
Citation: Deng, G.; Peng, Y.; Tian, Y.;

Zhu, X. Analysis of Influence of

Behavioral Adoption Threshold

Diversity on Multi-Layer Network.

Entropy 2023, 25, 458. https://

doi.org/10.3390/e25030458

Academic Editor: José F. F. Mendes

Received: 28 December 2022

Revised: 15 February 2023

Accepted: 2 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Analysis of Influence of Behavioral Adoption Threshold
Diversity on Multi-Layer Network
Gang Deng 1, Yuting Peng 1, Yang Tian 2 and Xuzhen Zhu 2,*

1 School of Information and Communication Engineering, Beijing University of Posts and
Telecommunications, Beijing 100876, China

2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China

* Correspondence: zhuxuzhen@bupt.edu.cn

Abstract: The same people exhibit various adoption behaviors for the same information on various
networks. Previous studies, however, did not examine the variety of adoption behaviors on multi-
layer networks or take into consideration this phenomenon. Therefore, we refer to this phenomenon,
which lacks systematic analysis and investigation, as behavioral adoption diversity on multi-layered
networks. Meanwhile, individual adoption behaviors have LTI (local trend imitation) characteristics
that help spread information. In order to study the diverse LTI behaviors on information propagation,
a two-layer network model is presented. Following that, we provide two adoption threshold functions
to describe diverse LTI behaviors. The crossover phenomena in the phase transition is shown to exist
through theoretical derivation and experimental simulation. Specifically, the final spreading scale
displays a second-order continuous phase transition when individuals exhibit active LTI behaviors,
and, when individuals behave negatively, a first-order discontinuous phase transition can be noticed
in the final spreading scale. Additionally, the propagation phenomena might be impacted by the
degree distribution heterogeneity. Finally, there is a good agreement between the outcomes of our
theoretical analysis and simulation.

Keywords: complex networks; information propagation; multi-layer networks; adoption behavior
diversity

1. Introduction

The modern world has entered the Internet era, and social networks such as QQ,
WeChat, Ins, and Douyin have grown in popularity and become vital tools in people’s
businesses and personal lives [1–3]. In social networks, various kinds of information are
propagated among users, so that people can obtain new information in time [4,5]. More and
more academics are studying the mechanism of information propagation in order to provide
more practical application value [6–8]. At present, information propagation has been used
in the domains of aerospace [9], transportation [10], agriculture [11], medicine [12], and
other fields.

After extensive research on the mechanism of information propagation, it has been
discovered that certain factors, including behavior adoption threshold [13], degree het-
erogeneity [14], node distribution structure [15], etc., will affect information propagation.
This finding has been supported by both theoretical and experimental evidence. Specifically,
Wang et al. proposed a social contagion model with adoption probability thresholds that
look similar to gates and consist of “on” and “off ” [16]. Then, Zhu et al. presented a new
model based on a two-layer network, where information is synchronously conveyed on
both layers and each layer is provided with a distinct adoption threshold, to investigate
the effect of population heterogeneity on social contagion [17]. Furthermore, an informa-
tion propagation model with limited contact is proposed in Yu’s paper [18]. A two-layer
weighted social network model was also provided by Zhu et al. in 2019, and it is based
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on the threshold model [19]. Then, Zhu et al. proposed a two-layer network model with
edge weight distribution to explore the effect of the heterogeneous adoption threshold of
individuals on information propagation [20].

Information propagation is very closely linked to physical networks. Individual
interactions in the social world and many other scenarios can be represented by multi-layer
networks [21]. The study of multi-layer networks can also reveal some physical phenomena.
The relationships between family members, close friends, and work associates form the
structure of multi-layer networks. For example, the connectivity of different layers of multi-
layer networks is also reflected in natural and human-made transportation systems [22].
At the same time, the process of information propagation also has a reinforcement effect
because it necessitates repeated confirmation to guarantee the accuracy and reliability
of the information [23]. In order to analyze the reinforcement effect in social networks,
scholars have proposed many classical models, including Markovian and non-Markovian
propagation models [24]. The threshold model, as a model of the classical non-Markov
process, is often used to describe the reinforcement effect of information propagation [25].
On the basis of the threshold model, scholars have proposed other threshold models that
conform to real networks, and verified them through experiments [18,20]. On the other
side, after the information has been effectively transmitted, an edge in the network will
stop transmitting further information [26,27].

