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Abstract: The rapid advancements in technology have given rise to groundbreaking solutions and
practical applications in the field of the Industrial Internet of Things (IIoT). These advancements have
had a profound impact on the structures of numerous industrial organizations. The IloT, a seamless
integration of the physical and digital realms with minimal human intervention, has ushered in
radical changes in the economy and modern business practices. At the heart of the IloT lies its ability
to gather and analyze vast volumes of data, which is then harnessed by artificial intelligence systems
to perform intelligent tasks such as optimizing networked units’ performance, identifying and
correcting errors, and implementing proactive maintenance measures. However, implementing IIoT
systems is fraught with difficulties, notably in terms of security and privacy. IloT implementations
are susceptible to sophisticated security attacks at various levels of networking and communication
architecture. The complex and often heterogeneous nature of these systems makes it difficult to ensure
availability, confidentiality, and integrity, raising concerns about mistrust in network operations,
privacy breaches, and potential loss of critical, personal, and sensitive information of the network's
end-users. To address these issues, this study aims to investigate the privacy requirements of an IloT
ecosystem as outlined by industry standards. It provides a comprehensive overview of the IIoT, its
advantages, disadvantages, challenges, and the imperative need for industrial privacy. The research
methodology encompasses a thorough literature review to gather existing knowledge and insights
on the subject. Additionally, it explores how the IIoT is transforming the manufacturing industry and
enhancing industrial processes, incorporating case studies and real-world examples to illustrate its
practical applications and impact. Also, the research endeavors to offer actionable recommendations
on implementing privacy-enhancing measures and establishing a secure IIoT ecosystem.

Keywords: identity privacy; location privacy; footprint privacy; multidimensional privacy; privacy
threats; privacy principles

1. Introduction

Conventional corporate structures, within a society where humans and robots need to
collaborate, create obstacles that squander energy, devalue information, and limit knowl-
edge transfer. At this point, the IIoT is transforming how businesses and, by extension,
the manufacturing industry, operate [1]. The IloT is relevant to ubiquitous connectivity,
enabling objects, machines, and devices to exchange data autonomously across networks,
eliminating the need for human intervention. This connectivity has brought about re-
markable progress in industrial organizations, seamlessly merging the physical and digital
realms and driving transformative changes in the economy and modern business practices.
With the aid of sensors, businesses can effectively monitor performance and address areas
that require improvement, thereby enhancing both the manufacturing process and the
overall customer experience and ultimately adding value at every production stage [2].
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In this context, the IloT in industrial production is one of the most forward-thinking in-
dustrial technologies because it combines two digitization strategies, Artificial Intelligence
(Al) and Industry 4.0 [3]. The combination of data analysis and high-level automation
technologies significantly improves the industrial environment [4].

However, implementing IloT systems is fraught with difficulties, notably in terms
of security and privacy. The complex and heterogeneous nature of IloT systems makes
them vulnerable to sophisticated security attacks at various levels of networking and
communication architecture. Ensuring availability, confidentiality, and integrity becomes a
daunting task due to the chaotic nature of these systems. Consequently, there is a risk of
mistrust in network operations, concerns about privacy breaches, and the potential loss of
critical, personal, and sensitive data of the network's end-users.

The comparison outlining the advantages and disadvantages of IloT devices is pre-
sented in Table 1.

Table 1. Advantages and disadvantages of IIoT devices.

Advantages

IIoT devices can help to streamline and automate
Enhanced efficiency and productivity industrial processes, reducing manual labor and
increasing efficiency and productivity.

IIoT devices can generate large amounts of data that
can be used to monitor and optimize industrial
processes, leading to better decision-making and
improved outcomes.

Improved data collection and analysis

IIoT devices can help to reduce costs by optimizing
Cost savings energy usage, reducing waste, and improving asset
management.

IIoT devices can be monitored and controlled
Remote monitoring and control remotely, reducing the need for on-site personnel
and enabling real-time monitoring and intervention.

Disadvantages

IIoT devices are vulnerable to cyberattacks and
Security risks hacking, compromising sensitive data and
disrupting industrial processes.

IIoT devices may not be compatible with existing
Compatibility issues industrial systems or other IIoT devices, leading to
integration challenges and additional costs.

There currently needs to be a widely accepted
Lack of standardization standard for IloT devices, leading to issues with
interoperability and compatibility.

IIoT devices can be expensive to implement and
High implementation costs maintain, particularly for small and
medium-sized enterprises.

One of the biggest challenges is the industrial privacy requirements in an IloT ecosys-
tem. Industrial privacy refers to the protection of sensitive information and personal data
in the context of industrial environments, such as manufacturing plants, supply chains, and
industrial processes. It encompasses the safeguarding of confidential business information,
trade secrets, employee data, and customer information from unauthorized access, misuse,
or disclosure. Industrial privacy is crucial for maintaining the confidentiality, integrity, and
availability of sensitive data within the industrial sector. It involves implementing security
measures, policies, and practices that address the unique challenges and risks associated
with industrial settings, including the interconnectedness of industrial systems, the collec-
tion and analysis of machine-generated data, and the integration of new IloT technologies
and applications. Industrial privacy aims to ensure that sensitive information remains
protected, both within the organization and in its interactions with external stakeholders,
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contributing to maintaining trust, compliance with regulations, and the sustainable growth
of industrial sectors.

This research endeavors to address several key aspects concerning the privacy require-
ments within an IIoT ecosystem, particularly in relation to the processing of personal data
by competent authorities. Specifically, the research questions addressed in this study are:

What are the specific industrial privacy requirements within an IloT ecosystem, partic-
ularly in relation to the processing of personal data by competent authorities?

1.  What are the existing approaches and solutions used to mitigate privacy risks in
industrial settings?

2. How can privacy dimensions be identified and defined to safeguard individuals
within the IIoT ecosystem? What are the different aspects or components of privacy
that should be considered?

3. What are the contemporary techniques, technologies, and best practices employed to
ensure data privacy and security in IloT systems within industrial environments?

4. How can organizations establish an ideal, safe, and private IloT ecosystem within the
industrial domain?

5. What considerations and factors need to be taken into account to create a secure envi-
ronment within the industrial domain while adhering to relevant industry standards?

6.  What are the recommendations for implementing privacy-enhancing measures in
IIoT systems to effectively manage privacy risks and ensure compliance with relevant
regulations?

By addressing these research questions, the study aims to provide insights into the
challenges and strategies for maintaining industrial privacy within the context of IloT
ecosystems. It also seeks to offer guidance to organizations in enhancing data protec-
tion measures, thereby fostering trust, compliance, and sustainable growth within the
industrial sectors. In summary, this study makes the following significant contributions to
understanding and implementing the IloT in the industrial context:

1.  HoT’s Transformative Impact on Industrial Organizations: The introduction empha-
sizes how the Industrial Internet of Things (IIoT) is revolutionizing the manufacturing
industry by facilitating ubiquitous connectivity and autonomous data exchange. This
transformation is breaking down barriers between physical and digital realms, leading
to remarkable progress in industrial operations and modern business practices.

2. Integration of Al and Industry 4.0 in the IloT: The paper highlights that the IIoT
represents a forward-thinking industrial technology that combines two digitization
strategies—Artificial Intelligence (Al) and Industry 4.0. This integration of data
analysis and high-level automation significantly enhances the industrial environment
and operations.

3. Challenges in IloT Implementation: The introduction acknowledges the challenges
associated with the IIoT, particularly in terms of security. The complex and heteroge-
neous nature of IloT systems makes them vulnerable to sophisticated security attacks
at various levels of networking and communication architecture. These challenges can
lead to mistrust in network operations, privacy breaches, and the loss of critical data.

4. Advantages and Disadvantages of IloT Devices: The introduction presents a clear
and concise list outlining the advantages and disadvantages of IloT devices in Table 1.
The benefits include enhanced efficiency, improved data collection, cost savings, and
remote monitoring. On the other hand, the disadvantages include security risks,
compatibility issues, lack of standardization, and high implementation costs.

5. Focus on Industrial Privacy in IloT Ecosystems: The research aims to address the
crucial aspect of industrial privacy in an IIoT ecosystem. It defines industrial privacy
as the protection of sensitive information and personal data within industrial settings,
such as manufacturing plants and supply chains. The research emphasizes the need
to implement security measures, policies, and practices to safeguard confidential
information from unauthorized access and misuse.
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6.  Identification of Privacy Dimensions: The study delves into the identification and
definition of privacy dimensions within the IloT ecosystem. These dimensions repre-
sent different aspects or components of privacy that are considered when addressing
privacy concerns. By understanding the multifaceted nature of privacy, the research
aims to guide the development of privacy frameworks and practices.

