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Abstract: This study aims to unravel the resource allocation problem (RAP) by using a consensus-
based distributed optimization algorithm under dynamic event-triggered (DET) strategies. Firstly,
based on the multi-agent consensus approach, a novel one-to-all DET strategy is presented to solve
the RAP. Secondly, the proposed one-to-all DET strategy is extended to a one-to-one DET strategy,
where each agent transmits its state asynchronously to its neighbors. Furthermore, it is proven that
the proposed two types of DET strategies do not have Zeno behavior. Finally, numerical simulations
are provided to validate and illustrate the effectiveness of the theoretical results.

Keywords: resource allocation problem; distributed optimization; dynamic event-triggered;
consensus; Zeno behavior

1. Introduction

With the development of network information technology and the era of artificial
intelligence, multi-agent systems (MASs) have received extensive attention in view of their
applications in the machining industry [1], synchronous generators [2], microservice-based
cloud applications [3], USVs [4], and other fields. It is worth noting that consensus is one of
the most fundamental and important problems in MASs, and there have been many studies
about it [5–8]. In essence, the distributed optimization problem is that a group of agents
achieve a goal by exchanging local information with neighbors and minimizing the sum of
all the local cost functions. In contrast to conventional consensus, distributed optimization
problems require both achieving consensus and solving optimization problems. Up to now,
distributed optimization problems have already appeared widely in power systems [9],
MPC and network flows [10], wireless ad hoc networks [11], etc.

Early distributed optimization problems were mainly solved by centralized optimiza-
tion algorithms. The feature of a centralized optimization algorithm is that all agents have
a central node that centrally stores all of the information to address the optimization prob-
lem [12,13]. However, centralized optimization algorithms are unsuitable for large-scale
networks, because collecting information from all agents in the network requires a lot of
communication and computational overhead, and there will be the single point of failure
problem. Consequently, distributed optimization algorithms have emerged as the times
require. In recent years, distributed optimization algorithms are divided into two main
categories, i.e., discrete-time algorithms and continuous-time algorithms. More specifically,
discrete-time distributed optimization algorithms have been utilized in the optimal solution
of the saddle point dynamics problem [14], epidemic control resource allocation [15], and
tactical production planning [16]. Additionally, many researchers have made substantial
explorations of continuous-time distributed optimization algorithms recently. For instance,
a continuous-time optimization model was developed in [17] for source-sink matching in
carbon capture and storage systems. In [18], the application of a continuous-time optimiza-
tion algorithm was investigated in power system load distribution, and the distributed

Entropy 2023, 25, 1019. https://doi.org/10.3390/e25071019 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25071019
https://doi.org/10.3390/e25071019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9941-0269
https://orcid.org/0000-0002-0310-6842
https://orcid.org/0000-0003-1662-0151
https://doi.org/10.3390/e25071019
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25071019?type=check_update&version=1


Entropy 2023, 25, 1019 2 of 18

continuous-time approximate projection protocol was proposed in [19] for solving the
shortest distance optimization problem.

Many of the above optimization algorithms communicate in continuous time, which
can lead to frequent algorithm updating and then cause unnecessary communication re-
source consumption, so it is necessary to solve the system’s resource problem. Therefore,
applying event-triggered strategies to distributed optimization algorithms [20–26] is a
feasible and promising scheme that can effectively reduce the energy waste of the system.
Only when the designed event-triggered condition is satisfied, is the system allowed to
communicate and update the protocol, which helps to reduce the cost and burden of com-
munication and computing as well as the collection of gradient information. Primarily,
for static event-triggered (SET) mechanisms, which include the constant trigger thresholds
independent of time, it is theoretically difficult to rule out Zeno behavior. Furthermore,
as the working time increases, the inter-event time intervals become larger, which results in
more trigger actions and wasting the system’s resources. Furthermore, the event-triggered
strategy has undergone a paradigm shift from the SET strategy to the dynamic event-
triggered (DET), which introduces an auxiliary parameter for each agent to dynamically
adjust its threshold. Moreover, in most cases, the DET strategy can well extend the average
event intervals, thus further reducing the consumption of communication resources com-
pared to SET communication. Therefore, the DET strategy has aroused much interest and
it holds great applicability value, which was considered in [27–33]. An improved event-
triggered strategy, independent of the initial conditions, was leveraged in [34] to solve
the topology separation problems caused by critical communication link failures. In [35],
the corresponding DET mechanism was presented for two cases based on nonlinear relative
and absolute states coupling, and it was also proved that the continuous communication
between agents can be effectively avoided. Under the DET strategy, each agent transmits
information to all neighbors synchronously when its trigger condition is met, which is
usually called the one-to-all DET strategy. Nevertheless, under the one-to-all DET strategy,
it is unreasonable to ignore the possibility that each agent has different triggering sequences.
Therefore, to overcome the limitation of the one-to-all DET strategy, it is essential to design
a DET strategy that allows each agent to decide its own triggering sequences and trans-
mit information asynchronously to its neighbors according to different event-triggered
conditions designed for each of its neighbors, which is referred to as the one-to-one DET
strategy. Under the one-to-one DET strategy, owing to its characteristics, an agent is not
constrained by any synchronous execution of its neighbors’ transmission information, so it
can adjust the information transmission more flexibly, especially in the case of cyber-attacks.
In [36], under an adaptive DET strategy, the fully distributed observer-based strategy was
developed, which guarantees asymptotic consensus and eliminates Zeno behavior.

