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Abstract: Battlefield information is generally incomplete, uncertain, or deceptive. To realize enemy 
intention recognition in an uncertain and incomplete air combat information environment, a novel 
intention recognition method is proposed. After repairing the missing state data of an enemy fighter, 
the gated recurrent unit (GRU) network, supplemented by the highest frequency method (HFM), is 
used to predict the future state of enemy fighter. An intention decision tree is constructed to extract 
the intention classification rules from the incomplete a priori knowledge, where the decision sup-
port degree of attributes is introduced to determine the node-splitting sequence according to the 
information entropy of partitioning (IEP). Subsequently, the enemy fighter intention is recognized 
based on the established intention decision tree and the predicted state data. Furthermore, a target 
maneuver tendency function is proposed to screen out the possible deceptive attack intention. The 
one-to-one air combat simulation shows that the proposed method has advantages in both accuracy 
and efficiency of state prediction and intention recognition, and is suitable for enemy fighter inten-
tion recognition in small air combat situations. 
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1. Introduction 
Enemy intention recognition is important in battlefield situation prediction and is a 

core component of a war decision support system. The prediction of target combat inten-
tion is an indispensable link in war and is the basis for understanding battlefield situation 
and making battlefield decision. As an important means of decision-making, target com-
bat intention prediction or recognition methods have attracted increasing attention from 
researchers. The recognition of target combat intention refers to the process of recognizing 
enemy combat intention through reasoning and judgment using relevant methods and 
comprehensively considering the motion of enemy target, possible combat mission, com-
bat means, and historical combat conditions in a complex and changeable confrontational 
environment [1]. With the development of informatization technology for weapons and 
equipment, the battlefield environment has become increasingly complex [2], and battle-
field decision-making tends to be intelligent [3]. Compared with ground and sea warfare, 
it is more difficult to identify enemy intention in air combat owing to its characteristics of 
strong mobility, wide range of combat, and rapid situational change. The focus of modern 
war has been shifted from the ground to the air, and the air supremacy determines the 
outcome of the war to a great extent. 

Knowing the enemy intention helps us prepare in advance, which improves the ac-
curacy of decision-making, enhances the operational efficiency of the weapons system, 
saves war resources, and reduces waste. In this context, many scholars have carried out 

Citation: Xia, J.; Chen, M.; Fang, W. 

Air Combat Intention Recognition 

with Incomplete Information Based 

on Decision Tree and GRU Network. 

Entropy 2023, 25, 671. 

https://doi.org/10.3390/e25040671 

Academic Editors: Fausto Cavallaro, 

Edmundas Kazimieras Zavadskas 

and Abbas Mardani 

Received: 22 February 2023 

Revised: 24 March 2023 

Accepted: 13 April 2023 

Published: 17 April 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Entropy 2023, 25, 671 2 of 26 
 

 

research on enemy intention recognition and achieved results [4], among which the recog-
nition of air combat intention has become a research focus [5,6]. In particular, with the 
development of computer and artificial intelligence technologies, air combat intention 
recognition methods based on intelligent models have been continuously developed and 
studied [7–11]. 

In recent years, with the application of an early air warning system, radar stealth 
composite material and artificial intelligence technology, as well as the uncertainty, in-
completeness and immediate change of air combat environment, the research on air com-
bat intention recognition is deepening. In an incomplete information environment, some 
intelligent systems have difficulty in accurately judging enemy intention. Moreover, due 
to the complexity and falsity of the battlefield itself, the simple data-driven intelligent 
models cannot reproduce the battlefield situation and are difficult to make accurate judg-
ments in the complex battlefield environment. This is particularly the case when the en-
emy deliberately misleads by carrying out false actions; the data-driven intelligent models 
have obvious obstacle in recognition which can lead to wrong decisions and even falling 
into enemy traps. 

At present, the research on intelligent intention recognition under uncertain and in-
complete information in specific air combat scenario is still lacking. The gated recurrent 
unit (GRU) network was developed based on the improvement of long short-term 
memory (LSTM) network. Compared with LSTM network, GRU network reduces one 
gate function while preserving important features through gate control [12]. As a result, 
GRU network uses fewer parameters. GRU network not only retains the fitting accuracy 
of LSTM network, but also speeds up the overall training process, which provides it with 
significant advantages in some scenarios. In recent years, GRU network has been widely 
used in time series prediction. Because GRU network adopts a simpler architecture than 
LSTM network, it requires simpler hardware conditions and fewer algorithm compo-
nents, while greatly improving fitting speed. Shahid et al. [13] used ARIMA, GRU, LSTM, 
SVR, and other prediction models to predict the time series of confirmed cases, deaths, 
and recoveries in 10 major countries affected by COVID-19, and compared the advantages 
and disadvantages of these models. Gao et al. [14] used LSTM, GRU networks, and ANN 
to simulate the runoff in Fujian Yutan station control catchment from 2000 to 2014. The 
results show that the prediction accuracy of LSTM and GRU is higher than that of ANN, 
and the training time of GRU network is the shortest, which has caused GRU network to 
become the preferred method for short-term runoff prediction. Evidently, battlefield state 
data are also time-series data. In order to allow the efficiency and accuracy advantages of 
GRU network in time-series data prediction to reach their full potential, this study adopts 
a combination of the GRU network and the highest frequency method (HFM) to predict 
the future state of the enemy fighter in the presence of incomplete air battlefield data. 
Decision tree is a graphical method that visually uses probabilistic analysis. As a decision 
support tool, decision tree can effectively assist in formulating optimal strategies [15–17]. 
In addition, as a common tool of machine learning, decision tree has been widely used in 
all walks of life [18–21]. To recognize enemy fighter intention, we adopt decision tree to 
extract intention classification rules from incomplete and uncertain historical data, and 
then match the predicted enemy state data with the intention classification rules to recog-
nize enemy intention. 

The objective of this study is to propose a novel enemy intention recognition method 
in uncertain and incomplete air combat information environment based on decision tree 
and GRU network. In particular, we consider the repair of missing data and the detection 
of deception intention to make up for the shortcomings of existing research. The contri-
butions of this paper include: 
(1) GRU network and HFM are used to predict the numerical and non-numerical state 

data of the enemy fighter, and the missing numerical and non-numerical state data 
are repaired using cubic spline interpolation and mean completer method, respec-
tively. 
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(2) An intention decision tree of enemy fighter is constructed to extract intention classi-
fication rules from incomplete and uncertain historical data, where the uncertain data 
are represented by interval numbers. The index of decision support degree is intro-
duced to judge the node splitting sequence of the decision tree, and the information 
entropy of partitioning (IEP) is applied to the node splitting criterion. Subsequently, 
the enemy fighter intention is recognized based on the intention decision tree and the 
predicted enemy fighter state. 

(3) The expert experience is integrated into intention recognition, and a target maneuver 
tendency function is proposed to filter out the deceptive attack intention. 
The rest of this paper is organized as follows. Section 2 reviews the literature on bat-

tlefield intention recognition. Section 3 describes the problem of air combat intention 
recognition. Section 4 presents data repair methods for missing state data. Section 5 pre-
sents the GRU network model and the modeling process of state prediction. Section 6 
constructs the intention decision tree of enemy fighter from incomplete a priori 
knowledge and presents the intention recognition method based on decision tree. In Sec-
tion 7, the proposed method is applied and verified in a simulated one-to-one air combat 
scenario and compared with other methods. Finally, Section 8 summarizes the main con-
clusions and details future research directions. 

