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Abstract: This paper proposed a Pulse-Agile-Phase-Coding slow-time MIMO (PAPC-st-MIMO)
waveform, where the phase-coded signal is utilized as the intra-pulse modulation of the slow-time
MIMO waveform. Firstly, the signal model of the proposed waveform is derived. To improve
the orthogonality of the phase-coded waveform sets, a novel hybrid evolutionary algorithm based
on Cyclic Algorithm New (CAN) is proposed. After the optimization process of the phase-coded
waveform sets, the signal processing method of the PAPC-st-MIMO waveform is derived. Finally, the
effectiveness of the proposed method is verified with a simulation experiment. The mitigation ratio
of the near-range detection waveform can achieve −30 dB, while the long-range detection waveform
can achieve −35 dB. This approach ensures waveform orthogonality while enabling the slow-time
MIMO waveform to achieve distance selectivity. By conducting joint pulse-Doppler processing
across multiple range segments, range ambiguity can be suppressed, increasing the system’s Pulse
Repetition Frequency (PRF) without introducing ambiguity.

Keywords: slow-time MIMO radar; pulse agile phase-coding; MIMO radar waveform design; MIMO
radar range ambiguity mitigation

1. Introduction

As a novel radar system, multiple-Input Multiple-Output (MIMO) radar transmits
orthogonal waveforms and separates the echoes corresponding to each transmitting channel
at the receiving end. This capability allows MIMO radar to achieve virtual aperture
extension. The waveform diversity characteristic of MIMO radar enables it to exhibit
exceptional performance in several aspects, including low-speed target detection [1,2],
angle estimation [3,4], and clutter suppression [5,6], unlike those conventional MIMO
techniques which conduct in the fast-time such as Frequency Division Multiple Access
(FDMA) and Code Division Multiple Access (CDMA), slow-time MIMO typically requires
joint processing of multiple pulses within a CPI to achieve orthogonal transmitting. The
slow-time MIMO waveforms mainly include Time Division Multiple Access (TDMA) and
DDMA [7–11].

The Doppler Division Multiple Access (DDMA) waveforms introduce an initial linear
phase to each transmitting channel within a Coherent Processing Interval (CPI), thereby
achieving orthogonality in the Doppler domain. Additionally, the DDMA waveform
demonstrates high clutter correlation and excellent clutter suppression performance, as
each channel’s transmitted signal shares the same carrier frequency [12–15]. DDMA has
found widespread applications in various fields, including autonomous driving [16] and
urban security [17,18].
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In 2018, Texas Instruments (TI) introduced the AWR1843, a 77 GHz Frequency-
Modulated Continuous Wave (FMCW) MIMO automotive mmWave radar module. This
module incorporates three transmit channels and four receive channels, enabling the trans-
mission of slow-time MIMO waveforms [19]. Reference [20] conducted target detection
experiments using this radar module and compared its performance with Single-Input
Multiple-Output (SIMO) radar. The study analyzed the enhancement in target angle
resolution achieved by the slow-time FMCW MIMO radar.

Furthermore, reference [21] developed a low, slow, and small (LSS) target detection
radar system based on the Doppler Division Multiple Access (DDMA) waveform. They
proposed a clutter suppression method for slow-time MIMO radar, utilizing independent
component analysis. The research team tested the radar system’s effectiveness in detecting
small unmanned aerial vehicle (UAV) targets [22].

In the Doppler domain, slow-time MIMO radar introduces waveform diversity, signifi-
cantly reducing the Doppler unambiguous region for each receive-transmit channel pair. To
address issues related to target velocity ambiguity and blind velocity suppression in slow-
time MIMO radar, researchers have conducted a series of studies. In 2011, reference [23]
proposed two methods, Frequency-Dithered DDMA and Phase-Dithered DDMA, to tackle
the blind velocity problem associated with DDMA waveforms. Frequency-Dithered DDMA
modifies the mapping relationship between the Doppler sub-bands of the transmitted
signal and the transmitting elements in a nonlinear manner, effectively suppressing blind
velocities of non-array normal targets. On the other hand, Phase-Dithered DDMA intro-
duces random phase perturbations to each channel and achieves the suppression of blind
velocities, including those of array normal targets, through matched reception. In 2012,
reference [24] further enhanced the theoretical framework of dithered DDMA and analyzed
the performance of the DDMA waveform in terms of clutter cancellation ratio (CR). The
computational complexity of dithered DDMA is low. However, when using matched
filtering for signal processing, there will be high sidelobes and target SINR loss, affecting
weak targets’ detection effect.

