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Abstract: The objective of this paper focuses on the stability analysis of the input–output finite-time
for a class of fractional-order switched singular systems (FOSSS) with D-perturbation. By using the
Φ-dependent average dwell time (ΦDADT) approach together with the multiple Lyapunov functions
method, some sufficient conditions are derived for the considered system to ensure its input–output
finite-time stability in terms of linear matrix inequalities. Then, the output feedback controller is
designed to ensure the closed-loop system is input–output finite-time stable. Finally, a numerical
example illustrates the superiority of the proposed method.
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1. Introduction

Recently, fractional calculus has drawn a great deal of attention and interest from
science and engineering fields due to its significant properties, such as diffusive realiza-
tion [1], lung tissue viscoelasticity [2], diffusive representation [3], heat conduction [4],
robust control [5], electric energy consumption [6], and chaotic systems [7]. Over the years
of development, the fractional-order positive switched system (FOPSS) has obtained some
meaningful results in an infinite time interval [8–11]. Among them, the works [8,9] investi-
gate the controllability and switching control for FOPSS with the fixed switching sequence
and state-dependent switching, respectively. The Lyapunov stability and robust stabiliz-
ing state feedback controller design of fractional-order nonlinear systems are presented
in [10,11], respectively. Recently, finite-time stability (FTS) analysis of FOPSS has become a
research hotspot because of its theoretical and practical importance. FTS means that the
solutions of the system do not exceed a certain bound during a specified time interval. It
is a more practical concept, which is helpful to study the behavior of the system during
a finite short interval. Therefore, the stability analysis of FOPSS is considered in a finite
time interval [12–18]. In the literature [12], the FTS problem of FOPSS is studied based
on the average dwell time (ADT) approach. In the literature [13] and the literature [14],
the FTS and finite-time control problem for certain and uncertain fractional-order positive
impulsive switched systems are investigated using the ADT and mode-dependent average
dwell time (MDADT) approach, respectively. In the literature [15], the impulsive observer
design of FOPSS via the MDADT approach is studied. FTS and finite-time boundedness
(FTB) of FOPSS with 0 < α < 1 are studied by employing the ADT approach [16]. The
consensus problem of fractional-order multiagent systems (FOMS) is investigated via
sampled-data event-triggered control [17]. The consensus problem of leader-following for
FOMS is addressed [18]. A class of fractional-order positive switched continuous-time
systems is focused [19]. To ensure good system performance, in recent years, the stabil-
ity problem of robust finite-time guaranteed cost control for FOPSS with impulsive and
time-varying delay was studied [20]. The guaranteed cost and finite-time event-triggered
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control problem of FOPSS are considered via the ADT approach [21]. Guaranteed cost
and finite-time non-fragile control problems of FOPSS with impulsive moments and asyn-
chronous switching are discussed under the ADT approach [22]. It is noteworthy that
the FTS analysis of FOPSS has not been studied by the ΦDADT approach which is more
general than the ADT and MDADT ones [23]. It motivates us to do this in this paper.

Moreover, many results and concepts of FOPSS have been extended to FOSSS, for
example [24,25]. In the literature [24], the FTS of FOSSS with delay is studied by “inf-sup”
the method and Laplace transform based on Mittag–Leffler functions and tractable matrix
inequalities. In the literature [25], the robust control problem of FOSSS is proposed by using
the linear matrix inequalities (LMIs) method and generalized singular value decomposition.
Very recently, the literature [26] addressed the input–output finite-time stability (IO-FTS) of
FOSSS with 0 < α < 1.

Most of these conclusions mentioned above are undisturbed, in reality, almost all the
physical systems contain perturbations because of the existence of hardware errors, such as
modeling errors and fluctuation. A typical perturbation for positive switched systems is
called D-perturbation. Recently, several works have obtained related conclusions about
D-perturbation [27–29]. The robust stability of positive switched linear systems with
D-perturbation and time-varying delay is considered [27], and the guaranteed cost finite-
time boundedness of positive switched nonlinear systems with D-perturbation and time-
varying is studied [28]. In the literature [29], the problem of guaranteed cost finite-time
control for fractional-order nonlinear positive switched systems is investigated. Up to
now, few results consider the IO-FTS for FOSSS in the presence of D-perturbation. This is
another motivation for this study.

This paper focuses on the IO-FTS for a class of FOSSS with D-perturbation. The
main three contributions of this paper are as follows: (i) Regularity and impulse-free
properties of FOSSS with D-perturbation are given. (ii) By using the ΦDADT approach
together with the multiple Lyapunov functions method, sufficient conditions are derived
for the considered systems which ensure the input–output finite-time stable in terms of
linear matrix inequalities. (iii) The output feedback controller is designed to ensure the
closed-loop system is input–output finite-time stable.

The rest of the paper is organized as follows. In Section 2, the basic inequalities
are given, which contain Cp, Young′s, and Grownwall–Bellman inequalities. Moreover,
necessary definitions of fractional-order calculus are presented. In Section 3, the input–
output stability criterion for FOSSS is given. A numerical example illustrates the superiority
of the proposed results in Section 4. Lastly, the results are summarized in Section 5.

