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Abstract 

Side-channel analysis (SCA) has become an increasing important method to assess the physical security of crypto-
graphic systems. In the process of SCA, the number of attack data directly determines the performance of SCA. With 
sufficient attack data, the adversary can achieve a successful SCA. However, in reality, the cryptographic device may 
be protected with some countermeasures to limit the number of encryptions using the same key. In this case, the 
adversary cannot use casual numbers of data to perform SCA. The performance of SCA will be severely dropped if the 
attack traces are insufficient. In this paper, we introduce wavelet scatter transform (WST) and short-time fourier trans-
form (STFT) to non-profiled side-channel analysis domains, to improve the performance of side-channel attacks in 
the context of insufficient data. We design a practical framework to provide suitable parameters for WST/STFT-based 
SCA. Using the proposed method, the WST/STFT-based SCA method can significantly enhance the performance and 
robustness of non-profiled SCA. The practical attacks against four public datasets show that the proposed method is 
able to achieve more robust performance. Compared with the original correlation power analysis (CPA), the number 
of attack data can be reduced by 50–95%.

Keywords  Correlation power analysis, Side-channel analysis, Proposed attack framework, Wavelet scatter transform, 
Short-time fourier transform

Introduction
Side-Channel Analysis has become a serious threat to 
cryptographic hardware units since the groundbreak-
ing work by Kocher (1996). SCA can break mathemati-
cally sound cryptographic algorithms by utilizing time 
(Kocher 1996), power consumption (Goubin and Pata-
rin 1999) and electromagnetic radiation (EM) (Gandolfi 
et al. 2001) and other physical side-channel leakages only. 
According to different assumptions about adversaries’ 

attack capability, current SCA methods generally have 
two categories:

•	 Profiled attacks. Typical examples include Template 
Attack (TA) (Chari et  al. 2003), Stochastic Attack 
(SA) (Schindler et al. 2005), Machine-Learning based 
Profiled Attacks (Lerman et  al. 2015) and Deep-
Learning based Profiled Attacks (Maghrebi et  al. 
2016; Cagli et al. 2017).

•	 Non-profiled attacks. Typical examples include Dif-
ferential Power Analysis (DPA) (Goubin and Patarin 
1999), Correlation Power Analysis (CPA) (Brier et al. 
2004), Mutual Information Analysis (MIA) (Gierlichs 
et  al. 2008) and recent Non-profiled Deep-Learning 
based Side-Channel Attack (Timon 2019).

In profiled attacks scenario, the adversary is allowed 
to have full access to a cloned device, where the cryp-
tographic implementation is the same as the targeted 
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cryptographic implementation. Profiled attacks usually 
consist of two stages: (1) Profile stage; (2) Attack stage. 
In the profile stage, the adversary can collect a lot of data 
from the cloned device, and construct online templates to 
profile the leakage characteristics of each possible inter-
mediate value, using prior knowledge about the crypto-
graphic implementation, secret key, collected traces and 
corresponding plaintext/ciphertext. In the attack stage, 
the adversary collects a few physical traces from the anal-
ysis target, and then utilizes the constructed templates to 
extract the secret key from the analysis target. Compared 
with non-profiled attacks, profiled attacks allow adver-
saries to extract the secret key with much fewer traces. 
However, in realistic, the adversary usually is unable to 
have full access to cloned devices. In this case, profiled 
attacks cannot efficiently work.

Unlike profiled attacks, non-profiled attacks do not 
require full access to cloned devices. The adversary can 
search the whole hypothesis key value space and calcu-
late corresponding intermediate value. The adversary can 
utilize some leakage models, such as hamming weight 
(HW) leakage model and hamming distance (HD) leak-
age model, to calculate the information leakage value 
of intermediate value, then adopt some mathematical 
metrics to calculate the linear relationship (e.g. mutual 
information, Pearson correlation coefficient) between the 
information leakage value and physical traces, to directly 
recover the secret key. Usually, the adversary selects the 
hypothesis key with the maximum metrics as the secret 
key.

In the past two decades, non-profiled attacks have 
emerged as an increasing important method for physical 
security evaluations. Liu et al. (2015) and Jin et al. (2022) 
adopted CPA to break commercial 3G/4G Universal 
Subscriber Identity Module (USIM) cards. They showed 
that the sensitive parameters of USIM cards can be fully 
extracted within 100,000 traces. In USENIX Security 
Symposium 2019, Batina et  al. (2019) applied DPA to 
extract weight and bias parameters of Multilayer Percep-
tron (MLP) model and Convolutional Neural Networks 
(CNN) model. They showed that the adversary can effi-
ciently reverse-engineer the machine-learning models if 
the target is not protected with some side-channel coun-
termeasures (e.g. masking (Akkar and Giraud 2001), shuf-
fling (Veyrat-Charvillon et  al. 2012) and random delay 
(Coron and Kizhvatov 2010)). Besides, International 
Organization for Standardization (ISO)/ International 
Electro technical Commission (IEC) 19790-2012 Inter-
national Standard (ISO/IEC-17825 2016) and American 
Federal Information Processing Standards (FIPS) 140-3 
Standard (FIPS_140-3 2020) also adopt DPA and CPA 
to assess the physical security of crypto products. How-
ever, these works mainly focus on an idealized scenario 

that the adversary can use casual numbers of attack 
data. In an ideal scenario, the implementation details of 
the cryptographic devices is public to the adversary. The 
adversary can design a corresponding analysis method 
according to the characteristic of cryptographic imple-
mentation, and use sufficient traces to break the target. 
This kind of attack strategy is rational in an ideal scenario. 
However, when it applies to some specific applications or 
commercial crypto products, this kind of attack strategy 
can not efficiently work due to time and countermeasure 
constraints. In reality, the secret key, source code, and 
implementation details belong to the proprietary intel-
lectual property of hardware vendors and are usually 
kept secret to the public. Some cryptographic devices or 
applications even adopt some countermeasures to limit 
the adversary’s attack capability. For instance, National 
Institute of Standards and Technology (NIST) Counter 
Deterministic Random Byte Generator (CTR_DRBG) 
specification (Barker and Kelsey 2015) limits the num-
ber of times the same key used in Advanced Encryp-
tion Standard Counter Mode (AES-CTR) encryption to 
4096. In this case, using a lot of attack data to perform 
CPA becomes impossible. Adversaries need to extract the 
secret key of CTR_DRBG within 4096 traces. Besides, 
some newest crypto products also adopt some specific 
protections to render adversaries’ attack capability. For 
example, Zynq Ultracale+ (ZU+) Encryption Engine 
employs a key rolling scheme and Rivest Shamir Adle-
man (RSA) authentication to resist side-channel attacks 
(Hettwer et al. 2021). Similar to NIST CTR_DRBG speci-
fication, ZU+ utilizes key rolling scheme in AES-CTR 
encryption. ZU+ Encryption Engine only operates on 
specific data which is authenticated by RSA authentica-
tion. In this case, using sufficient traces to perform SCA 
becomes impossible. Consequently, the performance of 
SCA will be severely dropped.

To enhance original SCA methods, some research-
ers have considered applying certain data-augmentation 
techniques, such as Synthetic Minority Oversampling 
Technique (SMOTE) (Picek et  al. 2019), adding gauss-
ian noise (Kim et al. 2019), to increase the size of origi-
nal dataset. They show that these kinds of methods (Picek 
et al. 2019; Kim et al. 2019) can efficiently enhance pro-
filed SCA in the case of analyzing public datasets. How-
ever, data-augmentation techniques are only limited to 
profiled attacks scenario. In addition to enlarging the 
number of attack data, some researchers considered 
applying some preprocessing techniques to improve the 
quality of collected signals. For instance, Pozo et al. and 
Bruneau et al. applied Singular Spectrum Analysis (SSA) 
(Merino Del Pozo and Standaert 2015) and Principal 
Component Analysis (PCA) (Bruneau et al. 2015) to pre-
process the original traces. They showed that SSA and 
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PCA can enhance CPA in the case of analyzing unpro-
tected software-based implementations of Advanced 
Encryption Standard (AES). With suitable parameters 
selection, PCA and SSA can reduce the number of attack 
data by 20% at least. Unlike the researches (Merino Del 
Pozo and Standaert 2015; Bruneau et  al. 2015), Yang 
et al. (2020) and Wu and Picek (2020) adopted denoise-
autoencoder to preprocess the physical traces. They 
showed that deep-learning based preprocessing methods 
have superior performances than traditional preproc-
essing methods (Merino Del Pozo and Standaert 2015; 
Bruneau et al. 2015) in the case of analyzing hiding coun-
termeasures. However, this kind of method (Yang et  al. 
2020; Wu and Picek 2020) is limited to profiled attacks 
scenario. The adversary needs to have prior knowledge 
about the secret key, plaintext/ciphertext when train-
ing denoise-autoencoders. This kind of method (Yang 
et al. 2020; Wu and Picek 2020) requires a lot of training 
data and is not practical in non-profiled attack scenario. 
In addition to applying time-domain based preprocess-
ing methods to preprocess the physical traces, some 
researches considered applying frequency-based pre-
processing method, such as wavelet transform (WT) 
(Debande et  al. 2012; Udvarhelyi et  al. 2021; Destouet 
et  al. 2021), fast fourier transform (FFT) (Zhang et  al. 
2020) to enhance SCA. In MICRO 2012, Debande et al. 
(2012) adopted wavelet transform to enhance CPA in 
the case of analyzing DPA Contest V4. They showed that 
wavelet transform can reduce the number of attack data 
by 30% when the parameters are properly selected. Based 
on the research (Debande et  al. 2012), Udvarhelyi et  al. 
(2021) and Destouet et  al. (2021) applied wavelet trans-
form to enhance profiled attacks in the case of analyzing 
masked implementation of AES and commercial crypto 
products. In Design Automation Conference (DAC) 
2020, Zhang et al. (2020) applied FFT to enhance cross-
device attacks in the case of analyzing heterogeneous 
devices. Compared with data-augmentation techniques 
(Picek et  al. 2019; Kim et  al. 2019), frequency-based 
methods are applicable for non-profiled attacks and pro-
filed attacks. Compared with typical time-domain based 
preprocessing methods (Merino Del Pozo and Standaert 
2015; Bruneau et al. 2015), frequency-based preprocess-
ing methods do not have specific requirements for input 
data-dimension. Frequency-based preprocessing method 
can be applied to analyze arbitrarily distributed dataset. 
In general, frequency-based preprocessing method theo-
retically has more appealing technique potential in the 
case of enhancing non-profiled attacks. However, current 
related works (Gebotys et al. 2005; Belgarric et al. 2014) 
are mostly limited to an ideal scenario that the adversary 
is assumed to know the suitable parameters, and they 
are limited to unprotected implementations and specific 