In 2018, reference [25] introduced the Random Slow-Time Code Division Multiple Ac-
cess (ST-CDMA) waveforms. This waveform employs random initial phases for each pulse
and incorporates Sparse Signal Processing (SSP) techniques to mitigate the target velocity
ambiguity encountered in conventional DDMA waveforms. Furthermore, it effectively
suppresses the high sidelobes induced by matched filtering. However, it is essential to note
that SSP involves nonlinear processing, resulting in elevated computational complexity.

Reference [26] conducted a study on methods for blind velocity suppression in DDMA
using multiple frequencies and multiple Pulse Repetition Frequencies (PRFs). The multiple-
frequency blind velocity suppression method imposes requirements on the system band-
width. It increases hardware complexity, while based on the Chinese Remainder Theorem,
the multiple-PRF method is highly sensitive to errors. Reference [27] employed the parallel
factorization method to jointly estimate target parameters in slow-time MIMO radar to
address the target velocity ambiguity issue. However, tensor decomposition-based meth-
ods exhibit high computational complexity, unstable algorithm convergence, and require
auxiliary conditions to ensure convergence to the optimal solution.

The current methods for blind velocity suppression and target velocity ambiguity
resolution in slow-time MIMO radar have advantages and limitations, including high
sidelobe, sensitivity to errors and high computational complexity in nonlinear processing.
This study employs a straightforward approach to address the limitation of increasing the
system’s Pulse Repetition Frequency to expand the unambiguous velocity range of DDMA
waveforms. However, raising the PRF leads to a significant target range ambiguity problem.
The paper proposes a range ambiguity suppression method for slow-time MIMO radar
based on intra-pulse waveform agile phase coding to overcome this issue.

The proposed method introduces the Pulse-Agile-Phase-Coding slow-time MIMO
(PAPC-st-MIMO) waveform, where the phase-coded signal is utilized as the intra-pulse
modulation of the slow-time MIMO waveform. This approach ensures waveform orthogo-
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nality while enabling the slow-time MIMO waveform to achieve distance selectivity. By
conducting joint pulse-Doppler processing across multiple range segments, range ambigu-
ity can be suppressed, increasing the system’s PRF without introducing ambiguity.

2. Methodology
2.1. Signal Model

Consider a co-located 1D linear antenna array with M transmitting elements that are
omnidirectional. The element distance to the reference antenna of the mth, m = 0, . . . , M− 1
element in the transmitting array is dm. Note that this definition of the array is general
regardless of whether the array is uniform or not. The operating frequency is f0 and the
operating wavelength is λ0. There are K pulses in one CPI and the PRF fr = 1/Tr, where
Tr refers to pulse repetition interval (PRI).

The slow-time MIMO approach split the whole Doppler PRF into M orthogonal
Doppler sub-bands with a bandwidth of ∆ fsub = fr/M via slow-time phase coding. Here,
we set the number of the Doppler sub-bands as the same as the number of transmitting
antennas to simplify the modeling. Furthermore, the Doppler sub-bands can be redundant,
leading to some empty Doppler sub-bands that can be utilized to enlarge the velocity
measurement range. The baseband pulse waveform upulse(t) has varying starting phases
ϕ(m, k), a function of the transmitting element index m and the pulse index (slow-time) k.
The transmitting waveform of the mth element is:

sm(t) =
K−1

∑
k=0

upulse(t− kTr)ej2π( f0t+ϕ(m,k)) (1)

The PAPC-st-MIMO waveform uses phase-coded signals as the pulse modulation
method. It is assumed that there are Q different continuous phase-coded signals in a frame
of a PAPC-coded signal set

{
uq

pulse(t)
}

, (q = 0, . . . , Q− 1), and the code length of each
coded signal is P bits. Then the pulse modulation waveform of the group phase-coded
signal can be expressed as:

uq
pulse(t) =

1√
P

P−1

∑
p=0

cqprect
(

t− pτc − τc
2

τc

)
, (2)

where
{

cqp
}

, (p = 0, . . . , P− 1) is the coding sequence of the q-th group phase-coded signal,
τc the chip width, and the interval between two adjacent chips. Therefore, the baseband
reference signal model of a frame of PAPC coded signal set can be obtained by:

ure f (t) =
1√
PQ

Q−1

∑
q=0

P−1

∑
p=0

cqprect
(

t− pτc − τc
2 − qTr

τc

)
. (3)