2. Literature Review 
Battlefield situation awareness, situation assessment, and intention recognition are 

persistent topics in military operations research. The management of data imprecision and 
uncertainty is becoming increasingly important, especially in battlefield situation aware-
ness and assessment applications, where the reliability of decision-making processes is 
critical. Rohitha et al. [22] used Dempster–Shafer belief-theoretic relational database (DS-
DB) to represent a broader category of data defects, proposed a classification algorithm 
based on association rule mining, and validated it in a simplified situation assessment 
scenario. On the other hand, the incompleteness and uncertainty of battlefield situations 
challenge the efficiency, stability, and reliability of traditional intention recognition meth-
ods. The quick and accurate recognition of target tactical intention on the battlefield is a 
prerequisite for victory in war. Chen et al. [23] proposed a deep learning architecture con-
sisting of a contrastive predictive coding model, a variable length LSTM network model 
and an attention weight allocator for online intention recognition with incomplete infor-
mation in war games. They examined the influence of different lengths of intelligence data 
on recognition performance. As the most common combat mode in modern warfare, the 
situation assessment, trajectory prediction, intention recognition or behavior prediction of 
air combat have received extensive attention. Uncertain information exist in every link of 
air combat situation assessment. Zhou et al. [6] proposed an improved D-S evidence the-
ory framework for the fusion of uncertain information in air combat situation assessment 
to provide decision-making bases for intention prediction. Bayesian networks have also 
been used in situation assessment, for example, Xu et al. [5] proposed an improved algo-
rithm for the situation classification of air combat data based on data classification confi-
dence by using semi-supervised naive Bayes classifier. 

Target maneuver trajectory prediction is an important prerequisite for air combat sit-
uation awareness and threat assessment. Xi et al. [24] proposed a prediction model of tar-
get maneuver trajectory based on chaos theory and an improved genetic algorithm-
Volterra neural network (IGA-VNN) model, where the chaotic time-series IGA-VNN 
model was applied to target maneuver trajectory time series prediction. In close-range air 
combat, highly reliable trajectory prediction can greatly help the pilot win a battle. Zhang 
et al. [25] proposed an attention-based convolution LSTM memory network to calculate 
the arrival probability of each space in the reachable region of the target aircraft, which 
has a higher accuracy than other existing algorithms. Xi et al. [26] developed a target ma-
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neuver trajectory prediction model based on phase space reconstruction-radial basis func-
tion neural network. 

Predicting target intention is helpful to understand the target behavior in advance, 
thus laying the foundation for air combat decision-making. Zhou et al. [9] proposed an 
intention prediction method combining LSTM network and decision tree. The future state 
information of target was predicted from real-time series data based on LSTM network. 
The decision tree technique was used to extract rules from uncertain and incomplete a 
priori knowledge. Then, the constructed decision tree was used to obtain the target inten-
tion from the predicted data. In addition to LSTM network and decision tree, GRU net-
work and attention mechanism were introduced in air combat intention recognition. Teng 
et al. [27] and Teng et al. [28] built an air combat intention recognition method based on 
GRU network, which combined the bidirectional propagation mechanism and the atten-
tion mechanism. This method used bidirectional GRU network to carry out the deep learn-
ing of air combat features and used the attention mechanism to assign feature weights 
adaptively. Teng et al. [29] designed a deep learning method attention mechanism based 
on temporal convolutional network and bidirectional GRU (Attention-TCN-BiGRU) to 
improve the combat intention recognition of air targets. Comparison with other methods 
and ablation experiments showed that Attention-TCN-BiGRU outperforms existing meth-
ods in terms of recognition accuracy. Addressing the drawbacks of existing air target in-
tention recognition methods, such as timeliness, interpretability, and back-and-forth de-
pendency of intention, Wang et al. [30] proposed STABC-IR method based on bidirec-
tional GRU and conditional random field with space-time attention mechanism. The pur-
pose of intention recognition is to predict the next action or behavior of the opponent. 
Effectively predicting the behavior of the enemy fighter is crucial to air combat. Yin et al. 
[31] proposed three patterns to predict fighter behavior. Through the design and imple-
mentation of relevant mining/processing algorithms and systems, they found some be-
havioral experience patterns of fighters and made certain effective predictions of fighter 
behavior. 

Automation and intelligentization have become inevitable trends in modern warfare. 
Zhang et al. [4] combined the advantages of deep learning and D-S evidence theory to 
develop an information fusion method for the intention recognition of multi-target for-
mation in sea battlefield. Wang et al. [32] proposed a warship human–machine intelligent 
interaction model based on the fusion of target intention and operator emotion. Some 
scholars have applied intelligent model-based air combat intention recognition methods 
to the battlefield. Xue et al. [8] designed a deep learning method, where a panoramic con-
volutional LSTM network was proposed in view of the limitation that traditional air target 
combat intention recognition methods cannot effectively capture the essential character-
istics of intelligence information. Ahmed and Mohammed [11] improved the neural net-
work and proposed an attack intention recognition method based on fuzzy min–max neu-
ral network. 

In recent years, unmanned aerial vehicles (UAVs) or unmanned combat aerial vehi-
cles (UCAVs) are playing an important role in high-tech local wars, where decisions rely-
ing on unmanned systems are extremely challenging, as we have seen from the Russia–
Ukraine war that broke out in February 2022. Lu et al. [10] proposed an intelligent air 
combat learning system based on brain learning mechanism, exhibiting greater flexibility 
in situation assessment and adversary action prediction. When addressing the problem 
that maneuver trajectory prediction is difficult to maintain high prediction accuracy and 
short prediction time, Xie et al. [33] proposed a maneuver trajectory prediction method 
for UAVs based on a layered strategy by combining long-term maneuver unit prediction 
with short-term maneuver trajectory prediction. Wang et al. [7] presented a robust ma-
neuver decision method with self-adaptive target intention prediction for UAVs, where 
the reachable set theory and the adaptive adjustment mechanism of target state weights 
were used to target intention prediction, thus improving the real-time prediction ability. 
Dong et al. [34] built a motion prediction framework for UAVs, where the target’s future 
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position was inferred according to the current position and estimated direction. 
Due to the high complexity of the air battlefield, there is a large space for enemy in-

tention recognition research. However, owing to the uncertainty and incompleteness of 
information in the actual air combat environment, some intelligent models are not appli-
cable. Moreover, when the enemy deliberately feigns combat moves, the data-driven or 
model-driven intelligent methods have shortcomings in intention recognition. In the air 
combat environment with uncertain and incomplete information, intelligent intention 
recognition is an important issue worth exploring, and false intention recognition cannot 
be ignored. At present, in the field of air target intention recognition, GRU network is 
highly valued in target state prediction because of its advantages compared with LSTM 
network and other methods. At the same time, only a few of the literature related to air 
combat intention recognition consider missing historical data, and there is currently no 
existing study on how to detect intentional deception in air combat. In view of this, this 
study integrates GRU network and decision tree to recognize enemy fighter intention, es-
pecially considering the repair of missing data and detection of deception intention, to 
make up for the shortcomings of existing research. 

3. Air Combat Intention Recognition Problem 
Enemy target intention recognition refers to the process of inferring enemy’s next 

combat intention by analyzing battlefield information and combining military knowledge 
and operational basis under dynamic confrontation environment. Enemy target intention 
recognition is typically accomplished by combining the future state of the enemy target 
with a priori knowledge. 

The current state is represented by real-time data captured by sensors, such as the 
position, speed, movement direction, radar signal, and maneuver type of the enemy 
fighter, while the future state is generally obtained by analyzing the current state trend 
and air combat situation of the enemy. A priori knowledge includes the characteristics 
and rules of enemy combat state summarized according to historical combat information 
and empirical laws. The enemy tactical intention usually represents the enemy combat 
plan and reflects the enemy’s mindset on the battlefield, which cannot be directly ob-
served. However, to achieve a particular tactical purpose, an enemy target must conform 
to certain laws regarding position, speed, radar signals, maneuver types, and other char-
acteristics. Therefore, by predicting the future state through the collected current state 
data and then matching the future state with the intention recognition rules based on a 
priori knowledge, it is expected to recognize the enemy fighter’s intention. 

In general, the intention of the enemy fighter in air combat is related to its heading 
angle, azimuth angle, speed, acceleration, distance, and altitude difference with our 
fighter, as well as air-to-air radar, air-to-surface radar, electromagnetic interference, and 
interfered state [9,29,30]. Heading angle, azimuth angle, speed, acceleration, distance, and 
altitude difference are numerical indicators, that is, the state of these indicators can be 
represented by specific numerical values. Air-to-air radar, air-to-surface radar, electro-
magnetic interference and interfered state are all non-numerical indicators and cannot be 
represented by specific numerical values. In general, these non-numerical indicators have 
only two typical states: on and off. 

