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Abstract: Data stream mining deals with processing large amounts of data in nonstationary envi-
ronments, where the relationship between the data and the labels often changes. Such dynamic
relationships make it difficult to design a computationally efficient data stream processing algorithm
that is also adaptable to the nonstationarity of the environment. To make the algorithm adaptable
to the nonstationarity of the environment, concept drift detectors are attached to detect the changes
in the environment by monitoring the error rates and adapting to the environment’s current state.
Unfortunately, current approaches to adapt to environmental changes assume that the data stream
is fully labeled. Assuming a fully labeled data stream is a flawed assumption as the labeling effort
would be too impractical due to the rapid arrival and volume of the data. To address this issue, this
study proposes to detect concept drift by anticipating a possible change in the true label in the high
confidence prediction region. This study also proposes an ensemble-based concept drift adaptation
approach that transfers reliable classifiers to the new concept. The significance of our proposed
approach compared to the current baselines is that our approach does not use a performance measur
as the drift signal or assume a change in data distribution when concept drift occurs. As a result,
our proposed approach can detect concept drift when labeled data are scarce, even when the data
distribution remains static. Based on the results, this proposed approach can detect concept drifts
and fully supervised data stream mining approaches and performs well on mixed-severity concept
drift datasets.

Keywords: machine learning; semisupervised learning; manifold regularization; sequential learning;
internet of things; data stream mining; concept drift

MSC: 68W27; 68T07; 68T30; 68U35

1. Introduction

The era of big data has transformed many applications by giving insights and pre-
dicting future observations to make business processes more effective and efficient. For
example, the Internet of Things (IoT) application has improved manufacturing efficiency
by predicting the failure rates of machines through data gathered from sensors [1,2]. Big
data also improved sales productivity by predicting customer churn to maximize sales [3,4].
Big data applications such as IoT operate where large amounts of data are constantly
being generated, known as data streams [5]. As a result, the challenge of mining from
big data streams is often described using the three principal challenges: volume, velocity,
and volatility, or simply 3Vs [6]. Volume and velocity refer to large data being generated
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constantly. These data are possibly infinite, making storing them in a storage device im-
possible, requiring the data to be processed sequentially or streamed. A data streaming
algorithm is also designed to be trained online compared to batch learning algorithms that
require the whole dataset to be stored for the model to be trained [7–9]. Finally, volatility
refers to the dynamic environment of data streams, where changes can occur spontaneously.
In the data stream literature, this situation is known as concept drift [10,11].

Various data stream algorithms have been proposed, but the most popular data
stream algorithm is based on the decision tree classifier due to its simple structure and
generalization capabilities when constructed as an ensemble [12]. However, recently, other
algorithm types, such as the Extreme Learning Machine (ELM), are being investigated for
their ability to perform on high-dimensional data [13]. Nevertheless, most data stream
algorithms that had been proposed manage to address the computational challenges
of processing large amounts of data by having a similar performance to batch learning
algorithms with significantly fewer computational resources [14]. However, most existing
data stream algorithms operate in nonstationary environments where the relationship
between the data and the label may change with time, making the model obsolete and
causing erroneous and unreliable predictions to be produced [15,16]. For example, a model
trained to predict customer churn may become obsolete when customer behavior changes,
requiring the model to be updated. Therefore, data stream algorithms should be able to
detect and adapt to environmental changes to preserve a good prediction performance.
Tackling concept drift is nontrivial as detecting its occurrence can be challenging as it
can occur with various severity, from an abrupt change to a gradual change to a new
concept [17]. In addition, the following challenges also exist when attempting to detect and
adapt to concept drifts [18–20]:

1. Concept drifts need to be detected as soon as they occur.
2. Overlapping concepts can cause noise to the concept drift detector, causing concept

drift detection to be uncertain.
3. Detecting concept drift needs to occur continuously. Therefore, processing the data

and deciding to trigger the drift alarm and adapt to drifts need to be computationally
efficient to maximize the model’s throughput.

To detect concept drifts, the concept drift detector uses signals that may indicate the
occurrence of concept drifts [21]. These signals are usually the error rates produced by the
prediction model, which works by comparing the current error rate and the previous error
rate. Concept drift is assumed to have occurred if the current error rate is significantly
higher than the previous error rate. To measure the significance of the increase in the
error rate, some approaches use the control chart approach [21,22], which signals a concept
drift if the running mean of the error rate is n standard deviations above the normal rate.
Another approach uses statistical learning theory to calculate the error bound the classifier
should not surpass, assuming a stationary environment [23]. So, if the classifier surpasses
the error bound, a concept drift is assumed to have occurred. A more straightforward
approach to detecting concept drift is using statistical hypothesis testing to detect if the
error rate is significantly higher than the mean error rate produced by the classifier [24].

The model adaptation component is responsible for updating the classifier to respond
to environmental changes to adapt to concept drifts. A trivial approach is to reset the
classifier to completely remove the previous concept from the model and retrain it from
scratch [25] or keep updating the model as each sample arrives to compensate for gradual
drifts [26]. However, retraining the classifier is only effective if the concept drift is severe;
otherwise, the adaptation would be inefficient as the classifier needs to relearn the concepts
unaffected by the concept drift [25]. On the other hand, constantly retraining the classifiers
to adapt to gradual drifts assumes that concept drift constantly occurs, which is incorrect as
concept drift can occur with different durations [26,27]. Therefore, a more efficient approach
to adapting to concept drift is by only removing the classifiers affected by the concept
drift. This can be achieved by ensemble-based approaches that prune the underperforming
classifiers [28,29]. Because ensemble-based approaches are trained using the bagging
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sampling method that increases the diversity of the model by training the classifiers on
different subsets of data, some classifiers may survive if the data it is trained on is not
affected by the drift [25]. However, for the concept drift detection and model adaptation
components to function, it requires a fully labeled data stream to calculate the error rates of
the classifier to detect the concept drift and identify which classifiers are underperforming
during the adaptation process [30]. Unfortunately, in most cases, labeled data are difficult
to obtain, making most concept drift detection approaches impractical. It is also mentioned
that only 20% of works in data stream mining are directed towards semisupervised and
unsupervised concept drift handling to make data stream mining more label efficient [10].
Therefore, a more practical approach to detect and adapt to concept drift is to design an
approach that requires less labeled data to make data stream mining more practical.

Existing concept drift detection approaches, which were designed for environments
with scarce labeled data, detect concept drifts based on the changes in the data distribution.
For example, the study in [31] used the change in the mean of the distribution as a signal
for detecting concept drift. That is, the concept drift was detected when the center of the
data distribution changed. Some approaches also consider the change in the direction
of the principal component of the distribution, which is suitable for high-dimensional
data [32]. However, changes in the data distribution do not necessarily translate into
changes in the decision boundary, which is the main cause of concept drift [33]. This makes
detecting concept drift in an environment with a lack of labeled data difficult, as changes in
decision boundaries can only be detected by monitoring the error rate of the classifier [34].
This would cause many false positives to be triggered if there was no decision boundary
change occurring that directly caused concept drifts [33]. To address this issue, concept
drift detectors should be more efficient in using labeled data to detect concept drifts. In
summary, the identified weaknesses of the current approaches are listed below:

1. Current approaches require labeled data that are expensive to obtain to calculate the
performance measure, e.g., the error rate of the model to be used as the drift signal.

2. Current unsupervised concept drift detection is blind to the change in the decision
boundary by only monitoring the change in the data distribution.

In this study, we propose a concept drift detection approach that is more efficient in
detecting concept drifts by requiring only a partially labeled data stream, i.e., a semisu-
pervised approach. We achieved this by assuming that even a highly confident prediction
would be incorrect if a concept drift occurs. Then, the rate of an incorrect prediction
made by confident predictions was recorded. The proposed approach triggers a concept
drift alarm if the rate of the incorrect confident prediction is higher than the usual rate.
In addition, we also propose a metric to estimate the reliability of the classifiers in the
ensemble to adapt to concept drifts. The proposed metric allows for the estimation of the
reliability of the classifiers without measuring their error rate that uses labeled data which
improves the overall practicality of data stream mining in environments where labeled data
are scarce. Adapting to drifts by selecting the most reliable classifiers in the ensemble has
been investigated in several works [28,29]. However, our proposed approach does not rely
on labeled data to estimate the classification performance. This study aimed at improving
the practicality of data stream mining by reducing the dependency on labeled data. The
contributions of this study are listed as follows:

1. A concept detection approach was designed and developed to detect concept drifts
by measuring the error made by confident predictions.