The PAPC pulse modulation waveform represented by (3) is brought into (1), and the
PAPC-st-MIMO transmission signal model corresponding to the mth transmit antenna can
be obtained:

s′m(t) =
K/Q−1

∑
r=0

Q−1

∑
q=0

uq
pulse

(
t− qTr − rTQ

)
ej2π( f0t+ϕ(m,r×Q+q)), (4)

where TQ = QTr is the frame period of the PAPC signal, the ratio of the number of
pulses in the CPI to the number of PAPC signals in a frame, R = K/Q, is selected as an
integer to simplify the model. The transmission waveform of the PAPC-st-MIMO signal is
shown in Figure 1. The PAPC-coded signal set can obtain a signal set with good auto/cross-
correlation characteristics through the optimization search algorithm, and its design process
will be described in detail in the next section.
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Figure 1. Schematic diagram of PAPC-st-MIMO waveform.

2.2. PAPC Signal Set Design

This section provides a detailed introduction to the design method of orthogonal
phase-coded signal sets. Firstly, the principles of the Evolutionary Algorithm (EA) and
Cyclic Algorithm New (CAN) are introduced, respectively. Then, the hybrid algorithm
based on evolutionary algorithm and a new cyclic algorithm: the EA-CAN algorithm, is
introduced, and the advantages of this algorithm compared with traditional algorithms
are analyzed.

An evolutionary algorithm is a class of stochastic optimization algorithms under the
new Darwinian paradigm, where the new Darwinian paradigm is a combination of classical
Darwinian evolution, Weismann’s selection theory, and Mendelian genetics [28]. Classic
genetic algorithms (GA), memetic algorithms (MA), etc., belong to evolutionary algorithms.
The main operations of evolutionary algorithms include crossover (or recombination),
mutation, and selection. Evolutionary algorithms have been widely researched and applied
in recent years due to their simple form, strong universality, and ability to obtain globally
optimal solutions. Some improved evolutionary algorithms, such as memetic algorithms,
after relying on global search capabilities to narrow the possible search range, combine
efficient local optimal algorithms such as Tabu Search [29], Greedy Code Search (GCS) [30],
etc., to optimize the search area to get the optimal solution.

2.2.1. Hybrid Evolutionary Algorithm Based on CAN

To leverage the advantages of global search and local search algorithms, this paper
proposes a hybrid evolutionary algorithm called EA-CAN. By adopting evolutionary
algorithms as the overarching framework, the algorithm exhibits strong global search
capabilities, mitigating the risk of traditional gradient-based algorithms getting trapped
in local optima. To address evolutionary algorithms’ limited local refinement ability, the
paper introduces the CAN algorithm, which offers efficient local optimization capabilities
and computational efficiency as a local search algorithm [31]. As a result, the EA-CAN
algorithm combines global search and local refinement capabilities.

Additionally, the time complexity of hybrid algorithms, such as the MA algorithm,
is primarily determined by the time complexity of the local search algorithm. In this
regard, introducing Fast Fourier Transform (FFT) significantly improves the time complexity
of the local search compared to the general MA algorithm. Consequently, the overall
computational efficiency of the algorithm is substantially enhanced.

Considering Q groups of phase-coded signals with a code length of P:

xq(p) = cqp = ejϕq(p), (5)

where ϕq(p) ∈ [0, 2π), p = 0, 1, . . . , P − 1, q = 0, 2, . . . , Q − 1. Then the non-periodic
cross-correlation function of the ith signal and the jth signal is defined as follows:
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corri,j(k) =
P−1−k

∑
p=0

xi(p + k)x∗j (p) = corr∗j,i(−k) (6)

where i, j = 0, 2, . . . , Q− 1, k = 0, 1, . . . , P− 1. When i = j, the above formula becomes the
auto-correlation function of the ith signal. According to the actual working scenario of the
radar, different orthogonal phase-coded signal optimization criteria can be selected [32].
This paper chooses the peak sidelobe as the cost function of the optimization algorithm,
which can be expressed as:

E =
Q−1

∑
q=0

max
∣∣corrq,q(k)

∣∣+ Q−1

∑
i=0

Q−1

∑
j=0
j 6=i

max
∣∣corri,j(k)

∣∣, (7)

where max
∣∣corrq,q(k)

∣∣ is the peak sidelobe (Peak Sidelobe Level, PSL) of the qth signal,
max

∣∣corri,j(k)
∣∣ (i, j = 0, 2, . . . Q− 1, i 6= j) is the peak cross-correlation level (Peak Cross-

Correlation Level, PCCL) of the ith and jth signals. Usually, normalized PSL and PCCL are
used as measurement indicators, divided by the auto-correlation peak and the code length
N. The PSL and PCCL used in the following text refer to normalized values.