Depending on the specific battle type, battle scene, and research objective, there are 
different ways to describe the battlefield situation graphically. For example, Teng et al. [29] 
and Wang et al. [30] presented the graphic description of battlefield situation of air-to-
ground strike, while Zhou et al. [9] and Teng et al. [27,28] presented the graphic descrip-
tion of one-to-one air combat situation. Considering the combat scene targeted in this 
study, we present the one-to-one air combat situation as shown in Figure 1, where red 
represents our side and blue represents the enemy. Unlike other studies, the information 
transmission and signal interference are also shown in Figure 1 to highlight the infor-
mation chain under real air combat environment. In Figure 1, S is the speed of the enemy 
fighter. The direction of acceleration is always the same as the speed. D is the distance and 
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Ad is the altitude difference between the two fighters. The line between the two fighters is 
the target line of sight, and A is the included angle between the target line of sight and 
due north, known as the target azimuth. Ha is the angle between the speed of movement 
of the enemy fighter and the target line of sight. 

 
Figure 1. Air combat situation. 

To accurately identify the tactical intention of incoming air targets, it is necessary to 
provide a reasonable tactical intention set of the enemy target. Aerial targets may be fight-
ers, helicopters, UAVs, or missiles. Intention setting often varies greatly depending on 
ideological background, combat scenario, and target entity. Therefore, the target intention 
set must be defined according to the corresponding operational context, as well as the 
basic attributes and possible operational mission of the enemy target. In the context of the 
enemy air target striking military buildings near shore, Teng et al. [29] established a tacti-
cal intention set of enemy air targets, including seven intention types {attack, penetration, 
surveillance, reconnaissance, feint, retreat, and electronic interference}. Addressing the 
problem of air target intention recognition, Wang et al. [30] combined the operational con-
text with the attributes and missions of enemy targets to establish a tactical intention set 
of air targets as {attack, reconnaissance, surveillance, cover, electronic interference, re-
treat}. Zhou et al. [9] classified air target intention into attack, surveillance, penetration, 
feint, defense, reconnaissance, cover, and electronic interference for an air combat deci-
sion-making system of UCAV. This study is devoted to exploring the intention recogni-
tion of an enemy fighter in the operational context of small-scale air combat. Referring to 
Teng et al. [29], Wang et al. [30], and Zhou et al. [9], based on typical air combat mission 
types, we establish the tactical intention set of an enemy fighter as {attack, defense, sur-
veillance, penetration, feint, reconnaissance, electromagnetic interference}. 

However, in actual air combat, due to the wide application of electromagnetic inter-
ference technology and the limitation of sensor transmission capability, as well as the 
rapid change of operational state itself, it is difficult to completely capture the state data 
of the enemy fighter, thereby resulting in data loss. To address this problem, we use in-
terval numbers to represent state data that are difficult to obtain accurately, and fix miss-
ing data. 



Entropy 2023, 25, 671 7 of 26 
 

 

In this paper, the intention recognition of the enemy fighter is divided into two parts: 
state prediction and intention recognition, as illustrated in Figure 2. In the state prediction 
portion, the state data collected by sensors and other devices are firstly sorted out and the 
missing data are repaired. The numerical state data are fixed by cubic spline interpolation 
method, while the non-numerical state data are fixed by mean completer method. Subse-
quently, GRU network is used to predict the numerical state data, while HFM is used to 
predict the non-numerical state data. In the intention recognition part, an intention classi-
fication decision tree is constructed based on the a priori knowledge of air combat in 
which the uncertain data are represented by interval numbers. Using the predicted state 
data as input, the decision tree is retrieved to identify enemy fighter intention. If the in-
tention is identified as attack, the intention is further verified. 

 
Figure 2. Intention recognition process. 

4. Data Repair 
Although information technology is becoming more and more mature, owing to the 

high complexity of the battlefield, a lot of noise is interspersed in information transmission, 
resulting in information distortion. At the same time, due to the limitation of the interac-
tion between airborne information and ground sensors, as well as the application of anti-
reconnaissance information system, battlefield information acquisition will be intermit-
tently lost, resulting in incomplete information acquisition by sensors. Therefore, to apply 
the prediction model to the incomplete battlefield information environment, it is neces-
sary to repair the collected data in advance. As mentioned above, the state data of the 
enemy fighter can be divided into numerical and non-numerical types. The numerical 
state data mainly refer to the information related to the movement state of enemy fighter. 
This kind of information is considered time-series data, and the preceding and following 
data have a certain correlation. The non-numerical state data mainly refer to the state in-
formation related to enemy radar with a weak correlation between the preceding and fol-
lowing data. To determine a fast and reasonably accurate data repair method, we compare 
the applicability conditions of B-spline interpolation [35], Fourier interpolation [36] and 
cubic spline interpolation [37,38]. According to the characteristics of missing data and the 
application environment of data repair, we choose the cubic spline interpolation method 
to fix missing numerical data. For non-numerical data, the correlation is weak due to its 
small change frequency, so we adopt mean completer method to repair the missing data. 
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4.1. Cubic Spline Interpolation 
Cubic spline interpolation is a smooth curve that passes through a series of sample 

points. Mathematically, the curve-function group can be obtained by solving a three-mo-
ment system of equations. 

Definition 1 [37,38]. Divide the interval [ , ]a b   into n   sub-intervals 

0 1 1 2 1[( , ), ( , ), ..., ( , )]n nx x x x x x−   with 1n +   points, including two endpoints, 0x a=   and nx b=  . 
Let the function values on these points be ( )  ( 0,  1,  ...,  )i if x y i n= = . If ( )S x  satisfies: 

(a) ( )  ( 0,  1,  ...,  )iS x y i n= = , 
(b) ( )S x  is a cubic equation for each subinterval 1[ ,  ] ( 0,  1,  ...,  1)i xx x i n+ = − , 

(c) ( )S x , the first derivative of ( )S x , and the second derivative of ( )S x  are continuous on the 
interval [ , ]a b . 

The function ( )S x  can then be constructed as 2 3y a bx cx dx= + + + . ( )S x  is called the 
cubic spline interpolation function of ( )f x  with respect to points 0 1,  , . ..,  nx x x . 

4.2. Mean Completer 
For the repair of non-numerical data, according to the mode principle in statistics, 

the value with the highest frequency at several moments before and after the missing char-
acteristic value is taken as the repair result. If each state appears at the same frequency at 
several moments before and after the missing characteristic value, we choose the state that 
poses the greatest threat to our side as the repair result, so as to avoid underestimating 
the enemy threat due to incomplete information in air combat, thus strengthening the vig-
ilance against unknown information. 

5. State Prediction Based on GRU Network 
In a fierce battlefield confrontation, a quick response from both sides is crucial. Be-

cause GRU network has a similar performance and a faster data processing speed to LSTM 
network, we choose GRU network to predict the future state of the enemy fighter. GRU 
network fully retains the advantages of LSTM network in dealing with long-distance de-
pendence, overcoming the problems of gradient explosion and gradient disappearance in 
training recurrent neural network, and in having a simpler network structure. GRU net-
work integrates three gates of LSTM network into two gates, namely update gate and reset 
gate, with fewer parameters, thus reducing requirement on training data and improving 
training speed while ensuring prediction accuracy [13,14]. The typical structure of GRU 
network is shown in Figure 3 [27–29]. 

 
Figure 3. Structure of GRU network. 
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In Figure 3, 1th −（ ）
 and th  represent the state information at the previous moment 

and the current moment, respectively, and tx   represents the input information at the 
current moment. Similar to LSTM network, GRU network can add or remove information 
through gate control. tz   and tr   represent the update gate and the reset gate, respec-
tively. Update gate tz  is used to control the extent to which the state information at the 
previous moment is input into the current state. The larger the value tz , the more the state 
information of the previous moment is input. The formula for tz  is:  

1( [ , ])t sig z t tz W h xσ −= ×  (1)

Reset gate tr  controls the information amount input into the current candidate in-
formation th  at the previous moment. The smaller the value tr , the less information at 
the previous state is input. The formula for tr  is: 

1( [ , ])t sig r t tr W h xσ −= ×  (2)

In Equations (1) and (2), the sigmoid activation function is 1( )
1sig xx
e

σ −=
+

; zW  and 

rW  are input weight parameters of update and reset gates, respectively. Candidate infor-
mation th  is obtained using the following activation function tanh . 

