranking without test quastiles

63.

Mark only one oval.

Sum of spent time pes week Cumulative of spent time pes
week

Which graph is more informative for you? *

Consider the following two charts, as already shown before, which one do you
prefer?

*

C. Expert Interview Survey

198

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 40/42

64.

Mark only one oval.

Sum of Commits pes day Cumulative sum of Commits pes
day

Fullscreen Views

65.

Consider the following two charts, as already shown before, which one do you
prefer?

*

Considering the image below, showing an overview of all groups state. Which
information is missing for you to draw any conclusion?

199

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 41/42

66. Considering the image below, showing a compare view of all groups. Which information
is missing for you to draw any conclusion?

C. Expert Interview Survey

200

17.10.22, 17:36 SEPM Analytics Survey

https://docs.google.com/forms/d/114ACZXPaHZeSm2s9lfmnWcIwIESQ2Twa-yg53YtvGBE/edit 42/42

67.

This content is neithes cseated nos endossed by Google.

Considering the image below, showing a ranking view of all groups. Which information is
missing for you to draw any conclusion?

Forms

201

APPENDIX D
Expert Evaluation Survey

203

Demographic
A person's visual perception can be influenced by a variety of factors.
Because this prototype is primarily based on different visualization concepts, gathering
additional demographic information may be beneficial for the evaluation.
The data collected will only be used to evaluate the visualization prototype.
It is optional to respond to these questions.

1.

2.

Mark only one oval.

Other:

Female

Male

Prefer not to say

Hypotheses Evaluation

3.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

SEPM Analytics Evaluation
*Required

What is your age?

What is your gender?

The prototype fulfills the requirement to be used out-of-the box

Hypothesis: A software repository visualization architecture for software
engineering education should not require initial configuration

*

D. Expert Evaluation Survey

204

4.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

5.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

6.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

The configuration possibilities are sufficient

Hypothesis: A software repository visualization architecture for software
engineering education should be configurable during operation

*

Filtering by a specific branch works as you would expect

Hypothesis: It is sufficient for grading to consider git-related data from
main/master and dev branch only

*

The portability and cross-platform capabilities work as you would expect

Hypothesis: The visualization artifacts are portable and cross-platform

*

205

7.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

8.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

9.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

The architecture can be used within the existing infrastructure.

Hypothesis: The administration of the architecture should be possible within the
existing GitLab infrastructure.

*

Viewing the artifacts offline works as you would expect

Hypothesis: Visualization artifacts should be viewable offline (i.e. without being
hosted on a server)

*

Comparing multiple semesters against each other works as you would expect

Hypothesis: It is important to select multiple semester to compare them
against each other

*

D. Expert Evaluation Survey

206

10.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

11.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

12.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

Filtering the projects to only show the current semester works as you would
expect

Hypothesis: It is important to only show the current semester

*

The provided overview of all of your group's project state provides all
information you need

Hypothesis: Assuming you are responsible for multiple groups in the current
semester, it is important to quickly get an overview of all of your group's
project state

*

Filtering by research divisions works as you would expect

Hypothesis: Assuming you want to compare multiple groups, it is important to
filter by research divisions

*

207

13.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

14.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

15.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

Filtering by groups (only display a subset of all) works as you would expect

Hypothesis: Assuming you want to compare multiple groups, it is important to
filter by groups (only display a subset of all)

*

Customizing the time granularity (i.e. display time series data per day or week)
works as you would expect

Hypothesis: It is important to customize the time granularity (i.e. display time
series data per * day or week)

*

Zooming into the last X weeks while hiding the rest works as you would expect

Hypothesis: It is important to customize the timeframe, e.g. zooming into the
last X weeks while hiding the rest

*

D. Expert Evaluation Survey

208

16.

Mark only one oval.

Very dissatisfied

1 2 3 4 5

Very satisfied

17.

System Usability Scale (SUS)

Filtering by specific students works as you would expect

Hypothesis: It is important to filter by specific students

*

Anything else I would like to add ...

209

18.

Mark only one oval per row.

*

1 (Strongly
disagree)

2 3 4
5 (Strongly

agree)

I think that I would
like to use this
system frequently.

I found the system
unnecessarily
complex.

I thought the
system was easy
to use.

I think that I would
need the support
of a technical
person to be able
to use this
system.

I found the various
functions in this
system were well
integrated.

I thought there
was too much
inconsistency in
this system.

I would imagine
that most people
would learn to use
this system very
quickly.

I found the system
very cumbersome
to use.

I felt very
confident using
the system.

I needed to learn a
lot of things

I think that I would
like to use this
system frequently.

I found the system
unnecessarily
complex.

I thought the
system was easy
to use.

I think that I would
need the support
of a technical
person to be able
to use this
system.

I found the various
functions in this
system were well
integrated.

I thought there
was too much
inconsistency in
this system.

I would imagine
that most people
would learn to use
this system very
quickly.

I found the system
very cumbersome
to use.

I felt very
confident using
the system.

I needed to learn a
lot of things

D. Expert Evaluation Survey

210

This content is neither created nor endorsed by Google.

g
before I could get
going with this
system.

g
before I could get
going with this
system.

Forms

211

	Kurzfassung
	Abstract
	Introduction
	Problem Description
	Motivation
	Research Questions
	Expected Results
	Contributions
	Structure

	Foundations
	Domain Concepts
	Data Visualization
	Statistics

	State of the Art
	Current State of Research
	Available Tools
	Distinction from Current Research

	Methodology
	Research Questions
	Literature Review
	Technology Review
	Development Process
	Proof of Concept
	Evaluation

	Information Needs in Software Engineering Education
	Concepts
	Study Design
	Results

	Extract, Transform, Load Implementation
	Data Organization
	Transformation and Loading Implementation
	Data Loading

	Education Intelligence Visualization
	Data Visualization - Group Phase Data
	Data Visualization - Individual Phase Data

	Evaluation and Results
	Execution Speed-up
	Expected Numbers
	Data Analysis
	Expert Evaluation
	Discussion

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Glossary
	Bibliography
	Print Resources
	Book References
	Online References

	PostgreSQL Views
	PostgreSQL Materialized Views
	Expert Interview Survey
	Expert Evaluation Survey