The EA-CAN algorithm process is shown in Algorithm 1, where the partial restart
strategy is to randomly generate a specified number (partial restart individual number Nst)
of new individuals at intervals of a specified number of generations (partial restart interval
generation Grs) during the evolution of the population and add them to the population to
participate in the evolution of the population, to improve the diversity of the population.
After each random generation of population individuals and random mutations, CAN
will be used for local optimization. Then a new population will be formed or added to
the original population. It should be noted that the local search algorithm CAN algorithm
is optimized based on the integrated sidelobe level (Integrated Sidelobe Level, ISL), but
this does not contradict the overall optimization criteria: choosing the peak sidelobe as the
basis for selection ensures that the peak sidelobe continues to decline during the iteration
process, while a local search is based on ISL as the criterion to avoid unrobust optimization
results brought by only using the peak criterion.

Algorithm 1: EA-CAN Algorithm

1: Initialization:
2: Iteration times i := 0.
3: EA parameter initialization:
4: Parent population individual number Npar, offspring population individual number Nos,

partial restart individual number Nrs.
5: Partial restart interval generation Grs, maximum iteration times Gmax and mutation bit

number Nmut.
6: Randomly generate Npar + Nos individuals as the initial population P(0), and use CAN for

local optimization.
7: Take the top Npar individuals as parents according to the cost function.
8: Repeat:
9: If the iteration times i is a multiple of Grs, perform a partial restart:

10: Randomly generate Nrs new individuals and add them to the parents P(i)par after
using CAN for local optimization.

11: Generate offspring:
12: Randomly select Nos times from the parents P(i)par.
13: Perform Nmut bit random mutations respectively and get offspring P(i)os after using

CAN for local optimization.
14: Take the Npar top individuals from the union of parents P(i)par and offspring P(i)os as the

next generation parents P(i + 1)par according to the cost function.
15: Iteration times i := i + 1.
16: Until the stop condition is met
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2.2.2. Design Results

Two orthogonal phase-coded waveform sets were generated using the EA-CAN al-
gorithm proposed in this paper, serving as the pulse modulation signal set for the PAPC-
st-MIMO signal. The code length of waveform set 1 is P = 64, and the group number is
Q = 256; the code length of waveform set 2 is P = 400, and the group number is Q = 256.
The algorithm simulation parameters are set as follows: the number of individuals in the
parent population is Npar = 4N, the number of individuals in the offspring population is
Nos = 20N, the number of individuals in the partial restart is Nrs = 10N, the number of
generations in the partial restart interval is Grs = 5, the maximum number of iterations in
the evolutionary algorithm is Gmax = 1000, and the number of mutation bits is Nmut = 2.
The performance of the waveform generated by the EA-CAN algorithm and the impact of
the signal set parameters on the waveform performance are analyzed.

The average PSL and PCCL of the two signal sets designed using the EA-CAN algo-
rithm are shown in Table 1. Figures 2 and 3 show the auto-correlation and cross-correlation
results of the two signal sets designed using the EA-CAN algorithm, with different color
lines representing different waveforms. It can be seen that the average PSL of the waveform
with a code length of P = 64 reaches below −28 dB, the average PSL of the waveform
with a code length of P = 400 reaches below −33 dB, and its average PCCL can approach
−19 dB.

Table 1. The average PSL and PCCL of PAPC signal sets.

P = 64 P = 400

PSL −28.41 dB −33.85 dB
PCCL −12.31 dB −18.79 dB
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The following gives the performance level of the EA-CAN algorithm when designing
signal sets with different code lengths and numbers of signals. Figure 4a shows the changes
in the average PSL and PCCL of the orthogonal phase-coded waveforms generated by the
EA-CAN algorithm with the code length P, where Q = 8, P = 16, 32, 64, 128, 256, 512. To
observe the trend of PSL and PCCL 1/

√
N is also plotted in the figure. Due to the increase

in the code length P bringing more design degrees of freedom, both the average PSL and
PCCL decrease with the increase in the code length P, and both fall at a velocity close
to O

(
1/
√

N
)

.
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Figure 4b shows the changes in the average PSL and PCCL of the orthogonal phase-
coded waveforms generated by the EA-CAN algorithm with the number of signals Q,
where P = 64, Q = 4, 8, 16, 32, 64, 128. The increase in the number of signals brings more
constraints to the design, causing the average PSL and PCCL to increase with the increase
in the number of signals Q. Overall, the choice of code length P has a more significant
impact on the performance of the signal set designed by the EA-CAN algorithm.