2. Problem Formulation and Preliminaries

Notations: Z∗ (R and C) stands for the set of positive integers (real and complex
numbers). Rn stands for real Euclidean space with n-dimension. Rn×m signifies the space
of n× m real matrices. AT and A−1 stand for the transpose of and inverse of matrix A.
Rank(X) is the rank of the matrix X. I means that the identity matrix. Matrix D ∈ [D, D]
signifies that dij ∈ [dij, dij]. A � 0(≺,�,�) signifies that aij > 0(< 0,≥ 0,≤ 0), which is
applicable to a vector. A > B(A < B, A ≥ B, A ≤ B) means that A− B is a positive-definite
(negative-definite, positive-semidefinite, and negative-semidefinite) matrix.

2.1. Fractional-Order Calculus

In this subsection, some basic knowledge and definitions of fractional-order calculus
are introduced.

The uniform formula of the fractional integral of order β of a given function h̄(s) on
[s0, s] is given as

s0 D−β
s h̄(s) =

1
Γ(β)

∫ s

s0

h̄(τ)
(s− τ)1−β

dτ, (1)

where 0 < β < 1, and Γ(β) =
∫ ∞

0 e−ssβ−1ds represents the Gamma function.
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Then, the Caputo fractional derivative is given as follows:

C
s0

Dβ
s h̄(s) =

1
Γ(1− β)

∫ s

s0

h̄′(τ)
(s− τ)β

dτ, (2)

where C
s0
Dβ

s stands for Caputo fractional derivatives of order β of function h̄(s) on [s0, s]. In
this paper, we use Caputo fractional-order operators as our main tool.

Next, some lemmas and useful inequalities are given for further study.

Lemma 1 ([26]). Suppose that 0 < β < 1, let x(s) ∈ Rn be a continuous and differentiable vector
function, H ∈ Rn×n, H ≥ 0, then for any time instant s ≥ 0, the following inequality holds

1
2

C
s0

Dβ
s [xT(s)Hx(s)] ≤ xT(s)HC

s0
Dβ

s x(s).

Lemma 2 ([30]). Let a(s), b(s) and h̄(s) be real-valued piecewise-continuous functions. If a(s) is
non-negative and h̄(s) satisfies

h̄(s) ≤ a(s) +
∫ s

s0

b(t)h̄(t)dt,

then
h̄(s) ≤ a(s) +

∫ s

s0

a(t)b(t) exp
∫ s

t
b(r)drdt.

In particular, if a(s) is a constant, then it holds

h̄(s) ≤ a(s) exp(
∫ s

s0

b(t)dt).

Lemma 3 ([12]). (Cp inequality) For any positive real numbers x1, x2, · · · , xm,

N

∑
m=1

xβ
m ≤ N1−β(

N

∑
m=1

xm)
β, (0 < β < 1).

Lemma 4 ([12]). (Young′s inequality) If h̄, z, p and q are all real numbers, p, q > 0, then

| h̄ |p| z |q≤ p
p + q

| h̄ |p+q +
q

p + q
| z |p+q .

Lemma 5 ([31]). Let A ∈ Rn×n, then A is nonsingular if and only if there exists a nonsingular
matrix X ∈ Rn×n such that

AX + XT AT
< 0,

where A = DA.

2.2. Fractional-Order Switched Singular Systems

Consider the following FOSSS: Eς(s)
C
s0

Dβ
s x(s) = D1 Aς(s)x(s) + D2Gς(s)u(s) + D3Bς(s)ω(s),

y(s) = D4Cς(s)x(s),
(3)

where 0 < β < 1. s0 = 0, x(s0) = 0 and x(s) ∈ Rn represent the initial time, initial
state, and system state, respectively. u(s) ∈ Rm and y(s) ∈ Rp are the control input and
output, respectively. ς(s) : [s0,+∞) 7→ Fm = {1, 2, · · · , M} is the switching signal. Letting
O = {1, 2, · · · , N}, N ≤ M. Definite mapping Φ : Fm 7→ O is an epimorphism operator. Set
Φγ = {p ∈ Fm|Φ(p) = γ ∈ O}. Perturbations Di ∈ [Di, Di](i = 1, 2, 3, 4) with Di � Di � 0
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where matrices Di, Di are all diagonal. For ∀p ∈ Fm, Ep, Ap, Gp, Bp and Cp ∈ Rn×n are
known constant matrices and rank(Ep) = rp ≤ n. ω(s) ∈ Rq represents the exogenous
disturbance input with ω(t) ∈W∞(S, F, d) := {ω(·) ∈ L∞[0, S] : ωT(s)Fω(s) ≤ d} where
F = FT > 0.

In the following development, let Ap = D1 Ap, Gp = D2Gp, Bp = D3Bp and

Cp = D4Cp, Ap = D1 Ap, Gp = D2Gp, Bp = D3Bp, Cp = D4Cp.

The p-th subsystem of system (3) is considered as follows:

Ep
C
s0

Dβ
s x(s) = Apx(s) + Gpu(s) + Bpω(s). (4)

Definition 1 ([32]). System (4) is said to be regular if there exists a scalar k ∈ C such that
det(kβEp − Ap) 6= 0 holds.