1tanh( [ , ])t t t thh W r h x−= × ×
 .  (3)

In Equation (3), tanh
x x

x x

e ex
e e

−

−

−=
+

, hW  is the input weight parameter of candidate in-

formation. 
Finally, through the update gate, based on the state information at the previous mo-

ment 1th −  and the candidate information at the current moment th , the state information 
at the current moment th  is obtained as: 

1(1 ) tt t t th z h z h−= − × + ×  (4)

It can be seen from Equations (3) and (4) that when both update gate tz  and reset 
gate tr  are 1, the information at the previous moment has been completely input into the 
current information, and the GRU network becomes an ordinary cyclic neural network. 

In general, the real-time data of a target in the course of action is a set of time-series 
data. To overcome the battlefield data deficiency and improve the prediction accuracy, we 
use a GRU network with p input nodes and 1 output node. The first p data are used to 
predict the next data and perform recursive data training. Figure 4 shows the basic frame-
work of the state prediction model. 
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Figure 4. Framework of state prediction model. 

The framework for predicting enemy fighter state using GRU network consists of the 
following five steps: 

(1) Use battlefield satellites, radars, sensors, and other information acquisition equip-
ment to collect time-varying state data of enemy fighter; 

(2) Repair the missing data in the collected original data; 
(3) Encode the repaired state data with feature vectors; 
(4) Input the encoded data into the GRU network for training and obtain the state pre-

diction model; 
(5) Use the prediction model to predict the state of the enemy fighter at the next moment. 

Suppose that the time-series dataset of the target in the course of action is 
1 2( , , ..., )nX x x x=  and n p> . In model training, the input of the first training dataset is 

1 1 2( , ,..., )pX x x x=   and the output is 1px +  ; the input of the second training dataset is

2 2 3 1( , ,..., )pX x x x +=  and the output is 2px +  ; the last training dataset is 

( 1) ( 1) ( ) 1( , ,..., )n p n p n p nX x x x− − − − − −=   and the output is nx  . The total training data consist of 

n p−  datasets. After training, the trained model can be used to predict the enemy fighter 
state at the next moment. The input of the prediction is ( ) ( ) ( 1)( , ,..., )n p n p n p nX x x x− − − += , and 
the output 1nx +  is the predicted state at the next moment. 

6. Intention Recognition Based on Decision Tree 
A decision tree is a structure that represents a mapping relationship between object 

attributes and object values, where each internal node represents a test for an attribute, 
each branch represents a test output, and each leaf node represents a classification. Deci-
sion tree is a kind of supervised learning, which has been widely used in data mining, 
classification, information retrieval, and prediction. The advantage of decision tree is that 
it is easy to understand and implement, can handle both data and general attributes, and 
can produce feasible and satisfactory outputs to large data sources in a relatively short 
time. The key of the decision tree is the sequence of node splitting and the selection of 
optimal node splitting criteria. With the rise in decision tree research, fuzzy decision tree 
[39] and Monte Carlo tree [40] have been proposed successively. Since the calculation of 
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Monte Carlo tree is relatively complicated and time-consuming, and this paper does not 
involve fuzzy operations, we choose to use the traditional decision tree model. 

We use a decision tree to recognize target intention. However, a decision tree contain-
ing uncertain or incomplete data is difficult to extract rules from. Therefore, we use inter-
val numbers to represent uncertain data and null values to supplement missing data, 
thereby matching the uncertainty and incompleteness characteristics of battlefield data. 
We introduce the index of decision support degree to judge the node splitting sequence in 
the decision tree and apply the information entropy of partitioning (IEP) to the node split-
ting criterion. 

Suppose that the a priori knowledge of air combat is ( ,  )S U C D=  , where U  is 
the finite non-empty set of statistical objects in the historical data, C  is the finite non-
empty set of conditional attributes (that is, the state indicators of the target in the historical 
data), and D  is the finite non-empty set of decision attributes (that is, the intention set of 
the target in the historical data). The a priori knowledge system of air combat is an incom-
plete information system. We use the symbol *  to represent unknown information and 
use interval numbers to represent uncertain information. 

6.1. Processing of Incomplete Information 
When dealing with incomplete information, this study relies on the concept of simi-

larity relation. 

Definition 2. Similarity relation [41]: Let ( , )S U C D=   be an incomplete system based on in-
terval-valued attributes, where C  is the set of conditional attributes, D  is the set of decision 
attributes, and the symbol *  denotes unknown information, which only exists in conditional at-
tributes; that is, * C∈  , * D∉  . Then, the similarity relation of the conditional attributes 

( ) ( )SIM A A C∈  defined on U  is: 

{ }( ) ( ,  ) ,  ( ) ( )  ( ) *  ( ) *c c c cSIM A p q U U c C f p f q or f p or f q= ∈ × ∀ ∈ = = = ,  (5)

where cf  represents the domain of conditional attribute c . 

By the definition of ( )SIM A , if ( ,  )p q U U∈ ×  is an ( )SIM A , then p  and q  are 
similar, indicating that they have the same property with respect to A . 

6.2. Decision Support Degree Based on Conditional Attribute 
The generation of a decision tree depends on the decision support degree, which de-

pends on the conditional attribute and the optimal split point of attribute interval. 

Definition 3. Decision support degree based on conditional attribute [9]: Let ( ,  )S U C D=   be 
an incomplete system based on interval-valued attributes, U  be the finite non-empty set of sta-
tistical objects in historical data, C  be the finite non-empty set of conditional attributes, and D  
be the finite non-empty set of decision attributes. * C∈ ,* D∉ , A C∈ , { }1 2/ ,  ,  ...,  mU A A A A= , 

{ }1 2/ ,  ,  ...,  nU D D D D=  , 
1

/
m

i
i

U A A
=

=  . Then, the decision support degree ( , )DSD A D   of 

conditional attribute A  for decision attribute D  is: 

1 1

1

( ,  ) 1
/ ( 1) ( ( 1))

m n

i j i j
i j

n

l l
l

A D A D
DSD A D

U A U D D

= =

=

× −
= −

× − − × −






,  (6)



Entropy 2023, 25, 671 12 of 26 
 

 

where symbol   represents the number of elements in the set. 

Decision support degree ( , )DSD A D   indicates the support strength of partition 
/U A   to partition /U D  . The larger the value of ( , )DSD A D  , the closer /U A   is to 
/U D , indicating that the attribute subset A  contributes more to classification, and the 

greater the certainty of selecting A  for classification. 
Decision support degree has the following properties: 
Property 1: 0 ( , ) 1DSD A D≤ ≤ . 
Property 2: When / /U A U D= , ( , ) 1DSD A D = . 
Property 3: When { }/U A U=  and { }/U D U≠ , ( , ) 0DSD A D = . 
In the air combat scenario, the conditional attribute set is: 

{ }s, d, Ad, Ha, Az, a, Aar, Asr, Ei, EidC =  

where s, d, Ad, Ha, Az, a, Aar, Asr, Ei, and Eid are the enemy fighter’s speed, distance, 
altitude difference, heading angle, azimuth, acceleration, air-to-air radar state, air-to-sur-
face radar state, electromagnetic interference state, and electromagnetic interfered state, 
respectively. 

The decision attribute set, which is the intention set, is: 

{ }Att, Def, Sur, Pen, Fei, Rec, EleD =  

where Att, Def, Sur, Pen, Fei, Rec and Ele represent “attack”, “defense”, “surveillance”, 
“penetration”, “feint”, “reconnaissance”, and “electromagnetic interference”, respectively. 

6.3. Optimal Split Point of Attribute Interval 

Definition 4. Split point [9]: If the interval of a finite conditional attribute is [ , ]L Ua a a= , then 
the split point  ( )L UP a P a≤ ≤  is the point that divides the interval conditional attribute into 
two branches, 1 [ ,  ]La a P=  and 2 [ ,  ]Ua P a= . 

