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Abstract: Human-building interaction is an emerging field of study that investigates the interactions
and reciprocal impacts of humans and building systems. In this discipline, sensing technology
is critical for data collection. The application of sensing technology is divided into six categories
based on the research topics: (1) occupancy status, (2) occupant physiological indicators, (3) building
components, (4) building environment, (5) building consumption, and (6) fusion of multi-sensing
system. By evaluating 127 relevant research articles, this study attempts to provide a systematic review
of the implementation of sensing technologies in each HBI research topic. Four significant sensing
technologies were investigated for the occupancy status study: camera-based sensing, infrared-
based sensing, radial frequency signal-based sensing, and ultrasonic sensor. Methodologies for
biosensing brain activity, muscle and skin function, and cardiac function were examined as occupant
physiological indicator measurements. The magnetic reed and vibration sensors were discussed for
sensing changes in building components. The air property sensor, sound sensor, and illuminance
sensor were introduced to monitor the building environment. The smart meter and smart plug were
examined for sensing building consumption, and the application of multi-sensor fusion was also
included in this article. Furthermore, this systematic study discussed three aspects of contemporary
sensing technology deployment: data concealment, sensor cost tradeoffs, and privacy concerns.

Keywords: human-building interaction; sensing technology; occupancy status; occupant behavior

1. Introduction

Human building interaction (HBI) is an emerging interdisciplinary research area that
has attracted the attention of scholars from both the field of computer science (CS) and
building. From the view of CS, HBI derives from human–computer interaction (HCI)
research and focuses on the built environment [1]. Triggered by various electrical and
information technologies, buildings are becoming more sensible, responsive, and smarter,
just like a giant computer in the shape of a building; therefore, scholars from CS are
trying to examine the involvement of HCI in the building study, and HBI will focus on
human’s values, needs, and goals when addressing human’s interactions with the smart
built environment [2].

The research of HBI has definitely attracted the interest of scholars from the building
field. Compared to the CS group, the building group is concerned about, but not limited
to, the smart building. They care about all kinds of interactions between humans and
the building system, called occupant behaviors, such as opening windows, adjusting the
thermostat, turning on lighting, etc. Sharing with the similar concept of HCI research, in
HBI research, occupants are placed in the center of building design and operation, meaning
that occupant’s behaviors, perceptions, feedback, and experience are considered in advance
and integrated into the design scheme and the building control system. Aiming to figure
out the hidden psychological and social factors in the occupant’s interaction with the
building, a number of interdisciplinary studies with psychology and social science have
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been carried out and have given rise to a new research paradigm, referring to the research
frameworks proposed by Hong et al. [3] and D’Oca et al. [4].

According to the summary of Norouziasl et al. [5], the current HBI research comprises
two aspects: (1) the occupancy, which involves the counting, the trajectory, and the presence
of the occupant; and (2) the occupant behavior to control or to adjust the components of
building system, including the window, door, lighting, HVAC system, etc., which is denoted
by occupant interaction. One important reason for the building community to conduct HBI
research is to improve the performance of building operations. Building sectors account for
40% of the total energy consumption in the world and plenty of studies have been carried
out to investigate the energy issues of buildings [6]. However, the actual energy savings
of a building cannot be guaranteed by the energy efficiency technology or policy alone,
and occupant behaviors are the crucial points deciding the actual energy consumption and
indoor comfort [7]. Plenty of existing studies have contributed a lot to strengthening the
understanding of occupant behaviors in the building, including the behavior modeling
method, the energy simulation integrated with behavior, the correlative factors of occupant
behaviors, and the behavioral intervention for energy saving [8,9].

Occupant behavior is an important aspect of HBI research, the trigger of the behaviors
is affected by a series of factors involved with the building system and environmental
conditions. HBI research is now facing a more comprehensive system, integrated by
three subsystems—human, building system, and environment (HBE), which are both
independent and interrelated with each other. In addition, HBI research investigates the
running status of the whole system and explores the interactive relationship between
each subsystem. It is crucial to gather information covering the overall human-building-
environment system for researchers to reveal the running patterns of both the whole
system and subsystem, as well as the mutual linkages between each subsystem. The rapid
development of sensing technology has provided scholars with new opportunities to collect
more comprehensive information on the whole system of the human-building-environment,
such as the vibration of the building structure, the status of the windows, the indoor air
quality, and the building energy consumption, etc. Additionally, except for the occupant
actions or occupancy, the physical sensations, the psychological feelings, and the user
experience of occupants also affect the interactions between humans and buildings, further
influencing the building’s operation, which is worthy of deep investigation. Traditionally,
a self-reporting questionnaire survey has been an efficient data collection approach for
understanding the social or physiological aspects of occupants. Nowadays, wearable
sensors can enable studies to understand the physiological situations of occupants, etc., so
as to make a cross-validation with the subjective respondents and enhance the accuracy
and reliability of the research.

Therefore, it is necessary to conduct a comprehensive review of the applications of
sensing technologies in the investigation of HBI from the perspective of the human-building-
environment system, including the occupant, the building system, the environment, as well
as the building consumption, to provide more references for data acquisition methods for
future HBI studies. This article aims to conduct a systematic review of the sensing tech-
nologies employed by pertinent HBI research publications. The study is divided into three
main sections, with Section 1 introducing the context and purpose of the review, Section 2
introducing the review criteria and methodology, Section 3 presenting the thorough review
results, Section 4 discussing the results, and Section 5 providing a conclusion.

2. Materials and Methods

This study conducted a systematic review of the sensing technologies as a data acquisi-
tion method in the publications relevant to HBI between the years 2012 and 2022, adhering
to the PRISMA guidelines (Figure 1). The Web of Science database was chosen for this study
because it is one of the most frequently used academic search engines. The terms “sensor”,
“sensing”, and “sensing technology” were used to collect studies on sensing technology.
HBI-related search terms such as “human building interaction”, “occupancy”, “occupant
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behaviors”, and “energy behavior” were also included. Additionally, construction building
technology, civil engineering, engineering electrical electronics, and instrument instrumen-
tation were selected as academic study areas. According to Figure 1, finally, 120 documents
were remaining after identification, abstract reading, and full paper reading processes for
in-depth analysis and classification. As shown in Figure 2, the papers that were reviewed
were divided into six categories based on the research topics related to HBI: (1) occupancy
status sensing; (2) sensing of occupant physiological indicators; (3) sensing of building
component; (4) sensing of environmental conditions; (5) sensing of building consumption;
and (6) application of the fusion of the multi-sensing system.
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3. The Sensing Technologies Adopted by HBI Research
3.1. The Sensing of Occupancy Status

The occupancy status in the ASHRAE handbook-HVAC application covers five aspects:
presence, count, position, trajectory, and action [10]. Image-based sensing, infrared-based
sensing, radio frequency-based sensing, and ultrasonic sensors are the four primary sensing
technologies used to study occupancy status at present.

3.1.1. Image-Based Sensing

In HBI research, image-based sensing technologies are widely utilized to monitor build-
ing occupancy information and collect occupancy-related data. Choi et al. [10] grouped
image data into three basic categories: RGB(R), depth (D), and thermal (T). The references
reviewed for imaged-based sensing technologies are shown in Table 1.

(1) The RGB image

The RGB image is supported by the RGB color model, in which the three primary
colors, red, green, and blue, are blended in a variety of ways to create other hues. Due
to their low cost and user-friendliness, web cameras and surveillance cameras are the
most commonly utilized equipment for acquiring RGB images [11–15]. The RGB image
taken by the webcam will be converted into numeric variables for further processing. In
their studies, Yoon et al. [11] employed a webcam to capture images of occupant activities
and transformed them into quantitative variables for classification algorithm analysis.
Yang et al. [16] employed an overhead camera installed in the lecture room to capture
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students’ actions and determined the number of students who entered and exited using the
vision algorithm. In Ref. [17], the authors employed Azure Kinect to classify the garments
in CLO values to investigate the relationship between clothing insulation and occupant
thermal comfort, and in Ref. [18], the authors continued the research by implementing the
AI model in a connected thermostat system.

