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Abstract: With the advent of the fourth industrial revolution, data-driven decision making has also
become an integral part of decision making. At the same time, deep learning is one of the core
technologies of the fourth industrial revolution that have become vital in decision making. However,
in the era of epidemics and big data, the volume of data has increased dramatically while the sources
have become progressively more complex, making data distribution highly susceptible to change.
These situations can easily lead to concept drift, which directly affects the effectiveness of prediction
models. How to cope with such complex situations and make timely and accurate decisions from
multiple perspectives is a challenging research issue. To address this challenge, we summarize
concept drift adaptation methods under the deep learning framework, which is beneficial to help
decision makers make better decisions and analyze the causes of concept drift. First, we provide an
overall introduction to concept drift, including the definition, causes, types, and process of concept
drift adaptation methods under the deep learning framework. Second, we summarize concept drift
adaptation methods in terms of discriminative learning, generative learning, hybrid learning, and
others. For each aspect, we elaborate on the update modes, detection modes, and adaptation drift
types of concept drift adaptation methods. In addition, we briefly describe the characteristics and
application fields of deep learning algorithms using concept drift adaptation methods. Finally, we
summarize common datasets and evaluation metrics and present future directions.

Keywords: deep learning; time-series analysis; concept drift; data-driven decision making;
discriminative learning; generative learning; hybrid learning; deep reinforcement learning; deep
transfer learning

1. Introduction

The 2019 outbreak of coronavirus disease (COVID-19) has distinct effects on people’s
health and quality of life, and there is great uncertainty regarding the outbreak’s evolution,
duration, and scope in the future. So, in this era of the epidemic and big data, decision
makers face a series of problems, such as extensive databases, rapid growth, diversified
data sources, and rapid changes in data distribution. At present, deep learning technologies
can solve part of the problems and provide part of the guidance to decision makers [1].
However, it does not adapt well to the changing environment. Once the environment
changes, the new data does not match the distribution of the old data. With concept drift
occurring [2], the deep learning model will become obsolete and invalid. How to deal with
this complex situation and make timely and accurate decisions from multiple perspectives
is a challenging research problem. Concept drift adaptation methods offer the possibility of
solving the problem [3], helping decision makers to find the optimal or most satisfactory
solution in this dynamic and complex situation. These methods can continuously capture
the potential danger of events by analyzing the data stream, deal with distribution changes
in the data stream on time, and help decision makers update existing decision results to
prevent losses due to decision making.
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Concept drift adaptation methods can be applied in various fields. By continuously
upgrading the learning model to ensure its correctness and timeliness, they can provide
accurate prediction information for decision makers. At the same time, they can perform
active detection in combination with detection algorithms, which provides decision makers
with knowledge of dynamic concepts [4], and analyze the concept drift that is occurring. For
example, in the information security field, improved long short-term memory (I-LSTM) [5]
can effectively detect network anomalies, analyze the causes, and strengthen protection.
In the financial investment field, DeepBreath [6] can effectively minimize investment risk,
and it has been experimentally proven to obtain better investment returns than current
expert investment strategies. In addition, in the field of customer behavior analysis and air
quality detection, ConceptExplorer [7], which combined concept drift with visualization,
can help decision makers to conduct intuitive exploration and provide a basis for experts
to make subsequent decisions. Therefore, concept drift adaptation methods can effectively
help decision makers determine the main influencing factors, update their understanding
of potential relationships, understand the nature of the data, find potential dangers, and
make correct decisions.

Due to the important role of concept drift adaptation methods in applications, many
researchers have reviewed them from different perspectives. For example, within nearly
10 years, Hoens et al. [8] reviewed concept drift detection methods and summarized the
problem of class imbalance in the data stream. YM et al. [9] reviewed the classification prob-
lem from the perspective of a single model and an ensemble model. Gama et al. [4] reviewed
concept drift adaption methods from four aspects: memory usage, concept drift detection,
model update method, and model evaluation index. Dtizler et al. [10] reviewed the ex-
isting concept drift detection methods from two aspects: active mode and passive mode.
Webb et al. [11] mainly involved various types, such as drift target, drift transition mode,
and drift amount, and explained their specific definitions. Krawczyk et al. [12] reviewed
ensemble learning in data stream classification and regression tasks. Kamassi et al. [13]
summarized concept drift adaption methods from the aspects of data processing, adap-
tation mode, and the number of classifiers. Lu et al. [14] comprehensively summarized
when drift occurs, to what extent, and how long it lasts, as well as the category imbal-
ance in the classification of concept drift data streams, big data mining, and data-driven
decision support systems. Ghani et al. [15] mainly introduced conceptual drift detection
methods for untagged data streams. Lima et al. [16] summarized and classified concept
drift adaptation methods based on different machine learning models under the regression
task. Bayram et al. [17] classified and reviewed the existing detection algorithms of concept
drift adaptation methods. However, to the best of our knowledge, there is no detailed
introduction and summary of concept drift adaptation methods under the deep learning
framework. Therefore, this paper explores the important role of concept drift adaptation
methods under the deep learning framework.

The main contributions of this paper can be summarized as follows:

(1) We review concept drift adaptation methods under the deep learning framework
from four aspects—discriminative learning, generative learning, hybrid learning, and
relevant others—so as to fill the gap in this area of investigation in previous work.

(2) We reveal the general operation process of concept drift adaptive methods under deep
learning frameworks and explain concept drift detection modes and update modes
in detail.

(3) We summarize the representative algorithms of each subcategory, common datasets,
evaluation metrics, their application areas, and limitations.

(4) We analyze and discuss the current problems of concept drift adaption methods and
point out the future direction.

The rest of the paper is structured as follows. Section 2 provides the definition, causes,
and types of concept drift and introduces the process of concept drift adaptation methods
under the deep learning framework. Section 3 classifies concept drift adaptation methods
based on deep learning and reviews the existing methods in the literature. Section 4
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summarizes the common datasets and evaluation metrics. Section 5 provides future
research, and Section 6 concludes this paper.

2. Overview of Concept Drift

In this section, we introduce the definition and causes of concept drift, different types
of concept drift, and the process of concept drift adaptation methods. Concept drift was first
proposed by Schlemmer et al. [2] in 1986 and mainly refers to the fact that the underlying
data stream distribution changes over time [18,19].

2.1. The Definition of Concept Drift

Assuming that Pt0 represents the joint probability distribution between the input
variable x and the target variable y at time t0 and Pt1 represents the joint probability
distribution between the x and y at t1, then concept drift will occur if Equation (1) holds
when t0 turns to t1.

∃x : Pt0(x, y) 6= Pt1(x, y) (1)

At this time, the underlying data distribution no longer conforms to concept C1, and a new
concept C2 is generated. Due to the characteristics of joint probability Pt(x, y) = Pt( x)Pt(y|x)
if Equation (2) is satisfied when t0 turns to t1, concept drift will also occur.

∃x : Pt0(x)Pt0(y|x) 6= Pt1(x)Pt1(y|x) (2)

Changes in both Pt(x) and Pt(y|x) can lead to concept drift.

2.2. The Causes of Concept Drift

According to the definition of concept drift and the characteristics of joint probability,
it can have the following three causes:

(1) Virtual concept drift. When the probability of x changes, but the probability of y under
the condition of x does not change, i.e., Pt0 (x) 6= Pt1 (x) and Pt0 (y|x) = Pt1 (y|x). This
case belongs to virtual concept drift, which does not affect its decision boundary and
only changes the feature space.

(2) Real concept drift. When the probability of y under the condition of x changes, the
probability of x remains the same, i.e., Pt0 (y|x) 6= Pt1 (y|x) and Pt0 (x) = Pt1 (x). This
case has a direct impact on the prediction model and is a real concept drift, which not
only changes the feature space but also changes its decision-making boundary.