Definition 5. Information entropy of conditional attribute [42]: Let the decision attribute of con-
ditional attribute A  be { }1 2  A kD D D D= ， ， ， , where k  is the number of decision attribute 
types. Then, the information entropy of conditional attribute A  is: 

1
( ) log

k
j j

j A A

D D
I A

D D=

= −  (7)

where the symbol   is the number of elements in the set. 

Definition 6. Information entropy of partitioning: When the conditional attribute A  is divided 
into 1A  and 2A  by split point P , the information entropy of partitioning ( , )IEP A P  is: 

1 2
1 2( , ) ( ) ( )

A A
IEP A P I A I A

A A
= ⋅ + ⋅  (8)

Where the symbol   is the number of elements in the set. 

Definition 7. Optimal split point. When split point P divides the conditional attribute A  and 
its information entropy of partitioning ( , )IEP A P  is the smallest among all the split points, then 
point P  is the optimal split point of the conditional attribute A . 
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6.4. Target Maneuver Tendency Function 
On the battlefield, the enemy often makes some false actions consistent with other 

intentions, deliberately misleading our judgment to achieve other tactical goals. These 
false actions are highly similar to other intentions in terms of data metrics. Judging only 
by data metrics, it is easy to fall into enemy trap. Therefore, to further verify the authen-
ticity of enemy fighter intention, we propose a target maneuver tendency function to qual-
itatively judge the enemy fighter’s action trend. This function comprehensively considers 
the current battlefield situation, pilot’s operational preference, combat motivation, and 
kinematics information of the enemy fighter to predict the most likely maneuvering type 
of the enemy fighter at the next moment. The target maneuver tendency function Pro  is 
defined as: 

max
Pr

max max

ot o
asPro Sit M Pre K

s a a
= ⋅ ⋅ ⋅ ⋅ +

+
 (9)

The greater the value of Pro , the more likely the enemy fighter is to launch an offen-
sive tactical maneuver. The reverse indicates that the enemy fighter is more likely to 
launch a tactical escape maneuver. When Pro  exceeds a certain threshold, the enemy 
fighter is considered to launch an attack at the next moment. When Pro  is less than a 
certain threshold, it is believed that the enemy fighter is to perform an escape action at the 
next moment. When Pro  is between these two thresholds, it is assumed that the enemy 
fighter is to maintain tactical motivation. Sit  represents the current battlefield situation, 
which is calculated as: 

1

1

n

ei
i
m

fi
j

E
Sit

E

=

=

=



 (10)

In Equation (10), n   represents the number of enemy fighters, m   represents the 
number of our fighters, eiE  represents the combat effectiveness of enemy fighter num-
bered i  under the current situation, and fiE  represents the combat effectiveness of our 
fighter numbered j  under the current situation. 

In Equation (9), Mot  is the combat motivation of the enemy fighter represented by 
a dimensionless number in [0,1] . A large Mot  indicates that the enemy fighter is more 
aggressive, whereas a small Mot  indicates that the enemy fighter is more defensive. Pre  
is the enemy pilot’s operational preference, represented by a dimensionless number in 
[0,1]  . A large Pre   indicates that the pilot is aggressive and likely to make offensive 
moves, while a small Pre  indicates that the pilot is cautious and likely to make defensive 
or escape moves. s  represents the current flight speed of the enemy fighter, and maxs  

represents the maximum available flight speed. a  represents the absolute value of the 
current acceleration, and maxa  represents the maximum available acceleration. Pr oK  is 
the correction coefficient of maneuver tendency, which is used to correct systematic errors 
in the calculation. 

6.5. Intention Recognition Procedure Based on Decision Tree 
The procedure of enemy fighter intention recognition based on decision tree com-

prises the following seven steps: 
(1) Determine the interval divisions of conditional attributes by using the a priori 

knowledge of air combat. 
(2) Calculate the decision support degree of all conditional attributes, then select the con-

ditional attribute with the highest decision-support degree as the split point. 
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(3) Count all the split points of the conditional attribute, calculate IEP of each split point, 
and then select the point with the minimum IEP as the optimal split point. 

(4) Divide the decision information into two parts through the split point, and then di-
vide the other attributes one by one through the above steps until all attributes are 
divided. 

(5) Construct decision tree. 
(6) Based on the predicted state data, the established decision tree is used to judge the 

enemy fighter intention. 
(7) If the intention is to attack, the target maneuver tendency function is used to verify 

the accuracy of the judgment. 

7. Simulation Study 
7.1. State Prediction 

Since the 1940s, the development of jet fighters is generally thought to have under-
gone five generations of upgrades. The air combat simulation in this study is aimed at 
third-generation fighters since they are in service with the largest number of and relatively 
mature technology. The third generation of fighters entered service in the mid-1960s, rep-
resented by F-15, F-16, F-18, Mig-29, Cy-27, and Cy-37 fighters. The third-generation fight-
ers usually adopt a high maneuverability layout and fly at altitudes below 20 km with a 
maximum flight speed of Mach 2–2.35 (about 650–750 m/s) and cruising speed of Mach 
0.9 (about 300 m/s). The maximum available acceleration can reach 70 m/s2. However, due 
to the limitation of the human body’s bearing capacity, the maximum acceleration is gen-
erally controlled at 40 m/s2. The weapons of the third-generation fighters are mainly me-
dium-range semi-active missiles and combat bombs, and the combat mode is beyond-vis-
ual-range attack and close-combat with an effective attack range of up to 120 km. 

To demonstrate the effectiveness of the proposed method, we conduct a simulated 
one-to-one small air combat, in which each side has only one fighter against the other, for 
example, one F16 fighter against one Cy-27 fighter. We select six numerical indicators, 
including speed, distance, altitude difference, heading angle, azimuth angle, and acceler-
ation, and four non-numerical indicators, including air-to-air radar state, air-to-surface 
radar state, electromagnetic interference state, and interfered state, to depict the state of 
the enemy fighter at different moments. In the simulation, some state information of the 
enemy fighter is missing, in accordance with the actual battlefield information environ-
ment. Assuming that the numerical and non-numerical state data of the enemy fighter at 
the previous 30 moments have been collected, as shown in Tables 1 and 2, among which 
some data are missing. It should be noted that these simulation data are not set arbitrarily, 
but are based on the aforementioned flight performance and on-board device capabilities 
of a typical third-generation fighter. The programming language used for calculation and 
simulation study is Python 3.7.0. 

Table 1. Numerical state data. 

Moment Speed (m/s) Distance (km) Altitude Difference (km) Heading An-
gle (°) 

Azimuth 
(mil) 

Acceleration 
(m/s2) 

1 420 395 14.6 35 755 4 
2 415 392 14.3 34 750 2 
3 412 386 14.4 30 * 1 
4 415 382 14.6 * 765 −5 
5 * 375 * 30 760 2 
6 400 371 13.8 28 765 2 
7 398 366 14 25 770 * 
8 395 * 13.5 20 780 4 
9 400 348 13.2 * * 1 



Entropy 2023, 25, 671 15 of 26 
 

 

10 387 340 13 18 785 0 
11 382 328 12.5 14.0 805 2 
12 376 314 12.2 14.0 920 2 
13 365 310 11 13.5 1020 -5 
14 370 306 10.3 12.0 1005 3 
15 345 301 10.5 13.0 1230 * 
16 343 291 10.1 * * 2 
17 338 284 9.6 8.0 1400 3 
18 336 267 * 10.0 1390 8 
19 335 245 8.3 8.0 1380 5 
20 * 230 7.6 7.0 1450 * 
21 320 * 7.2 * 1560 5 
22 321 195 6.3 9.0 1600 8 
23 318 178 5.9 6.0 1750 10 
24 314 169 5.2 5.0 1800 * 
25 309 158 4.9 5.0 1850 -8 
26 302 145 4.7 4.0 1930 10 
27 289 132 4.2 1.0 * -5 
28 286 123 3.4 3.0 2050 9 
29 280 115 2.6 1.0 2080 8 
30 279 101 2.2 2.0 2110 8 

Note: * indicates missing data. 