So far, note that many distributed optimization algorithms have been leveraged to
solve the resource allocation problem (RAP), such as in [37–39]. Therefore, it is necessary
and significant to combine DET strategies to solve the RAP. Motivated by the above
discussions, we further investigate distributed optimization algorithms with two novel
synchronous and asynchronous DET strategies to address the RAP. The main contributions
of this article are developed as follows.

(1) This work combines the consensus idea and one-to-all DET strategy to design a new
distributed optimization algorithm to solve RAP, in which the algorithm can keep the
equality constraint constant. In addition, unlike the SET strategies of [40,41], the DET
in this work has a lower trigger frequency, which means that the system resources can
be saved.

(2) In order to improve the flexibility and practicality of the algorithm, the one-to-all DET
strategy is extended to a one-to-one DET strategy. Based on this strategy, a distributed
optimization algorithm is developed to address the RAP.

(3) The two types of proposed distributed optimization algorithms only use the informa-
tion of the decision variable xi(t) to avoid the communication among agents, which
ingeniously reduces the resource consumption, while the algorithm in [42] needs
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to exchange information about the variables φi(t) and ζi(t). In addition, the intro-
duced internal dynamic parameters in this work are not only effective in solving RAP,
but also crucial in successfully excluding Zeno behavior.

The organization of the remaining parts of this paper is as follows. Some algebraic
graph theory preliminaries, a basic definition and assumptions, and the optimization
problem formulation are given in Section 2. In Sections 3 and 4, distributed optimization
algorithms under the proposed one-to-all and one-to-one DET strategies are presented
to solve the RAP. Furthermore, the proof of the exclusion of Zeno behavior is included.
In Section 5, numerical simulation results are given to illustrate the effectiveness of the
proposed algorithms. Finally, we show our conclusions and future work direction in
Section 6.

Notation 1. The symbols appearing in this article are listed in Table 1.

Table 1. Notation used in this paper.

Symbol Description

R A set of real numbers
Rn An n-dimensional Euclidean space
‖ · ‖ The Euclidean norm or induced matrix 2-norm
N {1, 2, · · · , n}

diag{α1, α2, · · · , αn} A diagonal matrix with αi, i = 1, 2, · · · , n
1n An n× 1 column vector of all ones
0n An n× 1 column vector of all zeros
In An n× n identity matrix

A⊗ B The Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q

D+ f (x0) The right-hand Dini derivative of f at x0
∇ f The gradient of f

2. Preliminaries
2.1. Algebraic Graph Theory

The topology among n nodes can be modeled as a graph G = (V , E ,A) consisting of a
finite node set V = (v1, v2, · · · , vn), a set of edges E ⊆ V × V , and a weighted adjacency
matrix A = [aij] ∈ Rn×n, with aij > 0 if (vj, vi) ∈ E and aij = 0 otherwise. Given an
edge (vj, vi) ∈ E , we refer to vj as a neighbor of vi, then, vj and vi can receive each other’s
information. The set of vi is defined asNi = {vj ∈ V : (vi, vj) ∈ E}, which does not contain
self-edges (vi, vi). An undirected graph G is connected if for any vertex vi, vj ∈ V , there
exists a path that connects vi and vj. The Laplacian matrix L = [lij] ∈ Rn×n is denoted

by lii =
n
∑

j=1,j 6=i
aij and lij = −aij, i 6= j. Furthermore, 1>n L = 0>n . The eigenvalue of L is a

non-decreasing order, i.e., 0 = λ1 < λ2 ≤ · · · ≤ λn.

2.2. Problem Statement

In the distributed RAP, we consider the MASs composed of n agents where each
agent has a local quadratic convex cost function fi(xi(t)) : R → R. The global objective
function is denoted by F(x(t)) : Rn → R. fi(xi(t)) = αix2

i (t) + βixi(t) + γi, where the cost
coefficients αi, βi, and γi > 0. Then, the RAP can be rewritten as the following optimization
problem: 

min F(x(t)) =
n
∑

i=1
fi(xi(t)),

s.t.
n
∑

i=1
xi(t) = D,

(1)
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where x(t) = (x1(t), x2(t), · · · , xn(t))> is a decision variable vector. For convenience, only
the case xi(t) ∈ R will be discussed, owing to the fact that when xi(t) ∈ Rn it can be solved
similarly and completely by using the Kronecker product. F(x(t)) and fi(xi(t)) stand for
the global cost function and the local cost function, respectively. D ∈ R represents the
global resource constraint. In the economic dispatch problem of smart grids, xi(t) denotes
the output power of generator i, and D denotes the total power demand and equality
constraint and is called the demand constraint.