It has been found that different social networks exhibit a variety of structural traits,
including edge weight heterogeneity, individual contact heterogeneity, degree heterogene-
ity, and propagation probability heterogeneity. The same person exhibits various adoption
intentions and actions on various network tiers as a result of the various social network
attributes. An event might simultaneously spread via Weibo and WeChat, for instance.
WeChat is an instant messaging app that supports voice, video, picture, and text transmis-
sion, and is more often shared between friends and loved ones. Weibo is a social media
platform based on user relationships, which can realize the sharing and interaction of infor-
mation, so that users are closely connected with the world, and the information spreads
faster and the audience is wider. Weibo’s huge viewership helps the incident spread more
quickly. The event, however, demonstrates greater authenticity because Wechat has a
higher level of intimacy. Thus, both different networks have an impact on an individual’s
activity. In the real world, the same individuals exhibit limited social skills, while, on the
virtual network layer, they exhibit strong social conduct. The above examples illustrate
that information propagation on multi-layer networks is characterized by behavioral diver-
sity. Individuals display LTI behaviors in a social contagion model built on a single-layer
network, claimed a study by Zhu et al. [28]. However, their research did not consider
multi-layer networks, it had an insufficient grasp of the actual scene changes, and it only
explored the information propagation on a single-layer network. In fact, the same individu-
als on different networks show different behaviors, so it is necessary to establish different
threshold models on the two-layer networks to fit the actual scene better. Based on the
active and negative behaviors of the same individuals on different networks, we define the
multi-layer networks as the A-layer and B-layer. When individuals are highly active on
the A-layer network, they exhibit active LTI behavior across a variety of networks. On the
B-layer network, however, when individuals have low activity, they exhibit a negative LTI
behavior. Therefore, we explore and analyze the impact of adoption threshold diversity on
information propagation on multi-layer networks. Through simulations, we verify that, on
multi-layer networks, the multiple LTI behaviors affect the propagation process.

The remainder of the essay is structured as follows: In Section 2, we construct a
propagation model with multiple adoption thresholds based on multi-layer networks.
Section 3 shows an improved theoretical analysis. Section 4 shows the related parameters.
In Section 5, we discuss the simulations and experimental results. Section 6 exhibits the
conclusion and description.
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2. Multi-Layer Network Models

We build a two-layer network model with diverse adoption thresholds and LTI char-
acteristics to examine the effects of adoption behavior diversity on various networks. The
A-layer and B-layer networks are two separate networks, which are coupled to each other
by the same individual, and the individual possesses different adoption thresholds on
different layers. The scholars proposed a generalized Susceptible-Adopted-Recovered
(SAR) [29,30] model to represent the information propagation mechanism in the two-layer
networks, as illustrated in Figure 1a. In the SAR model, each node in the network has
three different states, namely, the susceptible state, adopted state, and recovered state,
corresponding to the S-state, A-state, and R-state, respectively. The S-state means that
an individual has the tendency to adopt behavior, and can accept information from sur-
rounding nodes, but has not yet embraced the information behavior. The A-state indicates
that an individual adopts the information behavior and is eager to share information with
its nearby neighbors. The R-state indicates that the individuals with the A-state are no
longer interested in the information. The individuals exhibit different adoption behaviors
on different layers, which affect the information propagation mechanism.

A
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④
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Figure 1. (a) Diagram of information propagation on a two-layer network. Individual 1 in A-state
at time t will spread information. The transmission probability of the A-layer or B-layer is denoted
by the symbol λ. The dashed lines represent links between individuals 1 and 4 in the A-layer and the
individuals 1 and 9 in B-layer, thus indicating that the information cannot be spread. The explanation
is that, prior to time t, the information has successfully been conveyed from individual 1 to individual
4 (or 9) via linkages in either the A-layer or B-layer. Solid lines indicate that each edge has not yet
transmitted information. Furthermore, the structures of the two network layers are different, but
the same adopted state individual 1 can exist in both network layers. The susceptible individuals
around individual 1 are not the same as the recovered ones, which is similar to how individuals
can publish speech messages on the Weibo platform or forward messages in the WeChat circle of
friends. Individual 1 and individual 6 are adjacent in the A-layer network structure, but not in
the B-layer network, so, even if the same individuals exist in different network layers, they cannot
transmit information due to the different network layer structures, illustrating edge heterogeneity
on multilayer networks. (b) Probability model of diverse behaviors on a two-layer network. The
symbols hA(x) and hB(x) represent the proportion of the information obtained by an individual in
the S-state in the A-layer and the B-layer to its degree, respectively. The symbols a and b represent
the LTI parameters of the individual, respectively. XA represents the individual’s LTI parameter on
the A-layer. XB represents the individual’s LTI parameter on the B-layer.
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We present two distinct threshold functions with LTI features to illustrate the impact
of behavioral diversity on information propagation on the two-layer network, as illustrated
in Figure 1b. Everyone has different levels of receptivity to new things, but if something
is popular at the moment and someone’s friends in their circle start mentioning and
recommending it, then individuals will gradually increase their level of knowledge about
it and increase the likelihood of adopting it until it is fully adopted. It is as if the individual
is in an active network similar to the A-layer network, starting out at a very low level and
eventually reaching its maximum value. The threshold model can be expressed by