2. An evaluation metric has been proposed to measure the performance of the classifiers
in the ensemble without requiring labeled data.

2. Literature Review
2.1. Data Stream Mining

Early works in data stream mining were primarily focused on addressing the computa-
tional challenges of data stream mining. For example, the decision tree classifier proposed
by Domingos and Hulten [35] is the Very Fast Decision Tree (VFDT) classifier that uses
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Hoeffding’s bound to calculate the minimum number of samples to reduce the error to
a certain rate. This way, the decision tree is only trained with minimum samples rather
than the whole dataset to conserve memory and computing resources. To improve the
generalization capability of the VFDT, Oza and Russell [36] proposed the online bagging
algorithm that approximates the batch learning of bagging decision trees, thus guaranteeing
its performance to be close to a batch learning algorithm despite being trained sequentially.
A more recent implementation of the VFDT is the Extremely Fast Decision Tree (EFDT) [37],
which only updates the decision tree if it improves its performance to reduce computational
load further.

As the computational challenges of data stream mining are mostly addressed, research
in data stream mining attempts to tackle the challenge of mining from nonstationary envi-
ronments [16]. For decision-tree-based classifiers, adapting to concept drift involves either
the voting weight update approach or the structure update approach. The voting weight
update approach essentially assigns higher influence to the predictions made by the classi-
fiers that are currently performing well. For example, the Accuracy Weighted Ensemble
(AWE) [38] and Accuracy Updated Ensemble 1 (AUE1) [39] weigh their classifiers based on
their current accuracy. However, when all classifiers perform poorly, e.g., when a severe,
abrupt drift occurs, the weights of the classifiers would be equal, causing the predictions to
be assigned randomly by the classifiers. To address this, the Accuracy Updated Ensemble 2
(AUE2) [40] was proposed by regularly adding new classifier members to the ensemble
and treating it as the perfect classifier. All classifiers in AUE2 are assigned weights based
on their accuracy except the newest classifier, which always has the highest priority.

Adapting to concept drift by updating the classifier weights can be slow when more
severe concept drift is encountered. Therefore, the structure update approach exists as
a more aggressive approach to adapt to a more severe concept drift by removing and
replacing the underperforming classifiers. Because of the aggressive nature of the structure
update approach, prediction models adopting this approach are often paired with a concept
drift detector to only update its structure when concept drift occurs. This is to prevent a
phenomenon known as catastrophic forgetting, which happens when the model forgets
relevant information that had been trained [41,42]. For example, the ambiguous Continuous
VFDT (aCVFDT) [43] attaches a concept drift detector to the VFDT classifier and begins to
search for an underperforming node in the decision tree that should be replaced when a
concept drift is detected. Another approach is Hoeffding’s Windowing Tree—Adaptive
Windowing (HWT-ADWIN) [44] decision tree, which is more aggressive by training a
completely new decision tree to replace the current decision tree. However, HWT-ADWIN
only replaces the current decision tree when it has evidence that the new decision tree is
significantly better than the current decision tree.

For ensemble-based approaches, the Adaptive Random Forest (ARF) [45] attaches a
concept drift detector to each classifier, prepares a new classifier when a warning is issued
by the concept drift detector, and replaces the current member classifier when a concept
drift is detected. This allows for a faster adaptation to concept drift as it has less delay
to adapt to the new concept caused by the new classifier taking time to learn the new
concept. To deal with mixed-severity concept drift, the Diversity Dealing Drift (DDD) [25]
decision tree ensemble is proposed by managing the diversity of the ensemble. During
high severity drifts, the ensemble will have low diversity to specialize in the new concept
as few overlapping concepts can be carried forward after the concept drift. Conversely,
during low severity drift, as there is more concept to carry forward, DDD constructs a high
diversity ensemble to adapt to the new concept.

Due to the uncertainty of data streams resulting from noisy data, approaches based on
evolving fuzzy systems (EFS) have also been investigated. For example, approaches based
on density clustering [46], vector quantization [46], and rule-based approaches [47,48]
were proposed to learn from evolving data streams. EFS has also been deployed as an
ensemble trained using the online bagging approach [49]. These approaches rely on
forgetting mechanisms such as a forgetting factor and rule pruning to remove old concepts
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suitable for gradual drifts. To adapt to sudden or abrupt drifts, these approaches rely on
detecting inconsistencies between the rule that relies on labeled data or expects a change in
the data distribution when the abrupt drifts occur. This proposed approach attempts to
address the challenge of detecting and adapting concept drifts when the data distribution
remains static without requiring a significant amount of labeled data. However, most
data stream approaches assume that all data are labeled, which is a flawed assumption
in many applications. Due to the rapid arrival of data in data stream mining, labeling
data individually is impractical and time consuming. Therefore, some works in data
stream mining have been directed to learn in environments where labeled data are scarce,
more commonly known as semisupervised learning (SSL) [50,51]. For data stream mining,
the manifold regularization approach of SSL is applied by assuming that similar data
tends to have similar labels [52,53]. An example of this approach is the Semisupervised
Online Sequential—Extreme Learning Machine (SOS-ELM) [54], which uses the manifold
regularization approach to learn incrementally from big datasets. Additionally, to address
the challenge of concept drift, the Elastic SOS-ELM (SSOE-ELM) [55] was proposed by
regulating the forgetting factor, which increases forgetting during high-severity drift and
lowers the forgetting rate during gradual or stable periods. Another approach is the Self
Organizing Incremental Neural Network (SOINN) [56] and the Enhanced SOINN [56,57],
which incrementally constructs an approximation of the dataset and uses lazy learning
algorithms, such as the K-Nearest Neighbors (KNN), to classify data.

Graph-based approaches have also influenced SSL by exploiting its structured data rep-
resentation characteristics [58,59]. Some examples of graph-based approaches for SSL is the
label propagation (LP) approach [60–62] and the manifold regularization approach [63,64].
Due to the graph structure, manifold regularization approaches are more straightforward
as the graph Laplacian can be easily computed using the readily available adjacency matrix.
However, it also makes it less suitable for sequential data processing as inserting a new
node in the adjacency matrix is more expensive than the SOINN approach that only requires
the insertion of a new node into an array, which only has a time complexity of O(N).

SSL in data streams also uses the clustering approach by maintaining a set of clusters
and labeling each instance in the cluster based on the similarity between the labeled data to
the cluster centroid [65–67]. The clustering approach can potentially adapt to concept drift,
as the instances stored in the cluster are constantly updated along with its labels. However,
due to the curse of dimensionality, clustering approaches are not suitable for modeling
high-dimensional data streams [68]. Unfortunately, other approaches in SSL for data stream
mining cannot adapt to concept drift due to the inability to detect concept drifts caused by
the lack of labeled data.

2.2. Concept Drift Detection

Research in concept drift detection initially adopted techniques from the field of
process control dedicated to detecting if a system behaves abnormally [30]. A stable system
would have its measurement centered around the mean and out of control when the
measurement is higher than n standard deviations above the mean. For concept drift
detection, the measurement would be the error rate produced by the classifier. Hence, a
concept drift is detected when the error is n standard deviations above the mean.

An example of a control chart approach adopted for concept drift detection is the
Page–Hinkley Test (PHT) [22], a popular process control approach. However, the Expo-
nential Weighted Moving Average (EWMA) [69] was proposed as a control chart approach
that is specialized for detecting concept drifts. EWMA improves the PHT by giving higher
weights to more recent observations to make it more sensitive to concept drift. EWMA
for Concept Drift Detection (ECDD) [21] was also proposed to improve the PHT by not
requiring the mean and standard deviation to be determined a priori to initialize the
control chart.