Definition 2 ([32]). System (4) is said to be impulse-free if deg(det(kEp− Ap)) = rank (Ep), k ∈ C.

Definition 3 ([26]). System (3) is called regular and impulse-free if each singular subsystem (4) is
regular and impulse-free.

Lemma 6 ([32]). For system (4), it is always possible to find two nonsingular matrices Up, Zp ∈ Rn×n

such that (Ep, Ap) takes the following decomposition form

UpEpZp =

[
Ir 0
0 0

]
, Up ApZp =

[
Ap11 Ap12
Ap21 Ap22

]
.

For the above form, system (4) is said to be regular and impulse-free if Ap22
is nonsingular.

Definition 4 ([26]). If the state of system (3) at every switching instant has a consistent initial
value of the next active subsystem, then the switching is called consistent switching for system (3).

However, x(s−l ) may not be a consistent initial value for the activated system after the
switch. Therefore, to guarantee the consistent switching of system (3), the projector is given
as follows:

Πp = Zp

[
Ir 0

−A−1
p22 Ap21 0

]
Z−1

p . (5)

Assumption 1 ([33]). If the state of the system (3) satisfies

x(sl) = Πpx(s−l ), (6)

where x(s−l ) stands the state before the switching sl , then the state jump behaviors can be evaluated
by the consistency projector Πp in (5).

Definition 5 ([23]). Let NςΦγ(s, s0) be the sum of switching numbers of subsystems Φγ being
activated over [s0, s], and SΦγ(s, s0) represents total running time of subsystems Φγ over [s0, s],
assume that there exist two constants N0Φγ ≥ 0 and τaΦγ > 0, ∀γ ∈ O, such that

NςΦγ(s, s0) ≤ N0Φγ +
SΦγ(s, s0)

τaΦγ

, s ≥ s0 ≥ 0, (7)

where N0Φγ is called the chatter bounds. Then, τaΦγ is called ΦDADT of ς(s).

Remark 1. The definitions of ADT and MDADT can be obtained by taking O = {1} and O = Fm
in Definition 5.
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Definition 6 ([26]). Given a positive scalar Sh̄, a class of input signal W∞ defined over [0, Sh̄] and
a positive definite matrix Q, then system (3) is said to be input–output finite-time stable concerning
(W∞, Q, Sh̄) if the following condition holds:

ω(·) ∈W∞ ⇒ yT(s)Qy(s) < 1, s ∈ [0, Sh̄]. (8)

3. Results
3.1. Input–Output Finite-Time Stability

In this subsection, the input–output FTS of system (3) is considered with u = 0.

Theorem 1. Consider system (3) with u = 0. Given constants λγ > 0 and µγ > 1, ∀γ ∈ O, for
∀p, q ∈ Fm, p 6= q, assume that there exist nonsingular matrices Hp, such that HT

p Ap + A
T
p Hp − λγET

p Hp HT
p Bp

B
T
p Hp −λγF

 < 0, (9)

ΠT
p ET

p HpΠp ≤ µγET
q Hq, (10)

C
T
pQCp ≤ ET

p Hp = HT
p Ep, (11)

then system (3) with u = 0 is regular, impulse-free, and input–output finite-time stable concerning
(W∞, Q, Sh̄) for all s ∈ [0, Sh̄] with the ΦDADT satisfying

τaΦγ > τ∗aΦγ
=

η

−φ− ln d
, (12)

where η = Sγ ln µγ +
λγ(1−β)Sγ

Γ(β+1) , φ = N0Φγ ln µγ +
λγ(1−β)(N0Φγ+1)

Γ(β+1) +
λγ βSγ

Γ(β+1) .

Proof. For ∀p ∈ Fm, let

U−T
p HpZp =

[
Hp11 Hp12
Hp21 Hp22

]
. (13)

By Lemma 6 and (11), we can obtain

ZT
p ET

p HpZp = ZT
p ET

pUT
p U−T

p HpZp =

[
Hp11 Hp12

0 0

]
≥ 0, (14)

ZT
p HT

p EpZp = ZT
p HT

p U−1
p UpEpZp =

[
HT

p11 0
HT

p12 0

]
≥ 0, (15)

with ET
p Hp = HT

p Ep.
Then, it is obvious that (13) satisfies Hp12 = 0, Hp11 = HT

p11 ≥ 0. Therefore,

U−T
p HpZp =

[
Hp11 0
Hp21 Hp22

]
, (16)

where Hp11 and Hp22 are nonsingular because Hp is nonsingular. It follows from (9) that

ZT
p HT

p ApZp + ZT
p A

T
p HT

p Zp − λγZT
p ET

p HpZp

= ZT
p HT

p U−1
p Up ApZp + ZT

p A
T
pUT

p U−T
p HpZp

− λγZT
p HT

p U−1
p UpEpZp

=

[
? ?

? A
T
p22Hp22 + HT

p22 Ap22

]
< 0,

(17)
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where ? stands for some matrix blocks that we do not care about. It is easily obtained from (17)

that A
T
p22Hp22 + HT

p22 Ap22 < 0. Then, it further can be deduced that AT
p22Hp22 + HT

p22 Ap22 < 0.