hA(x) =


x
a

, 0 < x ≤ a

1, a < x ≤ 1

(1)

where hA(x) is the proportion of the total number of information mA received by the S-state
individual to its degree in the A-layer, and a denotes the individual’s LTI parameter in the
A-layer.

The individuals maintain a neutral attitude toward a certain message on Weibo, and
the degree of reception gradually decreases to 0 due to the bias brought by Weibo marketing
numbers, which leads to the aversion of individuals to this message. It is as if, in the B-layer
network, individuals are not active or even resistant to adopting information, so they have
never adopted behavior. When the number of transmissions is greater than the adoption
threshold, the individuals will adopt the behavior. However, because they are resistant,
they will refuse to transmit information to the surrounding neighbors. The adoption scale
will also eventually drop to 0.

The threshold model can be expressed as

hB(x) =


0, 0 < x ≤ b

1− x
1− b

, b < x ≤ 1
, (2)

where hB(x) is the proportion of the total number of information mB received by the S-state
individual to its degree in the B-layer, and b denotes the individual’s LTI parameter in
the B-layer.

Although the structures of the two layers of the network are different, there is no
conflict. That is, the individuals do not need to choose only one of them for information
propagation, similar to how individuals can retweet and comment on both Weibo and
WeChat, and, thus, are also positively influenced by the A-layer network and negatively
influenced by the B-layer network.

In reality, as people are on different networks, the adoption behavior of the same
information shows diverse characteristics. When the propagation scenario changes, they
will refresh their perception of the information and change their adoption behavior for the
information. The possibility that they will adopt it rises as they acquire more information
at each layer of the network. The process of information propagation in the two-layer
networks can be summed up in the following way: we suppose that, in the multi-layer
networks, ρ individuals are set as the initial infection seeds in the A-state, while others
are in the S-state. The individuals in the A-state transfer information to their neighbors in
the S-state by the edge transmission probability λ. Once individuals in the S-state receive
information, the number of receptions will accumulate until the individual changes to
A-state. On one layer of the network, when an individual changes their state, the other
layer of the network also changes. As information propagation is non-redundant, the
information cannot be successfully sent twice on the same edge. After the individual with
the A-state successfully transmits the information, it will convert with probability γ to the
R-state. When no individual on the two-layer networks is in the A-state, the information
propagation process is complete.
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3. Theoretical Analysis

On the multi-layer networks, the individuals who link the diverse layered networks
are connected one to one, so the same individual is present in each of these layers. Thus,
−→
ki = (kA

i , kB
i ) represents the degree vector of individual i, where kX

i (X ∈ {A, B}) represents

the node degree of the A-layer or B-layer. P(
−→
k ) with the degree vector

−→
k represents the

degree distribution. Additionally, the different network layers also contain a large number
of separate connections. Consequently, by the uncorrelated characteristic, P(

−→
k ) in layer A

or B can decompose into degree distributions PX(kX). As a result of the independence of
PA(kA) and PB(kB), P(

−→
k ) = PA(kA)PB(kB).

We look into how the adoption threshold diversity affects the way information is
spread throughout the multi-layer networks and suggests an enhanced edge partition
theory to analyze the information propagation mechanism. It is assumed that there is
a node in the network that is in a cavity state [31], which implies that it can receive
information from its neighbors but cannot transmit information to the outside world. In
this paper, i represents a random individual, and j denotes the neighbors of i. θX

kX
j
(t)

represents the probability that j randomly selects an edge in X-layer that does not transmit
information to i at t, then 1-θX

kX
j
(t) represents the probability that j transmits information to

i at this time. The probability that i and j with a degree of kX
j are neighbors in X-layer is

indicated by
kX

j P(kX
j )

〈kX〉 . Thus, individual i cannot obtain the information from j of the X-layer

by time t with the probability

θX(t) = ∑
kX

j =0

kX
j P(kX

j )

〈kX〉
θX

kX
j
(t). (3)