platforms. They do not deeply investigate whether fre-
quency-based preprocessing methods are applicable for 
other more complex cryptographic implementations. 
In addition, previous works (Udvarhelyi et  al. 2021; 
Destouet et al. 2021; Gebotys et al. 2005; Belgarric et al. 
2014) require high-expert degree. They do not consider 
how to select suitable parameters for frequency-based 
parameters in non-profiled attacks scenario. The adver-
sary needs to select frequency components empirically to 
enhance original SCA methods. The effect of parameters 
setting on the performance of frequency-based SCA has 
not been studied in depth. In practice, the parameter val-
ues, such as the standard deviation value, the size of the 
Gaussian window and the frequency component (used in 
the STFT-based SCA scenario), play important roles in 
the scenario of frequency-based SCA. Frequency-based 
SCA can significantly reduce the side-channel distin-
guisher’s requirement for the scale of attack data with 
suitable parameters setting. However, if the parameters 
are not properly selected, it may even reduce the perfor-
mance of the original SCA. Hence, designing a practical 
framework for proper selection of parameters is the most 
paramount thing for improving the performance of fre-
quency-based SCA.

Aiming to address the limitation of current researches 
(Udvarhelyi et  al. 2021; Destouet et  al. 2021; Gebotys 
et  al. 2005; Belgarric et  al. 2014), we propose a practi-
cal framework to provide suitable parameters for fre-
quency-based SCA. Specifically, we apply the concept 
of grid-search method to search the suitable parameters 
for frequency-based SCA, and design three evaluation 
metrics to evaluate the quality of extracted frequency 
components. The framework updates the parameters 
of frequency-based preprocessing methods iteratively 
according to the feedbacks from designed evaluation 
metrics. Unlike traditional grid-search methods, our 
framework can obtain the suitable parameters settings 
in non-profiled attack scenarios. As a result, our method 
can efficiently enhance original CPA methods in the case 
of analyzing multiple unprotected/protected implemen-
tations of AES. Compared with previous works (Udvar-
helyi et al. 2021; Destouet et al. 2021; Gebotys et al. 2005; 
Belgarric et al. 2014), our work is more generic and does 
not require any expert-knowledge dependence degree. To 
summarize, the contributions of our work mainly include 
following:

•	 Introduce Wavelet Scatter Transform (WST) (andén 
and Mallat 2013) to non-profiled SCA domain, to 
efficiently improve the performance of CPA attacks. 
This is the first work that applies WST to enhance 
non-profiled attacks in the context of analyzing dif-
ferent AES implementations (e.g. software/hardware-
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based implementation of AES, which is unprotected 
or protected with masking or random delay counter-
measures).

•	 Propose a practical framework to select suitable 
parameters for WST-based CPA and STFT-based 
CPA. With our proposed framework, the adversary 
can obtain suitable parameters without any expert-
knowledge dependence. The performance of original 
CPA can be significantly enhanced with our pro-
posed method.

•	 Evaluate the extendability and applicability of our 
attack framework, we present practical attacks on 
four public datasets, including DPA Contest V4 
(DPA_Contest_v4 2014), AES_HD (AES_HD 2018), 
AES_RD (AES_RD 2017) and ASCAD (2018) data-
sets. The result of our experiment shows that our 
method can reduce the number of attack traces by 
50–95% in comparison with original CPA attacks, 
which achieves more robust performance of attacks.

•	 Carry out a systematic empirical research about the 
effectiveness and applicability of STFT-based CPA 
and WST-based CPA. The performance of WST-
based CPA and STFT-based CPA is evaluated under 
different parameter values in a fine-grain manner. 
According to the analysis results, we provide empiri-
cal suggestions about parameter selections for non-
profiled attacks scenario.

The graphic summary of our work is given in Fig. 1.

The paper is organized as 7 main sections: "Introduc-
tion" Section gives an introduction of the paper. "Pre-
liminary" Section gives a brief background about some 
frequency-based preprocessing methods. "A practical 
framework for frequency-based CPA attack" Section pro-
poses the practical framework for frequency-based CPA 
attack. "Experiment results" Section presents experiment 
analysis and practical attacks on four public datasets. "A 
fine-grain analysis on parameter settings for frequency-
based CPA attacks" Section presents a fine-grain analysis 
on parameter settings for Frequency-based CPA attack. 
According to the experiment results (Sects.  "Experi-
ment results" and "A fine-grain analysis on parameter 
settings for frequency-based CPA attacks") and "Discus-
sions" Section discusses related works, the advantages/
disadvantages of attack framework and future works. The 
paper is concluded "Conclusions" Section

The abbreviations used in the paper are listed in the 
section of Abbreviations.

Preliminary
A brief background about the three typical time-fre-
quency transformations - DFT, STFT and WST that are 
used for SCA is presented in this paper. We illustrate the 
advantages/disadvantages of these three time-frequency 
transformations used in SCA and then point out the 
importance of suitable parameters selection for time-fre-
quency transformations. In the following, the collected 

Fig. 1  Graphic summary of our work
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power traces are denoted by the vector × 1 ∈ R
d1 , where 

d1 represents the number of sampling points.

Discrete fourier transform (DFT)
In signal preprocessing, DFT is most popularly used to 
transform the signal from time domain to frequency 
domain. DFT can be regarded as the specific projection 
on periodic signals {e2ik1π/d1}0≤k1≤d1−1 , which is contrary 
to the analysis done on the Dirac basis. In the scenario 
of discrete Fourier transformation, the original signal x1 
is considered to consist of periodic signals with infini-
tesimally small frequency bandwidth. Equation  1 and 
2 depict the representations of DFT and inverse DFT 
respectively. In Eqs. 1 and  2, x1 denotes DFT of x1 , k1 and 
p1 denote the index of time and frequency respectively.

In practice, the adversary can adopt Fast Fourier Trans-
form (FFT) algorithm to further optimize DFT. Fast Fou-
rier Transform has shown powerful technical potential 
in the scenario of SCA. For instance, Zhang et al. (2020) 
applied FFT to enhance the performance of cross homo-
geneous/heterogeneous device attack. They showed that 
with the FFT preprocessing method, the adversary can 
extract the secret key of heterogeneous devices within 
1000 traces. However, it is not always the case that FFT 
can significantly enhance origianl SCA method. For 
instance, we find that FFT-based CPA has poorer perfor-
mance than original CPA in the context of analyzing DPA 
Contest V4 and AES_HD datasets. The Fourier transform 
has inherent limitations in dealing with non-stationary 
signals. It can only obtain the components of which fre-
quencies are contained in a signal as a whole, but it can 
not capture the moment when each component appears. 
Hence, if the collected traces are non-stationary signals, 
directly applying FFT may make the performance of CPA 
attacks even worse. To address the limitation of FFT, we 
introduce short-time Fourier transform to non-profiled 
attacks domain.

Short‑time fourier transform (STFT)
The central idea of STFT is adding a specific sliding-
window function (e.g. Gaussian window function) on the 
temporal sampling points, and then performing Fourier 
transformation on the signal inside the window to extract 
a spectrogram of original signals. Currently, STFT is one 
of the most popular preprocessing method in the context 

(1)x̂1(k1) = (x1|e2ik1π/d1) =
∑

p1

x1(p1)e
−2ik1p1π/d1

(2)

x1(p1) =
1

d1

∑

k1

(x1|e2ik1π/d1)e2ik1p1π/d1 =
1

d1

∑

k1

x̂1(k1)e
2ip1k1π/d1

of analyzing non-stationary signals, which can be applied 
to obtain the frequency and phase of local time-varying 
signals. The representation of discrete short-time Fourier 
transformation can be denoted by Eq. 3. In Eq. 3, x1[d1] 
denotes the temporal signals, w1[d1 −m1] denotes the 
selected slide-window and m1 denotes a variable value. 
In this paper, we select the gaussian window function to 
perform STFT.

With a smaller-sized window, the adversary can obtain 
a finer division of time-domain based signals and better 
time-domain resolution. However, the frequency domain 
resolution will become worse if the selected window 
function is a smaller one. In practice, the parameters of 
STFT, such as the size of the window function w1 , the 
standard deviation value std, and the frequency com-
ponent f play important roles in frequency-based SCA 
attacks. The adversary needs to select the above param-
eters carefully to enhance STFT-based CPA attacks.