A more theoretically robust approach to detecting concept drifts is by applying the
Probably Approximately Correct (PAC) [42] assumption for a more accurate concept drift
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detection, which assumes that the error classifier will decrease under a stationary distri-
bution. Therefore, a classifier that violates this assumption is assumed to be the result of
concept drift. Another assumption is Hoeffding’s bound [70], which bounds the classifier’s
error based on the number of data that had been observed. Hence, if the error exceeds
the bound, a concept drift is assumed to have occurred. The Drift Detection Method
(DDM) [71] uses the PAC assumption, which models the error produced by the classifier as
a Bernoulli distribution with a rate parameter that describes the rate of incorrect classifica-
tion. The Early Drift Detection Method (EDDM) [71] was proposed as an improvement to
the DDM to detect slower drifts (gradual drifts) by comparing the current error rate to a
fixed landmark window.

The Hoeffding’s bound, on the other hand, is applied by the Adaptive Windowing
(ADWIN) [72] to detect drift by detecting if there exists a statistically significant split in
the current window between the two subwindows. One of the state-of-the-art (SOTA) ap-
proaches that apply Hoeffding’s bound is Hoeffding’s Drift Detection Method (HDDM) [23].
HDDM achieves SOTA performance using Hoeffding’s bound to bound the false positives.
Therefore, it allows the HDDM approach to trigger the drift alarm confidently.

Another category of concept drift detection is adopting the changepoint detection
approach, which is utilized for time-series analysis to detect points of change in the state of
the time series [73]. The online changepoint detection approaches [74–76] can be applied
for concept drift detection due to their sequential data processing characteristic using
performance measures, e.g., accuracy as the signal. Concept drift is detected when a
change is detected in the model’s performance. However, all of the existing approaches
require labeled data to detect drifts as they detect drifts based on the error produced by the
classifier. This is a limitation for environments with scarcely labeled data. Therefore, several
concept drift detectors have been proposed that do not require labeled data, i.e., that do not
calculate the error produced by the classifier. In most proposed approaches, these concept
drift detectors detect drifts by detecting if there exists any change in the data distribution.
For example, one approach uses the Kullback–Leibler Divergence (KL-Divergence) to
measure if there exists any significant difference between the data distribution of the
current and previous data [31]. Changes in the data distribution can also be detected based
on the change in the direction of the distribution’s principal axis, obtained through the
Principal Component Analysis (PCA) dimensionality reduction algorithm [32]. However, a
distribution change may not necessarily indicate a change in the decision boundary, which
is the main cause of concept drift [33]. As a result, false positives may cause an unnecessary
model update. Therefore, a more efficient concept drift detection can detect concept drift
when few labeled data are desired.

Detecting concept drift as a result of a change in the decision boundary when labeled
data are scarce has been attempted by estimating the accuracy of the classifier using
minimal labeled data obtained using the Active Learning (AL) method and combining
it with the PHT control chart approach [77]. However, this approach uses the classifier
accuracy that can be overestimated when too few labeled data are recorded, resulting
in poor concept drift detection when few labeled samples are recorded through the AL
method. This proposed approach differs by diverting from the accuracy estimation as
the performance indicator but instead uses the conflict between the labeled data and
confidence prediction as the performance indicator. Conflict-based indicators have also
been investigated [78] by measuring the prediction disagreement among the ensemble
classifiers. However, this approach relies on the ensemble to be diverse to ensure that
predictions between the classifiers tend to disagree when concept drift occurs [16]. In
comparison, the proposed approach in this study does not use the disagreement between
the classifiers in the ensemble. Instead, the proposed approach uses the disagreement
between the label and the prediction provided by high-confidence prediction as the concept
drift signal. In addition, our proposed approach does not impose a strict requirement of a
fully labeled dataset to detect concept drift.
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3. Preliminaries

This section will discuss the proposed approach’s building blocks, which consist of the
Enhance Self Organizing Incremental Neural Network (ESOINN) [57] and Semisupervised
Online Sequential—Extreme Learning Machine (SOS-ELM) [54]. To improve readability,
a list of symbols is provided in Table 1 to describe each symbol and variable used in this
paper. The ESOINN is required to estimate the prediction confidence of the SOS-ELM,
which will be used to detect concept drift, as will be explained in Section 4.

Table 1. List of symbols for the ESOINN and SOS-ELM.

Symbol Description

D Dataset
xi Datapoint i, xi ∈ D
S Set of nodes
Ni Nearest node to the ith winner node

WT(a) Number of times node a has been selected as the winner
E Set of edges in the SOINN

e
(

ai, aj

)
Edge between nodes ai and aj, e

(
ai, aj

)
∈ E

Ti Distance threshold for node insertion
age
(

ai, aj

)
Age of the edge between nodes ai and aj

Na Set of neighbors for node a

SD1
Number of standard deviations above the mean for node
deletion when anode a has only one neighbor.

SD2
Number of standard deviations above the mean for node
deletion when node a has two neighbors.

L Graph Laplacian matrix
D Degree matrix
W Similarity matrix
T Prediction matrix
β Trainable parameters for SOS-ELM
H Input-hidden output matrix for SOS-ELM
J Regularization term matrix

G(.) Activation function
Pk Kalman gain
α Labeled–unlabeled importance tradeoff
λ Radial Basis Function (RBF) kernel width parameter

3.1. Self-Organizing Incremental Neural Network (SOINN)

The Enhanced Self-Organizing Incremental Neural Network (ESOINN) is based on
the Self-Organizing Incremental Neural Network (SOINN) that learns the structure of the
dataset by storing samples of the data as nodes in the form of a network. The ESOINN or
SOINN undergoes a process of node insertion, node merging, and node deletion to form
the structure of the network. Due to its network structure, the ESOINN could be used to
discover and analyze the similarity between data clusters.

The node insertion to add a new node in the network is determined by using the node
addition criterion that determines the informativeness of the new node candidate x. By
comparing the similarity of the new data and the whole node in the library, the most similar
node referred to as the first winner N1 and the second most similar data referred to as the
second winner N2 is selected. Then, using Equation (1), two thresholds Ti are calculated for
each winner N1 and N2, where Ni is the neighbors set connected to winner i via an edge.
The new node is considered novel and informative if the distance between the new node
candidate x and either winner Ni is larger than the threshold Ti, as in line 8 of Algorithm 1.
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Algorithm 1: Enhanced Self-Organizing Incremental Neural Network (ESOINN)
Input: Dataset D = {xi}N

i=1, maximum egde age agemax, noise remove interval λ

Output: Set of prototypes S

1: function train_esoinn(D, agemax, λ):
2: foreach x ∈ D:
3: if |S| < 2:
4: S = S ∪ x
5: continue
6: N1 = min

a∈S
||a− x || //find 1st winner

7: N2 = min
a∈S\N1

||a− x || //find 2nd winner

8: if ||x− N1|| > T1 or ||x− N2|| > T2 :
9: S = S ∪ x
10: else:
11: N1 = N1 −

(x−N1)
WT(N1)

//update 1st winner

12: a = a− (x−N1)
100·WT(N1)

, a ∈ N1 //update 1st winner neighbors
13: WT(N1) = WT(N1) + 1
14: if e(N1, N1) /∈ E :
15: E = E + e(N1, N2) //add a connection between 1st winner and 2nd winner
16: else:
17: age(N1, N2) = 0
18: age(N1, a) = age(N1, a) + 1, a ∈ N1
19: remove all edges if age > agemax
20: if number of data is multiple of λ:
21: foreach λ:
22: if |Na|= 0 :
23: S = S\a //remove node a
24: else if |Na| = 1 and WT(a) < SD1·WTmean:
25: S = S\a //remove node a
26: else if |Na| = 2 and WT(a) < SD2·WTmean:
27: end function

Ti =


min
a∈Ni
||Ni − a||, Ni 6= ∅

max
a∈S/Ni

||Ni − a||, Ni = ∅ (1)

If the node novelty criterion is not satisfied, it suggests that the new node is not novel
and does not add new information to the SOINN model. However, it also suggests that the
first and second winners are similar and likely belong to the same cluster. Therefore, the
first and second winner undergoes a merging process by connecting them with an edge
if no edge currently exists. If an edge already exists, the edge age is reset to zero and the
first winner N1 is updated using Equation (2), where WT(N1) is the winning times of the
winner node N1. The first winner N1 neighbors are also updated using Equation (3) and its
edge that is connected to the first winner N1 is incremented by one:

N1 = N1 −
1

WT(N1)
(x− N1) (2)

a = a− 1
100WT(N1)

(x− a), a ∈ N1 (3)

Finally, when an interval defined by λ is reached, the SOINN will undergo a node
deletion process to remove possible noisy nodes in the SOINN by removing isolated nodes,
which are nodes that are not connected by an edge. However, the ESOINN extends this by
removing nodes with fewer than two edges and has less than the average winning time
compared to the whole network.
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3.2. Semisupervised Online Sequential—Extreme Learning Machine

An Extreme Learning Machine (ELM) is a neural network structure consisting of only
one hidden layer. The hidden layer size usually consists of 1000 hidden nodes, as it is
shown to work well for a large variety of datasets [79]. The output T̂ of the ELM is given
by Equation (4), where H is the input-hidden layer matrix and β is the hidden-output
weight matrix. The input-hidden layer matrix H given by Equation (5) is obtained by
passing the input x through a D× L matrix where D is the input data dimension and L is
the hidden-layer size. Each entry of the matrix H is the function of an activation function
G(ai, bi, xi), e.g., ReLU or Sigmoid function parameterized by the weight ai and bias bi that
is assigned randomly.