(2) The depth image

Depth images can be acquired by a depth camera. Structured light, binocular vision,
and time of flight (TOF) are now the most used approaches to depth perception [19]. Ac-
cording to the fundamental principle of structured light, the controllable light is projected
onto the surface of the item to be measured and then captured by an image sensor [20].
Structured light technology has certain benefits, including lower cost, lower power con-
sumption, less influence by ambient light, and a quick response time, but the long-distance
error also grows quickly. Using a triangle ranging method, binocular stereo-vision imaging
calculates the distance between the measured object and the two installed cameras. The
binocular vision method is adaptable to outdoor environments, but its image quality is
sensitive to ambient light and dependent on the calculation’s complexity [21]. In com-
parison to structured light and binocular vision, TOF is currently the least susceptible to
environmental light, with the fastest response speed and maximum accuracy, but at the
largest expense. TOF works by transmitting a constant stream of light pulses to the target
and then using a sensor to detect the light that is reflected back from the target in order
to establish the target’s distance [22]. Several depth camera products, including Microsoft
Kinect V2 and HoloLens, have adopted TOF.

Several studies have employed depth image sensing technology to track the activities
of building occupants [23–26]. In the study by Dziedzic et al. [24], Microsoft Kinect was
used to capture both RGB and depth images, which were then processed into color data
and human skeleton data, enabling the acquisition of the occupant’s movement map,
identification, activity estimation, clothing insulation, and the formation of an occupant
indoor profile. Additionally, Na. et al. [23] employed Kinect in conjunction with a deep
learning algorithm to predict the metabolic rate of occupants. Lu et al. [27] created a
low-resolution TOF sensor system for accurate occupancy accounting in commercially-
built environments that could accommodate several individuals walking in unpredictable
directions.

The advantage of image-based sensing technologies being true and accurate is provid-
ing the ground truth of occupancy information from various aspects, including occupant
presence, occupant activity, occupant tracking, occupant location, as well as occupant
counting; therefore, image-based sensing is often used as a validation method for other
sensing technologies. Currently, most of the public and commercial buildings have been
installed with surveillance cameras for safety monitoring, which is a convenient way to
capture occupancy images, but it will also raise privacy issues and is not suitable for the
investigations involved with the residential buildings. Except for the TOF-based depth
image, which is without lighting requirement, the acquisition of RGB image and another
two types of Depth image all have requirements of clear and unobstructed field views and
good lighting conditions. When processing image data, this normally demands a high
computational power associated with a high cost of computation hardware. For the image
processing techniques, deep learning-based CNN models are relevantly commonly used
in the studies, referring to [17,18,23,24]; and for the studies using the dynamic video as
research materials to extract occupancy information, the background subtraction algorithm
is a popular method for moving target recognition, as in Refs. [16,25]. Additionally, as
depth image sensing can simultaneously capture the RGB and depth information and
calculate the distance from the object to the camera, except for the image processing, the
methodologies of point cloud clustering and 3D reconstruction, as well as the human
skeleton model, are also feasible techniques in studies to investigate occupant activities, as
shown in [23,25,27].
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Table 1. The list of references for image-based sensing technologies.

Ref. Type Year Research Object Sensing Device Data Processing
Method

[11]

RGB

2022 Occupant activities Web camera SVM, KNN, RF,
manually labeling

[12] 2018 Occupant tracking View camera rHOG
[13] 2017 Occupant presence Web camera stochastic model

[14] 2017 Occupant
positions

Camera-based
indoor tracking

system

localization
algorithms, calibrated

mapping algorithm

[15] 2022 Occupancy
counting Web camera

Statistical analysis,
K-means clustering,

multiple linear
regression

[16] 2018 Occupancy
counting

overhead video;
PTZ camera

Background
Subtraction algorithm,

SVM + HOG

[17] 2022 Occupant clothing
insulation Azure Kinect

CNN models-VGG 16,
Inception V4,
TinyYOLOV3,

ResNet18

[18] 2022 Occupant clothing
insulation Video camera CNN-YOLO models

[23]

Depth

2020 Occupant activity Microsoft Kinect CNN model-METNet

[24] 2019 Occupant activity Microsoft Kinect depth registration;
skeleton model, CNN

[25] 2015
Occupancy

detection and
profiling

Microsoft Kinect
MESA SR4000

background
subtraction, point
cloud clustering

[26] 2017 Occupancy
counting Microsoft Kinect FORK

[27] 2021 Occupancy
counting VL53L5TOF sensor

3D reconstruction,
Background

subtraction, and
filtering, point

clustering

3.1.2. Infrared-Based Sensing

Active infrared sensing and passive infrared sensing are the two categories of infrared-
based sensing. The beam-break sensor, as a typical active infrared sensing approach, has
been employed by previous investigations to estimate occupancy counting [28]. The beam-
break sensor is made up of a transmitter and a receiver. The infrared light-emitting diode
of the transmitter emits a modulated infrared light beam that is received by the infrared
photoelectric sensor of the receiver, which converts the optical signal into an electric signal.

Without actively emitting infrared light, the passive infrared sensor (PIR) detects and
collects the infrared radiation emitted by the human body through its pyroelectric elements,
then converts the infrared heat into electric signals. PIR sensors have been the predominant
sensing technology in investigations of occupant behavior, with pertinent research areas
including occupancy counts, localization, and motion detection [29–34]. However, the PIR
sensor also has the issue that it is ineffective if the occupant is stationary.

Passive infrared sensing is also a fundamental component of the thermal imaging
camera. The thermal camera is an integration of an optical system, an infrared thermal
sensor, and an electronic system that can detect, process, and transform infrared radiation
into thermal images by showing the temperature distribution on the camera’s screen. As
a non-invasive and privacy-friendly device, the thermal camera has been employed by
a number of studies to measure the thermal comfort of occupants [35,36], as well as to
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estimate the state of occupancy [37–39]. Li et al. [40] created a deep-learning model to
predict thermal comfort based on age, gender, and human skin temperature extracted from
thermal pictures. The list of papers reviewed for infrared-based sensing is shown in Table 2.

Table 2. The list of references for infrared-based sensing technologies.

No. Type Year Research Object Sensing Device Data Processing
Method

[28] Active 2017 People counting beam-break
sensor

thresholding
algorithm

[29]

Passive

2016 Occupancy presence PIR sensor Hidden Markov
models

[30] 2021 Occupancy presence Infrared Sensor
Array

Image processing,
multi-Bernoullii filter

[31] 2021 Occupancy pattern PIR sensor deterministic
modelling

[32] 2018 Occupant tracking PIR sensor accessibility map,
A-Star algorithm

[33] 2022 Occupant location
and activity intensity PIR sensor SVM

[34] 2019 Occupancy presence PIR sensor Find state algorithm

[36]

Thermal
camera

2018 human skin
temperature Thermal camera Thermal image

processing software

[37] 2021 Occupancy
estimation

Thermal imaging
sensor

Blob extraction
algorithm, blob

filtering algorithm,
KNN, SVM, RF

[38] 2019 Occupancy
estimation Thermal camera DNN model

[39] 2021 Occupancy counting Thermal camera U-Net-like CNN

[40] 2022 Occupant thermal
comfort Thermal camera CNN model

Both the beam-break sensor and the PIR sensor have the advantages of low cost,
simple installation, and being friendly to privacy because they only output binary data (0
for absence and 1 for presence). In the current market, PIR sensors are used to activate a
number of smart home appliances; however, PIR sensors have one obvious drawback that
many users have complained about: the detection of occupancy presence by PIR sensors
depends on the movement of the occupant, and if the occupant keeps stationary for even a
moment the PIR sensor will make a false absence detection and turn off the smart domestic
appliances, which have caused many problems for the users. For the Break beam sensor, its
limitation lies in that its accuracy is reduced when multiple people pass simultaneously.
The thermal camera can perceive the heat radiation emitted by an occupant and create a
thermal image, so it is also classified into the group of image-based sensing techniques
in the review of Choi et al. [10]. Similar to image-based sensing, thermal camera sensing
also require a clear and unobstructed field of view, but it does not need good lighting
conditions as it works well in the darkness and the deep learning-based models for image
processing are also applicable for thermal images. Additionally, the thermal camera can
be integrated with developed thermal image processing software, refered to in study [36],
which provides support to the research.