(3) Hybrid concept drift. In an open environment, both real concept drift and virtual
concept drift can exist in the data stream at the same time, i.e., Pt0 (x) 6= Pt1 (x),
Pt0 (y|x) 6= Pt1 (y|x). This is a mixed concept drift, which is most common.

It is worth noting that according to the Bayesian decision theory [20], we obtain
Equation (3):

P(y|x) = P(y) ∗ P(x|y)
P(x)

(3)

It can be seen that Pt(y) and Pt(x|y) also affect Pt(y|x), thus indirectly causing a real
concept drift. The specific manifestations of the concept drift due to different causes are
shown in Figure 1, in which (X1, X2) represents the two-digit feature space and y represents
its category label.

For example, in stock trading, users can be divided into profitable and non-profit
stocks according to profitability. When a user considers purchasing stocks, a change in
the channel of purchase or a small change in the number of purchases does not affect the
trend of the stock. However, if affected by an outbreak, the trend of stocks may change,
thus directly affecting stock returns. This situation belongs to the real concept drift, so
users need to reconsider and make decisions. In real life, virtual drift tends to have less
impact on the outcome of a decision. There will be no loss to decision makers. However,
real concept drift tends to have a direct impact on decision outcomes due to changes in its
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data relationships. It requires decision makers to discover in time and re-make decisions to
avoid losses.
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2.3. The Types of Concept Drift

The changes in concept may manifest in different forms over time. At present, the
most popular types of concept drift can be divided into abrupt drift, incremental drift,
gradual drift, and recurring drift [14,16,17].

Abrupt drift refers to the rapid change of concept C1 into concept C2 in a short period
of time, and if an earthquake suddenly occurs in a certain place, its economic model changes
instantaneously, as shown in Figure 2a. Incremental drift refers to the slow transformation
of concept C1 into concept C2 in a continuous manner, as the economy gradually recovers
after an earthquake, as shown in Figure 2b. Gradual drift refers to a short period of time: C1
and C2 repeatedly switch and eventually stabilize at C2, as the equipment ages, occasionally
fails, and finally stops working, as shown in Figure 2c. Recurring drift refers to the fact that
over time, the previous concept will reappear after a period of time; for example, the sales
of down jackets meet concept C1 in the winter, start to enter the off-season after the end
of the winter, their sales will meet concept C2, and then the next winter concept C1 will
reappear, as shown in Figure 2d. In addition, the speed of recurring drift can be abrupt,
gradual, or incremental. It can also be periodic or irregular.
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In the academic research of concept drift, the types are different according to the
classification criteria. However, it is common to divide the types of concepts according to
their transformations, and this criteria manifestation is more intuitive. In related studies,
different methods adapt to solving different types of concept drift. For example, the drift
detection method (DDM) algorithm [21] is more suitable for abrupt drift. In addition
to adapting the four common types above, there are some methods for distinguishing
real drift and virtual drift, avoiding mixing with virtual concept drift or outliers and
noise. For example, the RRBM–DD [22] considers explicitly how to identify the drift of
the real concept. Although concept drift adaptation methods cannot solve all types of
concept drift at one time, they can still solve multiple concept drifts, which belongs to a
one-to-many relationship.

In recent years, there have also been many excellent concept drift detection algo-
rithms to detect multiple concept drifts, for example, based on sliding-window algorithms,
OCDD [23], CDT_MSW [24], and KSWIN [25]. OCDD mainly has two sliding windows
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to store new and old data, and the percentage of outliers detected by the classifier in the
sliding window is used to send a drift signal, which is more suitable for detecting abrupt
and incremental drift, but hyperparameter settings are required. CDT_MSW also has two
windows, the difference being that it can identify the position and length of concept drift, so
as to accurately determine the type of concept drift. KSWIN detects concept drift by apply-
ing the “Kolmogorov–Smirnov test”. These algorithms are based on supervised learning.
Unsupervised concept drift algorithms include LD3 [26], STUDD [27], and CDCMS [28].
LD3 introduces the concept of label-dependent ordering for concept drift detection in multi-
label classification, which is more suitable for mutation and incremental drift. STUDD
mainly creates an auxiliary model (students) to mimic the behavior of the main model
(teacher), uses the teacher to predict new instances, and monitors the student’s imitation
loss to detect concept drift. It is more suitable for abrupt, gradual, and incremental drift.
CDCMS mainly uses novel clustering and diversity-based memory management strate-
gies in model space strategies to deal with concept drift and has good effects in dealing
with abrupt and recurring drift. Finally, it is worth mentioning that most of the concept
drift detection algorithms either occupy more memory or have a slow detection speed.
DMDDM [29] is based on the Page–Hinkley test, which effectively improves the detection
speed of concept drift and overcomes the limitations of cost and execution time but is only
suitable for abrupt drift. How to achieve a cost-saving detection algorithm that covers
all drift types is also a major challenge. Therefore, we will also summarize the types of
conceptual drift for each method.

2.4. The Process of Concept Drift Adaptation Methods under Deep Learning Framework

The general adaptation process of concept drift under the deep learning framework
when dealing with unstable state data streams is shown in Figure 3. First, the data stream
input (single input or batch input) is generally trained and learned by the deep learning
model (single model or ensemble model) to obtain the basic prediction results. Next,
if concept drift occurs during this process, a concept drift adaptation method will be
triggered to update the deep learning model to accommodate concept drift and maintain
the model [16,19]. The concept drift adaptation method can be divided into two parts:
concept drift detection and model update. Among them, concept drift detection contains
both active and passive modes, and model updates can be divided into structure updates
and parameter updates.
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Active modes mean that the learning process of a deep learning model contains a con-
cept drift detection algorithm. When concept drift is detected, the concept drift adaptation
method will be triggered to update the model. Passive mode means that the method contin-
uously adjusts its model as data are continuously input during the learning process. Instead
of using a drift detection algorithm, it uses a concept drift adaptation method to passively
update the model continuously. After triggering the concept drift application mechanism,
the deep learning model is generally updated to adapt to the concept drift through a model
parameter update or a structure update [30]. Model parameter updates can be divided into
full parameter updates and partial parameter updates. In particular, parameter updates
also include parameter updates between ensemble models. Here, parameter updates are
also weight updates. In addition, model structure updates can generally be performed by
adjusting the width and depth of the network.

3. Concept Drift Adaptation Methods under Deep Learning

In this section, we will summarize concept drift adaptation methods according to the
classification of deep learning [31], including discriminative learning, generative learning,
hybrid learning, and others, as shown in Figure 4. For each part, we will explain the update
modes, types of drift adapted, and detection modes. In addition, we will also introduce
the characteristics and application fields of deep learning techniques using concept drift
adaptation methods.
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3.1. Concept Drift Adaptation Methods Based on Discriminant Learning

This type of deep learning technique is used in supervised or classification applications
by describing the posterior distributions of conditioned visible data. A discriminative
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model is a model that learns the relationship between input data and output labels, and
it predicts output labels by learning the characteristics of the input data. In classification
problems, the main purpose is to assign each input vector a to label b. Discriminant models
attempt to directly learn the function f (a) that maps input vectors to labels. The classifier
first learns the posterior class probability P(b = k|a) from the training data and assigns a
new sample a to the class with the highest posterior probability based on these probabilities,
where k stands for class. The general process of the discriminant concept drift adaption
method is shown in Figure 5, while the two methods of active detection and parameter
update mode account for a relatively large proportion. Discriminant learning mainly
includes multilayer perceptrons (MLPs), convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and their variants.
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• MLP-based concept drift adaptation methods

MLP is a discriminant learning model widely adopted in decision making [32], which
is often used in combination with concept drift adaptation methods to solve classification
problems for unstable streaming data. However, concept drift adaptation methods are
computationally expensive and converge slowly each time the model is updated due to
the hyperparameter problem. Typical algorithms, such as selective ensemble-based online
adaptive deep neural networks (SEOAs), bilevel online deep learning (BODL), neural
networks with dynamically evolved capacity (NADINEs), and Adadelta optimizer-based
deep neural networks with concept drift detection (CIDD-ADODNNs), are elaborated
as follows.