By applying Lemma 5, it follows that Ap22 is nonsingular. Further, from Lemma 6, we conclude
that system (4) with u = 0 is regular and impulse-free. Moreover, by using Definition 3, the
properties of the regularity and impulse-free of system (3) with u = 0 are ensured.

Next, the IO-FTS of system (3) with u = 0 is proved.
The multiple Lyapunov functions are constructed as follows:

Vς(s) = Vς(s)(s, x(s)) = xT(s)ET
ς(s)Hς(s)x(s) + d. (18)

It is obvious that Vς(s) > 0. Denote 0 ≤ s0 < s1 < · · · as a switching sequence. Taking the
fractional-order derivative of (18), for s ∈ [sl , sl+1), one can obtain

C
s0

Dβ
s Vς(s)(s, x(s))

≤ 2xT(s)ET
ς(s)Hς(s)

C
s0

Dβ
s x(s)

= 2xT(s)HT
ς(s)Eς(s)

C
s0

Dβ
s x(s)

= 2xT(s)HT
ς(s)(Aς(s)x(s) + Bς(s)ω(s))

≤ 2xT(s)HT
ς(s)(Aς(s)x(s) + Bς(s)ω(s))

= xT(s)(HT
ς(s)Aς(s) + A

T
ς(s)Hς(s))x(s)

+ xT(s)HT
ς(s)Bς(s)ω(s) + ωT(s)B

T
ς(s)Hς(s)x(s)

=

[
x(s)
ω(s)

]T
 HT

ς(s)Aς(s) + A
T
ς(s)Hς(s) HT

ς(s)Bς(s)

B
T
ς(s)Hς(s) 0

[ x(s)
ω(s)

]

<

[
x(s)
ω(s)

]T
[

λγET
ς(s)Hς(s) 0

0 λγF

][
x(s)
ω(s)

]
= λγxT(s)ET

ς(s)Hς(s)x(s) + λγωT(s)Fω(s)

= λγ(xTET
ς(s)Hς(s)x(s) + d)

= λγVς(s)(s, x(s)). (19)

By taking the fractional integral operator C
sl

D−β
s to both sides of (19) on the interval [sl , s),

for s ∈ [sl , sl+1), one can further obtain

Vς(s)(s, x(s)) < Vς(sl)
(sl , x(sl)) +

λγ

Γ(β)

∫ s

sl

(s− τ)β−1Vς(sl)
(τ, x(τ))dτ. (20)

With the help of Lemma 2, for s ∈ [sl , sl+1), it follows that

Vς(s)(s, x(s))

< Vς(sl)
(sl , x(sl)) exp{

λΦς(sl )

Γ(β)

∫ s

sl

(s− τ)β−1dτ}

= Vς(sl)
(sl , x(sl)) exp{

λΦς(sl )

βΓ(β)
(s− sl)

β}

= Vς(sl)
(sl , x(sl)) exp{

λΦς(sl )

Γ(β + 1)
(s− sl)

β}.

(21)
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For s ∈ [sl , sl+1), together with Assumption 1 and (10), this implies

Vς(sl)
(sl , x(sl))

= xT(sl)ET
ς(sl)

Hς(sl)
x(sl) + d

= xT(s−l )Π
T
ς(sl)

ET
ς(sl)

Hς(sl)
Πς(sl)

x(s−l ) + d

≤ µΦς(sl )
Vς(s−l )(s

−
l , x(s−l )).

(22)

According to exp{
λΦς(sl )

Γ(β+1) (s− sl)
β} > 0, one has

Vς(s)(s, x(s))

< µΦς(sl )
Vς(s−l )(s

−
l , x(s−l )) exp{

λΦς(sl )

Γ(β + 1)
(s− sl)

β}

< µΦς(sl )
Vς(sl−1)

(sl−1, x(sl−1))

exp{
λΦς(sl−1)

Γ(β + 1)
(sl − sl−1)

β +
λΦς(sl )

Γ(β + 1)
(s− sl)

β}

< µΦς(sl )
µΦς(sl−1)

Vς(s−l−1)
(s−l−1, x(s−l−1))

exp{
λΦς(sl−1)

Γ(β + 1)
(sl − sl−1)

β +
λΦς(sl )

Γ(β + 1)
(s− sl)

β}

< · · ·

<
l

∏
i=1

µΦς(si)
Vς(s0)

(s0, x(s0))

exp{
λΦς(s0)

Γ(β + 1)
(s1 − s0)

β +
λΦς(s1)

Γ(β + 1)
(s2 − s1)

β + · · ·+
λΦς(sl )

Γ(β + 1)
(sl+1 − sl)

β}.