N1 = N1 −
1

WT(N1)
(x− N1) (4)

a = a− 1
100WT(N1)

(x− a), a ∈ N1 (5)

Given a dataset D = {(xi, ti)}N
i=0, the ELM is trained by minimizing the objective

function in Equation (6) with respect to the hidden-output matrix β. Via the Least Square
approximation, Equation (6) is minimized using Equation (7), where H† is the Moore–
Penrose pseudoinverse of matrix H.

min
β
||Hβ− T || (6)

β = H†T (7)

The Semisupervised ELM (SS-ELM) [80] is a derivation of ELM for learning when
labeled data are scarcely available by exploiting the smoothness assumption. The smooth-
ness assumption is exploited using the manifold regularization term that forces the model
to predict the same labels for similar data. The manifold regularization term L is ob-
tained in Equation (8), where W =

[
wij
]

is the similarity matrix with each entry given by
wij = exp

(
−λ||xi − xj||2

)
, which is the output of the RBF kernel between data xi and xj

and D is the degree matrix with elements Dii =
N
∑

j=0
wij. λ is the width parameter to control

the radius of influence of the RBF kernel. The matrix W can be a sparse matrix to reduce
computational consumption by only considering the k nearest neighbors for each data.

L = D−W (8)

The objective function in Equation (9) is the new objective function with the manifold
regularization term L incorporated, where J = diag(Ci, . . . , Cl , 0, . . . , 0) with its first l en-
tries, which corresponds to the labeled data, equals C for regularization against overfitting,
and α is the labeled–unlabeled data importance tradeoff. The SS-ELM is trained in closed
form by minimizing Equation (9) via Equation (10).

min
β

1
2
||β ||2 + ||JT̂ − T ||2 + αT̂T LT̂ (9)

β∗ =
(

I + HT H + αT̂T LT̂
)−1

HT JH (10)

To make the SS-ELM more practical, the Semisupervised Online Sequential—Extreme
Learning Machine was proposed to allow the SS-ELM to be trained sequentially as the
pseudoinverse matrix H† could not be computed for large H due to the cubic computational
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complexity. Similar to the study in [54], the Recursive Least Squares (RLS) algorithm is
applied to train the SOS-ELM, given by Equations (11) and (12).

β(k+1) = β(k) + Pk HT
k+1

(
Jk+1Tk+1 − (Jk+1 + αLk+1)Hk+1 β(k)

)
(11)

Pk+1 = Pk − Pk HT
k+1

(
I + (Jk+1 + αLk+1)Hk+1Pk HT

k+1

)−1
.(Jk+1 + αLk+1)Hk+1Pk (12)

The pseudocode to train the SOS-ELM is described below:

Initialization Phase:

Obtain an initial dataset Do = {(x1, y1), . . . , (xNo , yNo )} with true labels

1. Randomly assign input weights ai and bias bi for i = 1, . . . , L

2. Calculate the hidden layer output matrix:

3. Calculate the initial hidden-output weights:

βo = Po HT
o Yo (13)

where,

Po =
(

HT
o Ho

)−1
, Yo = (y1, . . . , yNo )

T (14)

4. Set t = 0

Sequential Learning phase:

Obtain a chunk of data Dt = {(x1, y1), . . . , (xl , yl), (xl+1), . . . , (xu)}l+u
i=1 labeled by which

consists of l labeled data and u unlabeled data.

5. Calculate the hidden layer output matrix:

Ht+1 =

G(a1, b1, x1) · · · G(aL, bL, x)
...

. . .
...

G(a1, b1, xN) · · · G(aL, bL, xN)


N×L

(15)

6. Create the Laplacian matrix L = D−W and penalty matrix J

7. Calculate the hidden output weights

β(k+1) = β(k) + Pk HT
k+1

(
Jk+1Tk+1 − (Jk+1 + αLk+1)Hk+1 β(k)

)
(16)

8. Caculate

Pk+1 = Pk − Pk HT
k+1

(
I + (Jk+1 + αLk+1)Hk+1Pk HT

k+1

)−1
.(Jk+1 + αLk+1)Hk+1Pk (17)

9. Set t = t + 1

4. The Proposed Approach
4.1. High Confidence Prediction Conflict-Based Concept Drift Detection

As discussed in the introduction, detecting concept drift via error rate monitoring is
challenging as it requires significant labeled data to detect drifts. To reduce the reliance
on labeled data to detect drifts, this approach proposes to detect drifts by detecting if
there is label switching in the high confidence region by assuming that during concept
drift, especially if it is severe, even areas with high prediction confidence would produce
erroneous prediction due to label switching. This assumption is supported by Webb,
Hyde [27], who define severe concept drift as the situation where the full domain space
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of the data Dom(x) changes some of its label y, which is formally defined in Equation (18)
where t and u are different points in time.

∀x∈Dom(x)∃y∈Dom(y)Pt(Y
∣∣∣X) 6= Pu(Y

∣∣∣X) (18)

To utilize this assumption that changes in labels in high confidence region signal
drift occurs, the prediction confidence of the model has to be estimated. Unfortunately,
using the model’s class probability prediction is unsatisfactory as it may overestimate or
underestimate the confidence of the prediction since it does not consider the region around
the data. Using the traditional Bayesian approach to estimate the prediction uncertainty
would introduce computational intractability as it requires approximation techniques to
estimate the posterior distribution.

To efficiently estimate the prediction confidence of each data, we propose to take the
average confidence of the region around the data to estimate its prediction confidence.
This can be achieved by obtaining the k most similar prototypes around the data from the
ESOINN discussed in Section 3.1 and taking the average of its prediction confidence.

By utilizing the confidence of the prediction obtained by averaging the prototypes of
the ESOINN around the data, the prediction of the data is compared with the true label of
the data. Then, if the prediction conflicts with the true label in a high-confidence region,
concept drift is assumed to have occurred. Note that this approach assumes that some data
are labeled.

However, triggering the drift alarm even if only one conflict occurs in the high confi-
dence region may produce false positives if the label itself is erroneous due to label noise.
Therefore, this approach is combined with a control chart method, e.g., the Page–Hinkley
Test (PHT), to only trigger the drift alarm if the label conflict in the high confidence region
occurs at a higher rate than usual. The overall algorithm is described in Algorithm 2. Note
that in Step 5, the labeled data are obtained from the partially labeled data chunk Dt with l
being the number of labeled samples. The labeled data could be obtained via the Active
Learning (AL) method by requesting l samples of labeled data per chunk from a domain
expert. Therefore, the size of l should be small compared to the size of the data chunk,
e.g., one or two samples, to not overwhelm the expert on the labeling task.

Algorithm 2: Confidence Region Prediction Conflict Concept Drift Detection
Input: Set of prototypes S, confidence threshold τ, control chart method e.g., Page–Hinkley Test
(PHT), partially labeled data chunk Dt = {(x0, y0), . . . , (xl , yl), xl+1, . . . , xu}N=l+u

i=0
Output: None

1: function drift_detect():
2: ŷ0,...,l ← predict(x0, . . . , xl)
3: error = 0
4: for i in {0, . . . , l} :
5: if ŷi 6= y:
6: K ← nearest_prototypes (S, xi)
7: avg_confidence← calculate_confidence via #EQ
8: if avg_confidence ≥ τ:
9: error + = 1
10: control_chart.update(error)
11: end function

Another issue remains despite tackling the computational consumption challenge:
labeled data scarcity and label noise issues. Because this proposed approach triggers a drift
based on a specific region in the dataset where label-prediction conflict occurs, it tends to
overestimate the severity of the drift as it assumes that the whole feature space has flipped
its label. Resetting the model even though the drift only occurs in a specific data region is
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wasteful and makes drift adaptation slower. Therefore, the method to deal with this issue
is discussed in the next section.