SEOA [33] uses a deep learning model with L network layer MLPs to form L basic
classifiers. It then dynamically adjusts the parameters of each basic classifier to handle
concept drift and regularly selects base classifiers with different convergence and fitting
abilities. It enhances the adaptability and generalization ability of the model to data
distribution, which is more suitable for gradual, incremental, and recurring drift, although
less suitable for dealing with high-dimensional non-linear problems. BODL [34] mainly
uses the MLP model for classification prediction and detects concept drift based on the
classifier’s error rate. When concept drift is detected, the model’s parameters are updated
through a bilevel optimization strategy and the exponential gradient descent method to
adapt to the abrupt concept drift, but its limitation is that the added classes cannot be
identified online. In contrast, the convergence speed of the algorithm for model structure
update can be slower. NADINE [35] uses a drift detection mechanism to detect concept
drift actively. The drift detection mechanism mainly adds an adaptive windowing strategy
to the prominent Hoeffding’s bound detection algorithm. When the drift signal is detected,
its network structure will be updated to adapt to concept drift, which mainly adjusts its
network structure through the hidden unit growing strategy and hidden unit pruning
strategy. The main advantage of NADINE over other algorithms is its elastic structure
and online learning trait, but the training time of the model is relatively slow. It can be
applied to classification and regression problems. Additionally, scholars have researched
it for certain special data. CIDD-ADODNN [36] is adopted for the classification model of
highly unbalanced data flow, which mainly uses an adaptive sliding window (ADWIN)
drift detection algorithm to actively detect concept drift and then updates the network
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parameters through the Adadelta optimizer, so as to adapt to the abrupt and gradual drift.
This algorithm effectively improves the classification performance of highly unbalanced
data streams, although its feature selection needs to be optimized.

• RNN-based concept drift adaptation methods

Compared to other neural networks, RNN has certain advantages in processing
sequence data because it has at least one feedback connection [37]. To some extent, it can
alleviate the problem of concept drift. However, its capacity is also limited, especially when
it comes to processing long data. It is mainly used in the fields of electricity loading, weather
forecasting, and anomaly detection. Typical algorithms are the online adaptive recurrent
neural network (OARNN), ONU-SHO-based RNN (ONU-SHO-RNN), adaptive behavioral-
based incremental batch learning malware variant detection model (AIBL-MVD), and
multilayer self-evolving recurrent neural network (MUSE-RNN).

OARNN [38] mainly uses the RNN model to capture the temporal correlation and track
its performance. When the performance deteriorates, the tree-structured Parzen estimator
(TPE) will be used to optimize the hyperparameters of the model online. Then, the weights
of the RNN model are completely updated and relearned from new data to accommodate
concept drift over short periods of time. It is mainly used for energy and electricity load
forecasting, although it requires a large amount of data for training and learning. In
addition, Jagait et al. [39] proposed an online ARIMA-RNN integration based on OARNN,
which belongs to hybrid learning. It will be further introduced later. ONU-SHO-RNN [40]
determines whether to update the model by calculating its prediction accuracy and the
concept drift detection of the RNN model on the data stream. It mainly uses the ONU-SHO
algorithm to perform a complete parameter update and narrow the error between the
target output and the measurement output. It is capable of fast convergence, adapting
to incremental and gradual drift, although there are problems with update delays. In
addition, AIBL-MVD [41] also adapts to incremental and gradual drift. It mainly uses the
statistical process control (SPC) algorithm to actively detect the occurrence of concept drift
and update all model weights through incremental learning. It is mainly used in the field
of malware detection. In this process, the catastrophic forgetting problem is solved by
mixing the new data with a subset of the old data. Its limitation is that labeled malware
samples must be available right before updating the model. All of the above methods are
based on parameter update mode. Subsequently, MUSE-RNN [42] mainly uses structural
updates to update the models, and it actively detects concept drift through Hoeffding’s
bound detection algorithm, which is also a common method in concept drift detection
algorithms. The model is updated by using growth and pruning hidden nodes and layers
for the real-time classification of data streams, although it does not handle image streams.

• LSTM-based concept drift adaptation methods

Long short-term memory (LSTM) is a variant of RNN that solves problems such as
vanishing gradients and is suitable for processing and forecasting important events with
relatively long intervals and delays in time series [43]. LSTM-based concept drift adaptation
methods are mainly used in the fields of anomaly detection, photovoltaic power generation
prediction, and industrial prediction, and their typical algorithms include DL-CIBuild,
I-LSTM, multi-objective metaheuristic optimization-based big data analytics with concept
drift detection (MOMBD-CDD), adaptive LSTM (AD-LSTM), DCA-DNN, etc.

DL-CIBuild [44] is an algorithm based on the LSTM model to construct prediction
models for continuous integration (CI) build outcome prediction. It uses the genetic
algorithm (GA) to adjust the hyperparameters (including the number of hidden layers and
neurons) of the LSTM model. In particular, it does not require a very large dataset size and
has good robustness. However, the algorithm is relatively expensive in terms of labor and
requires the construction of annotated datasets. I-LSTM [5] combines the idea of time factor
with stratified sampling. Therefore, the newer the data, the higher the weight assigned to
accommodate concept drift, but there are also problems with balancing old and new data.
Overall, it improves multi-classification performance for anomaly detection, mainly for
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IoT applications. MOMBD-CDD [45] mainly deals with high-dimensional streaming data.
It mainly uses the Statistical Test of Equal Proportions method (STEPD) to detect concept
drift and combines the glowworm swarm optimization (GSO) algorithm to update the
bidirectional long short-term memory (Bi-LSTM) model by adjusting weights. However, it
is more computationally intensive and takes up more resources. In this process, STEPD
defines two windows, a recent window r and an overall window o. This is also common
in deep-learning-based concept drift adaptation methods. It applies the statistical test
of equal proportions to compare the accuracies between the two windows as shown in
Equations (4) and (5):

T(vo, vr, no, nr) =
|vo/no − vr/nr|−0.5× (1/no + 1/nr)√

µ + (1− µ)× (1/no + 1/nr)
(4)

µ = (v0 + vr)/(no + nr) (5)

Its value is compared to the percentile of the standard normal distribution to obtain
the observed significance level (p-value). p-value is equivalent to the chi-square test
with Yates’s continuity correction, in which v is the value of accurate predictions, and
n is the number of samples for the window. The calculation formula for µ is shown in
Equation (5). If p-value < αd, STEPD predicts a concept drift. If p-value < αw, STEPD
predicts a warning that concept drift may occur. αd is the concept drift significance level;
αw is the warning significance level. Fog-DeepStream [46] uses wavelet transform to
reduce the dimensionality of the data and LSTM models to predict future behavior for
data stream analysis on fog computing. It uses a drift detection algorithm to determine
the occurrence of conceptual drift, and when a conceptual drift is detected, parameters
are updated to accommodate the conceptual drift. The method tries three drift detection
algorithms: cumulative sum (CUSUM), Page–Hinkley, and exponentially weighted moving
average (EWMA). However, this algorithm also takes up a lot of memory.