7. Techniques and Best Practices for Data Privacy and Security: The paper explores
contemporary techniques, technologies, and best practices used to ensure data privacy
and security in IIoT systems. It includes an analysis of the latest methodologies and
tools implemented to maintain data confidentiality, integrity, and availability in
industrial environments.

8.  Establishing a Safe and Private IIoT Ecosystem: The research aims to identify how
organizations can establish an ideal, safe, and private IIoT ecosystem within the
industrial domain. It delves into various considerations and factors that need to be
taken into account to create a secure environment. Additionally, the study offers
recommendations on implementing privacy-enhancing measures and adhering to
industry standards to effectively manage privacy risks and regulatory compliance.

2. Related Work

The complexity and heterogeneity of IloT systems make ensuring availability, confiden-
tiality, and integrity difficult. As a result, there is a risk of mistrust in network operations,
privacy concerns, and the potential loss of critical personal and sensitive information of
the network's end-users. The above challenges have caused widespread concern in the
scientific community, prompting several solutions to be proposed at various levels. For
example, the existing methods for protecting location privacy are mostly based on tradi-
tional anonymization, fuzzy, and cryptography technology, with little success in the big
data environment, for example, sensor networks contain sensitive information that must
be appropriately protected. Current trends, such as “Industry 4.0” and the IIoT, generate,
process, and exchange massive amounts of security-critical and privacy-sensitive data,
making them appealing targets for cyber-attacks. However, the previous methods ignored
the issue of privacy protection, resulting in a violation of privacy. In this paper [5], the
authors propose a location privacy protection method that meets the differential privacy
constraint while also maximizing the utility of the data and algorithms in the IloT. Since
location data has a high value but a low density, the authors combine utility and privacy to
create a multilevel location information tree model. Furthermore, the differential privacy
index mechanism is used to select data based on the frequency with which tree nodes
access the data. Finally, the Laplace scheme is used to introduce noise into the data access-
ing frequency. As demonstrated by the theoretical analysis and experimental results, the
proposed strategy can significantly improve security, privacy, and applicability.

A tensor-based multiple clustering method has recently been created with the goal
of uncovering hidden distinct data structures in large data from diverse perspectives, and
it may be widely employed in the IIoT to improve production and service quality. Yet,
due to the high computational cost and massive volume of data, outsourcing processing
to relatively low-cost cloud servers can significantly reduce local costs, but there is a con-
siderable risk of revealing user privacy. To overcome the aforementioned issue, a secure
hybrid cloud-based tensor-based multiple clustering method is proposed [6]. The proposed
technique encrypts object tensors using a homomorphic cryptosystem and then uses cloud
servers to completely conduct various clustering calculations over encrypted object tensors.
A set of related security subprotocols is also developed to facilitate privacy-preserving
tensor-based multiple clusterings. Just encryption and perturbation removal are performed
on the client in the proposed method, making it very lightweight for consumers. Experi-
ment findings show that the suggested approach is accurate and efficient when grouping
items into different groups, with no leakage of private or supplementary information.
Furthermore, when more cloud nodes are used, the technique offers excellent scalability,
making it ideal for clustering Industrial IloT big data.
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In addition, clients that are equipped with growing cloud computing choose to out-
source an increasing amount of IIoT data to the cloud to alleviate the high storage and
processing strain. Existing searchable encryption (SE) systems, however, only apply to IloT
records with textual keyword fields, rather than those with both digital and textual key-
word fields. Furthermore, due to the significant key storage expense, the key management
issue continues to limit the practicality and availability of SE schemes. To that purpose,
the authors [7] describe an outsourced Hybrid Keyword-Field Search over Encrypted Data
with Efficient Key Management (HKFS-KM) system that makes use of the relevance score
function and a keyed hash tree. A formal security study demonstrates that the HKFS-KM
scheme achieves keyword privacy and trapdoor unlinkability in both known ciphertexts
and known background attack models. The experimental findings utilizing real-world
datasets demonstrate its efficiency and applicability in practice.

Although cyber-attacks on the Industrial Internet of Things (IloT) continue to be a
serious concern, blockchain has emerged as a viable technology for IloT security due to its
decentralization and immutability. Current blockchain designs, on the other hand, provide
considerable computational complexity and latency concerns, making them unsuitable for
the IIoT. Xyreum, a novel high-performance and scalable blockchain for increased IloT
security and privacy, is proposed in this research [8]. To accomplish Mutual Multi-Factor
Authentication, Xyreum employs a Time-based Zero-Knowledge Proof of Knowledge (T-
ZKPK) with authenticated encryption (MMFA). T-ZKPK characteristics are also utilized to
help with Key Establishment for transaction security. Their approach to establishing consen-
sus, which is a group decision-making process on the blockchain, is based on lightweight
cryptographic techniques. They test their scheme for security, privacy, and performance,
and the results show that, when compared to existing relevant blockchain solutions, their
scheme is secure, privacy-preserving, and achieves a significant reduction in computa-
tion complexity and latency performance while maintaining high scalability. They also
demonstrate a blockchain-based security protocol used in a variety of application domains.

Moreover, deep learning offers a great chance to extract usable knowledge from the
massive amounts of data in the IIoT. Yet, the absence of large public datasets will result
in poor performance and overfitting of the learned model. As a result, federated deep
learning across distant datasets has been proposed. Yet, it invariably brings new security
challenges, such as revealing participant data privacy. Existing solutions, however, cannot
ensure the privacy of each participant’s data in a learning group. The authors [9] suggest
two privacy-preserving asynchronous deep learning systems in this article: DeepPAR
(privacy-preserving and asynchronous deep learning via re-encryption) and DeepDPA
(dynamic privacy-preserving and asynchronous deep learning). In comparison to previous
work, DeepPAR secures each participant’s input privacy while maintaining dynamic
update secrecy naturally. Meanwhile, DeepDPA allows for the backward privacy of group
participants to be guaranteed in a lightweight manner. Security analyses and performance
tests on real-world datasets demonstrate that their suggested systems are safe, efficient,
and effective.

On the other hand, the rapid increase in the volume of data created by the connected
devices in the IloT paradigm brings up new opportunities for improving service quality
for developing applications through data sharing. Yet, data providers have significant
challenges in sharing their data through wireless networks due to security and privacy
concerns (e.g., data leakage). Private data leaks can cause major problems beyond financial
loss for companies. The authors [10] first design a blockchain-powered safe data-sharing ar-
chitecture for the multiple distributed parties in this study. Finally, using privacy-protected
federated learning, they transform the data-sharing challenge into a machine-learning prob-
lem. Data privacy is protected by providing the data model rather than releasing the actual
data. Lastly, they incorporate federated learning into the permissioned blockchain consen-
sus process, such that the computing work for the consensus can also be used for federated
training. The suggested data-sharing strategy achieves good accuracy, high efficiency, and
better security, according to the numerical results generated from the real-world datasets.
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Finally, the advantage of using edge computing is that it may be used as a complement
to cloud computing; blockchain is an alternative for creating a transparent safe environment
for data storage/governance. Instead, rather than employing these two strategies separately,
the authors propose a novel methodology in this article [11], termed the blockchain-based
Internet of Edge model, which merges the IloT with edge computing and blockchain. The
suggested approach, intended for a scalable and controllable IIoT system, takes advan-
tage of the benefits of edge computing and blockchain to construct a privacy-preserving
mechanism while taking into account other constraints such as energy cost. They carry
out experiment evaluations on Ethereum. According to their data gathering, the proposed
strategy improves privacy safeguards while reducing energy consumption.

In the rapidly evolving landscape of the IloT, the research community, as mentioned
above, has embraced various privacy methods to protect sensitive data and ensure secure
operations. However, each method comes with its own set of disadvantages, highlighting
the necessity for a holistic approach when addressing privacy dimensions in the IIoT
ecosystem. From this point of view, the IloT ecosystem’s privacy dimensions require a
comprehensive approach that takes into account the interconnectedness of the various
methods and their associated advantages. By presenting a holistic approach to privacy in
the IloT, industries and organizations can strengthen their defenses against evolving threats
and protect sensitive data, ensuring the secure and sustainable growth of IloT technologies.