2.3. PAPC-St-MIMO Signal Processing

The PAPC-st-MIMO waveform achieves range selectivity by utilising the PAPC signal
set. In the signal processing procedure, the following steps are performed:

1. Different range segment filter groups are established and matched with the echo
signal. The echo signal in other range segments is intentionally mismatched, resulting
in the acquisition of one-dimensional range images for each range segment.

2. The echo pulse compression signal from different range segments undergoes process-
ing using Pulse-Doppler (PD) techniques.

3. The traditional st-MIMO signal processing method is employed to demodulate the
echo signal orthogonally. This step yields the echo signal for each MIMO receiving-
transmitting channel at various ranges.

4. Finally, the imaging results from each range segment are merged or spliced together,
enabling the retrieval of the echo signal for each MIMO receiving-transmitting channel
after extending the detecting range.

Theoretically, the PAPC-st-MIMO waveform can obtain an unambiguous detecting
range of Q× Rprt, where Rprt = 0.5cTr is the unambiguous detecting range of a single
pulse. The setting of the receiving filter group of different range segments of the PAPC-st-
MIMO waveform and the range gating schematic is shown in Figure 5. The corresponding
receiving filter group is set for different range segments, and the corresponding range
segment echo can be coherently accumulated.
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The following establishes the echo model of the PAPC-st-MIMO signal under the
unambiguous scenario and derives the processing process of the PAPC-DDMA signal.
Based on the modeling process in Section 2.2.1, suppose a point target moving at a uniform
velocity in the far field of the radar has a range of Rt from the radar, the radial velocity
of the target relative to the radar is vt, the corresponding target Doppler is ft = 2vt/λ0,
and the wave arrival direction of the target is φt. Then the echo signal received by the nth
receiving antenna corresponding to the mth transmitting antenna can be expressed as:

smn(t) =
K/Q−1

∑
r=0

Q−1

∑
q=0

uq
pulse

(
t− τmn − qTr − rTQ

)
ej2π f0(t−τmn)ej2π(αm+ ft)(r×Q+q)Tr , (8)

where τmn is the echo delay, which has the following form:

τmn =
2
[
Rt − vt

(
qTr + rTQ

)]
c

− dm sin φt

c
− dn sin φt

c
. (9)

Further, the received signal of the nth receiving antenna should be the sum of all M
transmitted signals. After down-conversion and low-pass filtering, it can be expressed as:

Xn(t) =
M−1

∑
m=0

K/Q−1

∑
r=0

Q−1

∑
q=0

uq
pulse

(
t− τmn − qTr − rTQ

)
ej2π f0τmn ej2π(αm+ ft)(r×Q+q)Tr . (10)

Then, the echo signals received by each receiving antenna are jointly pulse-Doppler
processed in multiple range segments to obtain a comprehensive range-Doppler plane
without range ambiguity in multiple range segments. Use different receiving filter groups
to match filter processing the received signal and obtain the matched filter output results
corresponding to different range segments. Theoretically, a frame with Q groups of different
codewords of the PAPC signal set can achieve up to Q unambiguous detection of range
segments. As shown in Figure 5, the receiving filter group corresponding to the qth range
segment should be obtained by cyclically shifting the baseband reference signal ure f (t) of
the PAPC signal set by q pulses. Then the matched filter output result corresponding to the
qth range segment can be expressed as:
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sq
pc(t) = Xn(t) ∗ hq(t)

=
∫ ∞
−∞ Xn(τ)h∗q(t− τ)dτ,

(11)

where hq(t) is the matched filter.
Rearrange the matched filter output result of the qth range segment according to the

pulse repetition interval, perform slow-time pulse-Doppler processing, that is, perform
windowing, zero-padding, and discrete Fourier transform along the slow time, and obtain
the range-Doppler plane corresponding to each range segment. Splice the range-Doppler
planes corresponding to each segment in sequence to obtain a comprehensive range-
Doppler plane of multiple range segments. The result of the FFT processing of the matched
filter output result sq

pc(t) of the qth range segment rearranged according to the number of
pulses has the following form:

yq
pd(t, l) =

K−1

∑
k=0

w(k)xk
n(t)e

−j2πk l
L , (12)

where w(k) is the weight value of the slow-time window function, used to suppress the
sidelobe of the velocity dimension, and xk

n(t) is the kth pulse of the matched filter output
result of the qth range segment, and l = 0, · · · , L − 1 represents the output of the lth
velocity channel. Splice the pulse-Doppler processing results corresponding to each range
segment in sequence to obtain a comprehensive range-Doppler plane of multiple range
segments that is:

yn
pd_All(t, l) =

Q−1

∑
q=0

yq
pd(t− qTr, l). (13)