The above algorithms are used in the Internet field. Next, we introduce algorithms
in other fields. For example, AD-LSTM [47] is used for predicting photovoltaic power
generation. It actively detects the occurrence of concept drift through the sliding window
(SDWIN) algorithm and adopts the second stage of the two-phase adaptive learning strategy
(TP-ALS) to fine-tune the prediction model. DCA-DNN [48] is mainly used for industrial
prognosis and is based on the LSTM-FC model, which actively detects the occurrence
of concept drift through the dendritic cell algorithm. It generates synthetic data using a
kernel density estimator with drift-based bandwidth, which can be used to fine-tune the
weights of the last layer to achieve faster adaptation and mitigate the problem of limited
new samples. Both of the above algorithms suffer from model update delays, and their
concept drift detection algorithms need to be optimized.

• CNN-based concept drift adaptation methods

CNN is a feed-forward neural network in which the connections between neurons in
its convolutional layer are not fully connected, and the weights and biases of connections
between some neurons in the same layer are shared [49,50]. So, the computational cost
of this concept drift adaptation method is also relatively low. Typical algorithms, such
as the evaluative convolutional neural network (ECNN) [51], mainly use re-weighting
operation technology to dynamically update the model, so as to solve the concept drift
problem in high-throughput data. ECNN overcame the “over-fitting” and “under-fitting”
problems. ECNN is the first online deep learning technique to be introduced into marine
data prediction research, although it is relatively computationally expensive. Online CNN-
based model selection using performance gradient-based saliency maps (OS-PGSM) [52] is
mainly applied to time-series prediction and uses Hoeffding’s bound detection algorithm
to actively detect the occurrence of concept drift. When concept drift occurs, the region of
competence (ROC) of the model will be recalculated to update the weights. It has a low
computational cost, using significance plots to provide an explanation for model selection,
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but hyperparameter settings need to be optimized. Deep incremental hashing (DIH) [53]
focuses on semantic image retrieval using a CNN model. The parameters of the CNN are
updated using a point-by-point loss function guided by the similarity of the current data
block keeping the target code. DIH mainly adapts to gradual, incremental drift. It also has
certain limitations, such as not considering the semantic relationships between labels.

Table 1 summarizes the discriminant-learning-based concept drift adaptation methods.
From this table, it can be seen that the MLP-based concept drift adaptation method focuses
on the processing of streaming data samples to ensure the balance between old and new
data and imbalanced data, thus improving the accuracy of prediction and reducing errors.
However, it has certain limitations in dealing with high dimensionality, which is more
suitable for dealing with gradual and abrupt concept drift. The RNN-based algorithm
and its variants have good timeliness and can handle long-term serial data. However, it
is necessary to overcome the problem of catastrophic forgetting, which is more sensitive
to incremental and gradual concept drift. It is worth noting that the types of concept drift
adaptation are rarely clearly specified in related studies based on LSTM and CNN. Further,
most concept drift adaptation methods face the problem of slow convergence speed.

Table 1. Concept drift adaptation methods based on discriminant learning.

Types of Deep
Learning Algorithms

Concept Drift Adaptation Methods

LimitationDetection
Modes Update Modes Adaptation

Drift Types

MLP

SEOA [33] −
√

A I G Not suitable for high-dimensional
non-linear problems

BODL [34] +
√

A New classes cannot be identified online

NADINE [35] + × A G R Slow training time

CIDD-ADODNN [36] +
√

A G Feature selection to be optimized

RNN

OARNN [38] −
√

N Requires large amounts of data to update
the model

ONU-SHO-RNN [40] +
√

I G Model update delay

AIBL-MVD [41] +
√

I G Must have a marked malware sample
before updating model

MUSE-RNN [42] + × A G R Cannot handle image data streams

LSTM

DL-CIBuild [44] − × N High labor cost and need to build
annotated datasets

I-LSTM [5] −
√

G Balance of old and new data

MOMBD-CDD [45] +
√

N High resource cost

Fog-DeepStream [46] +
√

High memory consumption

AD-LSTM [47] +
√

N
Model update latency exists

DCA-DNN [48] +
√

N

CNN

ECNN [51] −
√

N High computational cost

OS-PGSM [52] +
√

N Hyperparameter settings need to
be optimized

DIH [53] −
√

I G No consideration of semantic
relationships between labels

SNN OeSNN [54] + || − × G R No consideration of a priori information
such as speed and severity of drift

Note: + represents active mode, − represents passive mode,
√

represents parameter update, × represents
structural update, “A” represents abrupt drift, “I” represents incremental drift, “G” represents gradual drift,
“R” represents recurring drift, and “N” means not mentioned in the reference.

In addition to the above types of mainstream algorithms, there are some other methods
of discriminant learning. For example, the OeSNN-DRT algorithm based on a spike
network [54] introduces two methods: active and passive adaptation methods. It uses the
data reduction technique (DRT), a selective and generative data reduction technique, to
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optimize the contents of the neuronal repository and update its structure. However, it
does not take into account a priori information such as the speed and severity of the drift.
Currently, there are few studies related to other types of concept drift adaptation methods
compared to mainstream deep learning models, so they are not listed. However, it is a
worthy direction for research.

3.2. Concept Drift Adaptation Methods Based on Generative Learning

Generative learning technologies are often used to describe higher-order correlation
attributes or features for pattern analysis or synthesis, as well as joint statistical distribu-
tions of visible data and their related classes [55]. Most generative learning is unsupervised
learning, but sometimes it can also be used for preprocessing in supervised learning, di-
mensionality reduction processing, etc. [56]. A generative model learns the data generation
process, learns the probability distribution of input data, and generates new samples of
data. More specifically, the generative model first estimates the conditional density of the
classes P(a|b = k) and the prior class probability P(b = k) from the training data. They
tried to understand how the data for each classification was generated. Bayes’ theorem is
then used to estimate the posterior class probability. Generative models can also learn the
joint distribution of inputs and labels P(a, b) and then normalize them to obtain posterior
probabilities P(b = k|a). The general process of the conceptual drift adaptive method
based on generative learning is shown in Figure 6, while the general parameter update
mode accounts for a large proportion, and the proportion of active detection and passive
adaptation is comparable. Common deep neural network technologies for unsupervised
or generative learning are generative adversarial networks (GANs), autoencoders (AEs),
restricted Boltzmann machines (RBMs), self-organizing mapping (SOM), and deep belief
networks (DBNs) and their variants.
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• AE-based concept drift adaptation methods

AE mainly consists of an encoder, a code, and a decoder [57]. It is combined with a con-
cept drift adaptation method, which is mainly used for the anomaly detection of some high-
dimensional data, such as the detection of the anomalous behavior of elderly people. Typical
algorithms include the adaptive framework for online deep anomaly detection (ARCUS),
unsupervised statistical concept drift detection (USCDD-AE), deep evolving denoising
autoencoder (DEVDAN), and memory-based streaming anomaly detection (MemStream).

ARCUS [58] contains concept-driven inference and drift-aware model pool updates,
where concept-driven inference focuses on evaluating the reliability of its models and
giving evaluation scores when given a new data point. When a concept drift occurs, its
evaluation score will drop to trigger a model pool update. Some models will then be
removed and retrained to adapt to the occurrence of concept drift. In this process, the
algorithm mainly uses the same structure of the AE model to form a model pool to perform
anomaly detection of the data flow, which mainly has a large resource cost and cannot store
the current batch of data where concept drift may occur. USCDD-AE [59] uses variational
autoencoders to identify the anomalies of elderly people, which detects concept drift based
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on data from families and the activity probability plot of the Kullback–Leibler divergence,
as defined below.

DKL(G ‖ Q) = ∑
z∈Z

G(z) log(
G(z)
Q(z)

) (6)

where Z is the probability space, and G and Q are probability distributions defined
over Z. Here G and Q are activity probability maps. Then, when concept drift occurs, the
encoder will be updated to adapt to concept drift by backpropagating the reconstruction
error. In this process, there are often difficulties with data collection and the possibility of
false positives.