3. IIoT and Privacy-Preserving Architectures

Unlike traditional industrial systems that operate in isolation or with limited connectiv-
ity, IloT systems enable seamless communication between devices and systems, both within
a single industrial facility and across multiple sites or locations. This interconnectedness
allows for the exchange of data and information, facilitating the integration of operational
technology (OT) with information technology (IT) systems [12].

The IIoT leverages technologies such as cloud computing, big data analytics, ma-
chine learning, and artificial intelligence to process and derive insights from the vast
amount of data generated by industrial devices and systems. These technologies enable
predictive maintenance, remote monitoring, intelligent automation, and optimization of
industrial processes.

The applications of the IIoT are diverse and can be found in various industries, in-
cluding manufacturing, energy and utilities, transportation, agriculture, healthcare, and
more. Examples of IloT implementations include smart factories, connected supply chains,
remote asset management, predictive maintenance, and energy management systems.

Any edge device (sensors, readers, gateways) can transfer local data to cloud systems
by using any available communication system for real-time analysis. However, if they
are not incorporating Al applications, their use can be considered passive, as they cannot
utilize the data in real-time.

Al plays a crucial role in leveraging data in real-time by enabling efficient processing,
analysis, and decision-making. Also, Al empowers organizations to harness the power of
real-time data by enabling efficient processing, analysis, and decision-making. By lever-
aging Al algorithms and techniques, organizations can extract insights, make predictions,
automate processes, and provide personalized experiences in real-time, thereby gaining a
competitive edge and driving innovation. It must be noted that real-time data processing
focuses on the timely processing and analysis of data as it is generated, enabling organiza-
tions to make immediate decisions or take prompt actions. Intelligent automation, on the
other hand, leverages Al and automation technologies to automate tasks and processes,
reducing human effort and improving efficiency. Together, they can enhance operational
agility, optimize decision-making, and drive intelligent actions based on real-time data.

On the other hand, this closer networking of the digital world of machines creates the
potential for profound changes in global industry and many areas of private and social life.
Based on all this, it is necessary to present tomorrow’s trends in everything related to IloT
technology applications [13].
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Growth of IIoT applications [14]. Manufacturing automation continues to grow, with
the number of companies choosing to automate and implement the IloT soaring to
new levels due to the impact of the COVID-19 pandemic. Machine learning and
robotics are two applications that increase automation. Machine learning increasingly
automates manufacturing processes, so less human intervention is required, while the
increasing number of human jobs being taken over by robotics results in fewer people
in the workplace. Organizations need to ensure that proper security protocols are in
place to safeguard data privacy and prevent unauthorized access.

The wireless revolution. Only some IloT applications have access to local sockets [15].
“Local socket” refers to a communication endpoint or interface that allows processes
running on the same device or within the same local network to communicate with
each other. Local sockets in IloT architectures can provide privacy in industrial
environments by enabling secure and private communication between processes
and applications running on the same device or within the same local network. By
utilizing local sockets, data can be exchanged and coordinated within the confines of
the device or local network, reducing the risk of unauthorized access or interception
from external sources. This local communication ensures that sensitive data stays
within the trusted boundaries of the industrial environment, enhancing privacy and
preventing potential security breaches. Additionally, with the advent of advanced IloT
wireless technologies like 5G, organizations can further enhance network isolation and
security, creating dedicated and isolated network environments that offer heightened
privacy, control, and protection for sensitive data through features such as Network
Slicing, Enhanced Security Mechanisms, Private 5G Networks, and Network Function
Virtualization (NFV). Secure and private communication between processes and
applications within the industrial environment helps maintain data privacy and
prevents potential security breaches.

Adoption of Virtual Reality (VR) [16] for remote operations has become dominant for
industrial applications regarding training and commissioning. Devices that combine
a screen, camera, and microphone have become more sophisticated, and machine
suppliers more often collaborate with their customers or service engineers through VR.
The ability to commission machines remotely has made companies realize that being
on-site is only sometimes necessary. The machine supplier can work with the customer
through an augmented reality headset, such as a HoloLens. The customer sees virtual
reality instructions and maintenance data to perform the necessary tasks, while the
machine supplier receives a live feed of what the customer sees. As companies employ
VR for training, maintenance, and collaboration purposes, it is crucial to ensure that
privacy safeguards are in place to protect sensitive information shared through these
immersive technologies.

Use of machine data to improve customer relations [17,18]. Connected machines
have opened new ways to use machine data and improve customer relationships.
The above statement highlights the impact of interconnected devices and the data
they generate on enhancing customer relationships. Specifically, connected machines
and the data they generate enable organizations to leverage the machine data in
various ways, leading to improved customer relationships. By utilizing machine data
for proactive maintenance, predictive analytics, customized offerings, and enhanced
support, organizations can deliver better customer experiences, increase customer
satisfaction, and strengthen their relationships with the customers. It is not only
interesting for large companies but also for smaller companies to make use of their
data. Due to the increase in connected machines, the number of companies with
access to critical machine data has also increased tremendously. It is a big challenge
for many companies to discover new possibilities. The use of data is not only essential
to improve and optimize companies’ machines but also to create a better long-term
relationship with customers. Machine data can, for example, be used to prevent
equipment failures by predicting and performing machine maintenance before a fault
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occurs. In this way, machine downtime can ultimately be reduced [19]. Ensuring data
security and using anonymization techniques when analyzing and utilizing machine
data can help protect customer privacy.

5. Machine learning [20]. Machine learning is a branch of Al, where systems must be
able to learn automatically and improve from experience without being programmed
by humans. Applying machine learning can be difficult because preprocessing to label
and normalize many data takes time. Unsupervised learning or self-learning method-
ologies create higher-scale automation [21]. This means that human intervention is no
longer needed since the data from the device is automatically sent to the algorithm.
Thus, machine learning detects patterns of normal usage; therefore, after some time, it
also tracks unusual patterns. For example, a machine creates several terns, but when
a part of the machine fails, new patterns are created with donations from the usual
pattern. When such a situation occurs, machinery suppliers receive a notification
so they know that maintenance is required [22,23]. Implementing data privacy and
security measures during data preprocessing, model training, and inference stages is
crucial to maintaining privacy while benefiting from machine learning techniques.

6.  “Smart” packaging [24]. Using direct materials with built-in connections, intelligent
packaging delivers advanced benefits for industries. A fundamental feature of smart
packaging is enabling customers to interact with it and collect data for more efficient
product handling. Smart packaging may include video recipes and other demonstra-
tions that explain the product’s use. ICT and packaging interact in several ways, in-
cluding sensors, Quick Response (Q.R.) codes, and augmented /virtual /mixed reality
possibilities. The objective is to increase the customer value and data collection via in-
telligent monitoring to optimize the operations and improve efficiency [25]. Ensuring
transparent data collection practices, obtaining informed consent, and implementing
robust security measures helps to protect customer privacy and build trust.

As can be easily seen, the development of the IIoT is a big step in realizing Industry 4.0
and the upcoming Industry 5.0, as it promotes the large-scale automation and optimization
of processes related to intelligent sensors (e.g., configuration, high-volume handling of
data, decision-making, etc.). But this involves significant technical difficulties due to the
industrial wireless networks’ large scale and complex structure. In addition, recording and
transmitting large amounts of data creates severe security and privacy concerns, as some
may contain sensitive industry and personal information [26].

Privacy and security in the IIoT scenario are presented in Figure 1 [27].

The ADVOCATE approach aims to address data privacy and consent management in
various user environments, such as smart homes, patient health monitoring systems, and
activity monitoring sensors. It utilizes a portable device, like a mobile phone, to create a
user-friendly interface for data subjects to interact with and manage their personal data
disposal policy and consent.

The architecture proposed by ADVOCATE focuses on three specific ecosystems: smart
cities, industry, and healthcare. These environments often involve a wide range of sensors
and devices that collect data about individuals. By using the ADVOCATE approach, data
controllers can interact with data subjects through the portable device to obtain their
consent for the data processing activities.

In addition, in the industrial sector, the ADVOCATE approach is applied to ensure
that data subjects have a say in how their personal data is processed within industrial
environments. This is particularly important considering the sensitive nature of data
involved in manufacturing processes, trade secrets, and industrial control systems. By
using a portable device, individuals can easily manage their consent preferences and ensure
that their personal data is handled appropriately.