4.2. Concept Drift Adaptation with Knowledge Transfer

Resetting classifiers to adapt to concept drift can be inefficient if the drift severity is
low, as the classifier needs to relearn the entire concept from scratch. When a classifier
encounters a low severity drift, it is best to preserve the overlapping concept to be reused
for the new concept. This study proposes an ensemble approach that prunes the classifier
members based on their estimated trustworthiness to produce accurate predictions.

The proposed metric to estimate the classifier’s trustworthiness is shown in Equa-
tion (19), which this study refers to as the trustworthiness metric Tc. The trustworthiness
metric Tc is the inverse of the sum of the classifier’s age and the logarithm of the classifier’s
error rate. The proposed metric prioritizes removing old classifiers but also considers the
estimated error rate. For example, an old classifier with a high error rate will be deleted
sooner compared to a new classifier with a high error rate. The intuition is that an old
classifier with a high error rate is more likely to be obsolete than a new classifier with a
high error rate, which might be due to it still learning the new concept.

Tc =
1

Agen + log
(
Ê
) (19)

However, the proposed metric requires the error rate to be estimated due to the lack of
labeled data. This study refers to the works in an unsupervised error estimation approach
by measuring the prediction disagreement of the classifier with the majority vote in the
ensemble [81]. The error estimation algorithm and the calculation of the trustworthiness
metric Tc are presented in Algorithm 3.

Algorithm 3: Trustworthiness of Classifiers in the Ensemble
Input: Data x1, . . . , xN , Set of classifiers in the ensemble f1, . . . , fC, Age of classifiers
Age1, . . . , AgeC
Output: Trustworthiness of classifiers T1, . . . , TC

1: function calculate_trustworthiness():
2: ŷ1, . . . , ŷN ← predict_via_majority_vote(x1, . . . , xN)
3: for c in {0, . . . , C} :
4: A ← {xn| fc(xn) 6= ŷn} # set of data that the classifier fc disagrees with the majority
5: Ê← |A|/N # estimated error as the proportion of disagreement in the data
6: Tc ← use Equation (19) to calculate the trustworthiness of the classifier fc
7: return T1, . . . , TC
8: end function

To create a diverse ensemble to improve performance, this study trains the ensemble
via the online bagging approach [36] described in Algorithm 4. The λ parameter controls
the diversity of the ensemble with a higher value creating a more diverse ensemble.

The full algorithm for adaptive semisupervised learning for manifold regularization
is presented in Algorithm 5. The ensemble is updated at each data arrival using the
online bagging approach (Algorithm 4). When a concept drift is detected, the ‘drift’ mode
indicates that the model is currently adapting to the concept drift. During the ‘drift’ mode,
the trustworthiness of the classifiers in the ensemble is updated, and the classifier with
the lowest trustworthiness Tc will be removed. The ‘drift’ mode ends when the minimum
ensemble size is reached.
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Algorithm 4: Online Bagging
Input: Data x1, . . . , xN , Classifier fc, diversity parameter λ, training method to update classifier
training_ f unction(.)
Output: Updated classifier fc

1: function train_via_online_bagging():
2: foreach x1, . . . , xN:
3: k← poisson(λ) #sample k from Poisson distribution λ

4: repeat k times:
5: fc ← training_ f unction( fc, xn)
6: return fc
7: end function

Algorithm 5: An Adaptive Prototype-Based Manifold Regularization Approach for Data
Stream Mining
Input: Data Stream D = {Dt}T=∞

t=0 , control method e.g., Page–Hinkley Test control_chart,
ensemble set f = { f1, . . . , fC}, minimum ensemble size min_ensemble_size

1: while (True)
2: //Sequential learning
3: Obtain partially labeled data Dt = {(x1, y1), . . . , (xl , yl), (xl+1), . . . , (xu)}N=l+u

i=1
4: S ← Process Dt using Algorithm 4.2 to create or update prototype set S
5: f1, . . . , fc ← Update SOS-ELMs via manifold regularization method
6: control_chart← update control chart statistics via Algorithm 5.1
7: if control_chart.dri f t_detected() : // if concept drift is detected
8: mode = ‘drift’
9: f ∪ { f1, . . . , fM} #add M new classifiers and add it to the ensemble
10: if mode == ‘drift’:
11: T1, . . . , TC ← calculate the trustworthiness of the classifiers using Equation (19)
12: remove the classifier with the lowest Tc value
13: if C ≤ min_ensemble_size:
14: mode = ‘normal’
15: end loop

5. Experimental Setup

Several benchmark algorithms were selected to evaluate and compare our proposed
approach. The selected benchmark algorithms and its description are listed in Table 2.
Some of the benchmark algorithms in Table 2 are fully supervised algorithms that require
fully labeled data to function, which is suitable to investigate whether this approach can
perform as well as the fully supervised approaches in adapting to concept drift. Comparing
the performance of this proposed approach to the fully supervised approaches will provide
evidence of whether this proposed approach can be a more practical alternative to the fully
supervised approaches.

To evaluate the performance of concept drift datasets, we used several artificial
datasets with defined concept drift locations or decision boundaries that can be manip-
ulated to better evaluate concept drift compared to real-world datasets with unknown
concept drift locations. Below is the list of the artificial datasets that will be used with their
drift characteristics:

1. STAGGER concepts. STAGGER is an abrupt drift dataset that switches between three
concepts by switching between three labeling rules. STAGGER has three boolean
features, i.e., either 0 or 1.

2. Sine. Sine is also an abrupt drift dataset but has four different concepts. Its decision
boundary resembles a sine wave function, making this dataset suitable to be evaluated
on nonlinear decision boundaries.

In addition to these artificial datasets, we also used several mixed-severity concept
drift datasets to evaluate the performance of our proposed approach on mixed-severity
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concept drifts. These datasets are described in Table 3, consisting of four datasets with
variables that can be manipulated to introduce concept drifts. The severity of the drifts can
be manipulated based on the value of the variables before and after the concept drift.

Table 2. Benchmark Algorithms Used in this Study.

Algorithm Reference Description

Semisupervised Online
Sequential—Extreme Learning
Machine (SOS-ELM)

[54]

A version of
Semisupervised—Extreme Learning
Machine (SS-ELM) that learns
sequentially.

Incremental Laplacian
Regularized—Extreme Learning
Machine (ILR-ELM)

[82]

An improvement in the SOS-ELM
that could be updated without the
requirement of each chunk having
labeled data.

Semisupervised Online
Elastic—Extreme Learning
Machine (SSOE-ELM)

[83]

An adaptable version of the
SOS-ELM. that can adapt to drift by
adding a forgetting factor to remove
old concepts from the model.

OzaBagAdwin [14]

A derivation of the Online Bagging
and Boosting Classifier that can
handle nonstationary data streams
by attaching the ADWIN classifier
to the model.

Adaptive Random Forest (ARF) [45]

Introduces diversity to the decision
tree ensemble by selecting only a
subset of features for each decision
tree and assigning a drift detector
per decision tree for adaptability to
concept drifts.

Leveraging Bagging Classifier
(LVB) [84]

An ensemble version of the OzaBag
classifier that also adds the ADWIN
concept drift detector to the model
for each decision tree.

Table 3. Artificial datasets on variable drift magnitude experiment.