DEVDAN [60] is an incremental learning method that primarily uses the network
significance formula to evaluate the predictive power of the model. Once the value in the
capture formula rises, its hidden nodes are adjusted. USCDD-AE and DEVDAN are mainly
based on the active concept drift adaptation method but ignore mutation oblivion when
adding new layers. MemStream [61] is used for anomaly detection in multidimensional
data and concept drift. It first uses a small portion of the training set and extracts features
using the denoising autoencoder. Then, when a new sample arrives, the anomaly score is
recalculated, and the weighting factor of AE is updated. If the anomaly score exceeds a
user-set threshold, the memory is updated in a first in, first out (FIFO) manner, and the
model is retrained to accommodate concept drift. This method effectively avoids noise
disturbances and retrains quickly but with high resource overheads.

• GAN-based concept drift adaptation methods

GAN mainly consists of a generator and a discriminator. The former is used to create
new data with similar characteristics to the original data, and the latter is used to determine
the authenticity of the given data [62]. There are few examples of GAN combined with
concept drift adaptation methods compared to other deep learning techniques, such as the
distributed class-incremental learning method based on generative adversarial networks
(DCIGAN). DCIGAN [63] uses a GAN generator to store information about past data
and constantly updates GAN parameters with new data. Meanwhile, a generative fusion
method (GF), which integrates multi-node local generators into a new global generator, is
adopted. Particularly, a method for monitoring and evaluating GAN during continuous
learning is presented, which explains the concept drift [64]. Its main purpose is to solve
the problem of classifying data streams, but different hyperparameters need to be set in
different environments.

• RBM-based concept drift adaptation methods

RBM is usually made up of visible and hidden nodes, each connected to every other
node, which facilitates the understanding of some irregular datasets. Moreover, it is sensi-
tive to the occurrence of concept drift because it is able to learn the probability distribution
of the input [65]. RBM-I [66] and RRBM–DD [22] are two typical concept drift detection
algorithms proposed by Korycki and Krawczyk, for multi-class imbalance and the presence
of adversarial attack data streams, respectively. They both use gradient descent to update
the weights in order to maintain the sensitivity of concept drift detection. RBM-IM is not
suitable for small data streams and is prone to overfitting. RBM-DD has limitations in
identifying adversarial concept drift in dynamic classes of unbalanced data streams. In
addition, the Gaussian restricted Boltzmann machine (GRBM) algorithm [67] primarily
uses the Kullback–Leibler divergence distance to determine whether a concept drift has oc-
curred, thus enabling the adaptive adjustment of the sliding window and the division of the
data stream. It reduces energy consumption and saves memory but only makes judgments
on data from a single source and does not adaptively divide heterogeneous data.

• SOM-based concept drift adaptation methods

SOM is often applied to create low-dimensional (usually two-dimensional) representa-
tions of high-dimensional datasets, while maintaining the topology of the data [68]. The
main benefit of using SOM is that it makes high-dimensional data easier to visualize and
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analyze for understanding patterns. As in the case of GAN, there are few examples of SOM
combined with concept drift adaptation methods. An online unsupervised incremental
method based on self-organizing maps (OUIM-SOM) [69] is used for multi-label stream clas-
sification in infinite delay labeling scenarios. It adopts the online update of neuronal weight
vectors and dataset label cardinality to accommodate abrupt and incremental concept drifts.
However, its adaptive effect on conceptual drift is limited.

Table 2 summarizes the typical algorithms based on generative learning. Among
them, AE-based algorithms are mainly used for anomaly detection, and depending on
the characteristics of autoencoders, these algorithms use generally unsupervised or semi-
supervised learning, which can enhance the flexibility of data flow methods in utilizing
unlabeled samples. The remaining methods of combining generative learning models with
concept drift algorithms, especially the concept drift adaptation methods involved in the
deep belief network, have not been found, so they are not presented in this paper. However,
there are some other generative learning models involved. A self-organizing incremental
neural network (SOINN+) for unsupervised learning from noisy data streams [70] adapts
to concept drift by adding or removing nodes, creating or deleting edges, or combining
both. SOINN+ is robust to noise and is able to find topological representations that are
consistent with the distribution of real data. It is worth noting that the Euclidean distance
used in the node similarity metric is not suitable for high-dimensional data.

Table 2. Concept drift adaptation methods based on generative learning.

Types of Deep
Learning Algorithms

Concept Drift Adaptation Methods

LimitationDetection
Modes Update Modes Adaptation

Drift Types

AE

ARCUS [58] −
√

A I G R Cannot store data for the current batch
where concept drift may occur

DEVDAN [60] + × A I G Ignores mutation forgetting when adding
new layers

MemStream [61] −
√

N High resource overhead

USCDD-AE [59] +
√

A I G R Difficult data collection and possible
false positives

GAN DCIGAN [63] −
√

N Hyperparameter setting

RBM

RRBM–DD [22] +
√

A G R
Limitations in identifying adversarial

conceptual drift in dynamic class
imbalanced data streams

RBM–IM [66] +
√

A I G Not suitable for small data streams, prone
to overfitting

GRBM [67] +
√

N Does not adaptively partition
heterogeneous data

SOM OUIM-SOM [69] −
√

A I Limited adaptive effect on conceptual drift

SOINN SOINN+ [70] − × A I
Euclidean distance used in the node
similarity measure is not suitable for

high-dimensional data

Note: The symbol description is the same as in Table 1.

3.3. Concept Drift Adaptation Methods Based on Hybrid Learning

Hybrid deep learning models usually consist of multiple deep underlying learning
models, either a free combination of discriminative or generative learning or discrim-
inative/generative learning plus other models, such as CNN + LSTM, GAN + CNN,
CNN + SVM, and other algorithms, as shown in Table 3.

The generative model and discriminant model have their own advantages. The
generative learning model can learn from unlabeled data and can save labor costs. The
discriminant learning model is better than the generative model in supervised tasks. Hybrid
deep learning integrates discriminant or generative models according to the target task,
and the framework for training deep generative models and discriminant models can enjoy
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the advantages of both models to solve real-world problems. The general process of the
concept drift adaption method based on generative learning is shown in Figure 7, while
the general parameter update mode accounts for a large proportion, and the proportion of
active detection and passive adaptation is comparable.
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Typical algorithms combined with LSTM include HSN-LSTM, online autoregression
with deep long short-term memory (OAR-DLSTM), CausalConvLSTM, and LSTMCNNcda.
HSN-LSTM [71] is mainly used for multivariate time-series forecasting. It mainly embeds a
novel adaptive and hybrid spiking (AHS) module into LSTM to keep the model capable of
long-term prediction and alleviate its catastrophic forgetting problem. At the same time, in
order to mitigate the impact of concept drift, it adopts the negative log-likelihood function
in the fusion attention module to dynamically adjust the attention score and avoid noise
interference. However, the resource costs are relatively high. OAR-DLSTM [72] combines a
denoising autoencoder, an autoregressive model, and the deep long short-term memory
(DLSTM) method, where the denoising encoder is mainly applied to feature extraction,
and ORA and DLSTM are applied to target prediction. In the offline state, it divides the
training data into data blocks and then pre-trains and retrains the DLSTM model with the
error rate predicted by ORA in each data block to obtain several independent sub-models.
In the online state, the results of the two models are weighted using a maximum likelihood
estimation to obtain the final time-series prediction output. When the dataset is too large,
its performance degrades. B-Detection [73] is primarily used to detect runtime reliability
anomalies in MEC services. It uses LSTM and AE models to capture the normal reliability
data stream distribution characteristics. A weight-based reservoir sampling technique is
then used to sample representative normal reliability data. Finally, the sampled data are
used for detection model training, and the detection model is retrained to accommodate
conceptual drift based on detection performance. However, the run time is relatively long.