It must be noted that ADVOCATE is an ideal industry privacy paradigm by providing
a user-centric and customizable framework for managing consent, data disposal policies,
and privacy preferences. It helps industries comply with privacy regulations, address
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industry-specific privacy concerns, and empower individuals to have control over their
personal data in industrial environments.
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Figure 1. Privacy and security in the IoT/IIoT using ADVOCATE architecture [27].

1.

Architectures that protect privacy are promising solutions to the IloT ecosystem.
Privacy-preserving architectures refer to the design and implementation of systems that
prioritize the protection and preservation of user privacy. These architectures are partic-
ularly relevant in today’s digital age, where vast amounts of personal data are collected,
processed, and shared. The following are some commonly employed privacy-preserving
architectures [26]:

Privacy by Design (PbD) [28]: Privacy by Design is a framework that promotes
privacy considerations throughout the entire system development lifecycle. It involves
embedding privacy features and measures into the architecture, ensuring that privacy
is a core principle from the initial design stages. PbD can certainly be applied in IloT
environments. By integrating privacy considerations into the design and development
of IIoT systems, organizations can ensure that privacy is a fundamental aspect of their

architecture and processes.

Differential Privacy [29]: Differential privacy is a technique that aims to protect indi-
vidual privacy while still allowing useful information to be extracted from datasets.
It adds noise or perturbation to the data to prevent the identification of specific indi-

viduals while preserving the overall statistical properties of the dataset. Differenti.

al

privacy can be challenging to implement in IIoT environments due to the decentral-
ized and diverse nature of the data sources. However, with careful design and data
aggregation techniques, it is possible to apply differential privacy principles in certain

IIoT use cases where data privacy is crucial.

Federated Learning [30]: Federated learning is an approach where machine learning
models are trained on decentralized data without transferring the data to a central
server. This architecture allows for collaborative model training while keeping the
data on individual devices, thereby maintaining privacy. Federated learning can be
well-suited for IloT environments, as it allows collaborative model training while
keeping the data on individual devices or local servers. This approach preserves

privacy by minimizing data transfer and centralization.
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Homomorphic Encryption [31]: Homomorphic encryption enables computation on
encrypted data without decrypting it. It allows data to be processed securely in an
encrypted state, preserving privacy during computation. Homomorphic encryption
can be complex to implement in resource-constrained IloT devices and systems due to
its computational overhead. However, advancements in hardware and cryptographic
techniques may make it more feasible for specific IloT use cases where privacy-
preserving computations are necessary.

Zero-Knowledge Proofs [32]: Zero-knowledge proofs are cryptographic protocols
that allow one party to prove the validity of certain information to another party
without revealing the actual information. This approach enables the verification of
data or statements without exposing the underlying sensitive data. Zero-knowledge
proofs can be challenging to implement in IIoT environments due to the limited
computational capabilities and communication constraints of IloT devices. However,
they can be applied in certain scenarios where privacy-preserving authentication or
verification is required.

Data Minimization [33]: Data minimization involves collecting and retaining only the
necessary data for a specific purpose, reducing the exposure of personal information.
By limiting the amount of data collected, processed, and stored, privacy risks are
reduced. Data minimization is highly relevant and applicable in IloT environments.
Limiting the collection, processing, and retention of personal data to what is strictly
necessary helps reduce privacy risks and ensures compliance with privacy regulations.
User-centric Identity and Access Management (IAM) [34]: User-centric IAM puts indi-
viduals in control of their personal information. It allows users to manage their own
identity and control the sharing of their personal data, ensuring privacy preferences
are respected. User-centric JAM may have limited applicability in IloT environments
since the concept of individual users may not always align with the industrial set-
ting. However, similar principles can be applied to manage access, authentication,
and authorization of IloT devices and systems, ensuring that privacy preferences
are respected.

These privacy-preserving architectures aim to strike a balance between the need to

collect and process data for functional purposes while respecting individual privacy rights.
By incorporating privacy-enhancing technologies and principles, these architectures help
mitigate privacy risks and build trust between users and service providers.

Blockchain technology offers several privacy-preserving architectures that aim to

protect sensitive data while leveraging the benefits of a decentralized and immutable
ledger. Here are some key privacy-preserving architectures in blockchain [35]:

1.

Confidential Transactions [36]: Confidential transactions use cryptographic techniques
to obfuscate transaction details while still maintaining the integrity of the blockchain.
This allows for the concealment of transaction amounts and participant identities,
enhancing privacy.

Zero-Knowledge Proofs [37]: Zero-knowledge proofs (ZKPs) enable the verification
of certain statements or computations without revealing the underlying data. ZKPs
can be utilized in blockchain to prove the validity of transactions or smart contract
conditions without disclosing the sensitive information involved.

Ring Signatures [38]: Ring signatures allow for the anonymous signing of a transaction
on behalf of a group. In a blockchain context, a ring signature enables a participant
to sign a transaction without revealing their specific identity, making it difficult to
determine the actual signer.

Stealth Addresses [39]: Stealth addresses provide privacy in transactions by creating a
one-time destination address for each transaction. This prevents the direct association
between a sender’s address and the recipient’s address, enhancing privacy.
Homomorphic Encryption [40]: Homomorphic encryption enables computations to
be performed on encrypted data without decrypting it. By applying this technique
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to blockchain, sensitive data can be stored and processed in an encrypted state,
preserving privacy.

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARKS) [41]:
zk-SNARKSs allow for the verification of computations without revealing the inputs or
intermediate steps. This technology can be used in blockchain to prove the validity of a
computation, such as verifying a smart contract, while keeping the inputs confidential.
Permissioned /Private Blockchains [42]: Permissioned or private blockchains restrict
participation and access to a select group of known entities. These blockchains
provide enhanced privacy as they limit the visibility of transactions and data to
authorized participants.

Figure 2 presents an extensive blockchain architecture standardization that can be

applied to several novel industrial applications [4].
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Figure 2. Blockchain scalable architecture for industrial ecosystems [4].

Here are a few examples of how blockchain technology has been applied in various

scenarios to enhance privacy:

1.

Healthcare Data Sharing: Blockchain can be used to improve the privacy and se-
curity of healthcare data sharing. By storing medical records and sensitive patient
information on a blockchain, access can be controlled, and data integrity can be en-
sured. Patients have control over their own data and can grant access to healthcare
providers as needed, reducing the risk of unauthorized access or data breaches. One
example is MedRec, a blockchain-based system that allows patients to securely share
their medical records with healthcare providers while maintaining privacy and data
ownership.

Supply Chain Management: Blockchain technology has found applications in enhanc-
ing privacy and transparency in supply chain management. By recording transactions
and tracking products on a blockchain, stakeholders can verify the authenticity and
provenance of goods without revealing sensitive business information. This helps
prevent counterfeit products and provides transparency for consumers. IBM’s Food
Trust is a notable example that utilizes blockchain to track and trace food products,
ensuring the integrity of the supply chain and providing consumers with information
about the origin and handling of their food.

Identity Management: Blockchain offers potential solutions for secure and privacy-
preserving identity management systems. By using blockchain, individuals can
maintain control over their personal data and selectively disclose information to
third parties, reducing the risk of identity theft and unauthorized data access. Self-



Algorithms 2023, 16, 378

12 of 32

sovereign identity (SSI) solutions, such as uPort and Sovrin, leverage blockchain to
enable individuals to manage and control their digital identities, providing privacy-
enhancing features and reducing reliance on centralized identity providers.
Financial Transactions and Privacy: Blockchain technology can improve privacy in
financial transactions by reducing the need for trusted intermediaries and providing
pseudonymity. Cryptocurrencies like Bitcoin and privacy-focused cryptocurrencies
like Monero utilize blockchain to facilitate secure, decentralized, and pseudonymous
transactions. While blockchain transactions are public, privacy-focused techniques
such as ring signatures, stealth addresses, and zero-knowledge proofs are employed
to obfuscate transaction details and enhance privacy.

It is worth noting that while blockchain technology can enhance privacy in these sce-

narios, its implementation requires careful consideration of the specific use case, including
factors such as regulatory compliance, scalability, and user adoption.

Federated learning is also a privacy-preserving architecture that enables collaborative

machine learning on decentralized data. It allows multiple parties, such as individual
devices or edge servers, to train a shared machine learning model without directly sharing
their raw data with a central server or each other. Here are some key aspects of federated
learning that contribute to its privacy-preserving nature [43,44]:

1.