3.1.3. Radio Frequency Signal-Based Sensing

Table 3 shows studies involved with the application of radio frequency signal-based
sensing technologies. According to Ref. [41], by measuring the proximity, the distance,
and the distortion of the signals, radio signal sensing has been able to provide supporting
information to predict the occupancy status, including the location, presence, count, identity,
and trajectory. The current radio technologies that have been used for occupancy detection
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include Wi-Fi, Bluetooth low energy (BLE), radio frequency identification (RFID), ultra-
wideband (UWB), and global positioning system (GPS).

Wi-Fi is currently extensively available in various buildings. Numerous studies have
demonstrated that it is reasonable to estimate occupancy counting based on the number
of Wi-Fi connections, given that connecting to Wi-Fi with a smartphone or tablet to access
the internet has become a habit of occupants [42–44]. Alishahi et al. [45] stated the Poisson
regression model they proposed to extract key occupancy indicators could perform better
than the linear regression model. In Ref. [15], the authors also adopted a camera to acquire
ground truth image data as a supplement to the Wi-Fi connection data, aiming to reduce
the deviation between the Wi-Fi connection and the actual occupancy counting.

BLE, which is based on Bluetooth technology, provides a considerable advantage in
terms of cost and power efficiency and is built expressly for IoT devices’ features and
applications. As it maintains communication and transmits data at extremely low levels of
power, users can search and connect quickly. BLE has been utilized in research pertaining
to occupancy detection. Barsocchi et al. [46] proposed an occupancy detection system based
on BLE. In the trial, they deployed a few Bluetooth receivers and assigned each participant
a Bluetooth tag that was integrated with the building’s badge; the results revealed that
the BLE-based solution could, at most, enhance occupancy detection accuracy by 10%.
Tekler et al. [47] have developed a strategy to capture the mobility pattern of occupants
using BLE technology and an ensemble clustering model and verified the model through a
five-week case study in a Singapore office building.

RFID is a technique for automatically identifying and tracking objects and people
through the use of tags with a unique code. RFID has been widely implemented in the
construction phase of prefabricated buildings, when building components or construction
materials are manufactured, transported, and assembled in an industrialized manner [48].
During the building’s operation phase, RFID has been utilized by many studies to investi-
gate the occupancy status. The authors of Ref. [49] presented an RFID-based occupancy
detection system to enable demand-driven HVAC operations by simultaneously detect-
ing and tracking several stationary and moving people in multiple locations. Recently,
Kong et al. [50] also published an article introducing an experimental study in which the
authors developed an occupant-centric control of the HVAC system by integrating a depth
camera, pressure sensor, and RFID sensor (Figure 3), and reported that more than 80%
of the occupants were satisfied with the performance of the control system, as well as
achieving 17% weekly average energy savings.
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GPS and UWB are both positioning technologies. UWB is a short-range RF method for
wireless communication that can precisely pinpoint people, equipment, and assets. UWB is
predominantly used in the indoor environment for occupant detection [51], for instance,
in Refs. [52,53], UWB technology was used to construct a human detection system in the
smart home setting. GPS is well-known to the general public as a navigation technology
and for capturing the movement trajectory of users, and it could also be considered as a
non-intrusive sensor to locate the occupant in the building [54,55]. However, the authors
pointed out its low accuracy in comparison to other occupancy sensing methods [54].

This section reviews five sensing technologies based on radio frequency signals. The
five sensing technologies share the advantages of low cost and low power consumption;
however, each sensing technology has its own concerns that require special consideration.
Because numerous commercial and public buildings have already been deployed with
a Wi-Fi network, it will be convenient to use Wi-Fi signals to acquire occupancy status
information, however, the problems associated with this method cannot be neglected.
In practice, some people may carry several smart products connecting to Wi-Fi, while
there are also some people who neither take any devices nor connect to the internet; as
a result, the occupancy based on the Wi-Fi connection might output false consequences.
Additionally, in order to improve the security mechanism and protect user privacy, many
device manufacturers have developed a random MAC address function, which means the
MAC addresses of the smart devices that are detected by the Wi-Fi probe are from random
generation, leading to a false data matching of the occupants who use the Wi-Fi. Although
BLE is quite extensive in smart devices today, its detection accuracy could be sacrificed
as occupants may not enable the Bluetooth function of their devices. RFID can accurately
monitor the location and identification of occupants, but its signals are susceptible to
interference from metallic objects. In addition, if RFID is used for occupancy detection,
each occupant must wear an RFID badge, or else the accuracy of the detection will be
compromised. UWB could provide indoor occupant positioning with greater precision
than Wi-Fi and BLE, and because it utilizes the excess bandwidth, it has the lowest power
requirement. Due to its prospective applications, it has been incorporated into a variety
of smart devices, including the iPhone, iPad, and Samsung’s Galaxy smartphones. The
tags for UWB-based location and pairing systems are more expensive than Bluetooth and
RFID tags, and due to its low data transmission rate, it cannot replace Bluetooth and Wi-Fi
technologies for large data transfers, making it impractical for streaming large amounts of
data. In comparison to four other radio frequency signal-based sensing techniques, GPS is
primarily used for outdoor positioning due to non-line-of-sight communication issues that
prevent GPS from providing accurate interior location data. The two studies in Refs. [54,55]
use GPS data from users’ devices to detect whether they have entered the building or not,
but does not provide specific occupancy information.

3.1.4. Ultrasonic-Based Sensing

The ultrasonic sensor determines the target’s distance by producing ultrasonic sound
waves and converting the reflected sound into an electrical signal. It consists of two
parts: the transmitter, which employs piezoelectric crystals to generate sound, and the
receiver, which detects the sound after it has traveled to and from the target. In related
HBI research, the ultrasonic sensor was used to detect the presence of occupancy or to
count the number of occupants. Shin et al. [56] described a method for person recognition
and counting that employed ultrasonic signal transmission into a room and the analysis of
the superposition of the reflections caught by a microphone. In Refs. [57,58], the authors
presented their ultrasonic chirp-based research on occupant number estimation and indoor
location tracking, respectively. Ghosh et al. [59] installed ultrasonic sensors in two distinct
deployments as sensor grids and placed them on the door-frame in order to identify human
activity in a smart home environment. They reported a detection accuracy of more than
90 percent for different activities, including sitting, standing, and falling.
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Table 3. The list of references for radio frequency signal-based sensing.