A typical algorithm for the combination of LSTM and CNN is CausalConvLSTM [74],
which utilizes CNN to extract spatial features efficiently and the LSTM model for prediction.
It determines whether the model needs to be retrained based on the false-positive rate
calculated from the rolling window and updates the network weights to accommodate
concept drift by the backpropagation through time (BPTT) algorithm. CausalConvLSTM
is primarily used for network intrusion detection but has a problem in that it is limited
in the types of logs. Another example is LSTMCNNcda [75] for time-series forecasting,
which focuses on actively detecting the occurrence of concept drift and updating the
LSTMCNNnet model by an online parameter update when a concept drift is detected but
with certain restrictions on the normalized time series and window size selection.

In addition, typical algorithms based on hybrid learning include the stacked
autoencoder-deep neural network (SAE-DNN), OARIMA-RNN, and recurrent adaptive
classifier ensemble (RACE). SAE-DNN [76] actively detects the occurrence of concept drift
using the STEPD. If a concept drift occurs, the top level of SAE-DNN is extended by
means of random vector function linking (RVFL). The parameters in the extension layer
are dynamically assigned to new data through Lasso regularization and L2 regularization.
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However, there is a certain amount of noise interference. Adaptive online ensemble learn-
ing with RNN and ARIMA (OARIMA-RNN) [39] uses RNN models to capture temporal
dependencies and implement online learning modeling. Then, it dynamically adapts to
concept drift by adding ARIMA to the set and RNN hyperparameters being optimized
with each new batch. It has better accuracy than traditional offline models. However, there
was no quantification of conceptual drift or performance during the drift. RACE [77] uses
the concept of processing recycling, which uses an MLP, J48 decision tree, and support
vector machine as basic learners to process training instances of time-series data. Then, the
training instances are processed by the incremental learning algorithm, and the concept
is used to detect the occurrence of concept drift. When concept drift occurs, it is updated
and retrained. The algorithm requires a large amount of memory to run and slows down
convergence as the size of the integration increases.

Table 3. Concept drift adaptation methods based on hybrid learning.

Types of Deep Learning Algorithms
Concept Drift Adaptation Methods

LimitationDetection
Modes

Update
Modes

Adaptation
Drift Types

LSTM + SNN HSN-LSTM [71] −
√

N High resource overhead

LSTM + AE + ORA OAR-DLSTM [72] −
√

I R The dataset is too large, and its
performance appears to degrade

LSTM + AE B-Detection [73] −
√

A I G R Long running time

LSTM + CNN

CausalConvLSTM [74] −
√

N Limited log types for
algorithm applications

LSTMCNNcda [75] +
√

A G Time-series data normalization issues,
window size selection

AE + DNN SAE-DNN [76] + × A G Noise interference

RNN + ARIMA OARIMA-RNN [39] −
√

N No quantification of conceptual drift
or performance during drift

MLP + Decision tree + SVM RACE [77] +
√

A G R
Requires large amounts of memory,

increased integration size,
slows convergence

Note: The symbol description is the same as in Table 1.

From the summary of typical algorithms in Table 3, it can be seen that
“LSTM” + “other models” is a common hybrid approach, which is mainly applicable
to long-term streaming data and can overcome the forgetting problem and improve the
accuracy to a certain extent. In summary, for hybrid learning methods, multi-model in-
tegration is mainly tuned using dynamic weighting between models. So, it is essentially
parameter updating, and there are also embedded model combinations that are mainly
applied in process industries, such as power forecasting.

3.4. Other Concept Drift Adaptation Methods

The deep learning framework classification mentioned above is mainly divided based
on the perspective of single-class models or hybrid multiple models. It is worth noting that
there are cases where other deep learning technologies [31,78], such as deep reinforcement
learning and deep federated learning, are used. For example, deep reinforcement learning
was introduced as a combination of deep learning (DL) and reinforcement learning (RL) to
better cope with the dynamic changes of unstable environments, leveraging the primary
deep learning models to generate the target models we need [79,80]. The general process
of this concept drift adaption method is shown in Figure 8, while the structure update
mode is more common in deep transfer learning. Parameter updating is more common in
deep reinforcement learning. However, relatively few research studies involving concept
drift adaption methods are elaborated compared to other classes. The most popular are
deep transfer learning (DTL) and deep reinforcement learning (DRL). Therefore, we mainly



Appl. Sci. 2023, 13, 6515 16 of 27

introduce DTL and DRL. Table 4 summarizes concept drift adaptation methods based on
DTL and DRL.
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• DTL-based concept drift adaptation methods

DTL mainly uses pre-training of deep learning models to obtain relevant knowl-
edge. Then, by transferring the acquired knowledge to a new model, it can be adapted
to a new task with minimal data and can save resources [81]. Currently, there are not
many algorithms that involve concept drift. Typical methods are neural network patching
(NN-Patching), adaptive mechanisms for learning CNNs (AM-CNNs), and autonomous
transfer learning (ATL).

NN-Patching [82] is passively handled concept drift by an error estimator. It mainly
constructs a discriminant classifier to identify the misclassified regions. Then, it trains a
new classifier (called a patch network) on the misclassified data. The patch network uses
the intermediate layer of the original neural network to extract features and representations
that are critical to classification. This method keeps the original neural network quickly
adaptable to concept drift, but its ability to handle concept drift is limited, and the hy-
perparameters need to be adjusted for the scene. AM-CNNs [83] uses the nonparametric
CUSUM test to actively detect the occurrence of concept drift. It relies on a “transfer
learning” paradigm that transfers the knowledge of the CNN running before the concept
drift to the CNN running after the concept drift, but the resource overhead is relatively
high. ATL [84] uses the autonomous Gaussian mixture model (AGMM) to automatically
adjust the network width, which solves the concept drift problem. It is just a matter of
readapting to a concept that has been there before when it reappears. An adaptive anomaly
detection approach toward concept drift (ADTCD) [85] is an adaptive anomaly detection
model based on knowledge distillation and DTL. It transfers knowledge from the AE-based
teacher model to the student model and updates only the student model, which dynami-
cally adjusts model weights to accommodate concept drift primarily through local inference
on new samples. However, the algorithm also suffers from two limitations. Firstly, the
industrial scenarios used for the experiments are relatively homogeneous, and secondly,
little attention is paid to scarce anomaly data.

• DRL-based concept drift adaptation methods

DRL combines the perception ability of deep learning with the decision-making
ability of reinforcement learning, which can be directly controlled based on the input
information. Reinforcement learning defines the goal of optimization, and deep learning
gives the mechanism by which it works (how to characterize problems and how to solve
them) [86]. The algorithms using this concept drift adapting method are mainly applied in
the fields of financial investment and anomaly detection. Typical algorithms include Deep-
Pocket, RL4OASD, online ensemble aggregation using reinforcement learning (OEA-RL),
and DeepBreath.