(23)

From Lemmas 3 and 4, for s ∈ [0, Sh̄], we have

Vς(s)(s, x(s))

< Vς(s0)
(s0, x(s0))

N

∏
γ=1

µ
Nγ
γ exp{ 1

Γ(β + 1)

N

∑
γ=1

λγ ∑
ς(sl)∈Φγ

(sl+1 − sl)
β}

< Vς(s0)
(s0, x(s0)) exp{

N

∑
γ=1

ln µ
Nγ
γ +

∑
N

γ=1 λγ

Γ(β + 1)
(Nγ + 1)1−βSβ

γ}

< Vς(s0)
(s0, x(s0)) exp{

N

∑
γ=1

ln µ
Nγ
γ +

∑
N

γ=1 λγ

Γ(β + 1)
[(1− β)(Nγ + 1) + βSγ]}

< Vς(s0)
(s0, x(s0))

exp{
N

∑
γ=1

[(N0Φγ +
Sγ

τaΦγ

) ln µγ +
λγ

Γ(β + 1)
((1− β)(N0Φγ +

Sγ

τaΦγ

+ 1) + βSγ)]}

< Vς(s0)
(s0, x(s0))

exp{
N

∑
γ=1

[
ln µγ

τaΦγ

Sγ +
λγ(1− β)

Γ(β + 1)
Sγ

τaΦγ

+ N0Φγ ln µγ +
λγ(1− β)N0Φγ

Γ(β + 1)

+
λγ(1− β)

Γ(β + 1)
+

λγβSγ

Γ(β + 1)
]}

< Vς(s0)
(s0, x(s0))



Fractal Fract. 2023, 7, 341 8 of 16

< exp{
N

∑
γ=1

[
1

τaΦγ

(Sγ ln µγ +
λγ(1− β)

Γ(β + 1)
Sγ) + N0Φγ ln µγ +

λγ(1− β)N0Φγ

Γ(β + 1)

+
λγ(1− β)

Γ(β + 1)
+

λγβSγ

Γ(β + 1)
]}

< Vς(s0)
(s0, x(s0)) exp{

N

∑
γ=1

(
1

τaΦγ

η + φ)}, (24)

where Nγ , NςΦγ(Sh̄, 0), Sγ , SΦγ(Sh̄, 0). Taking the zero initial condition x(0) = 0, then
Vς(0)(0, x(0)) = xT(0)ET

ς(0)Hς(0)x(0) + d = d, we have

yT(s)Qy(s)

= xT(s)CT
ς(s)QCς(s)x(s)

≤ xT(s)C
T
ς(s)QCς(s)x(s)

≤ xT(s)ET
ς(s)Hς(s)x(s) + d

= Vς(s)(s, x(s))

< d exp{
N

∑
γ=1

(
1

τaΦγ

η + φ)}.

(25)

Substituting(12) into (25), we can obtain

yT(s)Qy(s) < 1. (26)

From Definition 6, it can be concluded that the system (3) with u = 0 is regular, impulse-free,
and input–output finite-time stable about (W∞, Q, Sh̄). Thus, the proof is completed.

Remark 2. The conditions (9–11) are only sufficient for the conclusion of Theorem 1. In some
cases, they may not be feasible. To guarantee the maximum solvability of LMIs (9–11), it is often
necessary to first select a set of sufficiently large µγ and sufficiently small λγ, which can ensure that
Hp has a large degree of freedom. If LMIs (9–11) are feasible under such µγ and λγ conditions, it
can gradually reduce µγ and increase λγ to achieve better ΦDADT τ∗aΦγ

design.

When O = {1} (O = Fm), we can obtain the ADT (MDADT) results of FOPSSS.

Corollary 1. Consider system (3) with u = 0. For constants λ > 0 and µ > 1, ∀p ∈ Fm, p 6= q,
assume that there exist nonsingular matrix Hp , such that HT

p Ap + A
T
p Hp − λET

p Hp HT
p Bp

B
T
p Hp −λF

 < 0, (27)

ΠT
p ET

p HpΠp ≤ µET
q Hq, (28)

C
T
pQCp ≤ ET

p Hp = HT
p Ep, (29)

then system (3) with u = 0 is regular, impulse-free, and input–output finite-time stable concerning
(W∞, Q, Sh̄) for all s ∈ [0, Sh̄] with the ADT satisfying

τa > τ∗a =
η
′

−φ
′ − ln d

, (30)

where η
′
= Sh̄ ln µ + λ(1−β)Sh̄

Γ(β+1) , φ
′
= N0 ln µ + λ(1−β)(N0+1)

Γ(β+1) + λβSh̄
Γ(β+1) .
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Proof. The corresponding result can be obtained by taking O = {1}. So we omit here.

Corollary 2. Consider system (3) with u = 0. For constants λp > 0 and µp > 1, ∀p ∈ Fm, p 6= q,
assume that there exist nonsingular matrices Hp , such that HT

p Ap + A
T
p Hp − λpET

p Hp HT
p Bp

B
T
p Hp −λpF

 < 0, (31)

ΠT
p ET

p HpΠp ≤ µpET
q Hq, (32)

C
T
pQCp ≤ ET

p Hp = HT
p Ep, (33)

then system (3) with u = 0 is regular, impulse-free, and input–output finite-time stable concerning
(W∞, Q, Sh̄) for all s ∈ [0, Sh̄] with the MDADT satisfying

τap > τ∗ap =
η
′′

−φ
′′ − ln d

, (34)

where η
′′
= Sp ln µp +

λp(1−β)Sp
Γ(β+1) , φ

′′
= N0p ln µp +

λp(1−β)(N0p+1)
Γ(β+1) +

λβSp
Γ(β+1) .