Wavelet scatter transform
In the context of analyzing time-varying non-stationary 
signals, small windows are considered to be suitable for 
high frequencies while large windows are considered to 
be suitable for low frequencies (Allen 1977). In practice, 
the size of window used in STFT kept fixed, and the 
width is unchangeable during time-frequency transfor-
mation. Hence, STFT cannot fully meet the requirements 
for extracting the frequency components in the context 
of analyzing unsteady changeable signals. To better 
extract various frequency components from unsteady 
changeable signals, Wavelet Transform (WT) (Debande 
et  al. 2012) {ψu1,s1}u1,s1 adopts finite-length decaying 
wavelet basis ψu1,s1(t1) =

1√
s1
ψ( t1−u1

s1
) to preprocess the 

signals, where t1 denotes the sampling point in the time 
domain, ψ denotes the mother wavelet, s1 represents dila-
tion coefficients and u1 represents translation. The nota-
tion of wavelet transformation can be formulated as the 
following equation:

x̃1 denotes the original signal, ∗ represents the convolu-
tional operator and x∗1 represents x1 ’s complex conjugate 
( x1(t1) = x∗1(−t1)).

In the process of WT, dilation coefficient 
s1 = 2−j(j ∈ N) is varied. Given the mother wavelet ψ 
and corresponding center frequency f0 , the j-th dilated 

(3)

STFT [x1(d1)](m1,w1) =
∞∑

m1=−∞
x1[m1] ∗ w1[d1 −m1]e−jw1m1

(4)

(x̃1|ψu1,s1) =
∫

x̃1(t1)
1

√
s1
ψ∗

(
t1 − u1

s1

)
dt1 = x̃1 ∗ ψs1(u1)
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version of f0 can be formalized as f0
2j

 . In the process 
of STFT, the origianl signals are concentrated into a 
fix area - time-frequency boxes α(t, f ) , expressed as 
α(t, f ) = γf (t)γt(f ) . γt and γf  represent constant tem-
poral support and frequency bandwidth for the window 
w1 . In WT, the bandwidth γf  is inversely proportional 
to the temporal support γt when variable parameter s is 
changing. Unlike STFT, the shape of area α(t, f ) keeps 
variable across the time-frequency domain. Compared 
with STFT, WT is stable to small deformations but 
does not have translation invariance, whereas STFT is 
unstable to small deformation but is robust to trans-
lation invariance. To enable WT stable to translation 
invariant, Mallat et  al. (andén and Mallat 2013) pro-
posed wavelet scattering transform (WST). The nota-
tion of WST can be formalized as:

where t1 denotes the sampling point in the time domain, 
u1 represents translation, x1 denotes the original signal, 
∗ and ψ denote convolutional operator and the mother 
wavelet respectively. The wavelet ψ� is composed of scale 
parameters � that are applied to the non-linear operation 
|.| and averaged on the time-domain of 2j1 signals with 
Aj1x1 = x1 ∗ φ2j1 . Given the path p1 = (�1, ..., �m) with 
�i > 2−j1 , the windowed scattering transform Sj1 of the 
time-domain signals x1 can be formalized as:

where U [�]x1 = |W [�]x1| = |x1 ∗ ψ�| . In practice, Sj1 
is calculated on the path subset �j1,m , where m denotes 
the maximum length of paths p ∈ �j1,m and � satis-
fies � > 2−j1 (andén and Mallat 2013). In the scenario 
of WST, the wavelet transform only captures specific 
frequency components that are superior than 2−j1 , 
and the rest frequency components are captured by 
φ2j1 . In the python software-based implementation of 
WST (Andreux et  al. 2020), the wavelets are used on 
dyadic scales 2−j(0 ≤ j < J ) or on intermediate scales 

2
−j
Q (0 ≤ j < JQ) , in which Q denotes the amount of 

wavelet by an octave. In practice, the WST is composed 
of three parameters, such as the scale 2J (J ≥ 1, J ∈ N ) of 
signals for averaging, the octave Q(Q ≥ 1,Q ∈ N ) and the 
number of levels of the scattering transform m ∈ [1, 2] . 
Previous works showed that WST can provide stability 

(5)

W1[�]x1(u1) =x1 ∗ ψ� =
∫

x1(t1)
1
√
�
ψ∗

(
u1 − t1

�

)

dt1(x1 ∈ L
2(R),ψ ∈ L

2(R))

(6)

Sj1[p]x = ||||x1 ∗ ψ�1
| ∗ ψ�2

|... ∗ ψ�m
| ∗ φ2j1

= |W [�m]...W [�2]|W [�1]x1||| ∗ φ2j1
= Aj1|W [�m]...W [�2]|W [�1]x1|||
= Aj1U [�m]...U[�2]U [�1]x1

over time-translation invariant (andén and Mallat 2013) 
and can achieve a satifactory improvement in the case 
of profiled attack against jitter-protected implementa-
tions of AES (Destouet et al. 2021) when the parameters 
are properly selected. However, these works mainly focus 
on an idealized scenario that adversaries can fully control 
cloned devices. They can empirically select the param-
eters in the profile stage by exploiting sensitive informa-
tion about the cryptographic implementation, whereas 
in non-profiled attacks scenario, it is difficult to empiri-
cally select suitable parameters as the adversary has no 
detailed information about the analysis target prior to the 
attack. Besides, the parameter settings vary according to 
different cryptographic implementations. In this case, the 
adversary needs to consider designing a practical frame-
work to select suitable parameters for WST. In this paper, 
we focus on providing suitable parameters for {j, q, f }
(m = 2 ) to enhance the performance of WST-based CPA 
attacks, where j ∈ J  , q ∈ Q and f represents the extracted 
frequency component.

A practical framework for frequency‑based CPA 
attack
Our method
CPA is currently the most popular non-profiled side-
channel analysis method. Focusing on the CPA perfor-
mance optimization, we design a practical framework to 
provide suitable parameters for WST/STFT-based non-
profiled CPA. The general measurement setup for WST/
STFT-based non-profiled CPA can be illustrated in Fig. 2. 
In this paper, we aim to solve two challenges where previ-
ous works (Udvarhelyi et  al. 2021; Destouet et  al. 2021; 
Gebotys et al. 2005; Belgarric et al. 2014) do not investi-
gate in depth:

•	 How to select suitable parameters for WST/STFT-
CPA attacks? From "Short-time fourier transform 
(STFT)" and "Wavelet scatter transform" sections, we 
can learn that the parameter {j, q, f } and {w, std, f } 
directly determine the performance of WST-CPA 
and STFT-CPA attacks. With suitable parameters 
setting, WST/STFT-CPA can significantly enhance 
the performance of original CPA attacks. In practice, 
the value of suitable parameters setting varies accord-
ing to discrete cryptographic implementations.

•	 How to evaluate the quality of extracted frequency 
components? In non-profiled attack scenario, the 
secret key, the intermediate value and implementa-
tion details kept secret prior to the attack. To find the 
best parameters setting, the adversary needs to select 
or design suitable and reliable metrics to evaluate the 
quality of extracted frequency components. The met-
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rics should be closely related to SCA metric, such as 
Success Rate (SR), Guess Entropy (GE) or minimum 
number of attack data nmin (Standaert et al. 2009).

In an ideal scenario, the adversary is assumed to have 
sufficient attack data and know detailed information 
about cryptographic implementations, such as secret 
key, noise level and the characteristics of collected 
signals. In this case, the adversary can directly obtain 
suitable frequency components using prior knowledge 
about the cryptographic implementations. Hence, pre-
cious works do not consider how to select suitable 
parameters for WST/STFT-CPA attacks and evaluate 
the quality of extracted frequency components in non-
profiled attacks scenario. In reality, the cryptographic 
implementations details are usually kept secret to the 
public. Designers may even adopt countermeasures, 
such as key rolling schemes, to limit the adversary’s 
attack ability. In this case, direct extraction of the suit-
able parameters becomes impossible. Designing a 
practical framework to properly select suitable param-
eters becomes the most paramount thing in the case 
of enhancing WST/STFT-CPA attacks with insuffi-
cient data. To address this issue, we introduce the con-
cept of grid-search method from deep-learning (DL) 
domain to non-profiled SCA domain, to select suitable 
parameters for WST/STFT-CPA attacks. Grid search 
(Pontes et  al. 2016) method is one of the most popu-
lar hyperparameters tuning method in machine learn-
ing domain. It can efficiently work when the parameter 
categories and attack data are not quite large. In DL 
domain, grid search is applied to search the suitable 

hyperparameters, such as learning rate and network 
architecture, for neural network models. The adversary 
updates the hyperparameters with fixed sizes accord-
ing to the feedbacks from accuracy or loss value. Unlike 
traditional DL methods, we apply grid-search method 
to search suitable parameters for WST/STFT. Figure 3 
provides an example for grid-search used in WST/
STFT. The overall process of grid method used for 
parameters selection can be divided into four steps: 

(1)	 Design the evaluation metric D , evaluate the quality 
of original data D(T) and assign temp = D(T).

(2)	 Search every possible parameters setting {j, q} or 
{w, std} for WST/STFT. Preprocess the physical 

Fig. 2  The overall framework for selecting parameters for STFT/WST-based CPA attacks

Fig. 3  An example for grid-search used in WST/STFT
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traces T with the selected parameters setting {j1, q1}
({w1, std1} ), and then extract corresponding fre-
quency components {f1, f2, f3, ..., fn}.

(3)	 Evaluate the quality of extracted frequency compo-
nents with the designed metric D : 

 Sort the evaluation scores in descending order. 
Compare temp and S1 . If S1 > temp , set temp = S1 
and store the parameters setting {j1, q1, f1} 
( {w1, std1, f1} ) with the highest scores.

(4)	 Execute step (2) and step (3) iteratively. Finally get 
the parameters setting {j1, q1, f1} ( {w1, std1, f1} ) 
with the highest scores.