No. Type Year Research Object Data Processing Method

[42]

WIFI

2019 Occupancy counting Multiple linear regression, ANN
[43] 2022 Occupant behavior lightweight CNN

[44] 2019 Occupancy detection Ensemble learning classification
algorithms

[45] 2021 Occupancy pattern
K-means clustering, Poisson

regression, cumulative frequency
analysis

[46]

BLE

2017 Occupancy detection SVM, RF

[47] 2020 occupancy pattern
Binary classification, gradient
boosting algorithm, K-means

algorithm,

[49]
RFID

2012
Occupancy counting,

occupancy
identification

Scattering analysis,
statistical analysis

[50] 2022 Occupancy counting Radio signal processing

[51]
UWB

2017 Occupancy detection Principal component analysis (PCA)
[52] 2017 Human identification Region of interest extraction, PCA
[53] 2021 Motion detection adaptive motion detection algorithm

[54]
GPS

2021 Occupancy counting GeoHash Model

[55] 2021 Occupancy schedule Web scraping techniques, text
classification, and semantic analysis

The disadvantages associated with ultrasonic sensors also need to be paid attention to,
according to Refs. [56,57]; as an active sensing system, it is necessary to have a mechanism
to coordinate signal transmissions in case multiple sensors are installed in the same area
to prevent the occurrence of cross-talking. In larger spaces, a proportionally powerful
transmitter is required, accompanied by a bigger amplifier and transducer to accommodate
the increased power, which leads to it being increasingly difficult to determine the precise
number of individuals present due to the blurring of individual identities. The list of
references for ultrasonic-based sensing is shown in Table 4.

Table 4. The list of references for ultrasonic-based sensing.

No. Type Year Research Object Sensing Device Data Processing
Method

[56]

Ultrasonic
sensor

2016
Occupancy
detection,
counting

wide-band
ultrasonic

transmitter,
ultrasonic MEMs

microphone

Semi-supervised
learning model,

classification,
regression trees;

[57] 2015
Occupancy
detection,
counting

Motu Ultra-Light
MK3 DAC and ADC,

audio amplifier,
omnidirectional

tweeter,
measurement
microphone

DBSCAN algorithm,
regression model

[58] 2012 Occupant
location tracking audio speakers

Signal
processing-TDOA
technique, pulse

compression

[59] 2019 Human activity ultrasonic sensors Threshold-based
classification
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3.2. The Sensing of Occupant Physiological Indicators

As humans are the focus of the human-building system, the occupant’s feedback,
experience, and perception of the built environment can provide useful insights to support
the building design and operation. The traditional methods to solicit occupants’ feed-
back or evaluation about the building environment generally depend on interview and
questionnaire surveys, which are convenient and straightforward but inherent with the
drawbacks of subjective biases. In recent years, with the advancement of neuroscience,
sensor technology, as well as the Internet of Things, emerging wearable devices have pro-
vided new inspirations for researchers to investigate the interactions between the occupants
and built environments. Except for the subjective self-reporting data, plenty of studies
have employed wearable devices equipped with a variety of biosensors to measure the
objective physiological feedback, followed by cross-validation based on both subjective and
objective data, which can provide stronger evidence for their conclusions. In the current
publications, biosensing techniques can be classified into four broad categories, including
brain activity-related, muscle and skin-related, and heart-related [60]. Table 5 is the list of
studies with physiological measurements in this review.

3.2.1. The Sensing of Human Brain Activity

The biosensing techniques to assess brain activities mainly include electroencephalo-
gram (EEG), event-related brain potentials (ERPs), functional magnetic resonance imaging
(fMRI), positron emission tomography (PET), and magnetoencephalograms (MEGs) [60].
EEGs have been widely applied in the research of human behaviors in built environments.
EEG is a brain imaging technology employing scalp electrodes to monitor voltage variations
caused by brain neuronal activities. The indicators of EEG rely on the power densities
of distinct frequency bands, which are connected to arousal, concentration, stress, and a
variety of other mental activities [61]. In previous studies, authors utilized EEG to assess
the mental states of the occupants to further analyze the influence of the built environment
on the occupants as well as to conduct a post-occupancy evaluation [61–63]. Aiming to
evaluate the design of the classroom before construction, Cruz-Garza et al. [64,65] asked
participants to wear an EEG device and VR glasses while completing cognitive tasks in vir-
tual classroom environments of different design conditions. The authors found a significant
difference in EEG features across participants in the different classroom design schemes
when the cognitive tasks involved short-term memory, which may provide implications
to designers in which a design scheme could create a more friendly space for students to
study or to finish the tasks, as a methodology for pre-construction evaluation.

Currently, the use of EEG in HBI-relevant studies is primarily focused on two as-
pects: post-occupancy evaluation and pre-construction evaluation of design plans. In
post-occupancy evaluation studies, the EEG is used to assess occupants’ responses to the
existing indoor environment of the building, particularly in terms of thermal comfort. Re-
searchers have attempted to determine the relationships between EEG signals and thermal
comfort or thermal sensation in humans, and their research has shown that the EEG signal
is intimately linked to sensory and cognitive processes that are affected by external stimuli
such as temperature, relative humidity, and air velocity [62,63]. In design evalution, during
the pre-construction period, virtual reality technology is typically used as a tool for the 3D
visualization of the design plan, and experimental subjects are asked to wear VR glasses
to immerse themselves in the virtual design scheme while their EEG signals are assessed
simultaneously, in order to determine the effect of the design on the building user’s mental
state, emotion, cognitive competence, etc. [64,65]. Typically, the data processing procedures
of EEG data consist of three steps: data pre-processing with Matlab toolbox, feature extrac-
tion for the EEG frequency band, and machine learning-based EEG pattern recognition;
SVM, KNN, RF, and DT are prevalent ML algorithms utilized in studies. In addition,
cross-validation requires a questionnaire to capture respondents’ subjective opinions about
the building environment.
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3.2.2. The Sensing of Muscle and Skin Activity

Electromyography (EMG), electrodermal activity (EDA), and skin temperature (ST)
are the most common biosensing technologies used to measure the responses of human
muscle and skin. The EMG technique is a measurement of the peripheral nervous system
by recording the electrical activity produced by skeletal muscles, allowing the researchers to
discover some subtle muscle movements and assessing the muscle load or forces during the
engagement of some labor tasks [66]. EDA, also named as the galvanic skin response (GSR),
measures the electrical changes of the skin through sweat secretion and has been discovered
to have a substantial relationship with human emotional arousal [67]. Higher arousal levels
are associated with greater skin conductance, so EDA can reveal how strong an emotion
is. Skin conductance is subject to regulation by the human body via the sympathetic
nervous system, and the electrodes of EDA devices could record the differences in electrical
activity produced by sweat glands as they change activity. Skin temperature (ST) is an
essential indicator to monitor the human body’s thermoregulatory system, which can be
measured by a variety of thermometers [68]. By reviewing past studies, the EMG has
been primarily utilized in indoor safety-related topics of building operation, such as to
investigate the physical demands of firefighting personnel in the emergency evacuation of
high-rise buildings [69,70]. The EDA and the ST are two common approaches to monitoring
the indoor thermal comfort conditions of occupants, which have been applied in many
studies [71–74].

3.2.3. The Sensing of Heart Activity

Electrocardiogram (ECG) monitoring is the typical heart biosensing technology. ECG
is to monitor the health of the heart by measuring the duration and intensity of electrical
waves traveling through the heart. The conventional ECG monitor employs wet electrodes
to capture the electrical signal of the heartbeat and calculates three parameters, including
the heart rate (HR), the time interval between individual heartbeats (abbreviated as IBI),
and the fluctuation of IBI, referred to as HRV [75]. Zhu et al. [76] recorded the ECG data of
6 subjects under 60 indoor environments and revealed the relationships between HRV and
thermal sensations of occupants.

HRV is a physiological indicator commonly used to assess levels of thermal comfort.
The results of several studies have shown that LH/HF (ratio of the low-frequency power
and high-frequency power of the HRV analysis results) can be influenced by factors includ-
ing the variations in ambient temperature, humidity, airspeed, as well as occupants’ thermal
sensations [75,76]. Subjects will feel thermally comfortable when LF/HF is approximated to
1, and higher values have occurred during uncomfortable states, while low values occurred
during relaxed states.