DeepPocket [87] is used in the field of financial investment. This algorithm mainly uses
a restricted stacked autoencoder to extract features and uses two convolutional networks
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to find the best portfolio through deep reinforcement learning. Then, it uses online training
to dynamically update weights to accommodate concept drift, but it does not lend itself
to a long-term investment strategy. RL4OASD [88] is mainly used for the detection of
abnormal trajectories of vehicles. It includes two networks: one is responsible for learning
the features of the road network and trajectory, and the other is responsible for detecting
anomalous sub-traces based on the learned features. The two networks can be trained
iteratively without labeled data, and they employ an online learning strategy; that is, they
are trained with newly recorded trajectory data and continuously update their strategies
based on current traffic conditions, but they have a longer training time. OEA-RL [89]
mainly uses the deep reinforcement learning framework as a meta-learning method to learn
linear weighted ensembles and actively detects the occurrence of concept drift through the
Page–Hinkley (PH) test. Then, it adapts to concept drift by updating its parameters. Again,
there is a certain delay in updating due to its active detection algorithm. DeepBreath [6]
is mainly used for financial investment, which uses a limited superimposed autoencoder
for dimensionality reduction and feature processing. Then, the SARSA algorithm and the
online batch processing method are used to train CNN learning investment strategies from
historical data, and after training the model, the weights are updated through the online
learning scheme to adapt to the concept drift. The algorithm lacks, to some extent, the
consideration of exogenous factors.

As can be seen in Table 4, for DRL and DTL, the update mode of DRL is mainly
a parameter update. It interacts well with the environment to learn the sequence of its
behavior. The update mode of DTL is mainly a structural update. DTL can effectively
use a small amount of data to train neural networks. This characteristic can use structure
updates to train better predictive models. In addition, they generally use a combination
of online and offline approaches to adapt concept drift and support more complex predic-
tions. In addition to DTL and DRL, two more popular deep learning methods, there are
also concept drift adaption methods based on other deep learning technologies. Such as
FedHAR [90], which is a smart human activity recognition (HAR) frame based on deep
federated learning. FedHAR designs an unsupervised gradient aggregation strategy that
can overcome the problem of concept drift and convergence instability in online learning,
which is mainly used to summarize the gradients of all labeled clients and unlabeled clients
in federated learning and then drive the parameter update of the server model by averaging
the aggregate gradient to adapt to the concept drift.

Table 4. Other concept drift adaptation methods.

Types of
Deep

Learning
Algorithms

Concept Drift Adaptation Methods

LimitationDetection
Modes Update Modes Adaptation

Drift Types

DTL

NN-Patching [82] − × N Need to adjust hyperparameters for the scene

AM-CNNs [83] + × N High overhead

ATL [84] − × A I G Forgetting problem

ADTCD [85] −
√

A I G R Little attention is paid to scarce anomaly data

DRL

DeepPocket [87] −
√

N Not suitable for long-term investment strategies

RL4OASD [88] −
√

N Long model training time

OEA-RL [89] +
√

N Updating delay

DeepBreath [6] −
√

N Lack of consideration for exogenous factors

DFL FedHAR [90] −
√

N Scarcity of labels, with privacy

Note: The symbol description is the same as in Table 1.

3.5. Discussion

According to the summary of concept drift adaptation methods, we can see that the
proportion of hybrid learning and discriminant learning is relatively large, and especially



Appl. Sci. 2023, 13, 6515 18 of 27

discriminative learning is widely used. This phenomenon reflects the fact that having
label information samples is beneficial for detecting changes in the distribution of data.
In addition, parameter updates also account for a large part. Compared with structural
updates, parameter updates reduce the convergence time and adapt well to abrupt concept
drift. Secondly, in the algorithms of discriminant learning and generative learning, its active
detection also accounts for a considerable part, and it is mainly conducive to explaining
the occurrence of concept drift and reducing the computing resources of training, but to a
certain extent, it requires additional memory and CPU storage. From this paper, it can be
seen that dealing with concept drift, reducing the amount of computation, saving resources,
and speeding up convergence are our main challenges at present.

In addition, according to the above summary of drift adaptation types, we can find
that there are usually more adaptation methods for abrupt, incremental, and gradual
drift types. Relatively speaking, abrupt drift occurs most frequently, and its drift speed
occurs the fastest, so most detection methods can be sensitive to detection, but there will
also be problems such as update delay and high computational complexity. In contrast,
recurring drift occurs the least often. In the case of recurring drift, previously learned
models may become relevant again in the future. Online deep learning algorithms may
have to relearn previous concepts. This process has a high computational burden because it
means tuning or training a new model from scratch. This is also one of the main challenges
at this time. Finally, it should be added that in addition to being based on deep learning
algorithms, extreme learning machines are also models based on neural networks. In recent
years, the use of the concept drift algorithm of ELM has also increased, and the main
algorithms include Meta-RKOS-ELM [91], SSOE-FP-ELM [92], ONLAD [93], etc., which is
also a worthy research direction.

4. Performance Evaluation of Concept Drift

In this section, we summarize the common datasets and evaluation metrics. The
datasets are divided into real datasets and synthetic datasets. For the former, we present
its sources, learning tasks, and properties. For the latter, we show the drift types and
characteristics it contains. After that, we describe the evaluation metrics and their meanings.

4.1. Datasets

Real datasets can effectively demonstrate the generality and applicability of the al-
gorithm in the real world, for which the commonly used datasets are KDD CUP 1999,
Electricity, Weather, Spam, and CoverType. The KDD CUP 1999 [94] is the dataset used
in the KDD (knowledge discovery and data mining) competition. It is mainly used for
network intrusion detection to distinguish between normal network connections and mali-
cious network connections, including various attack data simulated in the military network
environment. Electricity [95] is derived from the electricity market of New South Wales,
Australia (1996–1998). It is mainly used to predict changes in electricity prices in the past
24 h, including the weather, user demand, supply conditions, and seasons. Weather [96]
contains daily weather measurement data for a certain area from 2006 to 2016, including
temperature, humidity, wind direction, wind speed, visibility, atmospheric pressure, etc.,
for predicting rainfall. Spam [97] is mainly used to identify spam. CoverType [94] is derived
from the forest cover of a certain area in the U.S. Forest Service system.

Synthetic datasets can evaluate the performance of the algorithms under different
concept drift situations and contain various types of concept drift. For detecting abrupt
concept drift, R.MNIST [98], P.MNIST [60], and SEA [99] can be used. SEA contains three
features and two classes in each sample. R.MNIST and P.MNIST are generated from the
MNIST dataset containing 784 features and 10 classes. It is worth noting that P.MNIST also
detects recurring drift. For detecting gradual concept drift, Circles [100], Hyperplane [101],
and LED [94] can be used. Circles contains two features and two classes in each sample.
Then, Hyperplane also detects incremental drift, containing 10 features and 2 classes
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in each sample. LED also detects abrupt drift, containing 24 features and 10 classes in
each sample.

In addition to the above commonly used datasets, there are some special datasets
for deep learning frameworks, such as the Vxheaven dataset [102] commonly used in
previous malware analysis studies, consisting of Windows binaries belonging to malware
and benign portable executables, containing different types of malware families, such as
trojans, ransomware, and viruses. HAR-UCI [103] was made from recordings of 30 subjects
performing activities of daily living. The STL-10 dataset [104] is an image recognition
dataset for the development of unsupervised feature learning, deep learning, and self-
learning algorithms. The Cat-Dog dataset [105] contains two classes, cats and dogs, with
12,500 images. The CIFAR100 dataset [106] is utilized to simulate the distribution drifting
situation. It has 60,000 32 × 32 × 3 RGB images. Finally, some researchers have used
their own collected data, as well as datasets from the application domain. For example,
the I-LSTM and ECNN algorithms are collected data, and CausalLSTM uses the HDFS
dataset [107] and the Cybersecurity’s Intrusion Detection Evaluation dataset [108].

4.2. The Evaluation Metrics

For algorithms based on discriminative learning and hybrid learning, accuracy recall,
precision, F1-score, Matthews’ correlation coefficient (MCC), and Cohen’s kappa k are
mainly used for classification problems, and mean absolute error (MAE), mean squared
error (MSE), and root mean squared error (RMSE) are mainly used for regression problems.
For algorithms based on generative learning and others, the number of hidden nodes per
time step (HN), the number of hidden layers per time step (HL), parameter count (PC),
and execution time (ET) are mainly used. In particular, they are unique evaluation metrics
under the framework of deep learning. It is worth noting that the MCC and Cohen’s kappa
k evaluation metrics are mainly used for unbalanced data. The definition of MCC is shown
in Equation (7).