To evaluate the quality of extracted frequency components 
f, we adopt Pearson Correlation Coefficient (PCC), Signal-
to-Noise Ratio (SNR) and Absolute-Differences-Of-PCC 
(DOP) as main evaluation metrics to perform grid-search 
method. The notation of PCC DP

PCC(f) can be formalized 
as:

where Lpk∗ represents the hypothesis power assump-
tion, p denotes ciphertext or plaintext, k∗ denotes 
the hypothesis key and ρ represents PCC value. 
The parameter L

p
k∗ can be further formalized as: 

L
p
k∗ = h(F1(k

∗, p1), F2(k∗, p2)..Fn(k∗, pn)) , where F rep-
resents sensitive cryptographic operation (e.g. AES 
SubBytes operation) and h denotes the selected leakage 
model. Let m1 and m2 denote the minimum number of 
attack data ( nmin ) to perform a successful CPA for fre-
quency components f1 and f2 respectively. We have

when

According to the theorem in Mangard et al. (2007), there 
exists theoretical linear relationship between nmin and ρ : 
nmin = 28

ρ2
 . If it satisfies Eq. 10, we can infer that

(7)

S1 = D(f1)

S2 = D(f2)

S3 = D(f3)

· ··
Sn = D(fn)

(8)DP
PCC(f) = maxk∗∈K|ρ(f , L

p
k∗)|

(9)m1 < m2

(10)DP
PCC(f1) > DP

PCC(f2)

(11)
1

D
p
PCC(f1)

<
1

D
p
PCC(f2)

When it satisfies Eq.  12, we can directly infer that 
m1 < m2 . As a result, using the f1 frequency component, 
the adversary can extract the secret key with fewer traces.

Like PCC evaluation metric, we have

when

The notation of SNR evaluation metric DSNR(f) can be 
formalized as:

In SCA domain, the sampling point of physical traces 
Ltotal can be formalized as Ltotal = Lexp + Lnoise , where 
Lexp denotes exploitable physical leakages and Lnoise rep-
resents noise components. The relationship between SNR 
and ρ satisfies (Mangard et  al. 2007): 
ρ(h, Ltotal) = ρ(h, Lexp + Lnoise) =

ρ(h,Lexp)√
1+

1
SNR

 , where h denotes 

the hypothesis leakage value. WST/STFT methods can 
be regarded as a special noise reduction method to 
reduce Lnoise . SNR will increase if Lnoise becomes smaller. 
In theory, a higher SNR leads to a higher ρ value. If it sat-
isfies Eq. 14, we can infer that

When it satisfies Eq.  18, we can infer that ρf1 > ρf2 . 
According to the equation nmin = 28

ρ2
 , we can infer that 

m1 < m2 . Hence, the adversary can also adopt DSNR(f) 
to directly measure the quality of extracted frequency 
components.

In addition to adopting Dp
PCC(f) and DSNR(f) evalua-

tion metrics, we also consider DOP DDOP(f) as an alter-
native evaluate metric to assess the quality of extracted 
frequency components. The notation of DDOP(f) can be 
formalized as

(12)
28

(D
p
PCC(f1))

2
<

28

(D
p
PCC(f2))

2

(13)m1 < m2

(14)DSNR(f1) > DSNR(f2)

(15)DSNR(f) = SNR(f)

(16)1+
1

DSNR(f1)
< 1+

1

DSNR(f2)

(17)
1√

1+ 1
DSNR(f1)

>
1√

1+ 1
DSNR(f2)

(18)
ρ(h, Lexp)√
1+ 1

DSNR(f1)

>
ρ(h, Lexp)√
1+ 1

DSNR(f2)

(19)DDOP(f) =
∣∣∣∣
ρK1(h, f)− ρK2(h, f)

ρK2(h, f)

∣∣∣∣
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where ρK1(h, f) and ρK2(h, f) represent the first and sec-
ond maximum PCC value respectively. We have

when

In the process of CPA attacks, the PCC differences 
between the PCC of the correct key (with the maximum 
PCC) and other hypothesis key will become larger when 
the number of collected data is increasing or the qual-
ity of the collected data is significantly improved. Hence, 
given the same number of attack data, the frequency 
component f1 is considered to lead a better SCA perfor-
mance than f2 , when it satisfies Eq. 21.

Alg.  1 and Alg.  2 summarize the process of selecting 
suitable parameters with Dp

PCC(f) metric for WST/STFT-
based CPA attacks respectively. WSTj,q(T) denotes the 
processed traces with WST method, while STFTw,std(T) 
represents the preprocessed traces with STFT method. 

(20)m1 < m2

(21)DDOP(f1) > DDOP(f2)

The adversary utilizes Dp
PCC(f) to calculate the score 

of original traces Sori = D
p
PCC(T) , and then assign 

temp = Sori . The adversary searches the whole param-
eters setting with grid-search method, and calculates 
D
p
PCC of each extracted frequency component Dp

PCC(f
∗) . 

If Dp
PCC(f

∗) satisfies Dp
PCC(f

∗) > temp , assign Dp
PCC(f

∗) to 
the variable parameter temp . The adversary performs the 
process iteratively to obtain the best parameters setting. 
The processes of selecting suitable parameters for WST/
STFT-based CPA with SNR and DOP are also similar to 
Alg. 1 and Alg. 2. The adversary just needs to replace the 
evaluation metric Dp

PCC with DSNR or DDOP respectively. 
Hence, the detailed processes of selecting suitable param-
eters for WST/STFT-based CPA attacks with other eval-
uation metrics are not given here. The adversary utilizes 
the designed evaluation metrics to search the suitable 
parameters settings iteratively, and then performs CPA 
on the processed physical traces with the best-selected 
parameters setting.
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Further optimization. Although grid-search provides 
a straightforward way to achieve suitable hyperpa-
rameters selection in non-profiled attacks scenario, it 
requires a lot of time when the number of attack data 
or parameters is large. The adversary needs to search 
all parameter settings to obtain suitable parameters set-
ting, which inevitably brings additional time overhead. 
To further optimize grid-search-based SCA, we pro-
pose to apply halving-grid search method to accelerate 
the attack. The overall process of halving-grid search 
method for WST/STFT-CPA can be divided into six 
steps: 

(1)	 Measure the distribution of original dataset T by 
calculating the distribution of single-byte plaintext 
value. Select a smaller size dataset T1 from original 
dataset T , where the distribution of T1 is nearly the 
same as T.

(2)	 Apply grid-search method to search the whole 
parameters setting {j, q} or {w, std} , and then calcu-
late corresponding scores S with designed evalua-
tion metrics (e.g. Dp

PCC , DSNR and DDOP).
(3)	 Sort the evaluation values in descending order, and 

eliminate the last half of the parameters {j, q} or 
{w, std} according to the sorted values S.

(4)	 The adversary selects new subset T2 from the 
remaining dataset T2 = T− T1 , where T2 is twice 
as large as T1 . The adversary searches the rest 
parameters setting {j, q} or {w, std} to calculate cor-
responding evaluation values. Sort the evaluation 
values in descending order, and eliminate the last 
half of the remaining parameters {j, q} or {w, std} 
according to the sorted values S.

(5)	 Repeat step (4) iteratively until the remaining data-
set is not enough or there is only 1 group of param-
eters left.

(6)	 Apply grid search to obtain the best-performance 
parameters.

How to apply grid-search or halving-grid search method 
in non-profiled attacks scenario? Compared with origi-
nal grid-search method, halving-grid search method 
can efficiently reduce time-overhead in the case of 
searching parameters. In this paper, we find that apply-
ing halving-grid search method can achieve nearly the 
same performance as grid-search method, when the 
initial selected data is set to around one-third num-
ber of original dataset. This kind of method certainly 
can be applicable for other similar preprocessing 
methods in the case of enhancing non-profiled SCA 
attacks. However, halving-grid search method does 
not always have absolute superior performance than 
grid-search method in the case of performing non-
profiled SCA attacks. Halving-grid search method has 
inherent limitations when the number of attack num-
ber is quite small. Evaluators may eliminate the suit-
able parameters wrongly if the number of selected data 
is extremely small. As a suggestion, we recommend 
applying grid-search method to perform non-profiled 
SCA attacks when the number of attack data is insuf-
ficient. When the number of attack data or param-
eters is large, we suggest applying halving-grid search 
method to perform non-profiled SCA. In this paper, we 
aim to enhance CPA in the case of insufficient attack 
data. Hence, we adopt grid-search method as the main 
method to perform the attack.



Page 11 of 26Jin and Zhou ﻿Cybersecurity            (2023) 6:15 	

Parameters setting
To efficiently enhance the performance of CPA attacks, 
it is vital to select suitable parameters for WST/STFT. 
We refer to the operation mode of grid-search method 
to select the best-performance parameters accord-
ing to feedbacks from the designed evaluation met-
rics (Eqs.  8, 15 and 19). The finite set J1 and Q1 used 
for WST-based CPA are designed as follows: J1 ∈ [1, 8] 
and Q1 ∈ [2, 6] . In the scenario of STFT-based CPA 
attacks, the finite set W and STD are designed as fol-
lows: W ∈ {0.01L, 0.02L, 0.04L, 0.08L, 0.1L} and 
STD ∈ {0.25, 0.5, 1, 2, 4, 8, 16} , where L denotes the length 
of sampling points. In this section, FFT-based CPA is 
regarded as a special type of STFT-based CPA attack.

To make our work reproducible, we utilize opened-
source framework to implement the following pre-
processing method. The FFT preprocessing method is 
implemented through Numpy.FFT.FFT (Numpy 2022) 
function while the STFT preprocessing method is imple-
mented through Scipy.signal.STFT (Scipy 2022) function. 
We adopt Kymatio.numpy.Scattering1D function from 
Andreux et  al. (2020) to implement WST-based CPA 
attacks. Besides, we use the analysis of the variance as 
an alternative method (Bubberman et al. 2020) to meas-
ure the SNR of the physical traces, as the intermediate 
value kept secret to the adversary in non-profiled attacks 
scenario.