Local Training: In federated learning, the training of the machine learning model takes
place locally on individual devices or edge servers. This means that data remains on
the devices, and only model updates (such as gradients) are shared with the central
server or aggregator.

Differential Privacy: Differential privacy techniques can be employed in federated
learning to further protect privacy. By adding controlled noise or perturbation to the
local model updates before sharing them, the individual data points and patterns are
obfuscated, preventing the reconstruction of sensitive information.

Encryption: Encryption techniques can be applied to protect the confidentiality of
the model updates during transmission. Secure multi-party computation (MPC)
protocols, homomorphic encryption, or secure enclaves (such as Trusted Execution
Environments) can be utilized to ensure that the model updates remain private.
Aggregation with Privacy Preservation: The central server or aggregator collects the
encrypted or differentially private model updates from the participants and performs
the aggregation to update the shared model. Aggregation techniques can be designed
in a way that preserves privacy, such as using secure aggregation protocols that do
not reveal individual contributions.

On-Device Personalization: Federated learning can also support on-device personal-
ization, where the shared model is further fine-tuned or customized on individual
devices using locally available data. This approach ensures that sensitive data remains
on the user’s device, enhancing privacy.

Secure Communication: Secure communication protocols, such as encrypted channels
and secure socket layers (SSL/TLS), should be employed during data transmission
between the participants and the central server to protect against eavesdropping and
data tampering.

Federated learning allows organizations or individuals to leverage the collective in-

telligence of decentralized data while minimizing the risks associated with data sharing.
This architecture promotes privacy by keeping sensitive data localized, incorporating
privacy-preserving algorithms, and utilizing encryption and secure communication proto-
cols. Figure 3 presents the Federated Auto-Meta-Ensemble Learning (FAMEL) architecture
in the new IT/OT industrial environment [45].
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Figure 3. Basic security reference architecture in the industrial environment [45].

It is a holistic system that automates selects and uses the most appropriate algorithmic
hyperparameters to optimally solve a problem under consideration, approaching it as a
model for finding algorithmic solutions where it is solved via mapping between the input
and output data. The proposed framework uses meta-learning to identify similar knowl-
edge accumulated in the past to speed up the process. This knowledge is combined using
heuristic techniques, implementing a single, constantly updated intelligent framework.
The data remains in the local environment of the operators, and only the parameters of
the models are exchanged through secure processes, thus making it harder for potential
adversaries to intervene with the system.

Here are a few examples of how federated learning technology has been applied in
different scenarios to enhance privacy:

1.  Healthcare [46]: Federated learning can be applied in healthcare settings to enable
collaborative model training while preserving patient privacy. Hospitals or medi-
cal institutions can train machine learning models using local patient data without
sharing sensitive patient information. The models are then aggregated or updated in
a privacy-preserving manner, allowing healthcare providers to benefit from shared
insights without compromising patient confidentiality. This approach can be use-
ful for applications such as disease diagnosis, medical image analysis, or predictive
analytics.

2. Smart Devices and the Internet of Things (IoT) [47]: Federated learning is well-suited
for scenarios involving edge devices or IoT devices. These devices often have limited
computational resources, making it challenging to send large amounts of data to
a centralized server for model training. With federated learning, edge devices can
collaboratively train machine learning models using locally collected data while
keeping the data on the device. Only model updates or aggregated information is sent
to a central server, ensuring privacy while benefiting from shared knowledge. This is
useful in applications such as personalized recommendations, activity recognition, or
anomaly detection in smart homes or industrial IoT settings.

3. Financial Services [48]: Federated learning can enhance privacy in financial services
by enabling collaborative model training while keeping sensitive customer data on
local servers or devices. Banks or financial institutions can train machine learning
models for tasks like fraud detection or credit scoring using locally held customer
data. The models” updates or aggregated information are exchanged in a privacy-
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preserving manner, ensuring the privacy of individual customer transactions and
sensitive financial information.

4. Natural Language Processing (NLP) [49]: Federated learning can be applied in NLP
tasks to protect user privacy while improving language models. Instead of central-
izing user data on a single server, federated learning allows individual devices or
servers to train language models using local data. The models’ updates or aggregated
information, which preserve the privacy of individual texts, are shared across de-
vices or servers. This approach enhances privacy while enabling the improvement
of language models for applications such as voice assistants, chatbots, or sentiment
analysis.

These examples illustrate how federated learning can be leveraged in various domains
to enable collaborative model training while maintaining privacy and data confidentiality.
By keeping the data decentralized and only exchanging model updates or aggregated
information, federated learning offers a privacy-enhancing approach for machine learning
in scenarios where data privacy is crucial.

A discussion and comparison of these two approaches (Blockchain and Federated

Learning) are presented in the Table 2.

Table 2. Blockchain vs. Federated Learning.

Technology Description Privacy Benefits Challenges Comparison
Scalability: Blockchain
Data Transparency: Blockchain networks can face
allows participants in the challenges in terms of
P P scalability due to the Data Handling;:
network to have access to a . .
- consensus mechanisms  Blockchain technology
transparent and auditable .
. . . and the need to stores data directly on
history of transactions without .
4 PN o replicate data across the ledger.
revealing specific identifying .
. ) multiple nodes,
information. .
resulting in slower
transaction speeds.
Blockchain technology .
. . Energy Consumption:
is a decentralized and . .
L Data Integrity: The Some blockchain
distributed ledger : . .
decentralized nature of networks, particularly =~ Data Privacy:
system that offers . I . .
. blockchain ensures that data those utilizing Blockchain provides
enhanced security and .
- stored on the ledger is proof-of-work transparency and
privacy features. It . . . . .
. . tamper-resistant, making it consensus, require integrity but may not
. ensures the integrity o . N . .
Blockchain and immutability of difficult for unauthorized significant provide strong privacy
. parties to modify or computational power,  for data contents.
data by storing ivulate inf p leadine to high
transactions in a chain  Manipulate information. eading (z. igh-energy
of blocks, making it consumption.
difficult for malicious Data Privacy: While
actors to alter or blockchain technology

tamper with the data.

Secure Transactions:
Blockchain employs
cryptographic techniques, such
as digital signatures and
encryption, to secure data
transfers and ensure
authenticity.

ensures data integrity
and immutability, it
does not inherently
provide strong privacy
protection for the
contents of the data.
The transparency of
blockchain can
potentially reveal
sensitive information
about transactions.

Trust Model:
Blockchain is based on
a decentralized

trust model.
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Table 2. Cont.

Technology Description Privacy Benefits Challenges Comparison
Model Heterogeneity:
Federated learning can .
Data Localization: Federated be challenging when Ej;irlj; rclldll;zralrgr'\in
learning allows data to remain  dealing with a diverse Keeps the data locill
on local devices or servers, range of edge devices an dponl exchanees y
reducing the risk of data or servers with model 3] dates 0%
breaches or unauthorized different computational acore atl:e)z d
access. capabilities, data irigf%r ngm tion
distributions, or '
data quality.
Central Server Trust:
While federated
Federated learning is ) ] learning aims to
an approach where Privacy-Preserving Model reserve privacy. it still
machine learning Training: The model updates }r)equires tI; st iny,the Data Privacy:
models are trained or aggregated information central server that Federated learning
across multiple shared during federated agoregates model focuses on preserving
decentralized edge learning are typically u%f:la tge s A the privacy of
devices or servers anonymized and encrypted, L d individual data points
Federated without sharing the preserving the privacy of compronused or during model training.
Learning 8 e . malicious server could
individual data points.

raw data. Instead, only
model updates or
aggregated information
is exchanged between
the devices and a
central server, ensuring
data privacy.

potentially extract
sensitive information
from the updates.

Reduced Data Transmission:
Federated learning minimizes
the need to transfer large
amounts of raw data to a
central server, which can be
beneficial in
bandwidth-constrained
environments or when dealing
with sensitive data.

Model Interpretability
and Debugging;:
Federated learning can
make it challenging to
interpret and debug
models trained across
multiple devices or
edge nodes.
Understanding the
reasons behind model
performance issues,
identifying erroneous
contributions, or
diagnosing the root
causes of failures may
require specialized
techniques and tools.

Trust Model: Federated
learning relies on trust
in the central server
and the integrity of
participants.

It is important to note that these solutions are not mutually exclusive, and their
applicability depends on the specific requirements and constraints of the IIoT ecosystem.
Organizations may choose to combine these approaches or utilize other privacy-enhancing
technologies to achieve the desired level of privacy and security. This paper aims to provide
insights into the privacy dimensions of the IloT and provide recommendations for ensuring
secure and privacy-respecting implementation, which can help to build trust in IIoT systems
and ensure their successful adoption.