3.2.4. The Wearable Device

The popularity of health-monitoring wrist-worn wearable devices, often known as
smart wristbands or smart watches, has increased among customers. The smart health
bracelet typically includes two sensors to monitor the status of the heart: an electrocardio-
gram (ECG) sensor and a photoplethysmography (PPG) sensor. The PPG sensor provides
the heart rate data, which is a light-based technology that delivers green light to the skin
and then detects periodic changes in light intensity caused by blood circulation [77]. Com-
pared to the ECG, the accuracy of PPG is liable to be influenced by several factors, including
wrist placement, the dominant hand, the body, environmental temperatures, etc. [68].

Until recently, smart wristband solutions have been able to acquire multi-physiological
data by combining many biosensors, allowing for more thorough monitoring of human
physiological status. In recent publications, in order to get more objective data to study
the physiological status of the subjects, the use of many wearable devices simultaneously
or a single multifunctional smart wristband has been used [73,75,78]. In Ref. [79], the
authors used two wearable devices(Figure 4) to assess four essential physiological signals
(EEG, EDA, ECG, ST) on 52 participants in a controlled setting under three distinct thermal
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conditions (cold, warm, and neutral) in an effort to give further evidence for the research
of the personal comfort model (PCM). The findings of their experiments suggested that
physiological measurements can detect specific temperature sensations, which is essential
for the development of the most advanced PCMs and the discovery of fresh energy-saving
choices that account for individual variances.
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In the HBI research, a greater comprehension of how people react to the built envi-
ronment will aid in designing and controlling for occupant reactions. The invention of
wearable sensors has greatly facilitated the investigation of building occupants’ responses
to their environment. Some wearable sensor products not only make it easier to conduct
experiments, but they can also provide a platform for data processing and analysis, which
has greatly aided research. Nonetheless, the limitations associated with this platform
must be emphasized, as indicated by Ref. [64], which utilized the wearable sensor product
Emotiv EPOC for data collection. Emotiv lacks open-source software and is difficult to
convert to MATLAB; furthermore, Emotiv’s algorithm for data analysis is a “black box”, so
in their study, they could only examine visual variables. In addition, for EEG measurement,
wearable devices reduce the number of electrodes to reduce user burden and eliminate
the need for conductive gel, which is used in conventional devices. However, there is a
trade-off between signal quality and the number of electrodes in any EEG system, therefore,
the loss of sensor accuracy in such wearable devices must be acknowledged.

In addition, the majority of research findings in relevant studies were based on a
controlled environment, which is vastly different from the actual world; for instance, in
Refs. [64,65], the experimental environment was set up using VR technology, and the
subjects were stimulated only by the immersive virtual environment with controlling
environmental factors. However, all other real-world environmental factors were not
accounted for in the experiment; thus, the applicability of this knowledge to real-world
settings remains uncertain.
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Table 5. The list of references for occupant physiological indicators sensing.

No. Type Year Research Object Sensing Device Data Analysis
Method

[61]

EEG

2018 Brain activity in
rest and task Emotiv EPOC EEGLAB toolbox

LDA classifier

[62] 2019 Brain activity in
rest and task Emotiv EPOC EEGLAB toolbox

LDA, SVM

[64] 2020 Brain activity in
VR environment Emotiv EPOC software Emotiv Pro,

statistical analysis

[65] 2022 Brain activity in
VR environment

63-channel
actiCHamp

Lab Streaming Layer
(LSL) software

[66]

EMG
IMU

2021 Worker’s muscle
engagement Myo armband ANN

[69] 2014 Physical demand Delsys wireless EMG
system

MATLAB, statistics
analysis

[70] 2021 Leg fatigue, gait
motion

Megawin, Qualisys
Track Manager

MATLAB, statistic
analysis

[71]

EDA,
ST

2019 Environmental
comfort

Careshine Electronic
Technology,

PyroButton-L
Statistic analysis

[72] 2019
Skin

temperature, face
temperature

Wearable device
with infrared

temperature sensor,
thermal camera

Neighborhood
component based

feature selection, RF,
SVM, KNN

[73] 2022 Occupant
thermal comfort E4 Wristband

CNN-SVM hybrid
model, ensemble
transfer learning

[74] 2018 Occupant
thermal comfort Exacon D-S18JK Statistical analysis,

SVM, ELM

[75]

ECG

2020 Environmental
comfort EPOC+, BioHarness

Feature extraction,
LDA, KNN, decision

Tree, naïve Bayes,
SVM, and RF

[76] 2018 Occupant
thermal comfort Holter Statistic analysis

[77] PPG 2019 Pervasive blood
pressure Smart wristbands Feature extraction,

NN, SVM, DT

[78]

ECG,
EEG,
EMG,
GSR

2022 Indoor thermal
comfort

Physiological signal
measurement system

Linear regression,
Gaussian process
regression, SVM
regression, DT

[79]

EEG,
EDA,
BVP,

IBI, ST

2022 Thermal comfort MUSE 2 headband
Empatica E4

Feature extraction,
statistic analysis

3.3. The Sensing of Building Components
3.3.1. Magnetic Reed Switch

The interactions between people and a building can be predicted and modeled using
data collected through real-time monitoring of building components, such as windows,
doors, and shutters. In certain publications, the sensing technology that can detect the
states of building components is categorized as threshold and mechanical sensors, with the
magnetic reed switch being the most commonly used sensor [41,80,81].

The magnetic reed switch is actuated by magnetism. The reeds consist of two thin,
flexible, ferromagnetic metal blades that are hermetically encased in a glass bubble. The
magnetic reed switches offer low cost, low power consumption, and simple installation.
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Reed contacts can detect whether a window or door is open or closed after adhering to
the frames; however, they are limited in that they cannot measure the window’s or door’s
degree of opening; furthermore, they cannot detect the slightest change in window/door
status, which could miss significant implications [41]. The magnetic reed switch sensor can
be found in numerous articles pertaining to the modeling of window/door opening behav-
ior, the influential elements of ventilation behavior, and the consequences of ventilation
behavior on indoor air quality [82–87].

Due to the magnetic materials in the door or window sensor, as long as a strong
magnetic field is present, the door and window sensor may be incorrectly interpreted as
closed. And if the doors are made of iron, careful implementation consideration should
be given to the location of the sensor, as iron doors have a significant attenuation effect on
wireless signals. If the door sensor is placed incorrectly, it may be unreliable or even unable
to communicate with the gateway. It is recommended that door sensors are not installed
on iron security doors, as this can interfere with communication and cause the iron door to
become magnetized by the sensor. To ensure communication, the gateway must be as close
as feasible to the door sensor, and vibrations can also cause door and window sensors to
misinterpret their surroundings, which needs to be paid attention.

3.3.2. The Vibration Sensor

The vibration sensor is an electronic device that can detect and measure the amplitude
and frequency of vibration in a system or piece of equipment, which can accurately record
the mechanical vibration quantity, including the velocity, displacement, and acceleration,
then convert them into electrical signals for the outputs. In the research of human building
interaction, vibration sensors have been commonly installed on the floor to detect footstep-
induced structural vibrations, then, by applying the signal processing technique and
machine learning algorithm, the researchers could investigate occupancy counting [88],
occupant detection [89–91], occupant localization [92–94], and occupant activity level [95].
Figure 5 depicts the framework established by Drira et al. [94] for occupant detection,
localization, and tracking using footstep-induced floor vibrations.
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The limitations of structural vibration sensors should be addressed, according to the
review. The first challenge is that the vibration caused by the ambient environment may
be more obvious than the vibration caused by the footsteps, resulting in false detection of
the vibration sensor. The second challenge is that in practice, other vibrations, such as the
movement of equipment, may be similar to the footstep, resulting in misjudgment. Table 6
shows the papers reviewed for the sensing of building components in this article.
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Table 6. The list of references for building components sensing.