Experiment results
To access the effectiveness of our proposed attack frame-
work (Figs. 2 and  3), we present practical attacks on four 
public datasets, including DPA Contest V4 (DPA_Con-
test_v4 2014), AES_HD (AES_HD 2018), AES_RD (AES_
RD 2017) and ASCAD (2018) datasets. The practical 
attack results show that with the proposed attack frame-
work, the WST/STFT-based CPA attack achieves more 
robust performance. Compared with the original CPA 
method, the number of attack traces can be reduced by 
50–95%.

Public datasets
Four various public datasets covering main types of SCA 
scenarios are adopted in our experiment. The first one is 
a software-based unprotected implementation of AES, 
which represents an ideal scenario that the noise level 
is quite low and adversaries can use limited data to suc-
cessfully extract the secret key. The second one is also 
a unprotected implementation of AES but with high-
level noises. As a consequence, the adversary needs to 
collect a lot of data to break the device. The third data-
set adopts random delay countermeasure that is a typi-
cal hiding countermeasure and has been widely used in 
various commercial crypto products (e.g. commercial 

contactless/contact smart cards (Kim et al. 2012)). Finally, 
the last dataset adopts first-order boolean masking that 
is currently the most popular side-channel countermeas-
ure in SCA community nowadays. Detailed information 
about the public datasets are as follows: 

(1)	 DPA Contest V4 dataset (DPA_Contest_v4 2014). 
It measures EM leakages of first-order boolean 
masked implementation of AES (Nassar et  al. 
2012). In this paper, the mask value is assumed to 
be known prior to non-profiled attacks, turning the 
protected implementation to the unprotected one. 
The notation of the intermediate value is formalized 
as follows: 

 where K ∗ denotes the secret AES key, Y represents 
the targeted intermediate value, Pi represents the i-
th byte of plaintext and S represents AES SubBytes 
operation. The maximum of measured SNR is up to 
5.8577. We target the first byte of Y and select the 
hamming weight (HW) leakage model to perform 
SCA.

(2)	 AES_HD (AES_HD 2018). AES_HD dataset pro-
vides EM measurements of paralled implementa-
tion of AES. The AES-128 is hardware-based imple-
mented on the Xilinx Virtex-5 FPGA. AES_HD 
does not adopt side-channel countermeasures. The 
maximum of measured SNR is up to 0.0096. The 
notation of the intermediate value is formalized as 
follows (Kim et al. 2019): 

 where K ∗ denotes the secret AES key, S−1 repre-
sents inverse AES SubBytes operation, Ca denotes 
a-th byte of ciphertext and Cb denotes b-th byte of 
ciphertext. The relationship between a and b can be 
extracted through the inverse AES ShiftRows oper-
ation. Like previous works (Picek et  al. 2019; Kim 
et  al. 2019), we select a = 12 resulting in b = 8 to 
perform the attack as it is one of the easiest inter-
mediate value byte to recover. In the context of 
analyzing AES_HD dataset, we select hamming 
distance (HD) as the main leakage model to present 
non-profiled attacks as HD is suitable in the sce-
nario of analyzing paralleled implementations.

(3)	 AES_RD dataset (AES_RD 2017). AES_RD provides 
power measurements of protected software-based 
implementation of AES (Coron and Kizhvatov 

(22)
Y (K ∗) = S(Pi ⊕ K ∗)⊕ M︸︷︷︸

known−mask

(23)

Y (K ∗) = S−1(Ca ⊕ K ∗)︸ ︷︷ ︸
previous−register−value

⊕ Cb︸︷︷︸
ciphertext−byte



Page 12 of 26Jin and Zhou ﻿Cybersecurity            (2023) 6:15 

2010). The random delay countermeasure is imple-
mented on an 8-bit AVR platform. The notation of 
the intermediate value is formalized as follows: 

 where K ∗ denotes the secret AES key, Y represents 
the targeted intermediate value, Pi represents the i-
th byte of plaintext and S represents AES SubBytes 
operation. The maximum of measured SNR is up to 
0.0556. We target the first byte of Y and select the 
HW leakage model to perform the SCA.

(4)	 ASCAD dataset (ASCAD 2018). ASCAD data-
set adopts first-order boolean masking (Benad-
jila et  al. 2020) to resist side-channel attack. The 
ATmega8515 microcontroller (8-bit AVR) provides 
the platform for running the masked AES algo-
rithm, and corresponding measurements are made 
by using EM leakages. The notation of the interme-
diate value is formalized as follows: 

 where K ∗ denotes the secret AES key, Y represents 
the targeted intermediate value, Maskout represents 
the output mask value, Pi represents the i-th byte of 
plaintext and S represents AES SubBytes operation. 
The maximum of measured SNR is up to 0.8. In this 
paper, we target the third byte of Y and perform 
2nd-order CPA attacks (Rivain et al. 2009) with the 
HW model.

Practical attacks on public datasets
Based on the designed "Parameters setting" section, we 
apply the proposed framework in ("A practical frame-
work for frequency-based CPA attack" section, Figs.  2 
and 3) to enhance original CPA attacks. In this paper, we 
mainly plot the performance of WST/STFT-(PCC,SNR)-
based CPA attacks, as WST/STFT-DOP-based CPA has 
nearly the same performance as WST/STFT-PCC-based 
CPA attacks. We adopt success rate (SR) (Standaert et al. 
2009) as the main SCA evaluation metric to system-
atically compare the performance of WST/STFT-based 
CPA and the original CPA method in the context of ana-
lyzing DPA-Contest V4, AES_HD, AES_RD and ASCAD 
datasets. The practical attacks are repeated 100 times on 
average to calculate the value of SR.

In the scenario of analyzing DPA Contest V4 dataset, 
we select 500 traces to perform non-profiled attacks. 
Figures  4 and 5 depict the performance of WST/STFT-
based CPA attacks on DPA Contest V4 dataset respec-
tively. The proposed attack framework achieves more 

(24)Y (K ∗) = S(Pi ⊕ K ∗)

(25)Y (K ∗) = S(Pi ⊕ K ∗)⊕Maskout

robust performance. With the best-selected parameters, 
WST/STFT-based CPA enables adversaries to extract the 
secret key within 25 traces, while original CPA methods 
require 55 traces at least to achieve a successful non-
profiled CPA attack. Besides, we find that FFT-based 
CPA does not always have the amazing performance in 
the context of SCA. Sometimes, it might make the per-
formance of original CPA attacks even worse, as shown 
in Fig. 5.

Fig. 4  The performance of WST-based CPA and original CPA attack 
on DPA Contest V4 dataset

Fig. 5  The performance of STFT-based CPA and original CPA attack 
on DPA Contest V4 dataset
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Fig. 6  The performance of WST-based CPA and original CPA attack 
on AES_HD dataset

Fig. 7  The performance of STFT-based CPA and original CPA attack 
on AES_HD dataset

In the context of analyzing AES_HD dataset, we select 
9000 traces to perform non-profiled attacks. Figures  6 
and 7 plot the performance of WST/STFT-based CPA 
attacks on AES_HD dataset respectively. As expected, 
the proposed method can also efficiently enhance non-
profiled attacks in the case of analyzing hardware-based 
cryptographic implementation. Using the proposed 
attack framework (Alg.  1 and Alg.  2), WST-based CPA 
attacks can reduce the number of attack data from 6000 
to 3000 while STFT-based CPA attacks reduce the num-
ber of attack data from 6000 to 4000. Compared with 
STFT-based CPA attacks, WST-based CPA attacks have 
relative superior performance in the case of analyzing 
AES_HD dataset. Besides, DOP/PCC-WST/STFT-based 
CPA leads to a better performance than SNR-WST/
STFT-based CPA, as shown in Figs.  6 and 7. Although 
SNR-WST-based CPA is also able to efficiently improve 
the performance of CPA attacks, DOP/PCC-WST/STFT-
based CPA allows extracting the secret key within fewer 
traces. Similar to Fig. 5, FFT-based CPA has poorer per-
formance in the context of analyzing AES_HD dataset, as 
shown in Fig. 7.

In the process of attacking ASCAD dataset, we select 
5000 traces to perform non-profiled attacks. The original 
data is preprocessed with window compress preproc-
essing method, reducing the dimension of the original 
sampling point from 700 to 70. After data dimension, we 
apply WST and STFT to preprocess the processed traces 
and then perform 2nd-order CPA attacks (Rivain et  al. 

2009) subsequently. Figures 8 and 9 plot the performance 
of WST/STFT-based CPA attacks on ASCAD dataset 
respectively. As expected, our proposed attack frame-
work can efficiently work in the context of analyzing 
ASCAD dataset and FFT-based CPA still has the poor-
est performance. With the proposed attack framework 
(Alg.  1 and Alg.  2), WST/STFT-based CPA attack can 

Fig. 8  The performance of WST-based CPA and original CPA attack 
on ASCAD dataset
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Fig. 9  The performance of STFT-based CPA and original CPA attack 
on ASCAD dataset

Fig. 10  The performance of WST-based CPA and original CPA attack 
on AES_RD dataset

Fig. 11  The performance of STFT-based CPA and original CPA attack 
on AES_RD dataset

successfully extract the AES key within 1200 traces while 
original methods require 2700 traces at least to achieve 
successful 2nd-order CPA attacks. From Figs. 8 and 9, we 
can learn that PCC/DOP evaluation metrics have bet-
ter performance than SNR evaluation metric in the sce-
nario of WST/STFT-based CPA attacks. In the context of 
STFT-based-CPA attacks, SNR-STFT-based CPA makes 
the performance of original method even worse.