Thus, we can obtain the probability that the individual i with degree
−→
k = (kA

i , kB
i )

receives mX units of information from the surrounding neighbors j in the X-layer is
the following equation:

φX
mX

(
kX

i , t
)
=

(
kX

i
mX

)
θX(t)

kA
i −mX [1− θX(t)]

mX , (4)

At the same time, these individuals also maintain the S-state with the probability of
mA
Π
j=0

[
1− hA

(
j

kA
i

, a
)]

in layer A and
mB
Π
j=0

[
1− hB

(
j

kB
i

, b
)]

in layer B. The probability that an

individual will still be in the S-state at time t after accumulative accepting mA and mB
pieces of information from those of layer A and B can be represented as

ςA
mA

(kA
i , t) =

kA
i

∑
mA=0

φA
mA

(kA
i , t)

mA
∏
j=0

[1− hA(
j

kA
i

, a)]

=
[akA

i ]

∑
mA=0

φA
mA

(kA
i , t)

mA
∏
j=0

[1− j
akA

i
]

+
kA

i
∑

mA=[akA
i ]

φA
mA

(kA
i , t)

[akA
i ]

∏
j=0

[1− j
akA

i
]

mA
∏

j=[akA
i ]

(1− 1)

=
[akA

i ]

∑
mA=0

φA
mA

(kA
i , t)

mA
∏
j=0

[1− j
akA

i
]

(5)
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and

ςB
mB

(kB
i , t) =

kB
i

∑
mB=0

φB
mB

(kB
i , t)

mB
∏
j=0

[1− hB(
j

kB
i

, b)]

=
bbkB

i c
∑

mB=0
φB

mB
(kB

i , t)
mB
∏
j=0

[1− 0]

+
kB

i
∑

mB=dbkB
i e

φB
mB

(kB
i , t)
dbkB

i e
∏
j=0

[1− 0]
mB
∏

j=dbkB
i e

(1−
1− j

kB
i

1−b )

=
bbkB

i c
∑

mB=0
φB

mB
(kB

i , t) +
kB

i
∑

mB=dbkB
i e

φB
mB

(kB
i , t)

mB
∏

j=dbkB
i e

(1−
1− j

kB
i

1−b )

, (6)

respectively.
Therefore, when individual i receives mA and mB units of information, the probability

that they remain S-state is:

s
(−→

k , t
)
= (1− ρ0)

kA
i

∑
mA=0

φA
mA

(
kA

i , t
) mA

Π
j=0

[
1− hA

(
j

kA
i

, a
)]

×
kB

i
∑

mB=0
φB

mB

(
kB

i , t
) mB

Π
j=0

[
1− hB

(
j

kB
i

, b
)]

= (1− ρ0)ς
A
mA

(kA
i , t)ςB

mB
(kB

i , t),

(7)

When the information has not been accepted by the S-state individuals, the possibility
of the accumulated information in the A-layer or B-layer by time t is denoted as

ηX = ∑
kX

i

PX(kX
i )ς

X
mX

(kX
i , t), (8)

Therefore, the proportion of the individuals in the multi-layer networks, which are in
the S-state, at time t is denoted as

S(t) = ∑
−→
k

P(
−→
k )s(
−→
k , t) = (1− ρ0)ηAηB, (9)

Furthermore, because the individuals may be in the S-state, A-state, or R-state, ξX
S,kX

j
(t),

ξX
A,kX

j
(t), and ξX

R,kX
j
(t) represent the probability of being in the S-state, A-state, and R-state,

respectively, so θX
kX

j
(t) can be decomposed into:

θX
kX

j
(t) = ξX

S,kX
j
(t) + ξX

A,kX
j
(t) + ξX

R,kX
j
(t), (10)

However, because of the cavity theory, the individual i in the cavity state is unable
to communicate with its neighbors. The neighbor j’s degree vector is

−→
k j = (kA

j , kB
j ). If

the S-state individual i connects its neighbor j in the A-layer, then all kA
j − 1 neighbors,

except individual i in the A-layer and kB
j neighbors in the B-layer, can share information.