Finally, use the Doppler filter to demodulate the comprehensive range-Doppler plane
corresponding to each receiving antenna of the MIMO and obtain the comprehensive
range-Doppler plane after demodulation of each MIMO receiving-transmitting channel. To
separate the response of the ith transmitting antenna on the comprehensive range-Doppler
plane corresponding to the nth receiving antenna, use the Doppler frequency center αi
corresponding to the ith transmitting channel to mix with yn

pd_All(t, l) to get the echo
corresponding to the ith transmitting channel with zero Doppler:

ỹn,i
pd_All(t, l) = yn

pd_All(t, l) · e−j2παikTr . (14)

Then, use a low-pass filter with a cutoff frequency of [−∆ fsub/2, ∆ fsub/2] to process
ỹn,i

pd_All(t, l), and obtain the comprehensive range-Doppler plane corresponding to the
(n, i)th receiving-transmitting channel:

yn,i
pd_All(t, l) = ỹn,i

pd_All(t, l) ∗ HLP(t, l), (15)

where HLP(t, l) is the time-domain response of the low-pass filter. This way, the compre-
hensive range-Doppler plane corresponding to each MIMO receiving-transmitting channel
can be obtained, and slow-time MIMO demodulation can be realized.

The complete PAPC-st-MIMO signal processing process is shown in Algorithm 2:
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Algorithm 2: PAPC-st-MIMO Signal Processing

1: Begin:
2: Target parameter initialization.
3: Received PAPC-DDMA signals of each channel.
4: Initial range segment q = 0.
5: While q 6= Q:
6: Select q.
7: Matched filtering using the receive filter for the current range segment.
8: Pulse-Doppler processing for the current range segment.
9: Select next q + 1.

10: End
11: Synthetic Range-Doppler plot for multiple range segments.
12: MIMO demodulation using Doppler filters.
13: Synthetic Range-Doppler plot for multiple range segments of each receiver-transmitter

channel.
14: CFAR detection.
15: End

3. Simulation and Analysis

This section validates the range selectivity performance of the PAPC-st-MIMO wave-
form through simulation experiments. The experimental setup considers a one-dimensional
MIMO antenna array arranged along the pitch direction with co-located transceivers. The
array consists of 6 elements, where each antenna transmits the PAPC-st-MIMO waveform.

For the PAPC signal set, signals 1 and 2, described in Section 2.2.2, are utilized. These
signal sets correspond to near and far radar detection scenarios, respectively. Targets are
placed at different range segments, and their performance is compared with that of the
slow-time MIMO (LFM-st-MIMO) waveforms, where the intra-pulse modulation involves
Linear Frequency Modulation signals. By conducting these experiments, the proposed
range ambiguity suppression method based on PAPC-st-MIMO is validated.

3.1. Near-Range Detection Scenario

This simulation uses a PAPC signal set 1 with a code length P = 64 and group number
Q = 256 as the intra-pulse modulated PCPA-st-MIMO waveform. Specific waveform pa-
rameters and detection performance are shown in Tables 2 and 3. The radar’s instantaneous
bandwidth is 40 MHz, corresponding to a chip width of 0.025 µs. When using a PAPC
signal set 1 with a code length, the corresponding pulse width is 1.6 µs. The radar pulse rep-
etition interval is set to 10 µs, corresponding to a radar unambiguous range measurement
of 1.5 km. The PAPC signal set with group number can theoretically achieve unambiguous
joint detection of 256 range segments. To simplify the process, the number of combined
range segments is set to 4, i.e., the combined unambiguous range after multi-range segment
combined processing is 6 km. The number of transmit channels is set to 6, and the number
of Doppler sub-bands is 8, including two redundant Doppler sub-bands. The number of
coherently processed pulses within one CPI is 1024, i.e., the coherent processing period is
10.24 ms, corresponding to the unambiguous velocity measurement range of ±302.4 m/s.

Four simulation targets with different ranges, velocities, and signal-to-noise ratios
(SNRs) were set, as shown in Table 4. Each target was located in a different range segment,
and the post-compression SNR for each target was set to 20 dB. For traditional slow-time
MIMO waveforms based on LFM, targets 2, 3, and 4 would generate range ambiguities.