Proof. The corresponding result can be obtained by taking O = Fm. So we omit here.

Remark 3. It can easily be known that Theorem 1 can cover Corollaries 1 and 2. Therefore, our
proposed approach is a more general way to study the stability analysis of a class of FOSSS with
0 < β < 1.

Remark 4. Letting O = {1}. If D1 = D2 = D3 = D4 = I and u = 0, then Theorem 1 can be
transformed into Theorem 1 of the literature [26].

3.2. Input–Output Finite-Time Stabilization

In this section, an output feedback controller for system (3) is designed as follows:

u(s) = Kς(s)y(s), (35)

the corresponding closed-loop system is given by Eς(s)
C
s0

Dβ
s x(s) = Âς(s)x(s) + Bς(s)ω(s),

y(t) = Cς(s)x(s),
(36)

where Âς(s) = Aς(s) + Gς(s)Kς(s)Cς(s).

Theorem 2. Consider system (36). For constants λγ > 0 and µγ > 1, ∀γ ∈ O, for ∀p, q ∈ Fm,
p 6= q, assume that there exist nonsingular matrices Xp, Lp, ∀p ∈ Fm, such that XT

p A
T
p + ApXp + C

T
p LT

pG
T
p + GpLpCp − λγXT

p ET
p Bp

B
T
p −λγF

 < 0, (37)

XT
p C

T
pQCpXp ≤ EpXp = XT

p ET
p (38)

and (10) hold, where Hp = X−1
p , and the output feedback controller u(s) = Kpy(s) = LpX−1

p y(s),
then system (36) is regular, impulse-free, and input-output finite-time stable about (W∞, Q, Sh̄) for
all s ∈ [0, Sh̄] with the ΦDADT satisfying (12).



Fractal Fract. 2023, 7, 341 10 of 16

Proof. Multiplying (38) by X−T
p on the left and by X−1

p on the right, we have

C
T
pQCp ≤ HT

p Ep = ET
p Hp. (39)

Further, pre-multiplying and post-multiplying (37) by[
X−T

p 0
0 I

]
,

[
X−1

p 0
0 I

]
(40)

respectively, one gets A
T
p Hp + HT

p Ap + C
T
pKT

p G
T
p Hp + HT

p GpKpCp − λγET
p Hp HT

p Bp

B
T
p Hp −λγF


< 0.

(41)

Then (41) can be rewritten as Â
T
p Hp + HT

p Âp − λγETHp HT
p Bp

B
T
p Hp −λγF

 < 0, (42)

where Âς(s) = Aς(s) + Gς(s)Kς(s)Cς(s). Replacing Ap in (9) with Âp. Similar to Theorem 1,
we easily derived that the corresponding closed-loop system (36) is regular, impulse-free,
and input-output finite-time stable in regard to (W∞, Q, Sh̄) for all s ∈ [0, Sh̄] with the
switching signal (12). Thus, the proof is completed.

Similar to Section 3.1, the following two corollaries can be obtained from Theorem 2.

Corollary 3. Consider system (36). For constants λ > 0 and µ > 1, for ∀p, q ∈ Fm, p 6= q,
assume that there exist nonsingular matrices Xp, Lp, such that XT

p A
T
p + ApXp + C

T
p LT

pG
T
p + GpLpCp − λXT

p ET
p Bp

B
T
p −λF

 < 0, (43)

and (28), (38) hold, where Hp = X−1
p , and the output feedback controller u(s) = Kpy(s) = LpX−1

p y(s),
then system (36) is regular, impulse-free and input–output finite-time stable in regard to (W∞, Q, Sh̄) for all
s ∈ [0, Sh̄] with the ADT satisfying (30).

Proof. It can obtain this result directly by taking O = {1}.

Corollary 4. Consider the system (36). For constants λp > 0 and µp > 1, for ∀p, q ∈ Fm, p 6= q,
assume that there exist nonsingular matrices Xp, Lp, such that XT

p A
T
p + ApXp + C

T
p LT

pG
T
p + GpLpCp − λpXT

p ET
p Bp

B
T
p −λpF

 < 0, (44)

and (32), (38) hold, where Hp = X−1
p , and the output feedback controller u(s) = Kpy(s) = LpX−1

p y(s),
then system (36) is regular, impulse-free, and input-output finite-time stable in regard to (W∞, Q, Sh̄) for all
s ∈ [0, Sh̄] with the MDADT satisfying (34).

Proof. It can obtain this result directly by taking O = Fm.
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Remark 5. In fact, the condition (38) is not the standard LMIs due to the existence of product
between matrices Xp, which implies that, given the conditions in Theorem 2, Corollaries 3 and 4
cannot be solved by using the LMI control toolbox in Matlab. Therefore, the feasible corollaries are
given by Schur complements.