Table 2. Non-numerical state data. 

Moment Air-to-Air Radar State Air-to-Surface Radar State Electromagnetic Interference State Interfered State 
1 1 1 0 0 
2 1 1 0 0 
3 0 1 0 0 
4 1 * 1 1 
5 0 0 1 1 
6 * 1 1 1 
7 1 1 * 0 
8 1 1 1 1 
9 1 * * 1 

10 * 0 1 1 
11 1 1 * * 
12 1 1 0 0 
13 1 1 * 0 
14 1 0 0 0 
15 * 1 1 0 
16 1 1 1 0 
17 1 1 1 * 
18 1 0 0 1 
19 0 1 1 0 
20 1 1 1 1 
21 1 1 1 1 
22 0 1 0 * 
23 1 1 1 1 
24 1 0 1 1 
25 * 1 * 1 
26 1 0 1 0 
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27 1 * 1 * 
28 * 1 1 1 
29 1 1 1 0 
30 1 1 1 1 

Note: * indicates missing data, 0 indicates state “off”, 1 indicates state “on”. 

Because the battlefield environment changes quickly, so does data repair, allowing 
for rapid predictions. We adopt the cubic spline interpolation method to repair the miss-
ing numerical state data. Taking the missing data of the speed indicator at moment 5 (node 
5) as an example, the speed at node 5 is fitted and repaired according to the speed at the 
first two nodes and the last two nodes. Through data repair, we obtain the speed at node 
5 as 415.4 m/s, as shown in Figure 5, where the smooth fitting curve across the four sample 
points (nodes 3, 4, 6, and 7) is the cubic spline interpolation curve. It should be noted that 
the cubic spline interpolation curve is not invariable, but depends on the sample points 
on which the curve is constructed for particular missing data. Similarly, all missing nu-
merical data are repaired. For the non-numerical data, the mean completer method is used 
to repair the missing data. 

 
Figure 5. Data repair by cubic spline interpolation. 

After data restoration, the GRU network is used to predict numerical indicators. Con-
sidering the specification of the data volume, we adopt the network structure with three 
input nodes and one output node. The data at moments 1–24 are taken as the training set, 
and the data at moments 25–30 as the test set. First, the data are normalized, and then 
Adam algorithm is used to train the network. This algorithm combines the advantages of 
momentum algorithm and root mean square prop algorithm, and can adjust the learning 
rate updating strategy adaptively, thus improving the training speed and accuracy [43]. 
The mean squared error (MSE) is used to calculate the loss. The number of training itera-
tions is set to 50. The dropout rate, learning rate, and weight decay are set to 0.3, 0.02, and 
0.2, respectively. For the non-numerical indicator, the state at the next moment is pre-
dicted using HFM; that is, the state with the highest occurrence frequency at the last five 
moments is taken as the next state. 

Once again, taking the speed prediction as an example, Figure 6 shows the training 
and validation losses of the GRU model, and Figure 7 shows the fitting and prediction 
results. 
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Figure 6. Training and validation losses. 

 
Figure 7. Fitting and prediction results. 

As shown in Figure 6, with the increase in training times, both training loss and ver-
ification loss decrease rapidly, indicating that GRU network is constantly learning and has 
good learning effect. After the tenth training, both training loss and verification loss tend 
to be stable and close to zero, indicating that the model is well fitted on the whole. In 
Figure 7, because the GRU network has three input nodes and one output node, the fitting 
curve starts from moment 4, and moment 27 is the predicted moment. As can be seen from 
Figure 7, the fitting results of the model are in good agreement with the actual speed var-
iation trend. In the training dataset, the maximum fitting error of the model is 5.83%, the 
minimum fitting error is only 0.01%, and the average fitting error is 2.12%. Table 3 shows 
the comparison between the predicted speed and the actual speed at moments 25–30 for 
the test set. 

Table 3. Test results of GRU network for speed. 

Moment 25 26 27 28 29 30 
Actual speed 309 302 289 286 280 275 

Predicted speed 306.21 302.06 296.54 288.01 279.70 271.77 
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Relative error −1.01% +0.02% +2.61% +0.69% −0.11% −1.41% 

As shown in Table 3, for the test set of the speed indicator, the maximum relative 
prediction error is 2.61% and the minimum relative prediction error is only 0.02%, indi-
cating that the GRU model has a high fitting accuracy. 

To further demonstrate the advantages of GRU network, LSTM network and recur-
rent neural network (RNN) are applied to the same sample for comparison, and the results 
are shown in Table 4. The comparative study is performed on the same computer, and the 
optimal parameters of each model are configured through repeated experiments. 

Table 4. Network comparisons: GRU, LSTM, and RNN. 

Computing Time (s) 

Model Speed (m/s) Distance 
(km) 

Altitude Difference 
(km) 

Heading An-
gle (°) 

Azimuth 
(mil) Acceleration (m/s2) 

GRU 5.2 5.5 5.4 4.9 5.1 5.3 
LSTM 7.1 8.1 6.7 6.8 7.5 7.8 
RNN 7.8 7.9 6.7 7.2 7.3 7.3 

Root Mean Square Error 

Model Speed (m/s) Distance 
(km) 

Altitude Difference 
(km) 

Heading An-
gle (°) 

Azimuth 
(mil) 

Acceleration (m/s2) 

GRU 2.204 1.883 0.574 0.789 50.37 4.60 
LSTM 3.068 2.898 0.571 0.879 62.53 4.72 
RNN 7.868 5.367 0.927 1.2 103.25 6.65 

Compared with LSTM network and RNN, GRU network has the advantage in model 
training time, which is approximately 5 s. In model validation, the root mean square errors 
(RMSEs) of GRU and LSTM networks are close, while RMSE of RNN is larger. In general, 
GRU network has better performance in terms of training efficiency and prediction accu-
racy, and is more suitable for use in the battlefield environment featured with high con-
frontation and fast response. 

In this study, the prediction of each numerical indicator has its own GRU network. 
Therefore, a total of six GRU networks have been established corresponding to indicators 
speed, distance, altitude difference, heading angle, azimuth, and acceleration. In fact, each 
GRU network has only one input parameter and one output parameter of the same type, 
similar to speed. The prediction performance of GRU network depends on the network 
training effect. In the case of only one input parameter, the network training effect will 
depend on the size of the training sample when the network structure is given. Theoreti-
cally, there is an optimal sample size for network training. A small sample size that is too 
small will lead to underfitting and thus reduce the generalization ability of the model, 
namely the prediction performance, while a sample size that is too large will lead to over-
fitting and also reduce the prediction performance of the model. In practice, the optimal 
training sample size of GRU network is closely related to the inherent correlation charac-
teristics of the time series data carried by the network and can be determined through 
repeated tuning. In this study, according to the training and validation simulation results 
as well as the comparison analysis, when the training sample size is set to 20–30, the train-
ing effect and prediction performance of GRU networks for the six indicators are quite 
good. 

Similar to the prediction of the speed indicator, we use GRU network to complete the 
training and prediction for the other five numerical indicators. We apply the trained GRU 
network model to predict the numerical state of the enemy fighter at the next moment 
beyond the sample. Table 5 shows the predicted state data at moment 31 of the numerical 
indicators. Table 6 shows the predicted state data at moment 31 of the non-numerical in-
dicators by HFM. 
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Table 5. Numerical state data predicted by GRU network. 

Moment Speed (m/s) 
Distance 

(km) 
Altitude Difference 

(km) 
Heading Angle 

(°) 
Azimuth 

(mil) 
Acceleration 

(m/s2) 
31 266.87 92.31 2.06 1.43 2216.15 5.83 

Table 6. Non-numerical state data predicted by HFM. 

Moment Air-to-Air Radar 
State 

Air-to-Surface Radar 
State 

Electromagnetic 
Interference State 

Interfered State 

31 1 1 1 1 

7.2. Intention Recognition 
We use the historical data to establish the intention decision tree. The 24 sets of sim-

ulated historical data containing the state and intention information are given in Tables 7 
and 8. 

Table 7. Intentions vs. numerical states. 