After matched filtering and pulse-Doppler processing, the multi-range joint Range-
Doppler (RD) plane of the PAPC-st-MIMO waveform is shown in Figure 6a. The single-
channel multi-range joint RD plane after slow-time MIMO demodulation is shown in
Figure 6b. The processing results of the traditional LFM-st-MIMO waveform are shown in
Figure 7. For ease of comparison, the processing results of the LFM-st-MIMO waveform for
the four range ranges are also listed. The PAPC-st-MIMO waveform has range selectivity,
and it can effectively suppress ambiguous echoes generated by each target at other corre-
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sponding range ranges, achieving unambiguous multi-range joint detection results. This
allows the radar system to maintain its original unambiguous velocity measurement range
without decreasing the pulse repetition frequency to achieve a greater unambiguous range
scope. In contrast, traditional LFM-st-MIMO waveforms generate ambiguous echoes at
other corresponding range ranges, which could lead to false alarms and inaccurate target
range information.

Table 2. Short Pulse Waveform Parameters.

Variable Value

Initial Carrier Frequency 3.1 GHz
Instantaneous Bandwidth 40 MHz

Pulse Width 1.6 µs
Sampling Frequency 80 MHz

Pulse Repetition Interval 10 µs
Chip Width 0.025 µs

Number of Code Elements 64
Number of Accumulated Pulses within CPI 1024

Number of Pulses within Frame 256
Number of Transmit Channels 6
Number of Doppler Sub-bands 8

Number of Combined Range Segments 4

Table 3. Short Pulse Waveform Detection Performance.

Variable Value

Range Resolution 3.75 m
Velocity Resolution 4.7 m/s

Unambiguous Velocity Range of Doppler Sub-band ±302.4 m/s
Unambiguous Range of Single Pulse 1.5 km

Combined Unambiguous Range 6 km

Table 4. Parameters for Targets in a Near-Range Scenario Parameter.

Parameter Target 1 Target 2 Target 3 Target 4

Target Range 0.5 km 2.1 km 3.7 km 5.3 km
Target Velocity 60 m/s 20 m/s −20 m/s −60 m/s

SNR 20 dB 20 dB 20 dB 20 dB
Located Range Segment 1 2 3 4
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Figure 7. Near−range scenario LFM−st−MIMO range−velocity plane. (a) Range−velocity plane
before demodulation, (b) Range−velocity plane after demodulation.

Figures 8 and 9 further display the one-dimensional range image of the PAPC-st-
MIMO and LFM-st-MIMO signals for each target in the velocity channel, with the range
and amplitude information of each target echo, noted. The PAPC-st-MIMO signal can
achieve unambiguous multi-range joint detection of targets and obtain accurate target range
information. After PD processing, the theoretical target SNR is 50 dB. The average target
SNR obtained after processing the PAPC-st-MIMO waveform is 49.8 dB, consistent with
the theoretical value. In contrast, LFM-st-MIMO signal targets will generate ambiguous
targets at intervals of the single pulse unambiguous ranging scope of 1.5 km. Due to
the two-dimensional window processing of range and velocity, the average target SNR
obtained after processing the LFM-DDMA waveform is 47.4 dB, a loss of 2.6 dB compared
to the theoretical value. Figure 10 shows the velocity spectra of the PAPC-st-MIMO signals
for targets in different range units. By slow-time MIMO demodulation of the combined
range-Doppler plane over multiple range segments, accurate target velocity information
can be obtained.
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Figure 10. Velocity spectra of the PAPC−st−MIMO signal for targets in different range units in a
near-range scenario.

As can also be seen from Figure 8, although the PAPC-st-MIMO signal has range
selectivity, targets in each range segment can form higher sidelobes in other range segments,
and the level of these sidelobes is constrained by the cross-correlation level of the PAPC
signal set. Under the parameters of this group of simulations, the sidelobe level of the
range segment for the PAPC-st-MIMO signal corresponding to the PAPC coding set, with a
code length P = 64 and group number Q = 256, is −30.1 dB.

3.2. Long-Range Detection Scenario

This subsection presents a simulation experiment using a PAPC signal set 2, with a
code length P = 400 and a group number Q = 256, as the intra-pulse modulated PCPA-
st-MIMO waveform. The specific waveform parameters and detection performance are
shown in Tables 5 and 6. The radar instantaneous bandwidth is set to 40 MHz. When
the PAPC signal set 2 with the code length P = 400 is used, the corresponding pulse
width is 10 µs. The radar pulse repetition interval is set to 40 µs, corresponding to a radar
unambiguous range measurement of 6 km. The number of combined range segments is set
to 4, meaning the combined unambiguous range measurement after multi-range segment
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composite processing is 24 km. The number of coherently processed pulses within a CPI is
1024, i.e., the coherent processing period is 40.96 ms, corresponding to an unambiguous
velocity measurement range of ±75.6 m/s in the Doppler sub-band.