No. Type Year Research Object Sensing Device Data Processing
Method

[82]

Magnetic
reed

switch

2020 Window state Window sensor Statistic analysis

[83] 2018 Occupants’
window behavior Window sensor Statistic analysis

[84] 2015 Occupants’
window behavior Window sensor Monte Carlo

simulation

[86] 2015 Monitor elderly’s
behavior Door contact

activities assessment
algorithm developed

by authors

[87] 2018 Occupants’
ventilation habits Window sensor Statistic analysis

[88]

Vibration
sensor

2018 Occupancy
counting

Geophone
SM-2 Detection algorithm

[89] 2020 Occupant
detection

Geophone
SM-2 Transfer learning

[90] 2021 Occupant
detection Vibration sensor

CWT, SVM, CNN,
finite element

simulation

[91] 2016 Occupant
detection Vibration sensor

a two-stage
step-induced signal

detection
algorithm

[92] 2018 Occupant
localization

Geophone,
amplifier

Anomaly detection
algorithm, SVM

[93] 2019 Occupant Tracking Vibration sensor
Signal processing,

error-domain
model-falsification

[94] 2022
Occupancy

detection and
tracking

Vibration sensor
Signal processing,

error-domain
model-falsification

[95] 2019 Occupant activity

Geophone,
amplifier, ADC

module,
Raspberry Pi

Signal processing,
noise filtering,

vibration detection.

3.4. The Sensing of the Building Environment

The indoor and outdoor building environmental factors are significant to the research
topics of human–building interaction, such as the influential factors of occupant behaviors
in the building [83,96], the modeling of occupant behavior patterns [97–99], or the effects of
occupant behaviors on the indoor environment [100], etc. Various environmental sensors
have been utilized in past research as an efficient method for the collecting of environmental
data, as shown below in Table 7.

3.4.1. Air Property Sensor

(1) CO2 sensor

The CO2 sensor measures the concentration of CO2 in the atmosphere. Many studies
have demonstrated that CO2 concentration is an effective indicator for detecting and
estimating occupancy states. Li et al. [101] found the strongest association between the
number of occupants and the CO2 concentration. Dedesko et al. [102] devised a method to
estimate the occupant activity and occupancy level of a hospital based on the combination
of beam-break sensor data and CO2 concentration data. Wolf et al. [103] offered a workflow
(Figure 6) illustrating the method for estimating the occupancy state based on CO2 level.
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(2) Indoor air quality (IAQ) monitor

The IAQ monitor is a multifunctional integrated sensing device to measure a variety of
indoor environment quality indicators, including temperature, humidity, the concentration
of PM2.5, CO2, TVOC, and other air pollutants. According to the design of the research,
the IAQ monitor can be adjusted to integrate the appropriate sensors. The study [104]
employed an IAQ monitor measuring indoor temperature, relative humidity, and CO2 con-
centration to investigate the impact of window operation behaviors on the simulated energy
performance in university residence halls. Jia et al. [105] integrated three distinct sensors, a
CO2 sensor, an illumination sensor, and a temperature/humidity sensor (Figure 7) in order
to collect environmental data and test the occupant behavior model in a commercial build-
ing. Kim et al. [106] merged the data received in real-time by four types of environmental
sensors—a temperature/humidity sensor, CO2 sensor, TVOCs sensor, and fine particulate
sensor—in order to facilitate the analysis of indoor environment quality, taking occupant
behaviors into account.
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In some HBI studies, the CO2 sensor is used as an indirect method to estimate the
number of occupants because CO2 is produced during human respiration. The CO2 sensor
is inexpensive, unobtrusive, and respectful of one’s privacy; however, there are some
considerations to be made regarding its application. The concentration of CO2 will be
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affected by the ventilation level of the building’s air, and the amount of CO2 generated by
the building’s occupants will vary greatly depending on their BMI, age, health condition,
fatigue levels, etc.; therefore, the accuracy of occupancy numbers based on the CO2 need
to be combining the actual information of occupants and building operation. In addition,
a CO2 sensor is included in the IAQ monitor to measure the indoor air quality alongside
humidity, temperature, TVOC, etc., which are taken as environmental factors to study
the thermal comfort of occupants or the influential factors on occupant behavior. Both
statistical analysis and machine learning algorithms have been used in previous research to
process CO2 concentration data.

3.4.2. Sound Sensor

The sound sensor is used to detect and monitor environmental sound waves. Cur-
rent HBI research utilizes two types of acoustic sensors: the electret condenser micro-
phone (ECM) sound sensor and the micro-electro-mechanical system (MEMS) audio sensor
(Figure 8). The main component of classic voice recorders is the ECM sound sensor, in
which the electret film might be vibrated by sound waves, resulting in a change in ca-
pacitance and a small voltage shift; the voltage is then collected and transferred to the
computer for A/D conversion. Kim et al. [107] deployed a standard ECM-based voice
recorder IVR-50 to collect voices in the home and suggested a deep learning-based sound
recognition model to monitor the inhabitant’s behaviors and detect emergent occurrences
in a single-person dwelling. Figure 9 depicts their study’s research procedure: (1) sound
data pretreatment, (2) acoustic feature extraction, (3) classification model construction and
training, and (4) results postprocessing.
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MEMS is a chip-based technology integrating the micro-electronic circuit technology
with a micro-mechanical system at the nano and micron scale [108]. The MEMS audio
sensor incorporates both a MEMS module and an application-specific integrated circuit
(ASIC) into a single package. Compared to the ECM sound sensor, the MEMS audio sensor
has superior performance, smaller size, and reduced sensitivity to mechanical shocks, as
well as a rapidly expanding market share in the smart technology industry, including
smartphones, wearable devices, smart home, etc.; thus, the smartphone has become an
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effective tool for sound data collection [109]. In a study by Zhu et al. [110], the smartphone
was used to detect the acoustic signal of eight energy-related occupant activities, and the
locality-constrained linear coding approach was used for activity detection.

The usage of a sound sensor is a simple and low-cost technique for perceiving the
acoustic environment all around. Sound recognition is also an indirect way to determine
the situation of occupancy presence and to detect some specific behaviors and emergencies,
such as the voice of the elderly calling for help or the elderly falling down [107], but in
sound processing, some noise or an unrelevant sound must be eliminated. On the one hand,
the sound environment is an important factor influencing the comfort level of building
occupants.

3.4.3. Illuminance Sensor

On the basis of the photoelectric effect, the illuminance sensor measures the amount
of ambient light and converts optical signals into electrical signals. In the HBI study, one
key application of the illuminance sensor is to detect changes in ambient illumination in
order to automatically manage the lighting system so that the indoor illuminance remains
within a given range. When the room’s illumination exceeds the threshold value, the
lighting system will automatically switch off or dim, and vice versa [111–113]. In order to
determine the threshold value of indoor illuminance, Nagy et al. [112] used an illuminance
sensor to record the illuminance each time an occupant manually switched the lights. They
also reported that the light sensor-based occupant-centric lighting system control strategy
could achieve maximum energy savings of 37.9%. Based on the continuous illuminance
sensor data and occupancy survey findings, as well as the reinforcement learning algorithm,
Park et al. [114] developed Light Learn, an occupant-centered lighting controller that could
adapt to the preferences of the occupant and the environmental conditions.

Table 7. The list of references for building environment sensing.