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives. The definition of Cohen’s kappa is shown
in Equation (8).

k =
P0 − Pe

1− Pe
(8)

where P0 and Pe are the success rate of the actual and random predictors.
In addition to the above basic evaluation metrics, some researchers also use some

evaluation metrics for the application field of algorithms. For example, the DeepPocket
algorithm, which is mainly used in the field of financial investment, mainly uses maximum
drawdown (MDD), Sharpe ratio (Sr), and conditional value at risk (CVaR) to evaluate
its performance.

5. Future Directions

Based on the analysis and discussion of the above algorithms, we summarize the prob-
lems that need to be solved, which require further research in the future, as described below.

5.1. Full Coverage of Concept Drift Types

According to the above-mentioned algorithms, such as ONU-SHO-RNN, DEVDAN,
etc., we can find that it is not possible to adapt to all concept drifts at once, and among the
four types of concept drift, the best adaptability of the algorithm is to abrupt drift. There
are also some algorithms, such as ECNN and HSN-LSTM, for which the dataset used in
the experimental part does not indicate the type of drift included, and there are also no
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experiments on the effectiveness of different types of concept drift. Therefore, it is necessary
to improve the robustness and generalization of the methods to study concept drift.

5.2. Data Processing Problem

Data processing has been a big challenge in deep learning and concept drift adaptation
methods [4,21]. Firstly, when inputting samples, we may face problems such as class-
imbalance data, high-dimensional data, etc. For example, when performing online anomaly
detection, most of the datasets are very unbalanced, and the abnormal data account for
a very small part [109]. Secondly, when the model update is performed, we will face the
problem of how to balance between new data and old data and the problem that the new
data samples are not enough to support the update of the deep learning model after the
concept drift occurs. These will lead to poor prediction, slow model convergence, delayed
model update, and other consequences that are worthy of our consideration and research.

5.3. Multi-Model Integration Problem

Our review shows that online integration methods have been more popular in concept
drift adaptation methods, such as OARIMA-RNN. Ensemble algorithms can effectively pre-
vent overfitting and provide better prediction performance. However, their computational
complexity is high, and they take up more resources, so how to optimize their performance
is also a question worthy of deep consideration [110].

5.4. Visualization Problem of Concept Drift

At present, there is relatively little research on concept drift visualization. Classic
visualizers have DriftVis [111], which can help decision makers identify and correct concept
drift in data streams. In fact, for many related fields such as air quality monitoring,
financial market analysis, etc. [7,112], explaining concept drift is conducive to helping
decision makers comprehensively analyze problems and make correct decisions. Finally, it
is worth mentioning the application of conceptual drift type visualization.

6. Conclusions

In recent years, deep learning has become one of the core technologies of the fourth
industrial revolution. So, it has also become one of the indispensable tools to assist intelli-
gent decision making. However, in the era of the epidemic and big data, data distribution
in streaming data can change very easily, which is a phenomenon known as concept drift.
Once concept drift occurs, even the best-trained deep learning models become obsolete,
producing poor predictions. Therefore, this paper summarizes concept drift adaptation
methods under the deep learning framework. Firstly, we explain the definition and causes
of concept drift. Then, we introduce the types of concept drift and the general process of
a concept drift adapting method under the deep learning framework. Next, we divide
the deep learning model using the concept drift adaptation method from four aspects,
including discriminant learning, generative learning, hybrid learning, and others. For each
aspect, we introduce in detail the update modes, detection modes, and adaptation drift
types of concept drift adaptation methods. Finally, we summarize common datasets and
evaluation metrics for concept drift adaptation methods and point out future directions.
We hope that this paper can provide some academic help to researchers.
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Abbreviations
The following abbreviations are used in this manuscript:
OCDD one-class drift detector
CDT_MSW concept drift type identification method based on multi-sliding windows
KSWIN Kolmogorov–Smirnov test detector
LD3 label dependency drift detector
STUDD student–teacher approach for unsupervised drift detection
CDCMS concept drift handling based on clustering in the model space
DMDDM diversity measure drift detection method
I-LSTM improved long short-term memory
DDM drift detection method
MLP multilayer perceptron
CNN convolutional neural network
RNN recurrent neural network
DNN deep neural network
SEOA selective ensemble-based online adaptive deep neural network
BODL bilevel online deep learning framework
NADINE neural network with dynamically evolved capacity
CIDD-ADODNN Adadelta optimizer-based deep neural networks with concept drift detection
ADWIN adaptive sliding-window drift detection technology
OARNN online adaptive recurrent neural network
TPE tree-structured Parzen estimator
ONU-SHO opposition-based novel updating spotted hyena optimization
ONU-SHO-RNN ONU-SHO-based RNN

AIBL-MVD
adaptive behavioral-based incremental batch learning malware variant
detection model

SPC statistical process control
MUSE-RNN multilayer self-evolving recurrent neural network
LSTM long short-term memory
CI continuous integration
GA genetic algorithm

MOMBD-CDD
multi-objective metaheuristic optimization-based big data analytics with
concept drift detection

STEPD Statistical Test of Equal Proportions method
GSO glowworm swarm optimization
Bi-LSTM bidirectional long short-term memory
CUSUM cumulative sum
EWMA exponentially weighted moving average
AD-LSTM adaptive LSTM framework
SDWIN sliding-window algorithm
TP-ALS two-phase adaptive learning strategy
ECNN evolutive convolutional neural network

OS-PGSM
online CNN-based model selection using performance gradient-based
saliency maps

DIH deep incremental hashing
ROC region of competence
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DRT data reduction technique

ARCUS
adaptive framework for online deep anomaly detection under a complex
evolving data stream

USCDD-AE unsupervised statistical concept drift detection
DEVDAN deep evolving denoising autoencoder
MemStream memory-based streaming anomaly detection
FIFO first in, first out
ADTCD adaptive anomaly detection approach toward concept drift
GAN generative adversarial network
AE autoencoder
RBM restricted Boltzmann machine
SOM self-organizing mapping

DCIGAN
distributed class-incremental learning method based on generative
adversarial networks

GF generative fusion
GRBM Gaussian restricted Boltzmann machine
OUIM-SOM online unsupervised incremental method based on self-organizing maps

SOINN+
self-organizing incremental neural network for unsupervised learning from
noisy data streams

AHS novel adaptive and hybrid spiking module
OAR-DLSTM online autoregression with deep long short-term memory
HDL-OKW hybrid deep learning classifier and optimized key windowing approach
BPTT backpropagation through time
SAE-DNN stacked autoencoder-deep neural network
RVFL random vector function linking
SVM support vector machines
OARIMA-RNN adaptive online ensemble learning with recurrent neural network and ARIMA
RACE recurrent adaptive classifier ensemble
DTL deep transfer learning
NN-Patching neural network patching
AM-CNNs adaptive mechanism for learning CNNs
ATL autonomous transfer learning
AGMM autonomous Gaussian mixture model
DRL deep reinforcement learning
OEA-RL online ensemble aggregation using reinforcement learning
PH Page–Hinkley
KDD knowledge discovery and data mining
MCC Matthews’ correlation coefficient
MAE mean absolute error
MSE mean squared error
RMSE root mean squared error
HN the number of hidden nodes per time step
HL the number of hidden layers per time step
PC parameter count
ET execution time
MDD maximum drawdown
Sr Sharpe ratio
CVaR conditional value at risk
FedHAR federated learning human activity recognition frame
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