Table 5. Long Pulse Waveform Parameters.

Variable Value

Initial Carrier Frequency 3.1 GHz
Instantaneous Bandwidth 40 MHz

Pulse Width 10 µs
Sampling Frequency 80 MHz

Pulse Repetition Interval 40 µs
Chip Width 0.025 µs

Number of Chips 400
Accumulated Pulses within CPI 1024

Pulses per Frame 256
Number of Transmit Channels 6
Number of Doppler Sub-bands 8

Number of Combined Range Segments 4

Table 6. Long Pulse Waveform Detection Performance.

Variable Value

Range Resolution 3.75 m
Velocity Resolution 1.2 m/s

Unambiguous Velocity Measurement Range in Doppler Sub-band ±75.6 m/s
Unambiguous Range Measurement per Pulse 6 km

Combined Unambiguous Range Measurement 24 km

Four simulation targets with different ranges, velocities, and signal-to-noise ratios are
set up, as shown in Table 7, each located in four range segments. The signal-to-noise ratio
for each target after pulse compression is set to 20 dB. For traditional slow-time MIMO
waveforms based on LFM, targets 2, 3, and 4 would all produce range ambiguities.

Table 7. Parameters of Targets in a Long-Range Scenario Parameter.

Parameter Target 1 Target 2 Target 3 Target 4

Target Range 3 km 9.1 km 15.2 km 21.3 km
Target Velocity 40 m/s 10 m/s −10 m/s −40 m/s

SNR 20 dB 20 dB 20 dB 20 dB
Located Range Segment 1 2 3 4

The combined Range-Doppler (RD) plane for multiple range segments of PAPC-
st-MIMO waveform after matched filtering and pulse-Doppler processing is shown in
Figure 11a. The single-channel combined RD plane for multiple range segments after
slow-time MIMO demodulation is shown in Figure 11b, while the result using traditional
LFM-st-MIMO waveform is shown in Figure 12. As can be observed, the PAPC-st-MIMO
waveform features range-selective properties. It effectively suppresses ambiguous echoes
produced by each target at corresponding positions in other range segments, leading
to unambiguous combined detection results for multiple range segments. Conversely,
the traditional LFM-st-MIMO waveform generates ambiguous echoes at corresponding
positions in other range segments, causing false alarms and failing to yield accurate target
range information.
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Figures 13 and 14 further present one-dimensional range images of the velocity chan-
nels where each target resides for PAPC-st-MIMO and LFM-st-MIMO signals, with each
target’s echo range and amplitude information noted. It can be seen that the PAPC-st-
MIMO signal can achieve unambiguous joint detection of targets over multiple range
segments, providing accurate target range information. After PD processing, the average
signal-to-noise ratio of the targets obtained after processing the PAPC-st-MIMO waveform
is 49.8 dB, consistent with the theoretical value. Under the parameters of this simulation,
the sidelobe level of the range segment of the PAPC-st-MIMO signal corresponding to the
PAPC coding set with a code length P = 400 and a group number Q = 256 is −35.1 dB.
LFM-st-MIMO signals will generate ambiguous targets at intervals of the unambiguous
range measurement of 6 km per pulse. Influenced by the two-dimensional window pro-
cessing of range and velocity, the average signal-to-noise ratio of the targets is 47.5 dB, a
loss of 2.5 dB compared to the theoretical value. Figure 15 shows the velocity spectra of
the range units where each target of the PAPC-st-MIMO signal resides. It can be seen that
by conducting slow-time MIMO demodulation on the combined range-Doppler plane of
multiple range segments, accurate target velocity information can be obtained.
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4. Conclusions

This paper proposed a Pulse-Agile-Phase-Coding slow-time MIMO (PAPC-st-MIMO)
waveform, where the phase-coded signal is utilized as the intra-pulse modulation of the
slow-time MIMO waveform. To improve the orthogonality of the phase-coded waveform
sets, a novel hybrid evolutionary algorithm based on CAN is proposed. After the opti-
mization process of the phase-coded waveform sets, the signal processing method of the
PAPC-st-MIMO waveform is derived. This approach ensures waveform orthogonality
while enabling the slow-time MIMO waveform to achieve distance selectivity. By conduct-
ing joint pulse-Doppler processing across multiple range segments, range ambiguity can be
suppressed, increasing the system’s PRF without introducing ambiguity. The effectiveness
of the proposed method is verified with a simulation experiment. The advantages of the
proposed method are mainly reflected in lower sidelobe, more concise structure, and lower
computational complexity.
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