No. Type Year Research
Object Sensing Device Data Processing

Method

[101]

CO2

2019 Occupancy counting CO2 sensor Statistical analyses

[102] 2015 Occupancy counting,
occupancy activity

CO2 sensor,
beam-break sensor Statistical analyses

[103] 2019 Occupancy counting CO2 sensor stochastic differential
equations

[104]

IAQ

2017 Influence of occupant
behavior on energy IEQ monitors

Model-based
simulation, statistical

modeling

[105] 2019 Occupant behavior Customized smart
sensor node

Agent-based
modeling

[106] 2019 Influence of IEQ on
occupant behavior

SHT30, T6703 CO2
Module, SP3S-AQ2,

MEVIU

weighed Euclidean
distance

[107]

Sound

2020

Occupant behavior
monitoring and

emergency event
detection

IVR-50 Deep learning sound
recognition

[110] 2015
energy-related activity

recognition in
buildings

Smartphone Locality-constrained
linear coding method

[111]

Illuminance

2016 Occupant comfort,
energy consumption

Light sensor,
headlight, PIR sensor Statistic analysis

[112] 2015
Lighting control for
comfort and energy

efficiency

Light sensor,
headlight, PIR sensor Statistic analysis

[113] 2018 personalized visual
satisfaction

Illuminance sensor,
HDR camera Bayesian modeling

[114] 2019 Occupant-centric
lighting control

LightLearn hardware
configuration (light

sensor, RPI)

Reinforcement
learning
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3.5. The Sensing of Building Consumption
3.5.1. Smart Meter

Smart meters and smart plugs are the most prevalent methods for sensing building
consumption. The smart meter is an electronic device that records the energy or water
usage of a building in real-time and facilitates bi-directional information exchange between
the demand side and utility suppliers [115]. The key component of a smart meter is the
microcontroller unit (MCU), which has powerful data storage, analysis, and intelligent
decision-making capabilities. If connected to a wireless network, the smart meter may
also monitor and regulate smart home equipment according to the directions of the oc-
cupant [116]. In the newer generation of smart meters, the human–machine interaction
(HMI) technique has been used to improve the information feedback experience. The smart
meter can interact with users through multimodal information, such as the visualization or
the voice broadcast of energy consumption results, in the hopes of encouraging end-users
to practice energy-saving behaviors [117]. In addition, because smart meters can provide
residents with feedback about their power consumption, they have been used to develop
behavioral intervention systems to encourage residents to adopt energy-saving practices in
their daily activities [118,119].

The smart meter has benefited the HBI research through its capabilities of real-time
monitoring of power consumption and big data provision since the consumption data has
been utilized as an effective data source to infer occupancy status or energy consumption
patterns. Utilizing machine learning techniques is a useful method for modeling the com-
plicated interactions between occupants and buildings [120,121]. Based on the smart meter
data, Singh et al. [122] used a frequent pattern mining method to analyze variations of
occupant behaviors in households, including differences in energy consumption, appliance
usage, and time. In order to fulfill the goal of remote control, the study team extracted fea-
tures from smart meter data analytics during the building commissioning phase, including
the usage type, performance class, and operation group.

3.5.2. Smart Plug

The smart plug is an intelligent power socket or converter with remote-control power
on and off capabilities that can collect the electricity load information of the domestic or
office equipment in real time, transmit the consumption data to the household energy hub,
and provide feedback to the power user via a mobile application. In HBI research, the state
of electrical appliance usage is considered an indicator of occupancy. For example, in an
office environment where practically everyone uses one computer, the utilization situation
of the computer can be considered an occupancy indicator, and the electricity consumed
by the computer can also be correlated with the office’s occupancy [123]. Based on this
consideration, the room occupancy patterns in an office building were identified by reading
the power consumption data of office computers with a smart load meter. The authors also
stated that, compared to the CO2 sensor, the power consumption data could provide more
accurate results of occupancy patterns and occupancy numbers [123].

Similar to the smart meter, the smart plug has a consumption feedback function for
energy-saving behavior intervention. In a behavioral intervention experiment conducted by
Jenkins et al. [124], the research team selected 46 offices and upgraded their existing electric
outlets to smart plugs for three purposes: collecting energy data from each outlet, the
remote control of outlet, and transmitting the energy data to web and mobile application.
As a result, the smart plugs successfully engaged workplace occupiers to cut plug load
electricity consumption by 32%, according to the article. The references reviewed for the
sensing of building consumption are listed in Table 8.

3.6. The Fusion of Multi-Sensing System

Table 9 presents four examples for the employment of multi-sensing fusion system
in HBI research. Due to the fact that each type of sensing technology has its own ap-
plicability and limitation, a single sensing technique rarely provides sufficient reliable
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information; thus, a number of studies have adopted the strategy of multi-source data
fusion to reduce uncertainty with the data and improve the quality of the information
extracted. Aiming to contribute to the occupancy estimation, a sensor network was de-
ployed by Amayri et al. [125] in an office for data acquisition, which consisted of two video
cameras, a luminance sensor, IAQ sensors, a power consumption sensor, reed contact,
acoustic sensor and PIR sensor (Figure 10), and the authors used decision tree algorithm
for data processing.

Table 8. The list of references for building consumption sensing.

No. Type Year Research Object Sensing
Device

Data Processing
Method

[118]

Smart
meter

2018 Energy
consumption HEMS Statistic analysis

[119] 2019 Energy saving Smart meter,
in-home display

Statistical
analysis

[121] 2017 Occupancy
detection Smart meter Monte Carlo

simulations, RF

[122] 2021
Building usage
type, operation

pattern
Smart meter Machine

learning-RF

[123] Smart
plug

2017 Room occupancy
pattern

Smart plug, CO2
sensor Statistic analysis

[124] 2019 Occupant
engagement Smart plug Statistic analysis

Table 9. The list of references for the fusion of multi-sensing system.

No. Type Year Research
Object

Sensing
Device

Data Processing
Method

[125]

RGB
PIR

Magnetic reed
contact

IAQ
Sound

illuminance
smart plug

2016 Occupancy
counting

Video-camera,
Motion detector,
Window contact,

Smart plug,
Microphone,
IAQ monitor

Decision tree
algorithm

[126,127]

Wi-Fi, CO2,
Temperature,

humidity sensor,
RGB

2018
2019

Occupancy
prediction

Wi-Fi probe,
Web camera,
IAQ monitor

ANN, KNN,
SVM

[128]
Environmental,

Audio,
image

2022 Occupancy
detection

IAQ monitor,
Video Camera,

Occ-STPN,
RF,

Few-shot model

In order to increase the accuracy and reliability of the occupancy prediction model,
Wang et al. [126] utilized environmental sensors (air temperature, relative humidity, CO2
concentration), Wi-Fi probes, and video cameras to integrate a fused sensing network for
obtaining occupancy data. The research team set up their on-site experiment in a 200 m2

graduate student office with 25 residents and conducted two experiments (Figure 11). In
this article, they compared three machine learning algorithms, k-nearest neighbors (KNN),
support vector machine (SVM), and artificial neural network (ANN). They reported that
the ANN-based model with a fusion data source appeared to have the best performance,
while the SVM model was more suitable with Wi-Fi data. The fused data outperformed
the independent sensor data in terms of model accuracy and robustness for occupancy
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prediction. In article [127], the authors developed an adaptive lasso model to identify the
features with high correlation to the actual occupancy profiles and stated that indicators of
CO2 concentration, temperature, and Wi-Fi signal were the most correlative.
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In Ref. [128], the authors developed a high-performance occupancy detection system
incorporating sensor data of various modalities, including time series environmental data
(temperature, humidity, and illuminance), image data, and acoustic data. In order to
achieve the highest prediction performance across different types of sensing data, as shown
in Figure 12, the authors developed a multimodal sensor fusion framework built with
different machine learning models to understand the occupancy patterns revealed in the
physical data streams. After developing the inferencing model for each modality of sensing
data, the research executed a combination of weighted probability and knowledge-based
decision fusion in the final stage of this framework and multiple public datasets were
utilized for validation.
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Aiming to determine the impact of sensor placement on the data accuracy of a fusion
of sensing systems, Azizi et al. [129] conducted a study with 18 multi-sensor devices
installed in three workplaces. Multiple sensors for detecting PIR, temperature, carbon
dioxide, humidity, and light were put in each device. Their findings indicated that the
location of PIR and CO2 sensors had a significant impact on the accuracy of occupancy
detection. Placing sensors in the middle of the office ceiling may not provide very accurate
data, whereas placing sensors under office desks could increase the accuracy of presence
detection by up to 84%. In addition, the sensor’s location has a significant impact on the
measurement of environmental indicators, particularly temperature and lighting data.