Corollary 5. Consider the system (36). For constants λγ > 0 and µγ > 1, ∀γ ∈ O, for
∀p, q ∈ Fm, p 6= q, assume that there exist nonsingular matrices Xp, Lp, ∀p ∈ Fm, such that

EpXp = XT
p ET

p , (45)[
−EpXp XT

p C
T
p

CpXp −Q−1

]
≤ 0 (46)

and (10), (37) hold, where Hp = X−1
p , and the output feedback controller u(s) = Kpy(s) = LpX−1

p y(s),
then system (36) is regular, impulse-free and input-output finite-time stable in regard to (W∞, Q, Sh̄) for all
s ∈ [0, Sh̄] with the ΦDADT satisfying (12).

Proof. It can obtain this result directly by taking O = {1, 2}.

Corollary 6. Consider system (36). For constants λ > 0 and µ > 1, for ∀p, q ∈ Fm, p 6= q,
assume that there exist nonsingular matrices Xp, Lp, such that (28), (43), (45) and (46) hold, where
Hp = X−1

p , and the output feedback controller u(s) = Kpy(s) = LpX−1
p y(s), then system (36) is

regular, impulse-free and input-output finite-time stable in regard to (W∞, Q, Sh̄) for all s ∈ [0, Sh̄]
with the ADT satisfying (30).

Proof. It can obtain this result directly by taking O = {1}.

Corollary 7. Consider system (36). For constants λp > 0 and µp > 1, for ∀p, q ∈ Fm, p 6= q,
assume that there exist nonsingular matrices Xp, Lp, such that (32) and (44)–(46) hold, where
Hp = X−1

p , and the output feedback controller u(s) = Kpy(s) = LpX−1
p y(s), then system (36) is

regular, impulse-free and input-output finite-time stable in regard to (W∞, Q, Sh̄) for all s ∈ [0, Sh̄]
with the MDADT satisfying (34).

Proof. It can obtain this result directly by taking O = Fm.

Remark 6. Compared with traditional systems, the stability analysis of FOSSS with D-perturbation
is more complicated and challenging because impulse elimination, regularity, D-perturbation, and
switching signal all need to be considered simultaneously. In addition, different from traditional
systems, the stability research of fractional order switched systems is still in the exploratory stage,
and no systematic research results have been formed. In the study of IO-FTS of FOSSS with
D-perturbation, the challenge lies mainly in two aspects: one is to establish specific and reasonable
multiple Lyapunov functions, and the other is to construct appropriate inequalities to facilitate the
transformation of fractional order systems into corresponding traditional systems and obtain the
required conclusions.

4. Numerical Example

In this section, a numerical example in the continuous-time domain will be provided
to verify the effectiveness of the theoretical results.

Example

Consider electrical circuits consisting of superconductors, resistors, resistor, coils,
and current voltage sources. In practical problems, the circuit always contains external
perturbation signals such as environment, human factors, and circuit aging. By using
Kirchhoff’s laws and the relations (2.82), (2.83) in [34], the switching-type fractional linear
circuit system can be written as system (3). Here, x1(s) ∈ Rn1 is voltage between the
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superconductors, x2(s) ∈ Rn2 is the current in the coil and u(s) ∈ Rm is the voltage of
the circuit. Then, consider switched linear system (3) (u = 0), and the parameters given
as follows:

A1 =

[
−0.3 0
0.8 −0.2

]
, A2 =

[
−0.3 1

0 −0.25

]
, A3 =

[
−0.4 0

3 −0.2

]
,

B1 =

[
−0.27 0

30 −0.2875

]
, B2 =

[
−0.5 16.43

0 −0.35

]
, B3 =

[
−0.3 0
1.3 −0.375

]
,

D1 =

[
1.6 0
0 1.8

]
, D3 =

[
1.4 0
0 1.6

]
,

E1 = E2 = E3 =

[
1 0
0 1

]
,

Π1 = Π2 = Π3 =

[
1 0
0 0

]
.

It is easy to show that all subsystems are regular and impulse-free by employing Lemma 6.
To verify the comprehensiveness of the presented results, we make a few comparisons by
the ADT, MDADT, and ΦDADT switching approach.

Let β = 0.75, F = 1, Q = 1 and Sγ = Sp = Sh = 15. If we take the disturbance input
ω(s) = 0.01 sin s, then we can choose d = 0.0001 to guarantee that ωT(s)Fω(s) ≤ d, s ∈ [0, 15].

Table 1 presents the following facts by choosing a different (Φ,O).

Table 1. Comparison of the results under three switching approaches (x0 = [0, 0]T).

O ADT {1} {1, 2} MDADT {1, 2, 3}

Φi

Φ1 = {1, 2, 3} Φ1 = {1, 2} Φ1 = {1, 3} Φ2 = {2, 3} Φ1 = {1}
Φ2 = {3} Φ2 = {2} Φ1 = {1} Φ2 = {2}

Φ3 = {3}

µ
µ1 = 3 µ1 = 2 µ1 = 2.5 µ1 = 2 µ1 = 3, µ2 = 3

µ2 = 3 µ2 = 3 µ2 = 2.5 µ3 = 2

λ
λ = 0.3 λ1 = 0.3 λ1 = 0.3 λ1 = 0.2 λ1 = 0.3, λ2 = 0.4

λ2 = 0.4 λ2 = 0.2 λ2 = 0.4 λ3 = 0.3

P1

[
−0.0201 −0.0003

? −0.0000

] [
−0.0127 −0.0003

? −0.0001

] [
0.0729 0.0004

? 0.0001

] [
0.0664 0.0004

? 0.0001

] [
0.1489 0.0010

? 0.0001

]