τA
nA
(kA

j − 1, t) and τB
nB
(kB

j − 1, t) represent the probability that the neighbor j with degree
−→
k j = (kA

j , kB
j ) has received nA bits of information from its neighbors up to time t. The

probability can be calculated by
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τA
nA
(kA

j − 1, t) =
kA

i −1

∑
nA=0

φA
nA
(kA

j − 1, t)
nA
∏
j=0

[1− hA(
j

kA
j −1

, a)]

=

⌊
akA

j

⌋
∑

nA=0
φA

nA
(kA

j − 1, t)
nA
∏
j=0

[1− j
akA

j
]

+
kA

i −1

∑
nA=

⌈
akA

j

⌉ φA
nA
(kA

j − 1, t)

⌈
akA

j

⌉
∏
j=0

[1− j
akA

j
]

nA
∏

j=
⌈

akA
j

⌉ (1− 1)

=

⌊
akA

j

⌋
∑

nA=0
φA

nA
(kA

j − 1, t)
nA
∏
j=0

[1− j
akA

j
]

(11)

and

τB
nB
(kB

j − 1, t) =
kB

j −1

∑
nB=0

φB
nB
(kB

j − 1, t)
nB
∏
j=0

[1− hB(
j

kA
i −1

, b)]

=

⌊
bkB

j

⌋
∑

nB=0
φB

nB
(kB

j − 1, t)
nB
∏
j=0

[1− 0]

+
kB

j

∑
nB=

⌈
bkB

j

⌉ φB
nB
(kB

j − 1, t)

⌈
bkB

j

⌉
∏
j=0

[1− 0]
mB
∏

j=
⌈

bkB
j

⌉ (1−
1− j

kB
j

1−b )

=

⌊
bkB

j

⌋
∑

nB=0
φB

nB
(kB

j − 1, t) +
kB

j

∑
nB=

⌈
bkB

j

⌉ φB
nB
(kB

j − 1, t)
nB
∏

j=
⌈

bkB
j

⌉ (1−
1− j

kB
j

1−b ),

(12)

respectively.
Additionally, the likelihood that an individual j with degree

−→
k j = (kA

j , kB
j ) has ac-

quired nB bits of information from neighbors of B-layer by the time t is ςB
nB
(kB

j , t). Therefore,
the probability that the individual j will remain in the S-state after receiving nA and nB
pieces of information cumulatively is

θA

(
~k, t
)
=

kA
j −1

∑
nA=0

φA
nA

(
kA

j − 1, t
) nA

Π
j=0

[
1− hA

(
j

kA
j

, a
)]

×
kB

j

∑
nB=0

φB
nB

(
kB

j , t
) nB

Π
j=0

[
1− hB

(
j

kB
j

, b
)]

= τA
nA
(kA

j − 1, t)ςB
nB
(kB

j , t)

(13)

When the individual i in the S-state interacts with its neighbor j by a degree of
−→
k j , the

probability that the individual j in the B-layer will remain in the S-state after obtaining all
of the nA and nB pieces of information is

θB

(
~k, t
)
=

kA
j

∑
nA=0

φA
nA

(
kA

j , t
) nA

Π
j=0

[
1− hA

(
j

kA
j

, a
)]

×
kB

j −1

∑
nB=0

φB
nB

(
kB

j − 1, t
) nB

Π
j=0

[
1− hB

(
j

kB
j

, b
)]

= τA
nA
(kA

j , t)ςB
nB
(kB

j − 1, t)

(14)
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The network is uncorrelated, so the probability that an edge is connected to an individ-
ual of degree kX

j is kX
j PX(

−→
k j )/

〈
kX〉, while 〈k〉 is the average degree of the network; then,

we can obtain the probability of being in the S-state:

ξX
S,kX

j
(t) = (1− ρ0)∑

−→
kj

kX
j PX(

−→
k j )

〈kX〉
θX

(−→
k j , t

)
(15)

If the A-state transmits behavioral information with the probability of λ, then θX
kX

j
(t)

will decrease by a proportion equal to λξX
A,kX

j
(t), namely:

dθX
kX

j
(t)

dt
= −λξX

A,kX
j
(t) (16)

The individuals in the A-state stop caring about the spreading information and become
R-state in a possibility of γ. The calculation for ξX

R,kX
j
(t)’s evolution is

dξX
R,kX

j
(t)

dt
= γ(1− λ)ξX

A,kX
j
(t) (17)

According to the initial conditions θX
kX

j
(0) = 1, ξX

R,kX
j
(0) = 0, we can obtain:

ξX
R,kX

j
(t) =

γ

[
1− θX

kX
j
(t)
]
(1− λ)

λ
(18)

Substitute ξX
S,kX

j
(t), ξX

A,kX
j
(t), ξX

R,kX
j
(t), respectively, to obtain the time change in θX

kX
j
(t):

dθX
kX

j
(t)

dt
= −λ[θX

kX
j
(t)−∑

−→
kj

kX
j PX(

−→
k j )

〈kX〉
θX

(−→
k j , t

)
] + γ

[
1− θX

kX
j
(t)
]
(1− λ) (19)