This paper aims to design distributed DET strategies to solve RAP (1). Therefore, we
need the following definition and assumptions before further analysis.

Definition 1. The multi-agent consensus problem would be addressed as long as for any initial
value of state zi(0) ∈ Rn,

lim
t→∞
‖zi(t)− zj(t)‖ = 0, ∀i, j ∈ N .

Assumption 1. The communication topology is undirected and connected.

Assumption 2. The local objective functions are quadratically continuously differentiable and
strongly convex.

3. The One-to-All DET Strategy

In this section, we construct the one-to-all DET strategy, which allows each agent to
transmit information synchronously. Moreover, a distributed optimization algorithm with
the proposed DET is introduced and the consensus is derived, which solves the RAP (1).

For the one-to-all DET, the triggering time sequence is determined by 0 = ti
0 < ti

1 <
· · · < ti

s < · · · . The measurement error of each agent is defined as

ei(t) = ∇ fi(xi(ti
k))−∇ fi(xi(t)), t ∈

[
ti
k, ti

k+1

)
, ∀i ∈ N .

Then, we propose the one-to-all DET triggering sequence {ti
k}k∈N as follows

ti
k+1 = inf

l>ti
k

{l : (ei(t))2 − ci

n

∑
j=1

aij(φi(t)− φj(t))2 − πiΓi(t) ≥ 0, ∀t ∈ [ti
k, l]}, (2a)

where ci and πi, ∀i ∈ N , are positive constants.

Remark 1. If setting Γi(t) = 0, the DET strategy reduces to the SET strategy. Then, the one-to-all
SET triggering sequence {ti

k}k∈N is as follows

ti
k+1 = inf

l>ti
k

{l : (ei(t))2 − ci

n

∑
j=1

aij(φi(t)− φj(t))2 ≥ 0, ∀t ∈ [ti
k, l]}. (2b)

Consequently, the SET strategy is a special case of the DET strategy, and the DET strategy is a
more general situation. In addition, due to the internal dynamic variables of the DET function, it is
easier to exclude Zeno behavior than for SET.

Inspired by [43], we design an internal dynamic variable Γi(t) satisfying

Γ̇i(t) = −ψiΓi(t) + µi[ci

n

∑
j=1

aij(φi(t)− φj(t))2 − (ei(t))2], (3)

where Γi(0) > 0, ψi and µi =
wi
ci

with wi ≥ 0, ∀i ∈ N , are positive constants.
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Let φ̂i(t) = ∇ fi(xi(ti
k)) and φi(t) = ∇ fi(xi(t)). The distributed optimization algo-

rithm is designed as follows to solve the RAP (1):
xi(t) = ζi(t) + xi(0),

ζ̇i(t) =
n
∑

j=1
aij(φ̂j(t)− φ̂i(t)),

ζi(0) = 0,

(4)

where ζi(t), ∀i ∈ N is an auxiliary variable.

According to the distributed optimization algorithm (4), one obtains φ̇i(t) =
∂2 fi(xi(t))

∂x2
i (t)

ẋi(t) = 2αi ζ̇i(t) = 2αi
n
∑

j=1
aij[φ̂j(t)− φ̂i(t)], where the initial value φi(0) satisfies φi(0) =

2αixi(0) + βi.
In addition, φ̇i(t) in matrix form can be described as

φ̇(t) = −2ΛL[φ(t) + e(t)],

where φ(t) = (φ1(t), φ2(t), · · · , φn(t))> ∈ Rn, Λ = diag{α1, · · · , αn} and e(t) = (e1(t),
e2(t), · · · , en(t))>.

Then, the distributed optimization problem is transformed into a multi-agent consen-
sus, which implies when φi(t) = φj(t), ∀i, j ∈ N , the RAP (1) is obtained for any agents.
Then, φ∗ is the final value of φi(t) when it reaches consensus. The detailed procedure of
the one-to-all DET strategy is given as Algorithm 1.

Algorithm 1 Distributed optimization algorithm with the one-to-all DET strategy

Require:
Initialize all parameters, such as the states xi(0) and ζi(0) of the agent i and so on.
During the initialization process, it is required that ∑n

i=1 xi(0) = D and ζi(0) = 0.
Input last triggering times ti

k and state φ̂i(t), ∀i ∈ N .
Ensure:

for t = 0 to tend do
for i = 1 to n do

Compute measurement errors with ei(t).