P2

[
0.0000 −0.0003

? 0.0062

] [
0.0001 −0.0007

? 0.0060

] [
0.0003 0.0009

? 0.0617

] [
0.0004 0.0010

? 0.0732

] [
0.0006 0.0023

? 0.1385

]

P3

[
−0.0089 −0.0450

? −0.0041

] [
−0.0018 −0.0274

? −0.0062

] [
0.0108 −0.0656

? 0.0165

] [
0.0131 −0.0693

? 0.0128

] [
0.0257 −0.1128

? 0.0413

]

Signal design
τ∗aΦ1

= 3.2443 τ∗aΦ1
= 2.1304 τ∗aΦ1

= 2.7429 τ∗aΦ1
= 1.5327 τ∗aΦ1

= 3.2443
τ∗aΦ2

= 4.3066 τ∗aΦ2
= 2.5783 τ∗aΦ2

= 3.6560 τ∗aΦ2
= 4.3066

τ∗aΦ3
= 2.1304

Signal instance τ1 = 6.5, τ2 = 2.1 τ1 = 2.1, τ2 = 6.5 τ1 = 4.1, τ2 = 2.6 τ1 = 1.6, τ2 = 5.2 τ1 = 3.3, τ2 = 4.4
τ3 = 1.2 τ3 = 2.2 τ3 = 1.4 τ3 = 2.1 τ3 = 2.2

State response under
signal instance Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

(I) For different Φ, the ΦDADT method provides the different results of admissible
signals with their own merits. Let O = {1, 2}, for case (i): Φ1 = {1, 2}, Φ2 = {3}, the
1st and 2nd modes having ADT ≥ 2.1304 and the 3rd mode with ADT ≥ 4.3066; for
case (ii): Φ1 = {1, 3}, Φ2 = {2}, the 1st and 3rd modes having ADT ≥ 2.7429, and the 2nd
mode with ADT ≥ 2.5783; for case (iii): Φ1 = {2, 3}, Φ2 = {1}, the 2nd and 3rd modes



Fractal Fract. 2023, 7, 341 13 of 16

with ADT ≥ 3.6560, and the 1st mode having ADT ≥ 1.5372. (iv): Φ1 = {1, 2, 3}, the 1st,
2nd and 3rd modes with ADT≥ 3.2443; (v): Φ1 = {1}, Φ2 = {2}, Φ3 = {3} the 1st mode
with ADT ≥ 3.2443, the 2nd mode with ADT ≥ 4.3066 and 3rd mode with ADT ≥ 2.1304.

(II) A fact can be presented from Table 1, each column has its own characteristics by
choosing a different (Φ,O). Therefore, we cannot decide which is better.

(III) When O = {1}, we take µ = 3, and λ = 0.3. By solving the conditions in our
Theorem 1 and Theorem 1 in [26], we can obtain τ∗aΦ = 3.2443 and τ∗a = 5.2976. The ADT
has a smaller value of τ∗aΦ than the ADT value τ∗a in [26]. Therefore, the new result has a
larger feasible region than the result in that work.

Figures 1–5 show the simulation results of the system with x0 = [0, 0]T under the corre-
sponding switching signals. State trajectories of system (3) with the ADT (signal 1) and MDADT
(signal 5) are shown in Figures 1 and 5, respectively. State trajectories of system (3) under
ΦDADT with O = {1, 2} (signals 2, 3 and 4) are depicted in Figures 2–4, respectively.
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Figure 1. The state response of the system under the signal 1.
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Figure 2. The state response of the system under the signal 2.



Fractal Fract. 2023, 7, 341 14 of 16

0 5 10 15 20

Time(s)

-1

-0.5

0

0.5

1

1.5

2

S
ta

te
 R

e
s
p
o
n
s
e

 

x1

x2

0 5 10 15 20

Time(s)

1

2

3

S
y
s
te

m
 m

o
d

e

 The switching signal 3

Figure 3. The state response of the system under the signal 3.
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Figure 4. The state response of the system under the signal 4.
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Figure 5. The stateresponse of the system under the signal 5.
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5. Conclusions

This paper studied the problem of FTS for FOSSS with D-perturbation. By using the
ΦDADT approach and constructing the multiple Lyapunov functions, an output feedback
controller was designed. Then, some sufficient conditions were derived for the considered
systems to ensure their IO-FTS by linear matrix inequalities. Finally, a numerical example
illustrates the superiority of the proposed method. In further work, we will extend the
proposed method to FOSSS with time delays.
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Nomenclature

ADT average dwell time
MDADT mode-dependent average dwell time
ΦDADT Φ-dependent average dwell time
FOSSS fractional-order switched singular systems
FOPSS fractional-order positive switched systems
FOMS fractional-order multiagent systems
LMIs linear matrix inequalities
FTS finite-time stability
FTB finite-time boundedness
IO-FTS input-output finite-time stability
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