At the moment of transmitting the behavioral information, some susceptible individ-
uals choose to adopt the behavior, and some adopted individuals will enter the R-state.
Thus, the time change in A(t) is:

dA(t)
dt

= −dS(t)
dt
− γA(t) (20)

dR(t)
dt

= γA(t) (21)

The social communication phenomenon can be described by the above formula, and
the proportion of the S-state, A-state, and R-state can be obtained at any time. When time t
approaches infinity, the final adoption scale R(∞) can be obtained:

θX
kX

j
(∞) = ∑

−→
kj

kX
j PX(

−→
k j )

〈kX〉
θX

(−→
k j , ∞

)
+

γ

[
1− θX

kX
j
(∞)

]
(1− λ)

λ
(22)

It can be seen from the θX
kX

j
(t) equation that, when the A-state continuously transmits

information to the surrounding neighbors, θX
kX

j
(t) will decrease with time. When θX

kX
j
(t) is at
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the maximum stable point, substitute this value to obtain the stable value of the susceptible
state S(∞) and the final adoption scale R(∞).

4. Related Parameters

In this section, tests on the multi-layer ER network [32] and SF network [33] are used
to simulate and assess the proposed model. The ER(ErdOs-Renyi) random network is an
equal opportunity network model, i.e., given a certain number of nodes, the probability of
inter connection with other surrounding nodes is the same. Since the connection probability
of a single node with k other nodes decreases exponentially as the value of k increases,
the connection probability is subject to Poisson distribution. The SF network refers to the
scale-free network. Most of the networks in the real world are not random networks, where
a few nodes have a large number of connections while most of them have few connections,
so the degree distribution of nodes conforms to a power–law distribution, which is also
called scale-free property. Complex networks with degree distribution conforming to
power–law distribution become scale-free networks. We set 10,000 nodes on the ER network
and the SF network as propagation individuals. Furthermore, each network has an average
degree of 〈kA〉 = 〈kB〉 = 10. The probability of unit information spreading is expressed
at λ. In the ER network, the probability of connecting any two nodes is the same, and the

degree of the nodes in the X-layer obeys the Poisson distribution PX(kX) = e−〈kX〉 〈k〉
kX

kX ! .
In the SF network, the degree exponent v has a negative correlation with the heterogeneity
of the nodes’ degree distributions, and where ζX = 1

∑
kX

kX
−v , the degrees of nodes follow a

power–law distribution with PX(kX) = ζXkX
−v . In the experiment, we first set ten initial

A-state (initial seed ratio is h0 = 0.001) individuals as the source of transmission. The
individuals in the A-state have a probability of γ = 1.0 of returning to the R-state.

Furthermore, the relative variance is unitized, which is written as follows, to demon-
strate the crucial condition in our simulation.

χ = N
〈R(∞)2〉 − 〈R(∞)〉2

〈R(∞)〉 , (23)

where 〈. . .〉 stands for the mean set. The important points of the final adoption scale are
implied by the χ peak values.

5. Experiments and Discussions
5.1. Propagation Phenomena on a Two-Layer ER Network

Figure 2 shows the time evolution diagram of the individuals in the S-state, A-state,
and R-state. The parameters of (a) and (b) are adopted as a = b = 0.1 and a = b = 0.3,
respectively. In general, the network starts off with only S-state individuals and steadily
decreases to 0 over time. The proportion of individuals in the A-state gradually increase
to the highest peak, and decrease to 0. Over time, the R-state steadily moves up to the
final adoption scale. As the adoption threshold parameter increases from a = b = 0.1 in
subgraph (Figure 2a) to a = b = 0.3 in subgraph (Figure 2b), the cost of the evolution
time continuously rises from 6 to 8. The phenomena illustrate that information spreading
on a multi-layer network can be promoted by individual behavior reinforcement (active
adoption behavior).

Figure 3 shows the effects of unit transmission probability along with two behavioral
parameters a and b on each individual’s final adoption scale in the multi-layer ER network.
We can see from Figure 3c that, as λ increases, the final spreading scale R(∞) increases
to global spreading. Furthermore, Figure 3c also indicates how the diverse behaviors
have an effect on the phase transition. When an individual shows an active behavior on
the multi-layer networks simultaneously, e.g., a = b = 0.2, the pattern of R(∞) reveals a
second-order growth in the continuous phase transition, suggesting that, even though small
λ, a strong behavior can lead to global propagation. When a = b = 0.5 and a = b = 0.8,
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however, R(∞) reveals a first-order growth in the discontinuous phase transition while an
individual shows a negative behavior on the multi-layer networks. This suggests that the
individual with a weak adoption behavior slows the spread of information.