Dataset Equation Fixed
Variables

Before/After
Variables

Drift
Severity

Change
Percent (%)

Circle
(x− a)2 +

(y− b)2 ≤ r2
a = 0.5,
b = 0.5

r = 0.2→ 0.3 Low 16%
r = 0.2→ 0.4 Medium 38%
r = 0.2→ .05 High 66%

SineV
y ≤
a sin(bx + c)+
d

a = 1,
b = 1,
c = 0

d = −2→ 1 Low 15%
d = −5→ 4 Medium 45%
d = −8→ 7 High 75%

SineH
y ≤
a sin(bx + c)+
d

a = 5,
d = 5,
b = 1

c = 0→ −π/4 Low 36%
c = 0→ −π/2 Medium 57%
c = 0→ −π High 80%

Plane
y ≤ −a0 +
a1x1 + a2x2

a1 = 0.1,
a2 = 0.1,

a0 = −2→ −2.7 Low 14%
a0 = −1→ −3.2 Medium 44%
a0 = −.7→ −4.4 High 74%

In addition to the artificial datasets, real-world datasets will also be used to evaluate
this approach’s performance in real-world environments. Table 4 lists and describes the
selected real-world datasets used in this study. The selected real-world datasets were
obtained from sensors or IoT devices, which is the target application of this proposed
approach. These datasets also contain common challenges that applications such as IoT
might encounter, such as noisy data and class imbalance. The final column of Table 4
describes the severity of the class imbalance as the imbalance ratio between the minority
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and the majority class. For datasets with nonbinary classes, we summed the classes with the
fewest samples and divided them by the sum of the other classes to obtain the imbalance
ratio. As described in Table 4, most datasets have some class imbalance except for the
Sensorless Drive dataset, where all classes have the same amount of samples.

Table 4. Real-world datasets were used in this study.

Dataset #Samples #Features #Classes #Training
Samples

#Test
Samples

#Training
Steps

#Labeled
Samples

Data Char-
acteristics

Imbalance
Ratio

Sensorless
Drive 58,509 49 11 46,807 11,701 469 2340 High Di-

mensional -

Magic
Gamma 19,020 11 11 15,216 3804 152 760 Noisy 46:54

Human
Activity
Recogni-

tion
(HAR)

10,299 561 6 5881 4418 58 290
Noisy/High

Dimen-
sional

1:99

Crop
Mapping 325,834 175 7 60,000 65,167 600 3000 High Di-

mensional 1:99

KDDCup
1999 494,021 42 12 50,000 98,805 500 2500

Noisy/High
Dimen-
sional

1:99

Physical
Activity

Monitoring
(PAMAP2)

1,942,872 52 12 50,000 388,575 500 2500
Noisy/High

Dimen-
sional

8:92

The following experiments and evaluations were carried out using the datasets and
baselines that were specified:

1. Abrupt drift adaptation evaluation. This experiment evaluates the performance of this
approach against other baselines on abrupt drift (via the STAGGER and Sine) datasets,
where the concept changes rapidly. This is to investigate whether this approach can
detect changes to the concept and adapt to the changes quickly.

2. Mixed magnitude drifts. This experiment is more challenging than the abrupt drift
evaluation as it has a mixture of high- and low-severity drifts. The mixed severity
of the drift makes it important to tailor the adaptation method based on its severity.
Therefore, it allows this experiment to evaluate the performance of the proposed
transfer learning adaptation approach.

3. Overall performance ranking evaluation. This evaluation aggregates all the exper-
iments’ performances and analyzes their overall ranking. This evaluation aims to
analyze whether there is any significant improvement in the comparable manifold
regularization approaches and if it can provide a reasonable alternative to the fully
supervised approaches. This evaluation expects that this approach significantly im-
proves the performance of the manifold regularization approaches while no significant
difference in performance is observed compared to the supervised approaches.

The experiments were conducted on a platform configured with the Intel i5 processor
clocked at 2.40 GHz with 12 GB of RAM using the Python programming language. The
OzaBagAdwin, ARF and LVB classifiers were implemented using the Scikit-Multiflow
Python library [85]. All of the experiments were executed on the Jupyter Notebook software.

6. Results
6.1. Abrupt Drift Evaluation

We first evaluated the performance of this proposed approach on abrupt drift chal-
lenges using the Stagger dataset. The Stagger dataset contains three concept drifts triggered
every 30th data chunk interval with 100 samples in each chunk. This experiment’s results
are presented in Figure 1a,b. Figure 1a shows the comparison of this approach against the
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manifold regularization approaches, while Figure 1b compares this approach against the
supervised approaches.

Figure 1. Performance evaluation on Stagger dataset. (a) The performance of this proposed approach
against other manifold regularization approaches. (b) The performance of this proposed approach
against other fully supervised approaches.

Figure 1a clearly shows that this proposed approach performed well and was more
adaptable than the current manifold regularization approaches by detecting and adapting
to concept drifts. During the first concept drift, the proposed approach managed to detect
the concept drift, adapt the model, and regain optimum classification to 100% accuracy
faster than the other approaches. On the other hand, approaches such as SOS-ELM and
SSOE-ELM managed to recover only to 60% accuracy before the next concept drift occurred.
During the second concept drift, this proposed approach also managed to detect and adapt
to concept drift and regained the maximum performance of 100% accuracy, whereas other
approaches were slower to recover from the concept drifts.

The results presented in Figure 1a were expected as the manifold regularization
approaches require significantly more time to adapt to drifts as it needs to overwhelm the
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previous concept in the model before the new concept can be learnt by not being able to
detect drifts and reset its classifier. As a result, current manifold regularization approaches
are less adaptable to this proposed approach.

Comparing this proposed approach with the fully supervised approaches, this ap-
proach was as adaptable to the fully supervised approaches as shown in Figure 1b. This
was indicated by this proposed approach having almost simultaneous concept drift detec-
tion points and adapting almost as well as the fully supervised approaches. As shown in
Figure 1b, during the first concept drift, the proposed approach detected the concept drift
simultaneously with the other fully supervised approaches, indicating that this approach
managed to detect concept drift as well as the fully supervised approaches. Despite this,
there were some performance deficits, particularly after the first concept drift occurred,
which might have been due to the weakness of SSL, which can be slow to learn due to the
lack of labeled data. During the second concept drift, the proposed approach detected the
concept drift slightly later than the fully supervised approaches at the 61st chunk compared
to the 60th chunk, where the concept drift was set to occur. However, this was an acceptable
performance as the concept drift was still detected close to the true time that the concept
drift occurred.

Next, the performance on abrupt drift performance was evaluated on the Sine dataset;
it was more challenging to provide more evidence of this approach’s ability to detect and
adapt to concept drifts. The Sine dataset evaluation results are presented in Figure 2a,b.
Like the Stagger dataset experiment, 30 chunks of data with 100 samples were used to
generate each concept.

Figure 2a,b show a similar outcome to the Stagger dataset experiment, in which
this approach was more adaptable than the baseline manifold regularization approaches
and was as adaptable to the fully supervised approaches. These results show that this
proposed approach could perform well by detecting and adapting to drifts even with
complex decision boundaries. Comparing this proposed approach with the semisupervised
approaches, Figure 2a shows that this proposed approach managed to detect the concept
drift close to where it occurred, allowing it to adapt and regain its maximum performance
of around 90%. On the other hand, the semisupervised approaches only achieved 60%
accuracy when the next concept drift occurred. However, because the semisupervised
approach did not finish learning before the second concept drift occurred, it still had
some plasticity in the model, allowing it to learn the new concept easier, giving it an even
performance to our proposed approach. However, once the third concept drift occurred,
the supervised approach lost its accuracy and adapted slower than the proposed approach,
only attaining 50% accuracy compared to 83% accuracy for the proposed approach.

Despite the good performance against the semisupervised approaches, this proposed
approach performed slightly poorer than the supervised approaches on the last two con-
cepts shown in Figure 2b. This might have been due to the smoothness assumption being
violated by the complex decision boundary of the Sine dataset. This was most obvious
during the second and third concepts as this proposed approach only attained around
83% accuracy, compared to the 96% accuracy that the fully supervised approach obtained.
Nevertheless, we achieved the objective of our study to detect concept drift as well as fully
supervised approaches by detecting the concept drift close to its point of occurrence.
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Figure 2. Sine dataset performance evaluation. (a) The performance of this proposed approach
against other manifold regularization approaches. (b) The performance of this proposed approach
against other fully supervised approaches.

6.2. Mixed Drift Magnitude Evaluation

Based on the datasets described in Table 3, the results for the variable drift magnitude
are presented in this section. This proposed approach will be compared with other manifold
regularization approaches by resetting the classifier to adapt to concept drifts. Each dataset
in Table 3 triggers the concept drifts at the 20th chunk, with 100 samples for each chunk.