Compute the trigger threshold ci
n
∑

j=1
aij(φi(t)− φj(t))2 − πiΓi(t).

if trigger condition (2) holds then
The event is triggered, and the event time is recorded as ti

k+1.
Update the state φ̂i(t) of agent i at event time ti

k+1.
Communicate information between state φ̂i(t) and its neighbor state φ̂j(t).

else
Update the state φ̂i(t) of agent i at instant t which belongs to interval [ti

k, ti
k+1).

end if
end for

end for

Remark 2. For the quadratic original optimization problem with the equality constraint, based
on the Lagrange multiplier method, we construct the Lagrangian function as L(x(t), λ) =

n
∑

i=1
fi(xi(t))− λ(

n
∑

i=1
xi(t)−D). Then, under Assumption 2, x∗i =

λ∗ − βi
2αi

, i ∈ N is the optimal

solution, where λ∗ is the optimal Lagrange multipliers if and only if
∂ f1(x1(t))

∂x1(t)
=

∂ f2(x2(t))
∂x2(t)

=

· · · = ∂ fn(xn(t))
∂xn(t)

= λ∗, i ∈ N . Therefore, we need to let the Lagrange multiplier λi ∈ R of each

agent update λi so that all λi reach consensus at the value λ∗, which means that the optimization
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problem with equality constraint is transformed to a MASs consensus problem completely. Therefore,

as long as the equation φ1(t) = φ2(t) = · · · = φn(t) = λ∗ =

D +
n
∑

i=1

βi
2αi

n
∑

i=1

1
2αi

holds, the algorithm

can achieve consensus and the optimization problem can be addressed.

Remark 3. Algorithm (4) only uses the information of variable xi(t), which is beneficial to save com-
munication resources in the case of limited bandwidth. Furthermore, let ζ(t) = (ζ1(t), ζ2(t), · · · ,
ζn(t))>, from Assumption 1, i.e., 1>n L = 0>n , the proposed zero-initial-value distributed optimiza-
tion algorithm, i.e., ζ(0) = 0n, satisfies the equality constraint at all times. The initial values
of the algorithm are composed of the decision variable initial value x(0) and the auxiliary vari-

able initial value ζ(0) = 0n. Then, we can prove that ∀t ≥ 0,
n
∑

i=1
ζi(t) =

n
∑

i=1
ζi(0) = 0 and

n
∑

i=1
xi(t) =

n
∑

i=1
xi(0), because the equation

n
∑

i=1
ζ̇i(t) = 1>n L∇ f (x(t)) = 0 holds. Therefore, when

the equation
n
∑

i=1
xi(0) = D is satisfied, the equality constraint holds as well at any time.

Theorem 1. Under Assumptions 1 and 2, assume that ψi ≥ πi(2−
wi
ci
), 0 < ci ≤

1
4

, then the

RAP (1) is solved under the distributed optimization algorithm (4) and the DET strategies (2) and
(3). Moreover, Zeno behavior is excluded.

Proof. Construct the Lyapunov function W1(t) of the following form

W1(t) = U(t) +
n

∑
i=1

Γi(t),

where U(t) =
1
2

n
∑

i=1

1
αi
(φi(t)− φ∗)2.

The rest of the proof is the similar to Theorem 2.

4. The One-to-One DET Strategy

In this section, in consideration of the existence of asynchronous transmission needs,
the one-to-one DET strategy is introduced, which has the unique characteristics that each
agent transmits its information to all of its neighbors asynchronously, unlike the one-to-
all DET strategy. Furthermore, based on the one-to-one DET strategy, a more flexible
distributed optimization algorithm is similarly presented and the consensus is achieved,
which also solves the RAP (1). Then, we prove that the Zeno behavior will not occur, which
strongly ensures that the algorithm is implementable.

For the one-to-one DET strategy, the edge-dependent triggering time sequence is
raised, i.e., 0 = ti→j

0 < ti→j
1 < · · · < ti→j

s < · · · , which essentially differs from the
one-to-all case.

Corresponding to the one-to-one DET case, the measurement error is described as

ej
i(t) = ∇ fi(xi(t

i→j
k ))−∇ fi(xi(t)), ∀i ∈ N , j ∈ Ni.

Then, we propose the one-to-one DET triggering sequence {ti→j
k }k∈N as follows

ti→j
k+1 = inf

l>ti→j
k

{l : (ej
i(t))

2 − cij(φi(t)− φj(t))2 − πijΓ̃ij(t) ≥ 0, ∀t ∈ [ti→j
k , l]}, (5a)

where cij and πij, ∀i ∈ N , j ∈ Ni, are positive constants.
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Remark 4. Similarly, if setting Γ̃ij(t) = 0, the DET strategy reduces to the SET strategy. Then,

the one-to-one SET triggering sequence {ti→j
k }k∈N is as follows

ti→j
k+1 = inf

l>ti→j
k

{l : (ej
i(t))

2 − cij(φi(t)− φj(t))2 ≥ 0, ∀t ∈ [ti→j
k , l]}. (5b)

Inspired by [43], we design an internal dynamic variable Γ̃ij(t) satisfying

˙̃Γij(t) = −ψ̃ijΓ̃ij(t) + µ̃ij[cij(φi(t)− φj(t))2 − (ej
i(t))

2], (6)

where Γ̃ij(0) > 0, ψ̃ij and µ̃ij =
w̃ij

cij
with w̃ij ≥ 0, ∀i ∈ N , j ∈ Ni, are positive constants.