Figure 2. Temporal variation in node density in different states. In subgraph (a), a = b = 0.1, it
requires six steps to reach the maximum propagation scale; in subgraph (b), a = b = 0.3, the propaga-
tion process requires eight steps; the proportion of susceptible individuals gradually decreases with
time, the proportion of recovery individuals gradually increases with time, and the proportion of
adopted individuals first increases and decreases to 0. The other basic parameter is λ = 0.3.

Figure 3. Illustration of adoption behavioral diversity on multi-layer networks with unit trans-
mission probability. Subgraph (a,c,e) demonstrates how the parameters of behavioral diversity
affect phase transition. The relative variances and the crucial values of (a,c,e) are shown in subgraph
(b,d,f), respectively. Additionally, in subgraph (a,c,e), the solid lines on the diagram represent the
theoretical anticipated results, whereas the symbols of the drawing denote the simulated results,
where the network_size of the subgraph (a,b) is 1000, the network_size of subgraph (c,d) is 10,000,
and the network_size of subgraph (e,f) is 15,000.

To further observe the critical phenomena around the phase transition, we reduce
the network_size to 1000 and add the network_size to 15,000 to obtain Figure 3a,b and
Figure 3e,f. We find from Figure 3a that global adoption can be achieved with smaller λ
when the network_size is reduced. Furthermore, again at a = b = 0.2, a second-order
continuous phase transition is revealed, and, at a = b = 0.5 and a = b = 0.8, a first-order
discontinuous phase transition is produced. On the contrary, when the network_size
is increased to 15,000, as shown in Figure 3e, the global adoption can be achieved with
larger λ, and the type of phase transition produced is similar to the former. Therefore,
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as the network_size increases, the λ that generates the global adoption also increases,
transitioning from a second-order continuous phase transition to a first-order discontinuous
phase transition.

The relative variances and crucial information spreading possibilities of (a,c,e), are
shown in Figure 3b,d,f. The deviation of information spreading, which is depicted by
the top values of relative variance χ, is where the global adoption information will arise.
Additionally, the process of information spreading will start earlier as individual diverse
behavior enhances. When the network_size increases gradually, the process of information
propagation is delayed and the deviation of information propagation is increased, as
shown in Figure 3b,d,f. Finally, our theoretical analyses (lines) match the outcomes of the
simulation (symbols).

The combined impact of the parameters plane (λ, a) ((λ, b)) on R(∞) on the multi-
layer ER network is examined in Figure 4. A crossover phenomenon appears as the
value λ of increases. The diagram can then be split into two sections. The continuous
phase transition with a second order is visible from region I as the increase in λ is in the
growing pattern of the individual final spreading scale R(∞) . As λ increases in region
II, the growing R(∞) pattern displays a first-order discontinuous phase transition. The
information spreading and the transition from a second-order continuous phase transition
to a first-order discontinuous phase transition are both changed by the intensity of diverse
behaviors. When network_size is reduced to 1000, a crossover phenomenon appears earlier.
When network_size is increased to 15,000, a larger value of a(b) is required to produce the
crossover phenomenon. This shows that information propagation is also influenced by the
network_size.

Figure 4. The combined influence of the diverse behavioral parameters a and b on each indi-
vidual’s eventual spreading size for a multi-layer ER network. In Figure 4, region I shows the
continuous phase transition with a second order by final size R(∞) growing in the pattern. The
discontinuous phase transition with the first order is visible from region II as a rising pattern of
ultimate spreading scope R(∞), where the network_size of the subgraphs (a–c) are 1000, 10,000, and
15,000, respectively.

5.2. Propagation Phenomena on a Two-Layer SF Network

Figure 5 shows the impact of the unit spreading possibility λ and diverse behavioral
parameters a and b on the final adoption scale for the multi-layer SF network. Figure 5a,c
demonstrate that, as λ increases, the final spreading scale R(∞) increases until it reaches
global adoption. In subgraph (c) (v = 4), the ultimate spreading size’s growing pattern
shows a continuous phase transition with a second order when a = b = 0.2. However,
when a = b = 0.5 and a = b = 0.8, the growth of R(∞) reveals a discontinuous phase
transition with the first order. Different from subgraph (Figure 5c), subgraph (Figure 5a)
(v = 2) shows a first-order discontinuous phase transition whatever the value of a and b are.
Thus, when comparing subgraphs (Figure 5a) and (Figure 5c), it can be seen that the degree
distribution heterogeneity can affect the increase pattern of the final spreading scale. The
larger degree distribution heterogeneity can promote the global adoption of information.
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Figure 5. The impact of diverse behavior parameters a and b on final spreading scale on the multi-
layer SF network with unit transmission probability. The horizontal subgraphs use the same degree
distribution exponent, v = 2 with subgraphs (a,b), meanwhile v = 4 with subgraphs (c,d). The impact
of on the final spreading scale with unit propagation probability λ are presented in subgraphs (a,c).