No. Speed 
(s) 

Distance 
(d) 

Altitude Difference 
(Ad) 

Heading Angle 
(Ha) 

Azimuth 
(Az) 

Acceleration 
(a) 

Intention 
(I) 

1 [200, 260] [50, 80] [5, 6] [20, 30] [800, 1000] [5, 10] Att 
2 [220, 270] * [2, 3] [25, 40] * * Att 
3 [290, 320] [70, 90] * [35, 45] [2000, 2200] [−5, 0] Att 
4 * [40, 60] [2.5, 3.5] [330, 350] [4000, 4100] [7, 14] Att 
5 [340, 360] [100, 110] [3, 5] [320, 330] [4500, 4700] [5, 8] Att 
6 [360, 380] [300, 330] [12, 13] [100, 120] * [6, 10] Def 
7 [270, 300] [270, 290] [10, 11] * [2350, 2500] [0, 3] Def 
8 [300, 320] [270, 280] [9, 10] * [5500, 5700] [−10, −5] Def 
9 [360, 380] [200, 220] * [210, 230] [3900, 4150] [5, 7] Def 

10 [355, 375] [300, 330] [7, 8] * [2300, 2500] [−2, 2] Sur 
11 [280, 310] * [9, 10] * [3800, 4000] [5, 8] Sur 
12 [370, 400] [310, 350] [10, 11] [280, 300] * [0, 2] Sur 
13 [430, 450] [80, 90] [4, 5] [100, 120] [5300, 5400] [12, 16] Pen 
14 * [60, 70] [2, 3] [170, 190] [2400, 2550] * Pen 
15 [390, 410] [50, 60] [3, 4] [280, 290] [2350, 2500] [15, 20] Pen 
16 [360, 370] [90, 100] [6, 7] [30, 40] * [0, 2] Fei 
17 [350, 370] [80, 90] [7, 8] [330, 350] [4150, 4300] [5, 9] Fei 
18 [150, 170] [255, 270] [6, 8] [70, 80] [5300, 5400] [−1, 1] Rec 
19 [120, 140] [200, 210] [9, 10] * [1000, 1200] [−8, −5] Rec 
20 [180, 190] [150, 180] * [80, 90] [2300, 2500] [0, 2] Rec 
21 [220, 230] [210, 220] [7, 9] [270, 290] [4100, 4300] [−10, −5] Rec 
22 [120, 140] [180, 200] [6, 7] [20, 25] [2300, 2400] [0, 1] Ele 
23 [210, 230] [120, 130] [4, 5] [30, 40] [1050, 1200] * Ele 
24 [230, 240] * [3, 4] [320, 330] * [0, 2] Ele 

Note: * indicates missing data. 

Table 8. Intentions vs. non-numerical states. 

No. 
Air-to-Air Radar 

State 
(Aar) 

Air-to-Surface Radar 
State 
(Asr) 

Electromagnetic Inter-
ference State 

(Ei) 

Interfered State 
(Eid) 

Intention 
(I) 

1 1 0 1 0 Att 
2 1 1 1 0 Att 
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3 1 * 1 1 Att 
4 1 0 * 1 Att 
5 * 1 * 0 Att 
6 0 1 0 0 Def 
7 0 1 1 * Def 
8 0 0 0 0 Def 
9 0 1 1 0 Def 

10 1 1 1 1 Sur 
11 1 1 1 0 Sur 
12 1 1 0 * Sur 
13 1 1 1 1 Pen 
14 1 0 1 1 Pen 
15 * 1 * 1 Pen 
16 1 0 1 0 Fei 
17 1 1 1 1 Fei 
18 1 0 0 0 Rec 
19 1 1 0 0 Rec 
20 1 1 0 1 Rec 
21 1 1 0 0 Rec 
22 1 1 1 0 Ele 
23 1 1 1 0 Ele 
24 1 1 1 1 Ele 

Note: * indicates missing data, 0 indicates state “off”, 1 indicates state “on”. 

The numerical state data are then graded according to the historical information. The 
grading criteria are defined as follows: 

Speed: fast [340, 600], medium [200, 340], slow [100, 200]; 
Distance: long [250, 400], medium [100, 250], short [0, 100]; 
Altitude difference: high [11, 20], medium [6, 11], low [0, 6]; 
Acceleration: positive [5, 40], constant [−5, 5], negative [−5, −20]; 
Heading angle: small [0, 45] and [315, 360], medium [45, 90] and [270, 315], large [90, 

270]; 
Azimuth: north [0, 750] and [5250, 6000], east [750, 2250], south [2250, 3750], west 

[3750, 5250]. 
Table 9 lists the grading results. 

Table 9. Grading of numerical state vs. intention. 

No. Speed 
(s) 

Distance 
(d) 

Altitude Difference 
(Ad) 

Heading Angle 
(Ha) 

Azimuth 
(Az) 

Acceleration 
(a) 

Intention 
(I) 

1 Medium Short Low Small East Positive Att 
2 Medium * Low Small * * Att 
3 Medium Short * Small East Constant Att 
4 * Short Low Small West Positive Att 
5 Fast Medium Low Small West Positive Att 
6 Fast Long High Large * Positive Def 
7 Medium Long Medium * South Constant Def 
8 Medium Long Medium * North Negative Def 
9 Fast Medium * Large West Positive Def 

10 Fast Long Medium * South Constant Sur 
11 Medium * Medium * West Positive Sur 
12 Fast Long Medium Medium * Constant Sur 
13 Fast Short Low Large North Positive Pen 
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14 * Short Low Large South * Pen 
15 Fast Short Low Medium South Positive Pen 
16 Fast Short Medium Small * Constant Fei 
17 Fast Short Low Small West Positive Fei 
18 Slow Long Medium Medium North Constant Rec 
19 Slow Medium Medium * East Negative Rec 
20 Slow Medium * Medium South Constant Rec 
21 Medium Medium Medium Medium West Negative Rec 
22 Slow Medium Medium Small South Constant Ele 
23 Medium Medium Low Small East * Ele 
24 Medium * Low Small * Constant Ele 

Note: * indicates missing data. 

According to the definition of similarity relation, the incomplete information is pro-
cessed and the following statistics are obtained. 

sF = {4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17}, 
sM = {1, 2, 3, 4, 7, 8, 11, 14, 21, 23, 24}, 
sS = {4, 14, 18, 19, 20, 22}, 

where subscripts F, M, and S denote fast, medium, and slow, respectively. 
dL= {2, 6, 7, 8, 10, 11, 12, 18, 24}, 
dM = {2, 5, 9, 11, 19, 20, 21, 22, 23, 24}, 
dS = {1, 2, 3, 4, 11, 13, 14, 15, 16, 17, 24}, 

where subscripts L, M, and S denote long, medium, and short, respectively. 
AdL = {1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 20, 23, 24}, 
AdM = {3, 7, 8, 9, 10, 11, 12, 16, 18, 19, 20, 21, 22}, 
AdH = {3, 6, 9, 20}, 

where subscripts L, M, and H denote low, medium, and high, respectively. 
HaS = {1, 2, 3, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 24}, 
HaM = {7, 8, 10, 11, 12, 15, 18, 19, 20, 21}, 
HaL = {7, 8, 9, 10, 11, 13, 14, 19}, 

where subscripts S, M, and L denote small, medium, and large, respectively. 
AzE = {1, 2, 3, 6, 12, 16, 19, 23, 24}, 
AzW = {2,4,5,6,9,11,12,16,17,21,24}, 
AzS = {2, 6, 7, 10, 12, 14, 15, 16, 20, 22, 24}, 
AzN = {2, 6, 8, 12, 13, 16, 18, 24}, 

where subscripts E, W, S, and N denote east, west, south, and north, respectively. 
aP = {1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 17, 23}, 
aC = {2, 3, 7, 10, 12, 14, 16, 18, 20, 22, 23, 24}, 
aN = {2, 8, 14, 19, 21, 23}, 

where subscripts P, C, and N denote positive, constant, and negative values, respectively. 
Then, according to Equation (6), the decision support degree of each conditional at-

tribute to the decision attribute is calculated. We have: 
DSD(s, I) = 0.6310, 
DSD(d, I) = 0.6389, 
DSD(Ad, I) = 0.5686, 
DSD(Ha, I) = 0.5961, 
DSD(Az, I) = 0.6182, 
DSD(a, I) = 0.5846, 
DSD(Aar, I) = 0.3521, 
DSD(Asr, I) = 0.3503, 
DSD(Ei, I) = 0.4470, 
DSD(Eid, I) = 0.4719. 
Evidently, the distance indicator has the highest decision support degree. Therefore, 
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we partition the decision tree starting from “distance”. Firstly, the split points of distance 
indicator are counted, and then IEP values are calculated using Equation (8). As shown in 
Table 7, by aggregating the endpoints of all distance intervals with the repeated endpoints 
removed, we obtain the following ascending sequence: 40, 50, 60, 70, 80, 90, 100, 110, 120, 
130, 150, 180, 200, 210, 220, 255, 270, 280, 290, 300, 310, 330, 350. Then, the optional split 
points include 45, 55, 65, 75, 85, 95, 105, 115, 125, 140, 165, 190, 205, 215, 237.5, 262.5, 275, 
285, 295, 305, 320, 340. Table 10 lists the IEP values corresponding to the split points. 