In addition, ˙̃Γij(t) ≥ −(ψ̃ij +
w̃ij

cij
)Γ̃ij(t), ∀t > 0, and thus Γ̃ij(t) ≥ Γ̃ij(0)exp(−(ψ̃ij +

w̃ij

cij
)t) > 0.

Let
ˆ

φ
j
i (t) = ∇ fi(xi(t

i→j
k )). The distributed optimization algorithm is determined as

follows to solve the RAP (1):
xi(t) = ζi(t) + xi(0),

ζ̇i(t) =
n
∑

j=1
aij(φ̂

i
j(t)−

ˆ
φ

j
i (t)),

ζi(0) = 0,

(7)

for ∀i ∈ N , j ∈ Ni. In addition, one obtains

φ̇i(t) = 2αi

n

∑
j=1

aij[φ̂
i
j(t)−

ˆ
φ

j
i (t)]

= 2αi

n

∑
j=1

aij[(φj(t) + ei
j(t))− (φi(t) + ej

i(t))], (8)

where the initial value φi(0), ∀i ∈ N , satisfies the equation φi(0) = 2αixi(0) + βi. The
detailed one-to-one DET procedure is given as Algorithm 2.

Theorem 2. Under Assumptions 1 and 2, if the parameters ψ̃ij and cij in (5a,b) and (6) satisfy

ψ̃ij ≥ πij(2−
w̃ij

cij
), 0 < cij ≤

1
4

, then the RAP (1) is solved under the distributed optimization

algorithm (7) and the DET strategies (5a,b) and (6). Moreover, Zeno behavior is excluded.
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Algorithm 2 Distributed optimization algorithm with the one-to-one DET strategy

Require:
Initialize all parameters, such as the states xi(0) and ζi(0) of the agent i and so on.
During the initialization process, it is required that ∑n

i=1 xi(0) = D and ζi(0) = 0.
Input last triggering times ti→j

k and state φ̂
j
i (t), ∀i ∈ N .

Ensure:
for t = 0 to tend do

for i = 1 to n do
Compute measurement errors with ej

i(t).
Compute the triggered threshold cij(φi(t)− φj(t))2 − πijΓ̃ij(t).
if trigger condition (5a,b) holds then

The event is triggered, and the event time is recorded as ti→j
k+1.

Update the state φ̂
j
i (t) of agent i to agent j at event time ti→j

k+1.

Communicate information between state φ̂
j
i (t) and its neighbor state φ̂i

j(t).
else

Update the state φ̂
j
i (t) of agent i at instant t which belongs to interval [ti→j

k , ti→j
k+1).

end if
end for

end for

Proof.

(i) Define the following Lyapunov function:

W(t) = V(t) +
n

∑
i=1

n

∑
j=1

aijΓ̃ij(t),

where V(t) =
1
2

n
∑

i=1

1
αi
(φi(t)− φ∗)2.

From (8), we have

V̇(t) =
n

∑
i=1

1
αi
(φi(t)− φ∗)φ̇i(t)

=
n

∑
i=1

1
αi
(φi(t)− φ∗)2αi

n

∑
j=1

aij[(φj(t) + ei
j(t))− (φi(t) + ej

i(t))]

=
n

∑
i=1

n

∑
j=1

2aij(φi(t)− φ∗)[(φj(t) + ei
j(t))− (φi(t) + ej

i(t))]

=
n

∑
i=1

n

∑
j=1

2aijφi(t)[(φj(t) + ei
j(t))− (φi(t) + ej

i(t))]

=
n

∑
i=1

n

∑
j=1

2aij[φi(t)(φj(t)− φi(t)) + φi(t)(ei
j(t)− ej

i(t))]. (9)

Note that

n

∑
i=1

n

∑
j=1

2aijφi(t)(φj(t)− φi(t))

=
n

∑
i=1

n

∑
j=1

aij[φi(t)(φj(t)− φi(t)) + φj(t)(φi(t)− φj(t))]

= −
n

∑
i=1

n

∑
j=1

aij[φi(t)− φj(t)]2. (10)
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From Young’s inequality, one has

n

∑
i=1

n

∑
j=1

2aijφi(t)(ei
j(t)− ej

i(t)) ≤
n

∑
i=1

n

∑
j=1

aij[2(e
j
i(t))

2 +
1
2
(φi(t)− φj(t))2]. (11)

Substituting (10) and (11) into (9) yields

V̇(t) ≤
n

∑
i=1

n

∑
j=1

aij[2(e
j
i(t))

2 − 1
2
(φi(t)− φj(t))2]. (12)

According to Formula (12), taking the derivative of the Lyapunov function W(t) can be
derived as

Ẇ(t) ≤
n

∑
i=1

n

∑
j=1

aij[2(e
j
i(t))

2 − 1
2
(φi(t)− φj(t))2 + ˙̃Γij(t)].