In the scenario of analyzing AES_RD dataset, we 
select 20,000 traces to perform non-profiled attacks. 
Unlike analyzing three previous datasets, FFT-based 
CPA attacks achieve the best performance in the con-
text of attacking AES_RD dataset, as shown in Figs.  10 
and 11. The adversary can successfully extract the secret 
key within 3000 traces by FFT-based CPA attacks while 
WST-based CPA attacks require 5500 traces to achieve 
successful non-profiled CPA attacks. Compared with 
original CPA attacks, WST/FFT-based CPA attacks 
achieve more robust performance. The number of attack 
data can be reduced by 95% at least. Compared with SNR 
evaluation metric, PCC/DOP evaluation metrics achieve 
better performance in the scenario of WST-based CPA 
attacks. Besides, we find that STFT-based CPA attacks 
do not efficiently enhance CPA attacks in the case of 
analyzing AES_RD dataset. Origianl CPA methods can-
not achieve 20% success rate even though the number of 
attack data is increased to 18,000.

Comparing the proposed method with other popular 
preprocess methods
From "Practical attacks on public datasets" section it can 
be inferred that our method is able to effectively enhance 
original CPA attacks. However, it is uncertain whether 
our proposed method has superior performance than 
other popular preprocess methods (Bruneau et al. 2015; 
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Destouet et  al. 2021; Yang et  al. 2017; Riscure 2021) in 
the case of analyzing public datasets. Hence, we con-
duct a comparative experiment to investigate the per-
formance of these preprocess methods (Bruneau et  al. 
2015; Destouet et al. 2021; Yang et al. 2017; Riscure 2021) 
in the scenario of analyzing public datasets. In this sec-
tion, we select Principal Component Analysis (PCA) 
(Bruneau et al. 2015), Non-negative Matrix Factorization 
(NMF) (Yang et  al. 2017), Ensemble method with WST 
(Destouet et al. 2021), Lowpass-filter and Moving Aver-
age (Implemented by Riscure (2021)) as main methods 
to perform the attack. These methods are currently the 
most popular preprocess methods, and they can be eas-
ily reproduced by scikit-learn (Fabian Pedregosa et  al. 
2020) and kymatio (Andreux et  al. 2020) library. Unlike 
the research (Destouet et al. 2021), we apply the central 
idea of Ensemble method with WST to non-profiled sce-
narios. We aim to investigate whether their proposed 
method can efficiently work in non-profiled attacks sce-
nario. The motivation of this study is certainly not to 
deform or replicate previous studies. Instead, our goal 
is to provide some practical insight into the selection of 
preprocessing methods to enhance the performance of 
non-profiled attacks.

During the experiment, the number of components 
used in PCA/NMF is set to 10–40 and we select the 
parameter that leads to best SCA performance to per-
form the attack. To fairly compare Ensemble method 
with WST (Destouet et  al. 2021) and our proposed 
method, Ensemble method with WST uses the same 
best-selected parameters ("Practical attacks on pub-
lic datasets" secton). In this section, WST-CPA adopts 
PCC as the main evaluation metric. Figure  12 plots SR 
results of our method and other preprocess methods. As 
expected, our method is more generic and effective than 
other preprocess method. From Fig. 12, it can be learned 
that directly apply dimension reduction techniques (Bru-
neau et  al. 2015; Yang et  al. 2017) might make the per-
formance of original CPA method even worse. Although 
previous works (Bruneau et  al. 2015; Yang et  al. 2017) 
discover that using PCA/NMF can enhance the perfor-
mance of CPA in the case of analyzing cryptographic 
implementations, it does not have amazing performance 
as Bruneau et  al. (2015); Yang et  al. (2017) say in the 
context of analyzing four public datasets. Researchers 
need to conduct more investigations to further optimize 
NMF/PCA-CPA attacks. Besides, we find that Ensemble 
method with WST (Destouet et  al. 2021) cannot effi-
ciently enhance the performance of non-profiled attacks. 
It makes the performance of original CPA attacks worse 
in the context of analyzing DPA Contest V4, AES_HD 
and ASCAD datasets. In general, our method is more 

generic and effective in the scenario of enhancing the 
performance of CPA attacks.

Summary of the attack framework
To assess extendability and applicability of our method, 
we present practical attacks on four different crypto-
graphic implementations. With suitable parameters, 
WST-based CPA and STFT(FFT)-based CPA attacks 
achieve more robust performance. Compared with origi-
nal CPA attacks, the attack method can reduce the num-
ber of attack data by 50–95% which allows adversaries to 
extract the secret key within much fewer data.

Through the above comparative experiments, we can 
learn that WST-based CPA attacks have superior perfor-
mance than STFT-based CPA attacks in term of stabil-
ity. With suitable parameters, WST-based CPA attacks 
can effectively enhance the performance of non-profiled 
attack in the case of analyzing four datasets while STFT-
based CPA attacks do not efficiently work in the con-
text of analyzing AES_RD dataset. Although FFT-based 
CPA attack achieves the best performance when analyz-
ing AES_RD dataset, it makes the performance of origi-
nal attack methods worse in the scenario of analyzing 
the rest three datasets. We speculate the main reason 
is that the critical information in side-channel traces is 
contained in transient patterns, of which corresponding 
signals are non-stationary. As a consequence, the critical 
information in SCA’s traces is not well captured by FFT 
method. The adversary needs to introduce STFT method 
to address the limitation of FFT while WST can efficiently 
work in the scenario of analyzing non-stationary signals. 
Besides, we find that DOP/PCC evaluation metrics have 
superior performance than SNR evaluation metric in the 
context of proposed attack framework. DOP/PCC evalu-
ation metrics allow adversaries to extract the secret key 
with fewer traces in the scenario of analyzing AES_RD 
and AES_HD datasets. As a suggestion, we recommend 
selecting DOP/PCC as the primary evaluation metrics 
when applying the proposed attack framework.

Countermeasures. Through the practical experiment 
results, it can be learned that the proposed method can 
achieve significant improvements in the case of analyz-
ing masking and random delay countermeasures. Design-
ers need to consider the threats of our proposed method 
when implementing their cryptographic designs, espe-
cially designing random delay countermeasures. Cur-
rent random delay countermeasures are mostly applied 
to resist time-domain based SCA. They can misalign the 
sampling points in the time domain to increase the dif-
ficulty to perform a successful time-domain based SCA. 
However, they do not ensure the sampling points that are 
transformed in the frequency domain are also misaligned. 
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Figure 10 and Fig. 11 plot the performance of frequency-
based CPA in the case of analyzing random delay coun-
termeasures. From Figs.  10 and 11, we can learn that 
random delay cannot efficiently resist frequency-based 
CPA attacks. The adversary can successfully recover 
the secret key with quite limited power traces by WST/
FFT-CPA attacks. WST/FFT-CPA attacks do not even 
require additional align techniques to preprocess the 

traces. Designers need to additionally consider how to 
misalign the sampling points in the frequency domain 
when designing random delay countermeasures. In addi-
tion, designers also need to consider the threats of our 
proposed method when designing key-rolling scheme. 
Given N power traces, the adversary is unable to extract 
the secret key by time-domain based SCA method. How-
ever, the adversary may successfully extract the secret key 

Fig. 12  The performance of our method and other popular preprocess methods
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within N power traces by our proposed method. Moreo-
ver, it is advisable to adopt multiple countermeasures 
to resist our proposed method. Through the practical 
experiment results, it can be inferred that using single 
side-channel countermeasure (e.g. masking or random 
delay) cannot effectively resist WST/STFT-based CPA 
attacks. The adversary can successfully break masking 
or random delay countermeasure within 3000 traces by 
the proposed method. The designer needs to introduce 
additional countermeasures or more complex counter-
measures to enhance the physical security level of crypto 
produces. For example, designers can combine shuffling 
and masking countermeasures to resist our proposed 
method. Although shuffling cannot resist SCA when the 
attack data is huge, it can randomize casual independent 
operations and efficiently increase the number of attack 
data to perform a successful SCA. The protection is con-
sidered effective when the cost of successful SCA is unaf-
fordable for the adversary.

A fine‑grain analysis on parameter settings 
for frequency‑based CPA attacks
Based on the experiment results ("Experiment results" 
section), we conduct a systematic empirical study to 
investigate the effectiveness of STFT-based CPA and 
WST-based CPA in non-profiled attacks scenario. The 
performance of WST/STFT-based CPA is evaluated 
under different parameter values in a fine-grain man-
ner. According to the analysis result, we provide empiri-
cal suggestions for parameter selections in non-profiled 
attacks scenario. In this section, we mainly focus on 
PCC-WST/STFT-based CPA attacks.

A fine‑grain analysis on parameter settings for WST‑based 
CPA attacks
To assess the performance of WST-CPA attacks on DPA 
Contest V4, AES_HD, ASCAD and AES_RD datasets, we 
select the best-performance parameter-settings, and then 
systematically compare their performance with various 
{J ,Q} on four public datasets.

Figure  13 and Fig.  14 plot success rate results of 
WST-baed CPA with various {J ,Q} parameters on DPA 
Contest V4 dataset. From Figs. 13 and 14, we can learn 
that the parameter J plays a more important role in the 
scenario of improving WST-based CPA attacks. With 
a suitable parameter J, the adversary can efficiently 
improve the performance of WST-based CPA attacks 
even though the parameter Q is not properly selected. 
In the context of analyzing DPA Contest V4 dataset 
or similar implementations, the adversary can achieve 

a more efficient non-profiled attack when the variable 
parameters {J ,Q} satisfy: J = 1 and Q ∈ {3, 4, 5, 6}.