4. Dimensions of Privacy

Privacy in the industrial sector is a concept that is very difficult to define, especially in
the digital age of the IloT, where the convergence of services creates unclear boundaries of
definition. Depending on the contexts, relationships, and products involved, it can have
many connotations. To properly design privacy settings for IloT architectures, technologists



Algorithms 2023, 16, 378

16 of 32

must research and understand the dimensions of privacy that are important to the users of
the services in question [27].

Privacy, as derived from E.U. directives and based on the way it is described by
Martinez-Ballester et al. [50], can be categorized as or take the following dimensions:

1. Identity Privacy. It concerns the identity details of an entity and is related to the
concepts of authentication and authorization. Most IIoT data is designed for usage by
restricted user groups [51]. Consequently, authentication (understanding the identity
of the node or user) and authorization (by granting the necessary access rights) are
critical, especially regarding copyright, patents, etc., which are crucial to the existence
and viability of the industry [52].

2. Location Privacy. It refers to an entity’s location identification information. Said
determination violates personal or industrial privacy issues concerning the detection,
identification, storage, processing, and sharing of information in a technical or legal
context [53].

3. Footprint Privacy. It refers to an entity’s unique traceable communication actions.
A feature of this function can be found in smart energy grids, characterized by real-
time two-way communications [54]. The difficulty of controlling and retrieving energy
data exchanged with third parties threatens network users’ privacy. The proposed ap-
proach is a comprehensive solution for overcoming concerns related to Wen et al. The
standard of footprint’s privacy allows a home user to save encrypted measurement
data on a cloud server. When financial audits are required, an authorized requester
can submit two queries to the cloud server to retrieve the measurement data [55].

4. Multidimensional Privacy. It refers to an entity’s multidimensional or complex iden-
tification element, which may combine some of the above dimensions [50]. Solving
such problems requires complex integrated processes or solving and parameterizing
the individual issues in a custom schema [56].

These dimensions provide a framework for understanding the privacy needs of IloT
ecosystems and guiding the development of privacy settings and strategies. It is important
to note that while these dimensions are specific to the industrial domain, they align with
the broader principles of data protection and privacy regulations, such as the General Data
Protection Regulation (GDPR). It should be noted that no relevant regulation exists for
protecting persons’ privacy, exclusively for the industrial domain. For the processing of
personal data in the industrial domain and the free movement of such data by competent
industrial authorities for the prevention, felicitation, detection, or prosecution of criminal
offenses or the execution of sanctions, industries follow the existing regulatory offenses [57],
where almost every industry is involved in processing personal data in one or more
processes [58].

The industrial domain often requires specific privacy regulations due to its unique
characteristics and privacy concerns that may not be fully addressed by the existing general
regulations, like GDPR [59-61]. Here are some reasons why the industrial domain may
benefit from specific privacy regulations:

1.  Specialized Data Types: The industrial domain deals with specific types of data that
may not be explicitly covered by the general regulations. Industrial environments
often involve sensitive data related to manufacturing processes, proprietary technolo-
gies, trade secrets, industrial control systems, or safety protocols. These data types
require specialized privacy considerations to protect intellectual property, ensure
operational safety, and prevent unauthorized access or misuse.

2. Complex Data Ecosystems: Industrial environments typically have complex data
ecosystems with interconnected machines, sensors, and control systems. These sys-
tems generate and exchange vast amounts of data, often in real-time. General regula-
tions like GDPR may not adequately address the intricacies of managing and securing
data within such heterogeneous and dynamic environments. Specific regulations can
provide guidelines and requirements tailored to the unique challenges of industrial
data ecosystems.
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Safety and Security Risks: Privacy regulations in the industrial domain need to con-
sider not only the protection of personal data, but also the safety and security risks
associated with industrial processes. Data breaches or unauthorized access in indus-
trial settings can have severe consequences, including physical harm, environmental
damage, or disruptions to critical infrastructure. Specific regulations can address
these risks and impose safeguards to mitigate these potential threats.
Industry-Specific Compliance Requirements: Different industries within the industrial
domain, such as manufacturing, energy, or healthcare, may have specific compliance
requirements related to privacy and data protection. These requirements may be
driven by sector-specific regulations, standards, or contractual obligations. Specific
privacy regulations can align with these industry-specific compliance requirements
to ensure that organizations within the industrial domain adhere to the necessary
privacy practices.

Operational Constraints and Challenges: The industrial domain often faces oper-
ational constraints and challenges that are distinct from other sectors. These may
include limited connectivity, remote locations, harsh environments, or legacy systems.
General privacy regulations may not consider these operational constraints, making it
necessary to have specific regulations that accommodate the unique circumstances of
the industrial domain while still ensuring data privacy.

It is important to note that while general regulations like GDPR provide a valuable

framework for data protection and privacy, the industrial domain may require additional
measures and specific regulations to address its unique characteristics, data types, ecosys-
tem complexity, safety risks, compliance requirements, and operational challenges. The
specific regulations can build upon and complement the general regulations, providing a
more comprehensive and tailored approach to privacy in the industrial context.

As follows from the above-mentioned text, privacy dimensions refer to the different

aspects of privacy that need to be considered in IIoT implementations. In the context of
privacy dimensions, the privacy needs of an IIoT ecosystem are investigated as specified
by industry standards. In conclusion, the study identifies four dimensions of privacy that
are relevant to the IloT:

1.

Data Protection: This dimension refers to the protection of personal data and the need
to ensure that data is collected, stored, and processed in a way that complies with
applicable data protection laws and regulations.

Confidentiality: This dimension protects sensitive information from unauthorized
access or disclosure. In IIoT systems, confidentiality is particularly important for
ensuring the security of trade secrets, intellectual property, and other proprietary
information.

Availability: This dimension ensures that IIoT systems and devices are available and
operational when needed. Availability is essential to ensure critical infrastructure and
services are not disrupted or compromised.

Integrity: This dimension refers to the need to ensure the accuracy and reliability of
IIoT data and systems. In IloT systems, integrity is particularly important for ensuring
that decisions based on data are accurate and malicious actors do not compromise the
systems.

Non-repudiation: It is a security property that ensures the sender of a message
or a digital transaction cannot later deny sending the message or engaging in the
transaction. It provides proof that a particular action or communication occurred and
prevents individuals from disowning their actions or denying their involvement. In
the context of privacy, non-repudiation plays a significant role in maintaining trust
and accountability in digital interactions. Specifically:

a.  Digital Transactions: It ensures that both parties involved in a transaction cannot

later deny their participation, protecting the privacy of sensitive information
exchanged during the transaction.



Algorithms 2023, 16, 378

18 of 32

b.  Message Authenticity: Non-repudiation guarantees that the sender of a message
cannot deny sending it. This property is particularly essential when exchanging
private or confidential messages. It helps prevent unauthorized access and
ensures that the recipient can trust the origin and authenticity of the message.

c. Digital Signatures: Digital signatures are a cryptographic mechanism used
for non-repudiation. By using digital signatures, individuals can sign elec-
tronic documents or messages, providing assurance that the content remains
unchanged and that the signer cannot later deny their approval.

d.  Legal Implications: Non-repudiation can have legal implications in contracts
and agreements. If a digital transaction or communication has non-repudiation
measures in place, it can serve as evidence in case of disputes, protecting the
privacy of individuals involved by establishing their roles in the interaction.

By identifying these dimensions of privacy, the study aims to provide a framework for
understanding the privacy needs of IloT ecosystems and developing effective strategies for
ensuring privacy and security in industry implementations.

5. Industrial Privacy

According to Boussada et al. [62], privacy in the context of the IIoT refers to an
individual’s right to control and influence the collection, retention, and disclosure of their
personal information. Privacy becomes a significant concern in the IloT environments due
to the extensive collection, processing, and sharing of data, which raises serious issues
related to its privacy implications [63].

In addition to personal privacy, data protection is a crucial challenge faced by busi-
nesses in various industries, particularly when handling sensitive information such as
financial data. Industrial privacy refers to the protection of sensitive information and trade
secrets within the context of industrial and manufacturing sectors. It involves safeguarding
confidential data, proprietary processes, intellectual property, and other critical business
information from unauthorized access, theft, or misuse by competitors, employees, or
external entities.