Then, we can obtain from (5a,b) and (6) that

Ẇ(t) ≤
n

∑
i=1

n

∑
j=1

aij[2(e
j
i(t))

2 − 1
2
(φi(t)− φj(t))2 − ψ̃ijΓ̃ij(t)

+ w̃ij(φi(t)− φj(t))2 − µ̃ij(e
j
i(t))

2]

≤
n

∑
i=1

n

∑
j=1

aij[(2−
w̃ij

cij
)(ej

i(t))
2 + (w̃ij −

1
2
)(φi(t)− φj(t))2 − ψ̃ijΓ̃ij(t)]

≤
n

∑
i=1

n

∑
j=1

aij[(2−
w̃ij

cij
)(cij(φi(t)− φj(t))2 + πijΓ̃ij(t))

+ (w̃ij −
1
2
)(φi(t)− φj(t))2 − ψ̃ijΓ̃ij(t)]

=
n

∑
i=1

n

∑
j=1

aij[(2cij −
1
2
)(φi(t)− φj(t))2 + ((2−

w̃ij

cij
)πij − ψ̃ij)Γ̃ij(t)].

Since ψ̃ij ≥ πij(2−
w̃ij

cij
), πij > 0, µ̃ij =

w̃ij

cij
and 0 < cij ≤

1
4

, one obtains Ẇ(t) ≤ 0.

This implies that W(t) cannot increase and that φi(t)− φj(t) and Γ̃ij(t) are bounded. In
addition, Γ̃ij(t) > 0, ∀t ≥ 0, which leads to W(t) > 0.

By LaSalle’s invariance principle in [44], one obtains lim
t→∞
|φi(t)−φj(t)| = 0, lim

t→∞
Γ̃ij(t) =

0(∀i, j ∈ E). Thus, the RAP (1) is solved eventually.

(ii) In this part, we prove that Zeno behavior does not occur by contradiction. Assume that

the triggering sequence {ti→j
k }k∈N determined by (7) and (8) leads to Zeno behavior,

which indicates that for any ε∗ > 0 there exists a K(ε∗) ∈ Z+ such that for any
k ≥ K(ε∗), |ti→j

k − ti→j
∗ | < ε∗.

Evidently,

ti→j
K(ε∗)+1 − ti→j

K(ε∗) < 2ε∗. (13)

For ∀ t ∈ [0, Tij
∗ ], ∃ ε1, ε2 > 0, s.t. |φi(t)− φj(t)| ≤ ε1, |Γ̃ij(t)| ≤ ε2.
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Then, for ti→j
k ≤ t ≤ ti→j

k+1, from (8),

D+|ej
i(t)| ≤ |ė

j
i(t)| = |φ̇i(t)|

= |2αi

n

∑
j=1

aij(φ̂
i
j(t)−

ˆ
φ

j
i (t))|

≤ 2αΠij
k ,

where ᾱ = max
1≤i≤n

{αi} and Πij
k = max

t∈[ti→j
k ,ti→j

k+1)

{
|

n
∑

j=1
aij(φ̂

i
j(t)− φ̂

j
i (t))|

}
.

Therefore, for any t ∈
[
ti→j
k , ti→j

k+1

)
,

(ej
i(t))

2 ≤ 4α2Πij
k

2
(t− ti→j

k )2. (14)

By the trigger conditions (5a,b) and (6), when t = ti→j
k+1,

|ej
i(t

i→j
k+1)| =

√
cij|φi(t

i→j
k+1)− φj(t

i→j
k+1)|+

√
πijΓ̃ij(t

i→j
k+1)

≥
√

πijΓ̃ij(t
i→j
k+1)

> 0.

Noting
˙̃Γij(t) = −ψ̃ijΓ̃ij(t) + µ̃ij

[
cij(φi(t)− φj(t))2 − (ej

i(t))
2
]

≥ −ψ̃ijΓ̃ij(t)− πijΓ̃ij(t)

= −(ψ̃ij + πij)Γ̃ij(t).

By using the comparison principle,

Γ̃ij(t) ≥ Γ̃ij(0)e
−(ψ̃ij+πij)t,

Γ̃ij(t
i→j
k+1) ≥ Γ̃ij(0)e

−(ψ̃ij+πij)t
i→j
k+1 ,

|ej
i(t

i→j
k+1)| ≥

√
πijΓ̃ij(t

i→j
k+1) ≥

√
πijΓ̃ij(0)e

−(ψ̃ij+πij)t
i→j
k+1 ,

(ej
i(t

i→j
k+1))

2 ≥ πijΓ̃ij(0)e
−(ψ̃ij+πij)t

i→j
k+1 . (15)

Combining (14) and (15), it has

πijΓ̃ij(0)e
−(ψ̃ij+πij)t

i→j
k+1 ≤ 4α2Πij

k
2
(ti→j

k+1 − ti→j
k )2.