Figure 3 shows the result for the Circle dataset, which shows that this proposed
approach managed to recover from concept drifts quickly. In Figure 3a, when the drift
severity was low, preserving the classifiers from the previous concept and pruning the
outdated classifiers allowed knowledge that can be reused in the new concept to be used
to adapt to the new concept to minimize the drop in performance. Figure 3a shows that
this proposed approach adapted better when concept drift occurred than the baseline
approaches. For example, during the 23rd chunk, this proposed approach achieved 95%
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accuracy compared to other approaches that only achieved less than 85% accuracy. The
superiority of this proposed approach can also be seen clearly between the 30th and the
35th chunk, where this proposed approach consistently achieved higher performance than
other approaches by consistently achieving more than 95% accuracy.

Figure 3. Circle dataset experiment on variable concept drift severity. (a) Performance on low severity
dataset. (b) Performance on medium severity dataset. (c) Performance on high severity dataset.

For the medium severity experiment of the Circle dataset, Figure 3b shows that this
proposed approach had a quite severe drop in performance during concept drift. This was
caused by this proposed approach removing old concepts from the ensemble, causing a
significant drop in performance. However, this turned out beneficial for the model in the
long term, as, after the 29th chunk, this proposed approach consistently achieved more
than 90% accuracy compared to the other approaches.

For the high severity experiment in Figure 3c, due to the high severity of the concept
drift, this proposed approach was less adaptable than other baseline approaches as it could
not prune the outdated classifiers quickly enough to adapt to the drift. However, despite
not overtaking other semisupervised approaches, employing an ensemble-based approach
in this proposed approach allowed the performance to be more stable compared to the
baseline approaches by consistently achieving more than 90% accuracy.

In Figure 4, the results for the SineV dataset are presented, which shows that this
proposed approach maintained a good accuracy when a low severity drift occurred. In
Figure 4a, the result of the low severity drift indicated that this proposed approach managed
to avoid a significant drop in accuracy between the 20th and 23rd data chunks, maintaining
around 93% accuracy after the drift occurred. For the medium severity drift in Figure 4b,
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there was a drop in the performance of this proposed approach. However, as discussed
in the results for Figure 3b, the drop in performance was temporary as this proposed
approach achieved a superior performance between the 25th and 30th chunks. Beyond the
30th chunk, this proposed approach had a more stable performance due to the ensemble
approach, by having more than 95% accuracy consistently. However, as in the Circle
dataset, when the drift was severe, this proposed approach failed to adapt faster than
other baseline approaches as it could not remove the classifiers quickly compared to other
baseline approaches. Despite this, this proposed approach eventually overtook all baseline
approaches except ILR-ELM by achieving more than 80% accuracy.

Figure 4. SineV dataset experiment on variable concept drift severity. (a) Performance on low severity
dataset. (b) Performance on medium severity dataset. (c) Performance on high severity dataset.

In Figure 5, the results from the SineH dataset showed a more promising result by being
more adaptable to all severity levels than the baseline approaches. Figure 5a shows that this
proposed approach had a less severe drop than the baseline approaches and recovered more
quickly after concept drift occurred than the other baseline approaches. As seen between
the 20th and 26th data chunks, this proposed approach achieved more than 92% accuracy.
Beyond the 26th chunk, all approaches performed similarly. When the concept drift had
medium severity, Figure 5b shows that this proposed approach adapted faster than the
other approaches immediately after the concept drift occurred at the 20th chunk. For high-
severity concept drift, contrary to other datasets, this proposed approach adapted faster
than other baseline approaches and consistently outperformed other baseline approaches
until the 25th data chunk. After the 25th data chunk, all approaches performed similarly.
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Figure 5. SineH dataset experiment on variable concept drift severity. (a) Performance on low severity
dataset. (b) Performance on medium severity dataset. (c) The performance on high severity dataset.

Similar to the SineH dataset, the Plane dataset also showed that this proposed approach
performed well on all severity levels by being more adaptable than the baseline approaches.
The results from Figure 6a–c show that this proposed approach maintained its accuracy
when the concept drift occurred and recovered better than the baseline approaches after
the concept drift occurred. This was observed in Figure 6a for low severity drift, which
showed that this proposed approach had a less severe drop in accuracy compared to the
other approaches that dropped below 60% accuracy. After the concept drift, Figure 6a
shows that this proposed approach consistently achieved more than an 85% accuracy.
In the medium severity drift shown in Figure 6b, this proposed approach had a higher
average performance compared to other approaches by having an average classification
performance at around 82% accuracy, whereas other approaches had drops in performance
as low as 65% accuracy. Finally, when the concept drift had high severity, Figure 6c shows
that this proposed approach had a less severe drop compared to other baseline approaches
that dropped as low as 70% accuracy. The proposed approach also learned from the
new concept faster than the other approaches, which was obvious between the 22nd and
the 25th chunk as this approach consistently increased its accuracy compared to other
baseline approaches.
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Figure 6. Plane dataset experiment on variable concept drift severity. (a) Performance on low severity
dataset. (b) Performance on medium severity dataset. (c) Performance on high severity dataset.

The results in Figures 3–6 show that this proposed approach performed well in low and
medium severity drifts by preserving the knowledge from the previous concept. Despite
this, the proposed approach may perform poorly when the concept drift has a very high
severity. However, this study argues that this proposed approach is a tradeoff between
prioritizing performance in low or medium drift severity versus high drift severity. This
is because this proposed approach is the midpoint between completely using previous
classifiers prior to drift, which is more suitable for low and medium drift severity and
resetting the classifier that is more suitable for high severity drifts. Therefore, this proposed
approach could be considered in an environment where low and medium severity drift
is expected.

6.3. Real-World Dataset Performance Evaluation

This section compares this proposed approach with the baseline approaches based
on their performance in each dataset. Both artificial and real-world datasets will be used
for this evaluation to analyze their ability to adapt to drifts and tackle challenges in real-
world datasets, such as noise and class imbalance. As the real-world datasets contain
class imbalance, the F1 measure will be used to take class imbalance into account in the
performance measure. The mean F1 measure throughout the stream was obtained for each
dataset and is tabulated in Table 5. The entries that are bolded are the top semisupervised
approaches based on the experiments.
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Table 5. Performance comparison of this approach compared with other related semisupervised
learning techniques and adaptive supervised learning approaches.

Approach Label Size This
Approach SOS-ELM SSOE-ELM ILR-ELM OzaBag

Adwin ARF LVB

Stagger 1 0.8556 0.6195 0.6937 0.735 0.9569 0.9828 0.9737
5 0.9653 0.6756 0.6818 0.809 0.9569 0.9828 0.9737
10 0.9566 0.6991 0.6822 0.8298 0.9569 0.9828 0.9737

Average 0.93 0.66 0.69 0.79 0.96 0.98 0.97

Average Rank 3.67 6.67 6.33 5.00 3.33 1.00 2.00

Sine 1 0.428 0.5394 0.553 0.5135 0.8827 0.9433 0.9309
5 0.7905 0.5318 0.5168 0.5293 0.8827 0.9433 0.9309
10 0.8653 0.5192 0.5207 0.526 0.8827 0.9433 0.9309

Average 0.69 0.53 0.53 0.52 0.88 0.94 0.93

Average Rank 5.00 5.67 5.67 5.67 3.00 1.00 2.00

Hyperplane0.001 1 0.5845 0.6809 0.6121 0.6657 0.7649 0.776 0.6628
5 0.783 0.753 0.6071 0.7128 0.7649 0.776 0.6628
10 0.7875 0.753 0.6071 0.7128 0.7649 0.776 0.6628

Average 0.72 0.73 0.61 0.70 0.76 0.78 0.66

Average Rank 3.00 3.67 6.67 4.67 2.67 1.67 5.67

Hyperplane0.01 1 0.6781 0.7005 0.7005 0.6667 0.7692 0.7901 0.6656
5 0.7799 0.763 0.763 0.7088 0.7692 0.7901 0.6655
10 0.7792 0.7747 0.7747 0.731 0.7692 0.7901 0.6657

Average 0.75 0.75 0.75 0.70 0.77 0.79 0.67

Average Rank 3.00 3.83 3.83 6.00 3.33 1.00 7.00

HAR 1 0.7303 0.7506 0.7381 0.7428 0.8675 0.7091 0.8023
5 0.8621 0.8437 0.8376 0.8596 0.8675 0.6862 0.8023
10 0.8621 0.8437 0.8683 0.8597 0.8675 0.6862 0.8023