In the context of analyzing AES_HD dataset, the 
performances of WST-based CPA with various {J ,Q} 

Fig. 13  The performance of WST-based CPA with different Q on DPA 
Contest V4 dataset

Fig. 14  The performance of WST-based CPA with different J on DPA 
Contest V4 dataset
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are very analogous to WST-based CPA against DPA 
Contest V4 dataset. The parameter J also plays a more 
important role in the scenario of improving WST-based 
CPA attacks, as depicted in Figs.  15 and 16. The AES 
key of AES_HD dataset is successfully recovered within 
4000 traces when the parameter J is set to 2. We rec-
ommend setting parameters {J ,Q} to {2, 6} when ana-
lyzing AES_HD dataset or similar implementations for 

significant improvement of the performance of original 
CPA attacks.

To analyze ASCAD dataset, the original traces are 
preprocessed with window compression method. The 
number of sampling points is reduced to 70. To make 
WST work, we modify the value range of parameter J 
( J ∈ {1, 2, 3} ). Figures  17 and 18 plot the performance 
of WST-based CPA with various {J ,Q} against ASCAD 
dataset. As expected, the adversary can efficiently 
enhance non-profiled attacks when the parameter J is 

Fig. 15  The performance of WST-based CPA with different Q on 
AES_HD dataset

Fig. 16  The performance of WST-based CPA with different J on 
AES_HD dataset

Fig. 17  The performance of WST-based CPA with different Q on 
ASCAD dataset

Fig. 18  The performance of WST-based CPA with different J on 
ASCAD dataset
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A fine‑grain analysis on parameter settings for STFT‑based 
CPA attacks
To assess the performance of STFT-CPA attacks on 
DPA Contest V4, AES_HD and ASCAD, we select the 
best-performance frequency-components, and then 
systematically compare their performance with various 
{std,window} on three public datasets, where std denotes 
the size of standard deviation and window represents the 
size of gaussian window used in STFT.

Figures  21 and 22 plot success rate results of STFT-
based CPA with various parameters {std,window} on 

Fig. 19  The performance of WST-based CPA with different Q on 
AES_RD dataset

Fig. 20  The performance of WST-based CPA with different J on 
AES_RD dataset

properly selected. The adversary can achieve the best 
performance when the parameters {J ,Q} satisfy: J = 1 
and Q ∈ {2, 3}.

In the context of analyzing AES_RD dataset, the 
adversary can efficiently break random delay counter-
measures when the parameters {J ,Q} satisfy: J ∈ [4, 8] 
and Q ∈ [5, 8] as shown in Figs. 19 and 20. The proposed 
framework can achieve a more robust attack perfor-
mance when the adversary adopts larger parameters 
{J ,Q}.

Fig. 21  The performance of STFT-based CPA with the same window 
on DPA Contest V4 dataset

Fig. 22  The performance of various window-sized STFT-based CPA 
on DPA Contest V4 dataset
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DPA Contest V4 dataset. From Figs.  21 and 22, we 
can learn that the size of window and std play impor-
tant roles in the scenario of STFT-based CPA attacks. 
With a smaller-size window and a larger-size std, 
the performance of original CPA attacks can be sig-
nificantly improved. The proposed attack frame-
work achieves a satisfactory improvement when the 
parameters {std,window} satisfy: std ∈ {8, 16} and 
window ∈ {0.01L, 0.02L}.

Similar to the analysis of DPA Contest V4 dataset, 
the adversary can efficiently improve the performance 
of CPA attacks on AES_HD dataset with a smaller-size 
window and a larger-size std, as shown in Figs.  23 and 
24. The adversary can achieve the best performance 
when the parameters {window, std} satisfy: std = 16 
and window ∈ {0.01L, 0.02L} . Similar to the analysis of 
DPA Contest V4 and AES_HD datasets, using a smaller-
size window allows adversaries to extract the secret key 

Fig. 23  The performance of STFT-based CPA with the same window 
on AES_HD dataset

Fig. 24  The performance of various window-sized STFT-based CPA 
on AES_HD dataset

Fig. 25  The performance of STFT-based CPA with the same window 
on ASCAD dataset

Fig. 26  The performance of various window-sized-STFT based CPA 
on ASCAD dataset
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of ASCAD dataset with fewer traces (See Figs.  25 and 
26). Our method significantly enhances CPA attacks on 
ASCAD dataset when the {std,window} are designed as 
follows: std ∈ {2, 4, 8, 16} and window = 0.01L . Through 
these three comparative experiment results, we can 
conclude that STFT-based CPA attacks tend to achieve 
a more robust non-profiled attacks when the length of 
window becomes smaller. To enhance the performance of 
non-profiled attacks, we recommend setting the param-
eter window as follows: window ∈ {0.01L, 0.02L} when 
performing STFT-based CPA attacks.

Conclusions
We present a systematic research about the impact of 
{J ,Q} and {std,window} on the performance of WST/
STFT-based CPA attacks in non-profiled attacks sce-
nario. Through the practical experiments, we obtain fol-
lowing important and interesting findings:

•	 In the case of WST-based CPA attacks, the param-
eter J plays a more important role in enhancing CPA 
attacks. Using a smaller-size parameter J (J ∈ {1, 2}) , 
the performance of original CPA attacks can be sig-
nificantly enhanced with the proposed method ("A 
practical framework for frequency-based CPA attack" 
section) when the target does not adopt random 
delay countermeasures. When analyzing random 
delay countermeasures, adversaries can adopt larger-
size parameter-settings {J ,Q}(J ∈ {7, 8},Q ∈ {5, 6}) 
to efficiently break random-delay countermeasures.

•	 In the scenario of STFT-based CPA attacks, we find 
that the smaller-size parameter window allows adver-
saries to achieve a successful CPA attack with fewer 
traces. The proposed attack framework ("A practical 
framework for frequency-based CPA attack" section) 
achieves a satisfactory performance-improvement 
when the size of window is set to {0.01L, 0.02L}.

Discussions
Related works
Through former experiment results, it can be inferred 
that using our proposed attack framework and grid 
research method, WST/STFT-based CPA attacks can 
significantly enhance the performance of original CPA 
attacks with suitable parameters. Currently, there are 
two categories of related works in side-channel attacks 
domain: (1) Applying preprocessing technique to 
improve the performance of SCA; (2) Applying hyperpa-
rameters-search method for Deep Learning based Side-
Channel Analysis (DL-SCA).

Applying preprocessing technique to improve the perfor-
mance of SCA. Preprocessing the physical signals is the 
first important step in the case of improving the quality 
of collected data. The adversary can efficiently extract the 
secret key with quite limited traces if the quality of col-
lected data is significantly improved. In theory, the pre-
processing method is not limited to specific platform or 
cryptographic implementations. It can be applied to any 
kind of cryptographic implementation. Many research-
ers have considered applying preprocessing method to 
improve the performance of SCA. For instance, Bru-
neau et al. (2015) applied PCA in processing the original 
traces. They showed that PCA can efficiently enhance 
non-profiled attacks if the principal components are 
properly selected. Merino Del Pozo and Standaert (2015) 
adopted Singular Spectrum Analysis method to improve 
the quality of the collected signals. They showed that 
their proposed method can improve the SNR by 250% 
in the context of analyzing software-based unprotected/
masked implementations of AES. However, these kinds 
of methods require expert-knowledge to some extents. 
The adversary needs to carefully select the components 
to enhance the quality of the collected traces. Besides, 
they did not deeply investigate whether their method can 
efficiently work in the case of analyzing random-delay 
countermeasures. To further optimize the performance 
of CPA attacks, Maghrebi and Prouff (2018) designed a 
practical Independent-Component Analysis (ICA) based 
framework to enhance the performance of CPA attacks. 
Compared with the previous work (Merino Del Pozo 
and Standaert 2015), their method allows reducing the 
number of data from 6000 to 2000 in the case of ana-
lyzing software-based unprotected implementation of 
AES. Compared with previous works (Merino Del Pozo 
and Standaert 2015; Bruneau et  al. 2015), their method 
does not require dedicated parameters selection. How-
ever, their method requires adversaries to collect two 
traces for each hypothesis intermediate value at least. 
Unlike their method, our method does not have this 
kind of limitation. In addition to improving the SNR of 
the collected data, some researchers considered apply-
ing data-augmentation techniques (e.g. SMOTE (Picek 
et  al. 2019), adding gaussian noise (Kim et  al. 2019)) to 
further optimize DL-SCA. They showed that the perfor-
mance of SCA can be significantly enhanced by adding 
synthetic data to the original collected data in profile 
stages. However, these methods (Picek et  al. 2019; Kim 
et al. 2019) are only limited to profiled attacks scenario. 
Compared with their works, our method theoretically 
can be also applied to profiled attacks scenario. Cur-
rently, there exist some similar works that consider 
applying frequency-based CPA method to enhance SCA. 
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Typical examples include applying DFT (Zhang et  al. 
2020; Gebotys et  al. 2005), STFT (Belgarric et  al. 2014) 
and Wavelet transform (Debande et al. 2012; Udvarhelyi 
et al. 2021; Destouet et al. 2021) to improve the perfor-
mance of CPA attacks. The authors (Zhang et  al. 2020; 
Gebotys et al. 2005) showed that FFT has appealing tech-
nical potential in the case of improving the performance 
of SCA. However, in this paper, we discover that FFT-
based CPA does not have amazing performance as origi-
nal works say (Zhang et  al. 2020; Gebotys et  al. 2005). 
It makes the performance of original CPA even worse 
when attacking DPA Contest V4, AES_HD and ASCAD 
datasets. In general, FFT-based preprocessing method 
is not very mature when analyzing different crypto-
graphic implementations. Different from previous works 
(Debande et  al. 2012; Udvarhelyi et  al. 2021; Destouet 
et  al. 2021; Belgarric et  al. 2014), our WST-based CPA 
method does not require any expert-knowledge depend-
ency. An adversary, who has no prior knowledge about 
the WST/STFT and cryptographic implementations, can 
obtain suitable parameters for WST/STFT with the pro-
posed framework. Compared with original CPA attacks, 
our method allows reducing the number of traces by 
50–95% in the case of attacking different kinds of crypto-
graphic implementations ("Experiment results" section). 
Our approach provides a convenient and effective solu-
tion to enhance non-profiled CPA attacks when the col-
lected data is insufficient, which certainly deserves more 
in-depth researches.