Therefore,

ti→j
k+1 − ti→j

k ≥

√
πijΓ̃ij(0)e

−(α̃ij+πij)t
i→j
k+1

2αΠij
k

≥

√
πijΓ̃ij(0)e

−(α̃ij+πij)T
ij
∗

2αΠij
k

. (16)
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For ε∗ =

√
πijΓ̃ij(0)e

−(α̃ij+πij)T
ij
∗

4αΠij
k

> 0, it is not difficult to see from (16) that ti→j
K(ε∗)+1 −

ti→j
K(ε∗) ≥ 2ε∗, which is obviously contradictory to (13). Consequently, there is no Zeno

behavior.

Remark 5. In contrast to the one-to-all DET strategy mentioned in Theorem 1, under the one-to-one
DET strategy, the triggering sequences {ti→j

k }(j ∈ Ni) of each agent is different, which contributes
to flexibly adjusting the transferred information to each of its neighbors j ∈ Ni. Furthermore,
the remarkable feature of the one-to-one DET strategy is that each agent is allowed to design its
own distinctive triggering instant ti→j

k which is immune to any synchronous executions and the

requirements of ti→j
k = tj→i

k or ti→j1
k = ti→j2

k (∀j1, j2 ∈ Ni), and so on. Therefore, in practice,
one-to-one DET strategies potentially offer greater flexibility and efficiency in terms of adjusting the
transmission of information, which is significant to designing a good DET strategy.

Remark 6. The proposed algorithms (4) and (7) can effectively solve RAP, but both of them need to
satisfy ∑n

i=1 xi(0) = D and ζi(0) = 0, which means with initialization constraints. In our future
research, we will consider eliminating state initialization.

5. Numerical Example

In this section, two numerical examples are provided to illustrate the effectiveness of
the theoretical results. The proposed one-to-all and one-to-one DET strategies are applied
to the RAP (1) in case 1 and case 2, respectively. Figure 1 depicts the connection topology,
which satisfies Assumption 1. The chosen cost coefficients αi, βi, and γi of the quadratic
cost function fi(xi(t)) = αix2

i (t) + βixi(t) + γi are listed in Table 2. The load demand D is
assumed to be 145. Then, the initial values of xi(t) are selected as x1(0) = 30, x2(0) = 25,
x3(0) = 40, x4(0) = 50, and ζi(0) = 0, i = 1, 2, 3, 4.

Figure 1. Connection topology.

Table 2. Cost coefficients.

i αi βi γi

1 0.5 3 2
2 1.5 4 1
3 3 5 0.5
4 1 2 1.5
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Case 1. One-to-all DET
First, consider the one-to-all DET based on Theorem 1. Given the scalars Γ1(0) = 4,

Γ2(0) = 3, Γ3(0) = 8, Γ4(0) = 6, c1 = 0.05, c2 = 0.1, c3 = 0.15, c4 = 0.2, ω1 = 0.025,
ω2 = 0.03, ω3 = 0.06, ω4 = 0.07, µ1 = 0.5, µ2 = 0.3, µ3 = 0.4, µ4 = 0.35, π1 = 1,
π2 = 2, π3 = 3, π4 = 4, ψ1 = 1.5, ψ2 = 3.4, ψ3 = 4.8, ψ4 = 6.6, Figure 2 shows that φi(t)
converges to φ∗, which essentially guarantees that all agents reach asymptotic consensus.
Then, from Figure 3, fi(xi(t)) converges to the optimal values. Figure 4 shows the triggering

instants of the one-to-all DET strategy. In addition, the equality constraint
4
∑

i=1
xi(t) = D

can be obtained from Figure 5.

0 1 2 3 4 5 6
0

50

100

150

200

250

Figure 2. Trajectory of φi(t).

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

Figure 3. State evolution of fi(xi(t)).

0 1 2 3 4 5 6

1

2

3

4

5

Figure 4. Event triggering instants under one-to-all DET.

0 1 2 3 4 5 6
144

144.5

145

145.5

146

Figure 5. Trajectory of
4
∑

i=1
xi(t).

Furthermore, the equality constraint
4
∑

i=1
ζi(t) = 0 can be obtained from Figure 6.

The trajectories of xi(t) are shown in Figure 7. Moreover, Figure 8 shows the minimum
value of F(x(t)), where F(x∗) is the optimal solution of the RAP (1). Figure 9 exhibits the
trajectory of the dynamic variable Γi(t).
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Figure 6. Trajectory of
4
∑

i=1
ζi(t).
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Figure 7. State evolution of xi(t).
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Figure 8. State evolution of F(x(t)).
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Figure 9. State evolution of Γi(t).