Regulatory authorities emphasize good data management practices to enhance cus-
tomer profiling, identify potential opportunities, and conduct risk management analysis.
Privacy and data protection need to be monitored throughout the client lifecycle, and this
extends to multiple use cases in the industrial sector, such as data exchange for customer
protection, improved credit risk assessment, and secure claims management [64,65].

While leaders in industries like manufacturing or heavy industry may not prioritize
data privacy as highly as other sectors, the digital age is changing this perspective. Data
privacy has become a significant risk for any industry that deals with potentially sensitive
data concerning customers, employees, and business partners [66].

The complexity of the IloT ecosystem and the need for regulatory compliance at
both the hardware and software levels pose significant challenges in protecting these sys-
tems. In the IIoT ecosystem, where multiple systems interact with the physical world, the
uncontrolled arrangement of states can lead to dangerous conditions. This necessitates
multi-layered security approaches and encryption techniques to address privacy concerns.
The convergence of computer and communication technologies, decentralization of pro-
cessing, and distributed analysis in industrial activities further complicates the concept of
privacy and gives rise to new challenges [67,68].

In this context, the need to protect industrial privacy becomes crucial. Existing regula-
tions and standardization efforts are often insufficient to provide a robust shield against
emerging threats. Innovative solutions, such as a central Software-Defined Network (SDN)
control layer, deterministic scheduling, and lightweight encryption, can offer improved
privacy-preserving IloT standardization systems [69].

Furthermore, it is essential to continuously update and adapt the existing standards
and systems used in industrial technologies to enhance privacy and security [70,71]. The
surveillance of key infrastructures and the control of certification and identity play signifi-
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cant roles in maintaining privacy in the IIoT environment [72,73]. Sharing best practices,
recommendations, and knowledge for security maintenance and continuous improvement
is also vital in ensuring privacy in the evolving IloT landscape [74].

Industrial privacy focuses on safeguarding confidential, proprietary, and sensitive
information related to industrial operations, such as trade secrets and intellectual property.
Compliance with data protection laws, such as the GDPR, is crucial in collecting and
processing personal data in industrial settings [75]. It involves implementing technical
and organizational measures to protect sensitive information, training employees on their
responsibilities, and regularly reviewing and updating privacy policies and procedures to
address emerging threats and risks.

In summary, industrial privacy plays a vital role in preserving the confidentiality,
integrity, and availability of sensitive information in industrial settings. It requires a
comprehensive approach that addresses the various aspects of privacy, including data pro-
tection, confidentiality, availability, and integrity. By implementing appropriate measures,
regularly updating policies, and ensuring employee awareness, organizations can ensure
responsible data use while safeguarding the rights and privacy of the individuals and
entities involved in industrial operations.

6. Privacy Threats in the IloT

IIoT solutions provide numerous advantages to organizations, including enhanced
operational efficiency, reduced costs, and increased productivity. Through task automation,
streamlined processes, and effective resource management, organizations can optimize
workflows, minimize downtime, and achieve higher levels of overall efficiency. Leveraging
the data collected from connected devices and sensors, organizations can make informed
decisions, identify and address bottlenecks, and optimize resource allocation. The results
are improved productivity, cost reduction, and a competitive edge in the market [76].
However, IIoT devices are as susceptible as any other Internet-connected device [77].
Adopting more powerful and sophisticated equipment, such as microprocessors, makes
it difficult to address cybersecurity and privacy concerns [78]. Examples of attacks on
Industrial Control Systems (ICS) include distributed control systems, programmable logic
controllers, supervisory control and data acquisition, and Human-Machine Interfaces
(HMI) [79].

ICS and HMI can be vulnerable to various types of attacks, which can have severe
consequences on industrial operations. For example [26,80]:

1.  Malware and Ransomware: Attackers can deploy malware or ransomware specifically
designed to target ICS or HMI systems. These malicious programs can disrupt the
functioning of critical industrial processes, compromise system integrity, and even
demand ransom payments in exchange for restoring normal operations.

2. Distributed Denial of Service (DDoS): A DDoS attack involves overwhelming a system
with a flood of traffic, causing it to become unresponsive or crash. If an attacker
successfully launches a DDoS attack against an ICS or HMI system, it can disrupt
control signals, delay response times, or render the system inoperable, leading to
production interruptions or safety risks.

3. Unauthorized Access and Control: If an attacker gains unauthorized access to an ICS
or HMI system, they can manipulate control parameters, change setpoints, or issue
unauthorized commands. This can lead to process deviations, equipment damage,
safety hazards, or even catastrophic incidents.

4.  Insider Threats: Insiders with malicious intent, such as disgruntled employees or
contractors, can abuse their privileged access to ICS or HMI systems. They may
deliberately tamper with control settings, sabotage equipment, or steal sensitive data,
causing significant disruptions or compromising system integrity.

5. Social Engineering: Attackers may employ social engineering techniques to trick
authorized users into divulging sensitive information or granting unauthorized access.
For example, phishing emails or phone calls can deceive employees into revealing
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login credentials or executing malicious commands, which can be used to compromise
ICS or HMI systems.

6.  Supply Chain Attacks: ICS or HMI systems can be targeted through vulnerabilities
in the supply chain. Attackers may compromise the integrity of hardware, software,
or firmware during the manufacturing, distribution, or installation process. This
can result in the introduction of malicious components or exploitable weaknesses in
the system.

The consequences of these attacks can range from operational disruptions and financial
losses to safety incidents and environmental hazards. Protecting ICS and HMI systems
requires robust security measures, including network segmentation, regular software
updates and patches, strong access controls, user training, intrusion detection systems, and
incident response plans.

It is important to note that the examples provided are not exhaustive, and the specific
attack vectors and techniques can vary depending on the specific ICS or HMI system in
use. Organizations need to assess and mitigate risks based on their unique operational
requirements and the potential threats they face.

Grouping vulnerabilities by categories aids in establishing and putting into practice
mitigation measures because all ICS deal with information technology (IT) and operational
technology (OT). These categories are divided into policy and practice concerns and vul-
nerabilities found in various platforms (such as hardware, operating systems, and ICS
applications). Vulnerabilities can be grouped as Policy Concerns, Practice Concerns, Hard-
ware Vulnerabilities, Operating System Vulnerabilities, ICS Application Vulnerabilities,
etc. These categories can help in establishing mitigation measures and prioritizing security
efforts [81].

Every ICS environment could have flaws depending on how they are set up and what
they are intended to do. A further consideration is an ICS environment’s size; the larger the
environment, the higher the likelihood that an error could occur. An ICS environment that
has modernized its outdated systems and added new technologies like Industrial Internet
of Things (IIoT) devices might also have more vulnerabilities that threat actors might take
advantage of.

Figure 4 depicts a blockchain-based system that combines a multi-signature system
and differential privacy algorithms to provide a secure and privacy-preserving solution for
a network traffic analysis called BANTA [82,83].
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The BANTA system employs smart contracts to automate network traffic analysis and

store network traffic logs in a decentralized manner, resulting in increased transparency and
security in the ICS. This multi-signature system requires a specific set of parties to sign off on
any changes to the smart contract’s behavior or data, preventing rogue administrators from
tampering with the smart contract and jeopardizing its security or reliability. In addition, it
uses differential privacy algorithms to protect sensitive information in network traffic logs
while allowing network administrators to analyze network traffic.

The main concerns regarding protecting data privacy in industrial domains are in-

tertwined with the more general concerns about the risks associated with each modern
network device [84]. In general, the most basic and common privacy threats related to the
IIoT are:

1.

Identification and Authorization. It is directly related to the concept of identity pri-
vacy. It refers to the effort to find correlations between the data that can be used to
detect, identify, and maliciously replicate the application of profiles (sets of associated
data) to personalize and remember secret, industrial information. Techniques such as
the Subscriber Identity Module (SIM) and the Machine Identification Module (MIM),
proposed by Borgia [51], are essential solutions worthy of attention. However, these
approaches work in centralized single-management networks. At the same time, it is
not easy in distributed topologies to manage identification services and standardiza-
tions such as the one proposed by Moosavi et al. [52], and it concerns an architecture
of authorization of remote end-users using distributed smart gateways, which are
based on the Datagram Transport Layer Security (DTLS) handshake protocol. In
addition, attacks on the IIoT compromise authorized industrial systems access, and
as a result, one such security issue can degrade the related services. Ransomware
also causes IIoT devices to malfunction and steals users’ sensitive information and
data. In addition, if many smart IloT devices cannot encrypt user data, malware will
emerge. IIoT devices use a network that does not convert data into code to prevent
unauthorized device access.