The relative variances and crucial information spreading possibilities of Figure 5a,c,
are shown in Figure 5b,d, respectively. The deviation of information spreading, which
is represented by the highest values of relative variance χ, is where the global adoption
information arises. Additionally, when the degree distribution heterogeneity rises, the
process of information propagation will begin earlier. As a result, the conclusions of our
theoretical analysis (lines) are consistent with those of the simulation (symbols).

Figure 6 illustrates R(∞) on the propagation parameter plane (λ, a)((λ,b)) for the
multi-layer SF network. Then, using the parameters v = 2 and v = 4, respectively, the
subgraphs (Figure 6a,b) demonstrate the growth tendency of R(∞). When the degree
distribution heterogeneity is relatively small, i.e., v = 4 in subgraph (Figure 6b), the
pattern of the individual final spreading scale R(∞) changes from growing continuously
in the phase transition with the second order in region I to growing discontinuously in
the first-order phase transition in region II. Consequently, the diagram is split into two
sections. Since there are active adoption behaviors in region I, the continuous phase
transition with the second order can be seen in the change pattern of R(∞). The expanding
pattern of R(∞) indicates the discontinuous phase transition with the first order, which is
caused by the individuals’ increasingly negative behaviors in region II. The pattern of the
individual ultimate spreading size R(∞), on the other hand, grows discontinuously in the
first-order phase transition in the entire region when the degree distribution heterogeneity
is substantially significant, as in subgraph (a), where v = 2. Therefore, the heterogenous
degree distribution can affect the growth of R(∞) and the information propagation.
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Figure 6. The combined impact of the diverse behavior parameter a and b on the final spreading
scale for the multi-layered SF network. The impacts of (λ, a) and (λ, b) on the final spreading scale
are shown in subgraphs (a,b) with v = 2 and v = 4, respectively. In subgraph (a), there is no crossover
phenomenon of propagation. In subgraph (b), there is a crossover phenomenon of propagation.

6. Conclusions

The impact of the behavioral adoption diversity on the information propagation in the
multi-layer networks is discussed in this study. We found that the same individual shows
different or even opposite behaviors on different network layers. The impact of both active
and negative LTI behaviors on information propagation is then separately considered on
the multi-layer networks. Therefore, we offer an information propagation model, which
includes two LTI behavioral features and a two-layer network. Meanwhile, we present an
enhanced edge division theory to research the information spreading mechanism on the
multi-layer networks. We discover various crossover events on information propagation
using theoretical derivation and numerical simulation. The active LTI behaviors can encour-
age the information breakout on the multi-layer ER network. Moreover, a second-order
continuous phase transition may be seen in the final spreading scale as the transmission
probability rises. The final spreading scale displays a first-order discontinuous phase tran-
sition with the rise in the transmission probability when the individual behaves negatively.
Furthermore, on the multi-layer SF network, the degree distribution heterogeneity can
affect the propagation phenomena. The final spreading scale shows a first-order discon-
tinuous phase transition with an increase in the transmission probability whenever the SF
network has a strong degree distribution heterogeneity. The propagation pattern switches
from second-order continuous phase transition to first-order discontinuous phase transition
with the change in the LTI behavior intensity, but this is when the SF network has a weak
degree distribution heterogeneity.

Information propagation relies heavily on behavior diversity on multi-layer networks,
yet there is a dearth of comprehensive theoretical modeling and research in this area.
We propose models and conduct qualitative and quantitative analyses of the network’s
response to multiple behavior heterogeneity. The information propagation mechanism
of a fresh scene is shown by our investigation. This paper focuses on the impact of
adoption thresholds on individual adoption behavior on multi-layer networks, and can
effectively draw corresponding conclusions. However, the influence of parameters such as
individual activity heterogeneity and limited contact ability of multi-layer networks on the
individual adoption ability was not involved in the discussion; this will be the direction of
continued research in the future. In addition, whether the number of nodes in a complex
network affects the results and whether an excessive number of nodes affects the speed of
information propagation are the limitations of this study.
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