Applying hyperparameters-search method for DL-SCA. 
In DL-SCA, selecting suitable hyperparameters, such as 
loss function, neural parameters and network architec-
ture, is vital for constructing a robust profiled model. 
With suitable hyperparameters and sufficient training 
data, the adversary can successfully extract the secret key 
with quite limited data. In recent years, some research-
ers have introduced hyperparameters-search methods 
to SCA domain to enhance the performance of DL-SCA. 
For instance, Perin and Picek (2021) adopted grid search 
method to select the optimizers for DL-SCA. Wu et  al. 
(2020) applied random search with Bayesian optimiza-
tions to design neural network architecture for DL-SCA. 
On the basis of the research (Wu et  al. 2020), Rijsdijk 
et  al. (2021) adopted reinforcement learning to achieve 
hyperparameters tuning for DL-SCA. These works 
adopted success rate, guess entropy, loss value and the 
size of neural network model as main evaluation met-
rics to select suitable parameters iteratively. Unlike these 
researches, we adopt grid search as the main method 
and apply it in non-profiled attacks scenario. We adopt 
PCC, SNR and DOP as main evaluation metrics to select 
hyperparameters for WST/STFT-CPA attacks.

Discussions and future directions
Advantages of the attack method we presented. With our 
proposed attack framework, WST/STFT-based CPA can 
achieve significant performance improvements when 
the attack data is insufficient. The practical attack results 
("Experiment results" section) prove that our work pro-
vides a convenient and effective approach to enhance 
non-profiled attacks when the collected data is insuffi-
cient. The presented method is applicable to other sym-
metric ciphers, such as Midori (Banik et al. 2015), GIFT 
(Banik et  al. 2017) and Pyjmask (Goudarzi et  al. 2020). 
In practice, the adversary can firstly apply our method 
to select suitable parameters for WST/STFT-based 
CPA when analyzing the first-byte secret key. Then he 
can directly apply STFT/WST-based CPA with suitable 
parameters to extract other secret key bytes to acceler-
ate non-profiled attacks. In addition, he can also directly 
use our recommended parameters setting ("A fine-grain 
analysis on parameter settings for frequency-based CPA 
attacks" section) to enhance WST/STFT-CPA when the 
cryptographic implementation or platform is similar to 
the analyzed dataset ("Public datasets" section).

Future prospects. We plan to investigate the perfor-
mance of our proposed method in the case of analyzing 
protected implementations of lightweight block ciphers 
in our future research. We want to explore whether the 
proposed method can efficiently work in the case of 
analyzing other important block ciphers. In addition, it 
would be also valuable to design new random delay coun-
termeasures to efficiently resist WST/STFT-based CPA 
attacks. The experiment results ("Experiment results" 
section) show that our method can efficiently break ran-
dom delay countermeasures without any alignment. 
Designers need to ensure the sampling points in the fre-
quency-domain are also misaligned when implementing 
random delay countermeasures. Designing a reliable ran-
dom delay countermeasure to resist time-domain based 
SCA and our proposed method is also an interesting and 
meaningful task for future works.

Limitations of the attack method. Though former 
practical experiment results show that our approach 
has great technical potential in enhancing non-profiled 
CPA attacks, the method has some limitations that need 
improvements in the future:

•	 Bring extra time-overhead. The attack framework 
requires extra preprocessing steps. The adversary 
needs to iteratively search the suitable parameters, 
which certainly brings additional time-overhead. 
Compared with our proposed method, original CPA 
does not require hyperparameters selection and can 
directly extract the secret key. Hence, our method 
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currently is not practicable in realistic when the col-
lected traces are sufficient. Optimization of param-
eter search process will be the focus of future works.

•	 Require searching parameters manually. In this work, 
we adopt grid-search as main parameters-searching 
methods to search parameters for WST/STFT-based 
CPA. We need to manually define the ranges for 
finite sets, such as J and Q used in WST-based CPA 
attacks, prior to the attack. In DL-SCA, the adversary 
has considered applying reinforcement learning to 
achieve intelligent parameters tuning (Rijsdijk et  al. 
2021), which provides a living case for our research. 
However, in this paper, we do not consider how 
to achieve intelligent parameters tuning for WST/
STFT-based CPA attacks.

•	 The theoretical interpretability issue of the frequency 
domain analysis method itself is not effectively solved. 
Through the practical experiment results ("Experi-
ment results" and "A fine-grain analysis on param-
eter settings for frequency-based CPA attacks" 
sections), it can be inferred that WST/STFT-CPA 
achieves different improvement levels according to 
different cryptographic implementations. Theoreti-
cally, the occurrence of significant technical effects 
has correlation with some physical characteristics of 
the analyzed information leakages. However, we do 
not conduct in-depth researches on the mechanism 
cognition and principle demonstration of the attack 
method from the theoretical level. We leave those 
challenging tasks for future works.

Future improvements. To achieve intelligent parameters 
tuning for WST/STFT-based CPA attacks, evaluators can 
consider applying a more advanced parameters-search-
ing method (e.g. reinforcement learning) to WST/STFT-
based CPA attacks. Evaluators can combine random 
searching and Bayesian Optimization (He et al. 2021) to 
further optimize the parameter search process. In addi-
tion, it would be valuable to give corresponding feasible 
and powerful explanations from some perspectives of 
signal characteristics. Moreover, designing more reliable 
evaluation metrics is helpful for enhancing the practical-
ity of our proposed method.

Future directions. In addition to the above limitations, 
there are several challenging and interesting works left 
uncompleted in our research:

•	 Applying the attack framework to analyze machine-
learning algorithms. In this paper, we focus on AES 
block-cipher. The physical security of other impor-
tant algorithms such as machine-learning (ML) algo-
rithms are not deeply investigated. Recently, physi-
cal evaluations of machine learning algorithms have 

become a hot topic in SCA community. Many inter-
esting studies have been conducted to investigate the 
physical security of ML models, such as extracting 
the IEEE-754 floating points of CNN/MLP (Batina 
et  al. 2019) models, extracting the integer weight 
parameters of Binarized Neural Networks (BNN) 
(Yli-Mayry et al. 2021) and Bonsai (Jap et al. 2020). It 
would be interesting to study whether the proposed 
method is suitable for further enhancing CPA in the 
case of analyzing IEEE-754 floating points or quan-
tized ML models.

•	 Extending the proposed method to high security-level 
commercial crypto products. In our work, we con-
duct practical attacks on four datasets to assess the 
effectiveness of our approach. We do not consider 
whether our approach can be applied to analyze 
high security-level commercial crypto products. In 
recent years, some hardware vendors have consid-
ered designing countermeasures for commercial 
crypto products to resist various physical attacks. For 
instance, Xilinx Zynq Ultracale+ (ZU+) Encryption 
Engine adopts proprietary countermeasures to resist 
SCA (Hettwer et  al. 2021). In this case, adversaries 
need to extract the secret key within limited data. 
The previous work (Hettwer et  al. 2021) shows that 
ZU+ platform can successfully resist original non-
profiled attacks. However, if adversaries adopt our 
attack framework or more advanced parameter tun-
ing method (Rijsdijk et al. 2021), the secret key might 
be successfully recovered with limited traces. Hence, 
it would be meaningful to investigate if our method 
is applicable for analyzing this kind of high security-
level commercial crypto products.

•	 Building a generic framework to scientifically com-
pare various preprocess methods. This paper mainly 
compares the performance of our method with some 
popular preprocess methods, such as PCA (Bru-
neau et al. 2015), NMF (Yang et al. 2017), Ensemble 
method with WST (Destouet et  al. 2021), Lowpass-
filter and Moving Average (Provided by Riscure 
(2021)). The other complex preprocess methods, 
such as wavelet transform (WT), Kalman filter (KF) 
and Singular Spectrum Analysis (SSA) are not con-
sidered, as they are mainly heuristic methods and 
usually require dedicated parameters selection. 
Empirically select parameters may make the perfor-
mance of those preprocess methods (WT, KF and 
SSA) unstable. Sometimes it might make the per-
formance of original attacks even worse. Hence, it is 
necessary to build a generic framework to compre-
hensively and scientifically compare the performance 
of various preprocess methods. The practical attack 
results show that our framework can provide suitable 
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parameters selection for WST/STFT-CPA attacks. 
It would be interesting to investigate whether our 
framework ("A practical framework for frequency-
based CPA attack" section) is able to enhance other 
complex preprocess methods.

The above interesting tasks and unexploitable areas are 
left for future works.

Conclusions
We propose a practical framework to provide suit-
able parameters for WST-based SCA and STFT-based 
SCA. With the suitable parameters, the performance of 
WST/STFT-based CPA can be significantly improved. 
The performance of the designed attack framework is 
assessed by practical experiments on four public data-
sets, including DPA Contest V4, AES_HD, AES_RD and 
ASCAD datasets. Compared with original non-profiled 
attacks, the proposed method can reduce the number 
of data by 50–95%. In general, the proposed attack 
framework provides a straightforward and effective 
solution to enhance CPA in the case of insufficient data, 
which certainly deserves more-in depth researches.
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