Average 0.82 0.81 0.81 0.82 0.87 0.69 0.80

Average Rank 3.67 4.00 3.67 3.67 1.33 7.00 4.67

Magic Gamma 1 0.7389 0.7393 0.7261 0.6892 0.2452 0.8363 0.7375
5 0.7928 0.79 0.7022 0.7458 0.2452 0.8363 0.7375
10 0.8085 0.7948 0.6715 0.7531 0.2452 0.8363 0.7375

Average 0.78 0.77 0.70 0.73 0.25 0.84 0.74

Average Rank 2.33 2.67 5.67 4.67 7.00 1.00 4.67

PAMAP2 1 0.5643 0.4682 0.4568 0.4633 0.7027 0.8226 0.5817
5 0.7216 0.727 0.6733 0.7037 0.7027 0.8226 0.5817
10 0.798 0.7936 0.7789 0.777 0.7027 0.8226 0.5817

Average 0.69 0.66 0.64 0.65 0.70 0.82 0.58

Average Rank 3.00 3.33 5.67 5.00 4.33 1.00 5.67

Sensorless
Drive 1 0.6618 0.6687 0.5054 0.6928 0.8536 0.8905 0.6928

5 0.78 0.7814 0.7193 0.8092 0.8536 0.8905 0.6928
10 0.8225 0.8185 0.8195 0.8481 0.8536 0.8905 0.6928

Average 0.75 0.76 0.68 0.78 0.85 0.89 0.69

Average Rank 5.00 5.00 6.00 3.17 2.00 1.00 5.83

KDDCup1999 1 0.9926 0.9924 0.5054 0.9923 0.9881 0.9955 0.985
5 0.9926 0.9924 0.7193 0.9923 0.9881 0.9955 0.985
10 0.9957 0.9833 0.8195 0.9848 0.9881 0.9955 0.985

Average 0.99 0.99 0.68 0.99 0.99 1.00 0.99

Average Rank 1.67 4.00 7.00 4.33 4.33 1.33 5.33

Overall
Average

Accuracy
0.7911 0.74 0.6767 0.7422 0.7811 0.8589 0.7811

Overall
Average
Ranking

3.37 4.31 5.61 4.69 3.48 1.78 4.76

As expected, this approach ranked lower on average than the fully supervised ap-
proaches. This was because of the advantage of the fully labeled dataset that the supervised
approaches had access to, which made them perform better than this approach, which only
had a partially labeled dataset. However, this is acceptable as long as the fully supervised
approach does not significantly outrank this approach. The ranking significance can be ana-
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lyzed via the Friedman–Nemenyi post hoc statistical test (α > 0.05) to determine if the fully
supervised approaches significantly outranked this proposed approach. The results are
presented as the Critical Distance (CD) diagram shown in Figures 7 and 8 for the artificial
and real-world datasets, respectively. The CD diagram helps to visualize the significance
of the ranking between the approaches. Each approach is plotted on the average ranking
obtained. Approaches that did not have significant differences in the ranking are connected
on the line.

Figure 7. Critical Distance diagram of performance ranking comparison in artificial concept drift
dataset.

Figure 8. Critical Distance diagram of performance ranking comparison in real-world dataset.

Figure 7 confirms that this approach ranked below the fully supervised approaches
except for LVB. However, according to the CD diagram in Figure 7, the fully supervised
approaches did not significantly outrank this proposed approach, which suggests that
this approach performed on par with the fully supervised approaches. Nevertheless,
this approach did perform significantly better than the baseline manifold regularization
approaches, which was the goal of this study.

Figure 8 shows that this approach ranked higher on average for the real-world datasets’
ranking analysis than all the supervised approaches except ARF. By ranking higher than
the OzaBagAdwin approach, this approach gained a place in the overall ranking compared
to the artificial datasets’ performance ranking. A possible explanation for this approach’s
increased ranking in real-world datasets is that this approach performs better on real-
world datasets as the fully supervised approaches only use simple decision tree classifiers
that perform poorly on high-dimensional datasets. In addition, this approach was not
significantly outranked by the ARF approach but managed to outrank the SSOE-ELM
semisupervised and LVB approaches significantly.

The key findings from both statistical tests are that despite the fully supervised ap-
proaches generally performing better, it did not perform significantly better than this
approach. This suggests that this approach can provide a reasonable alternative to the fully
supervised approaches that are more practical in terms of labeled data.
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6.4. Execution Time Analysis

Because this proposed approach is targeted for data stream mining applications, it is
important to have insight into the computational cost of this proposed approach compared
with other approaches. In this section, the computational costs for each approach will be
analyzed by measuring the time in seconds (s) to execute its model update. The results
are presented in Figure 9a–h for every dataset, indicating the average time to execute the
model update for each approach.

Figure 9. Comparison of execution time of this approach and different baselines. (a–h) The results
of the execution time from the dataset listed in Tables 3 and 4, where d is the dimensionality of
the dataset.
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For lower-dimensional datasets such as Stagger and Sine, this approach and other
manifold regularization approaches had a longer execution time than the fully supervised
approaches. However, this changed as the dimension of the data increased. This approach
executed faster than fully supervised approaches in higher dimensional datasets. This is
shown in Figure 7a–c, which were lower dimensional datasets, indicating that this approach
required a longer time to update its parameters. However, in Figure 9d–h, the ordering
was reversed as the dimension of the data was higher by this approach, and other manifold
regularization approaches had a shorter execution time than the supervised baselines.

Based on the execution time analysis, this proposed approach is more scalable than
the supervised approaches for higher-dimensional datasets. This adds another point of
practicality in addition to the reduced labeling requirement by executing in a reasonable
amount of time for high-dimensional datasets.

7. Discussion

The experiments carried out were performed to evaluate and analyze the ability of
this approach to adapt to drifts and handle the challenges of real-world datasets and their
computational consumption compared with the baseline approaches. In summary, based on
these experiments, this proposed approach outperformed baseline manifold regularization
approaches in adapting to concept drifts but also performed on par with the supervised
approaches. At the same time, this proposed approach performed well on real-world
datasets and could be updated efficiently within a reasonable execution time.

Using artificial datasets, two types of concept drift situations, abrupt drift and irregular
drift, were simulated. The findings in Sections 6.1 and 6.2 show that by being able to
detect abrupt drifts and react to the drifts, this approach managed to adapt to drifts better
than the manifold regularization approaches, which needs to adapt by overwhelming the
old concept in the model with the new concept. Meanwhile, this proposed approach also
performed on par despite a slight delay in detecting the drifts due to the lack of labeled data
to which this approach has access to, making it slightly less sensitive to drifts. Nevertheless,
this approach managed to recover from drifts quickly once the drift was detected.

The performance of this proposed approach was investigated further by analyzing
the overall ranking of this proposed approach compared with the baseline approaches.
Based on the ranking analysis conducted, this proposed approach ranked lower on average
than most of the supervised approaches on concept drift, which was expected. However,
the difference in ranking was not significant, suggesting that this proposed approach can
provide a strong alternative that is more practical than the supervised approaches.

The computational cost was investigated by measuring the time it took to update
the model to investigate this proposed approach’s practicality. The findings in Section 6.4
show that this proposed approach initially had a longer execution time than the super-
vised approach on lower-dimensional datasets. However, as the dimension of the data
increased, this approach had a lower execution time compared with the supervised ap-
proaches. This experiment showed that this approach is scalable and practical for high-
dimensional datasets.

8. Conclusions

This study proposes a prototype-based concept drift detection and concept drift
adaptation that attempts to address the difficulty of detecting and adapting to concept drift
when there is a lack of labeled data. The proposed approach was evaluated on simulated
datasets with concept drift and real-world datasets. Based on the results, the proposed
concept drift detection managed to detect the presence and other fully supervised concept
drift detection despite only having partially labeled data in each chunk. For concept drift
adaptation, the proposed approach adapted well to low- and medium-severity concept
drifts. However, in some datasets, the adaptation to high-severity drifts can be poor due
to this approach retaining some classifiers after concept drift occurs. In future works, we
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aim to address this issue by making this approach able to adapt to high-severity drifts
successfully by minimizing the drop in accuracy and making the adaptation faster.
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