With the penetration of smart technology in a household, the smart home has become
a data-producing source, as the various sensors embedded in the smart products are
continuously recording the household’s daily data, such as the indoor air quality, energy
consumption, occupancy, etc. Therefore, if the data can be appropriately used, some
novel services that improve the lives of occupants would be incubated. For example,
Varlamis et al. [130] developed an energy-saving application–an online recommendation
system based on the fusion data of various sensors, user behavioral habits, and feedback
from occupants. This application could provide personalized energy-saving suggestions
to residents at the appropriate time, as well as record user feedback and refine future
recommendations.

4. Discussion
4.1. The Facts behind the Data

The sensing technologies enable the research to acquire more comprehensive and
extensive data to study the occupants, the building, and their interrelationships. However,
it should be noted that data is only intended to provide more evidence to validate the
proposed hypotheses or models, and scholars should attempt to uncover the facts that
are hidden behind the data. For instance, Wi-Fi connection data has been validated as an
effective method for determining occupancy numbers, provided that occupants have a
strong intention to connect to Wi-Fi in the building. However, because occupants have
multiple devices that require an internet connection, the occupancy counting derived from
connection data may be higher than the actual number.

The feedback and experience of occupants are essential issues of HBI research. Al-
though a number of studies have adopted wearable sensors to measure human physiologi-
cal data in order to provide more objective and scientific material for scholars to understand
the physical sensations of building occupants, the subjective bias-prone questionnaire sur-
vey will always be indispensable for result validation, as a prevalent method to investigate
occupant’s perception and experience. In Ref. [61], after analyzing body temperature and
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EEG data, the authors also used a questionnaire to collect subjective views of the building
environment for cross-validation and discovered a strong correlation between EEG data
and subjective questionnaire, and in Ref. [75], in order to thoroughly evaluate the comfort
perception of occupants, the indoor air quality sensors, the wearable physiological sensors,
and the subjective survey were all used to collect data simultaneously. Except for the built
environment, the physical sensation of occupants will also be influenced by behavioral and
phycological factors, which is an important research area in HBI [131].

4.2. The Cost-Effectiveness of the Fusion of Multi-Sensing System

Increasing numbers of research utilize multi-type sensors to collect data from multiple
sources in order to accomplish comprehensive sensing of the human-building-environment
system. Theoretically, the approach of data fusion might compensate for the flaws of a single
sensor, offer cross-reference between each sensor, and improve the accuracy and reliability
of the research [126]; however, it also raises a number of concerns. The first concern is
the cost-effectiveness relating to the sensor and advanced data processing techniques.
In Ref. [127], the authors predicted occupancy using a fusion of multi-sensors, but they
emphasized that their study did not consider the trade-off between accuracy and sensor
cost. In Ref. [128], the authors also indicated that they would consider low-power sensors
and low-cost computation devices in future work. Therefore, the choices of the sensors
and computational infrastructure in the study of multi-sensing fusion should be carefully
considered.

Secondly, the growth of the data volume and data type will lead to more sophisticated
data synchronization and processing. The machine learning (ML) technique can derive dis-
tinctive features from unprocessed sensor data collected from the building operation phase
to obtain comprehensive knowledge about occupant behavior. Various ML models have
been utilized in previous studies, such as the ANN model [126,132], KNN model [11,133],
SVM model [11,33,133], RF model [11,98,122], etc., because the performance of different
models can vary greatly, as Wang et al. [126] demonstrated that after comparing the analysis
results of the fusion data, only the ANN model improved its performance, while the KNN
model and SVM model did not show the difference from the individual data set. However,
in the occupancy detection study of Yoon et al. [11], the authors reported that the RF model
proved to be the highest accuracy compared to the KNN model and SVM model. Therefore,
the selection of the ML models should be handled with care, taking into account the volume
of the data set, as well as the features of the data, like type, structure, and format, etc.

4.3. The Privacy Issues Involved with Data Acquisition

As the goal of data collection in HBI research is to monitor, detect, or infer the interac-
tions between occupants and buildings, the privacy issue associated with the data-sensing
process is of the utmost importance. In the majority of the reviewed publications, human-in-
the-loop data collection methodology was used to collect data, indicating that participants
were highly involved in the research process. For example, in Ref. [50], in addition to the
sensors used to record the occupant behavior data, a depth camera was used for manual
observation as ground truth proof. In Ref. [125] and [127], test beds equipped with a variety
of sensors were developed to observe occupant behavior over a length of time without
interruption. In these situations, it must be a research ethic to preserve the privacy of
experiment participants. The residents’ reluctance to embrace smart meters is also hindered
by the possibility of privacy leakages [134]. According to Refs. [122,135], smart meter data
mining techniques can reveal an occupant’s daily schedule and living habits; therefore,
smart meter data must be protected carefully lest the data be used by criminals. Some
technical approaches have been proposed for privacy protection in smart environments,
which could serve as a reference for future research [136].
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5. Conclusions

This paper presents a systematic review of the application of sensing technology in the
research of HBI. According to the research contents of HBI, the sensing technologies were
organized into six application scenarios: occupancy status, the physiological indicators
of occupants, the conditions of building components, the attributes of indoor/outdoor
environment, the consumptions of the building, and the fusion of multi-sensing system.

Initially, the research of occupancy status includes the occupancy counting, occupancy
presence, occupancy location, and occupancy trajectory, and four types of prevalent sensing
technologies were reviewed: camera-based sensing, which includes the RGB camera and
depth camera; infrared-based sensing, which includes the active infrared, such as the
break-beam sensor, and the passive infrared, such as the PIR sensor; the radial frequency
signal based sensing, which includes Wi-Fi; and the ultrasonic sensor. Secondly, the
physiological indicators of occupants are an effective method for determining the comfort
level of occupants in a building. These indicators can be acquired through a variety of
biosensing techniques, such as those related to the human brain (EEG, ERPs, fMRI), muscle
and skin (EMG, EDA), and cardiac function (ECG) monitoring. In addition, as a result
of the development of wearable sensors, the wristband with multiple health monitoring
functions has gained popularity in relevant research, which was also examined. Thirdly,
by detecting the changes in building components such as windows, doors, and floors,
data can be collected to reveal and predict interactions between persons and buildings;
the magnetic reed sensor and the vibration sensor are generally utilized for this purpose.
Fourthly, the article discussed a series of environmental sensors, including the indoor
air quality sensor, the acoustic sensor, and the illuminance sensor, which could acquire
environmental indicators to enable the study to examine the reciprocal interaction of the
building environment and residents. Fifthly, the sensing technologies incorporated within
the smart meter or smart plug were reviewed in terms of their functionalities of real-time
consumption monitoring and data feedback, allowing HBI studies to infer the occupancy
status or occupant behavioral pattern using machine learning algorithms. Lastly, a number
of studies have leveraged the fusion of multi-sensor systems to perform full sensing of the
human-building-environment system to compensate for the limitations inherent to a single
sensor and improve the research’s reliability and accuracy.

Additionally, the results of the review were discussed from three perspectives. Firstly,
thanks to the sensing technology, the researchers were able to collect more data than ever
before to support their research; yet, the data could not show all, and certain realities
concealed by the data deserved in-depth investigation. Moreover, in the application of
multi-sensor fusion, the cost-effectiveness of advanced data processing techniques should
be considered. The increase in data volume will raise the difficulty of data synchronization
and data analysis. The machine learning technique is a primary method to solve big data
analysis; however, because the performance of different ML models varies greatly, it is
advised that researchers select the appropriate ML model with caution. Lastly, the issues of
personal privacy caused by the expansion of sensing technologies are so important that the
research staff should give them adequate attention.
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