Table 10. Split points and IEPs. 

Split point 45 55 65 75 85 95 105 115 125 
IEP 3.007 3.378 3.188 3.089 2.837 2.491 2.548 2.406 2.535 
Split point 140 165 190 205 215 237.5 262.5 275 285 
IEP 2.429 2.645 2.669 2.912 2.937 2.758 2.859 2.952 2.886 
Split point 295 305 320 340      
IEP 2.797 2.906 3.205 3.007      

The split point with the minimum IEP is 115. Therefore, it is the optimal split point 
under the distance indicator. The historical information is then partitioned with split point 
115. This procedure is repeated until the final decision tree is generated, as shown in Fig-
ure 8. Based on the existing historical statistical information, the established intention de-
cision tree of the enemy fighter consists of 29 nodes, consisting of 1 root node and 14 leaf 
nodes associated with intention. Each node is represented by a multivariate array, with 
each number representing a set of historical data. The number in each node circle in Figure 
8 represents the serial number of the node, where node 1 represents the root node. The 
decision tree covers all 24 known historical datasets. 

 
Figure 8. Intention decision tree. 

Then, the state data predicted in Tables 5 and 6 are input into the decision tree to 
judge the enemy fighter intention. As can be seen from Table 5, the distance to the enemy 
fighter is 92.31 km, hence the intention judgement goes to node 2. Since the speed is 266.87 
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m/s, the intention judgment goes to node 5. Again, the heading angle is 1.43° and the in-
tention judgment progresses to node 11. Finally, the azimuth is 2216.15 mil, and the inten-
tion judgment terminates at leaf node 20. At this point, the intention to attack has been 
recognized. 

7.3. Intention Verification 
When the enemy fighter intention is recognized as attack, the recognition accuracy 

needs to be further tested. In this simulation study, we set the target maneuver tendency 
threshold as 0.5. When 0.5Pro > , the enemy fighter tends to attack; the higher the Pro  
value, the more obvious the enemy tendency to attack. When 0.5Pro <  , the enemy 
fighter tends to escape; the smaller the Pro  value, the more obvious the enemy tendency 
to escape. 

Assuming that the enemy pilot’s operational preference Pre  and the combat moti-
vation of the enemy fighter Mot  are unknown, their values are then set to 0.5. Through 
expert estimation, the current battlefield situation Sit   = 0.35. The maximum available 
flight speed of the enemy fighter maxs   = 600 m/s, the maximum available acceleration 

maxa  = 40 m/s2, and the correction coefficient of maneuver tendency Pr oK  = 0.375. In ad-
dition, according to the prediction in Table 5, at moment 31, the current flight speed of the 
enemy fighter s  = 266.87 m/s, and the absolute value of the current acceleration a  = 
5.83 m/s2. Substituting the above parameters into Equation (9), we obtain the target ma-
neuver tendency function Pro  = 0.41. This indicates that the enemy fighter has no obvi-
ous tendency to attack. Eventually, we correct the enemy fighter intention from attack to 
feint. 

As can be seen from the above results, the enemy fighter intention is identified as 
“attack” without intention verification. After verification through the target maneuver 
tendency function, the enemy fighter intention is corrected to “feint”. These two kinds of 
intentional actions are so similar that it is difficult to distinguish them using only tradi-
tional data-driven prediction models, especially when training data are limited and model 
learning is insufficient. Evidently, these two kinds of intention recognition would result 
in the subsequent battlefield decisions being completely different. The proposed method 
of intention recognition in uncertain information environment can effectively predict en-
emy fighter intention and correct possible misjudgment through secondary recognition, 
thus further improving the practicality and accuracy of intention recognition, which is 
critical to correct real-time battlefield decision-making. 

8. Conclusions 
Recognizing the enemy intention is an important prerequisite for making correct and 

timely battlefield decisions. However, because battlefield information is often incomplete, 
uncertain, or deceptive, it is difficult to accurately recognize enemy intentions. Especially 
in air combat, where the information environment is highly complex and rapidly chang-
ing, recognizing enemy intentions is even more challenging. 

This paper explores an intelligent recognition method of enemy fighter intention in 
small air combat under uncertain and incomplete information environment. In the pres-
ence of incomplete information, GRU network supplemented by HFM is used to predict 
the future state of an enemy fighter. A decision tree of enemy fighter intention is con-
structed to extract the intention classification rules from incomplete a priori knowledge. 
The node splitting sequence of decision tree is determined according to the decision sup-
port degree of attributes following the criteria of IEP. Then, the established intention de-
cision tree and predicted state data are exploited to recognize the enemy fighter intention. 
In particular, to identify the possible deceptive attack, a target maneuver tendency func-
tion is proposed to rejudge the attack intention, thus improving the accuracy of intention 
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recognition. In addition, we propose practical data repair methods to solve the unavoida-
ble data missing problem in the air combat information environment. The simulation 
study shows that the proposed method is suitable for uncertain and incomplete air battle-
field information environment, and can screen false attack intention. This method has ad-
vantages in both the accuracy and efficiency of state prediction and intention recognition, 
resulting in potential application value for intention recognition in small air combat situ-
ations. 

In actual air combat, enemy state prediction, enemy intention recognition, our re-
sponse action, and enemy state change are mutually influenced, tightly coupled, and al-
ternate. For the specific application of the proposed method, the method can be pro-
grammed and embedded in ground or airborne equipment as a module of C3I (command, 
control, communication, and intelligence) system. The intention decision tree is relatively 
fixed, which can be constructed according to a priori knowledge of air combat summa-
rized from actual air combat or exercise, and updated regularly with the accumulation of 
a priori knowledge. State data acquisition is enabled when the enemy fighter is detected. 
After a certain amount of state data is accumulated, the state prediction model can be built 
to predict the future state of the enemy fighter. Different from the decision tree used for 
intention recognition, the state prediction model needs constant iterations and real-time 
updates. For example, the state prediction model can be set as to always be trained by the 
state data of the latest n moments. To this end, the proposed methods must also be sup-
ported by advanced information and communication technologies if they are to be prac-
tical in actual air war. 

Generally, to reduce the burden of data collection, the selected enemy fighter state 
indicators should be independent from each other as far as possible, and their own state 
prediction models should be established, respectively. One advantage of the proposed in-
tention recognition framework brought about by modularity is that it is not necessary to 
make extensive adjustments to the entire prediction model system due to indicator in-
crease or decrease, but only to make an addition or deletion to the independent state pre-
diction model. 

Our study can be extended from the following aspects. First, at present, we use rela-
tively simple interval numbers to represent uncertain state data when constructing the 
intention decision tree. In the future, we will introduce a fuzzy set theory or probability 
theory to represent uncertain state data, thus constructing a fuzzy or probabilistic inten-
tion decision tree. Second, modern war has evolved into an all-round systematic confron-
tation. Our study only focuses on the most basic antagonistic unit in air combat, namely 
the one-to-one air combat scenario. In the future, we will explore enemy fighter intention 
recognition in large air combat under systematic confrontation. 
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