Case 2. One-to-one DET
Consider the one-to-one DET based on Theorem 2. Different from case 1,

given Γ̃12(0) = 1, Γ̃23(0) = 4, Γ̃34(0) = 5, Γ̃41(0) = 10, Γ̃21(0) = 1, Γ̃32(0) = 4, Γ̃43(0) = 5,
Γ̃14(0) = 10, c12 = 0.05, c23 = 0.1, c34 = 0.15, c41 = 0.2, c21 = 0.04, c32 = 0.08, c43 = 0.12,
c14 = 0.24, ω12 = 0.025, ω23 = 0.03, ω34 = 0.06, ω41 = 0.07, ω21 = 0.01, ω32 = 0.05,
ω43 = 0.08, ω14 = 0.09, µ̃12 = 0.5, µ̃23 = 0.3, µ̃34 = 0.4, µ̃41 = 0.35, µ̃21 = 0.25,
µ̃32 = 0.625, µ̃43 = 0.67, µ̃14 = 0.375, π12 = 1, π23 = 2, π34 = 3, π41 = 4, π21 = 1,
π32 = 2, π43 = 3, π14 = 4, ψ̃12 = 1.5, ψ̃23 = 3.4, ψ̃34 = 4.8, ψ̃41 = 6.6, ψ̃21 = 1.75,
ψ̃32 = 2.75, ψ̃43 = 3.99, ψ̃14 = 6.5, Figure 10 shows that φi(t) converges to φ∗, which also
implies that consensus is indeed achieved. Then, as seen in Figure 11, fi(xi(t)) converges to
the minimum value. Figure 12 shows the triggering instants of the one-to-one DET strategy.

In addition, the equation constraint
4
∑

i=1
xi(t) = D is guaranteed from Figure 13.
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Figure 10. Trajectory of φi(t).
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2000
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Figure 11. State evolution of fi(xi(t)).
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Figure 12. Event triggering instants under one-to-one DET.

0 1 2 3 4 5 6
144
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145.5
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Figure 13. Trajectory of
4
∑

i=1
xi(t).

Besides, the equation constraint
4
∑

i=1
ζi(t) = 0 is guaranteed from Figure 14. The motion

trajectory of xi(t) is shown in Figure 15. Furthermore, Figure 16 depicts the minimum
value of F(x(t)), where F(x∗) is the optimal solution of the RAP (1). Figure 17 shows that
Γ̃ij(t) converges to 0 and Γ̃ij(t) > 0 always holds.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Figure 14. Trajectory of
4
∑

i=1
ζi(t).
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Figure 15. State evolution of xi(t).
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Figure 16. State evolution of F(x(t)).
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Figure 17. State evolution of Γ̃ij(t).

Case 3. DET vs. SET
By letting Γi(t) = 0 and Γ̃ij(t) = 0 in (2) and (5), one has the one-to-all SET and one-to-

one SET versions (2b) and (5b). Then, the one-to-all DET and SET strategies are compared
in Figures 18 and 19. Moreover, the one-to-one DET strategy and the corresponding SET
strategy are compared in Figures 20 and 21. Since Γi(t) > 0 in (2) and Γ̃ij(t) > 0 in (5),
the DET strategies are likely to have fewer triggering times, as compared with the SET
strategies, which are also displayed in Figures 18–21 and Tables 3 and 4, which means that
DET is beneficial for saving system resources with a slower update frequency.

0 1 2 3 4 5 6

1

2

3

4

5

Figure 18. Event under one-to-all DET (2a).

0 1 2 3 4 5 6

1

2

3

4

5

Figure 19. Event under one-to-all SET (2b).
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Figure 20. Event under one-to-one DET (5a).
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6

8

Figure 21. Event under one-to-one SET (5b).

Table 3. One-to-all DET performance comparison with SET.

Event Triggering Strategy
Triggering Numbers for Agents

1 2 3 4

DET 12 24 45 22
SET 60 24 105 46

Table 4. One-to-one DET performance comparison with SET.

Event Triggering Strategy
Triggering Numbers for Agents

1→2 2→1 1→4 4→1 2→3 3→2 3→4 4→3

DET 12 16 18 211 44 28 55 24
SET 106 53 39 251 48 158 1038 1073

6. Conclusions

In this paper, two novel DET strategies are combined to design distributed optimiza-
tion algorithms to solve the RAP; they have fewer trigger times compared to SET strategies.
Furthermore, the designed distributed optimization algorithms require only the state in-
formation of the agent itself and do not require information exchange with neighboring
nodes, which saves on the communication energy of the system. Furthermore, the internal
dynamic variables Γi(t) and Γ̃ij(t) not only solve the RAP, but also play an important role
in eliminating the Zeno behavior. In the future, we will combine DET strategies to study
optimization problems with equality and inequality constraints under directed graphs.
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