Localization and tracking. It is directly related to the concept of location privacy [85].
An industry can choose the locations that it chooses to perform its economic functions
in. Several issues influence the choice of a suitable location, most notably the nature
and characteristics of the industrial activity carried out by the enterprise (e.g., ex-
traction of raw materials or cultivation, production of intermediate or final products,
provision of a service) and the associated costs of production, balanced with the cost
of physical distribution to the target markets and the importance of proximity to cus-
tomers as a basis for establishing competitive advantages over rival suppliers. Some
locations may be preferred for their production advantages, for example, due to lower
labor costs, the availability of investment subsidies, the supply of skilled workers, and
parallel access to relevant facilities. Similarly, many service activities must be located
in and around the customer’s catchment areas. At the same time, some suppliers may
be interested in operating alongside their core customers to synchronize production
input requirements better.

On the other hand, the high price of distribution, especially in the case of bulky
products with low added value or the international context, the imposition of tariffs
and quotas on imports creates essential requirements for an appropriate position
oriented to the market, but one that is also protected from the prying eyes of the
competition and espionage. A low-cost technical solution that adds protection to the
IoT environment was proposed by Joy et al. [53] by embedding in GPS devices privacy
software that ensures that IoT devices and their administrators have fine-grained
control over releasing their position. In addition, the safety of the data ingested from
numerous IloT devices is related directly to other data security and privacy concerns
from insecure cloud infrastructures, web applications, and mobile environments. As
a result, it is necessary to follow data transmission security rules in each domain so
that there are measures in place to identify the path from whose device the data is
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transmitted. It is also critical to eliminate irrelevant data and data without relation
to the actual operation. Although compliance with numerous regulatory structures
becomes complex when multiple data is stockpiled, the infrastructure must be carried
out with separate services for controlling the data linked to interconnected devices
and environments [86].

Profiling. The threat lies in violating privacy and monitoring persons or individuals
in their association with specific industrial processes. Accordingly, it may refer to
identifying, collecting, and processing information derived from services or refer-
ence models, which may constitute an industrial secret. Characteristics of the ongo-
ing concern for protecting IoT devices from profiling threats are efforts to enhance
privacy in RFID devices [87,88], sensor systems [89], wireless networking [90,91],
and identity management [88,92] technologies, to enhance privacy or encryption
technology [93,94].

Hardware Lifecycle. Industrial devices are, in most cases, remanufactured and reused.
Therefore, sensitive information, device logs, and data stored in memories or storage
media will likely fall into the wrong hands with unpredictable consequences [95]. For
the specific threats, the industry should draw up and implement a uniform policy
for the management of industrial equipment, as well as apply techniques of total
deletion [96] of the data locally or in distributed information processing systems
which include first and second sites, which may consist of corresponding information
production and copying sites [97]. Also, IloT hardware addresses security and privacy
threats from inadequate testing and a lack of upgrading processes [98]. IIoT device
manufacturers, while willing to produce various devices, do not consider the security
and upgrading concerns of said devices because they require extensive testing and,
therefore, additional costs. These malfunctions increase the possibility of security and
privacy attacks when released into a real-world industrial infrastructure [96].
Inventory attack. Inventory assaults are the unlawful acquisition of information about
the equipment’s presence and attributes. Also, with the implementation of machine
to machine vision [99,100], intelligent devices can be questioned about their energy
footprint, communication rates, reaction times, and other distinctive characteristics,
which might be used to identify their kind and model, subject to limitations imposed
by legal or presumably legal organizations. Thus, evil individuals who violate the
privacy of an industry can assemble an inventory list of the gadgets in a particular
building or factory, as well as information about how each device operates [17].
Here too, cryptography solutions have been proposed for aggregation mechanisms.
This secure aggregation protocol meets the IoT requirements [101]. It evaluates its
effectiveness in light of various system configurations, the wireless channel’s impact
on packet error rates, and private communication techniques [102].

Linkage. This threat consists of connecting different previously separated systems so
that combining the data and the sources reveals critical information that would be
impossible to tell by individual plans. Moreover, to ensure the smooth operation of
IIoT devices, it is essential to have flat networking that will allow them to function
effectively. It is critical to have a high-quality open networking system for this
purpose [103]. This particular factor in IloT networks creates a security barrier. In this
regard, industrial enterprises must thoroughly assess their security policies to ensure
that IIoT devices are not vulnerable to threats [68]. Also, providers must understand
the significance of adequately configuring the networking device and services and
that data privacy entails various processes, such as efficiently removing sensitive
information through data segregation [48].

Figure 5 depicts an emerging architecture that successfully predicts and assesses threat-

related conditions in an industrial ecosystem while ensuring privacy and secrecy [104].
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Figure 5. Privacy-preserving industrial framework [104].

The above high-level depiction of the specific industrial privacy-preserving frame-
work introduces an intelligent control mechanism to detect abnormalities in the Industry
4.0 communication network based on three main principles. The sensitive data is not
transmitted through communication channels or stored in a central point of attack, and the
learning algorithms are constantly updating their predictive power. However, a significant
part of the responsibility lies with the hardware manufacturers. Often, the mechanisms
and interoperability standards concerning the security of IloT devices should be addressed
or treated as a secondary consideration [105]. Usually, this is due to the requirement for a
short period to implement an IoT device, simplify the design of its operating mechanisms,
and reduce its overall cost. Therefore, those involved in IloT delivery processes must con-
sider privacy and develop privacy management interfaces built into the endpoint and web
interface of the product or service [106]. This technology should enable the user industry to
understand which privacy features are utilized by the ecosystem, what the Terms of Service
are, and whether or not it is feasible to deactivate the disclosure of this information to the
business’ partners or rivals. This information management system will ensure that users
have the right and capacity to regulate the information they disclose about themselves and
their physical surroundings [107].

In light of the above-mentioned text, the IloT presents unique privacy challenges and
threats due to the large amounts of data generated, stored, and processed in industrial
environments. Some of the most common privacy threats in the IloT include Data Breaches,
Cyberattacks, Insider Threats, Lack of Transparency and Unsecured Communications.

To address these privacy threats, IloT implementations must implement appropri-
ate technical and organizational measures to protect sensitive information and personal
data. These measures may include encryption, access controls, employee training, regular
vulnerability assessments, and ongoing monitoring of IloT systems and devices. By imple-
menting these measures, I[IoT systems can better protect against privacy threats and ensure
confidentiality, integrity, and availability of sensitive information.

7. Privacy Requirements

Privacy requirements involve complying with relevant privacy laws, industry policies,
notices, and contractual obligations related to the gathering, recording, usage, storage, pro-
cessing, sharing, safeguarding, security (technical, physical, and administrative), disposal,
destruction, disclosure, or transfer (including cross-border) of sensitive personal data [108].
But because something so strict in an industrial environment is practically impossible to
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implement, there are basic requirements and recommendations that should be followed in
an industrial setting to respects privacy, as listed in the following:

1.

2.

Mitigation by Design. During the design process of IoT goods, services, or systems,
privacy protection measures should ideally be planned and implemented [109,110].
Assessment. Privacy impact assessments should help provide a secure method of
analyzing how personally identifiable information is collected, stored, secured, shared,
and handled and how it is disposed of, governed by this section [105,111,112].

Legal Compliance. To monitor compliance, applicable legal or regulatory require-
ments should be assessed [113-115].

Use Limitation. A provision should be made for the necessary work to ensure that
access to any physical or electronic security system is restricted to fully authorized
persons and for fully authorized purposes [116-118].

Storage Safeguards. Warehouses, data lakes, and databases, where personal infor-
mation is collected and stored, should be protected in terms of physical and logical
security [119-123].

Secure Communications. The data transmitted between systems or components, and
more generally, communications in an IoT environment, should be protected from
unauthorized disclosure or access [124-127].

Transparency. Individuals whose personal information may be collected should be
notified of the reason for collection and how that information may be used. There
should also be mechanisms that can reveal possible personal data leaks [128-130].
Data Retention Policy. There should be a policy that defines the retention period of
personal data, the methods of destruction of such data, and a procedure that ensures
that deleted information is not recoverable [131-133].

8. Suggestions

To address privacy threats in the 10T, it is important to establish clear privacy re-

quirements and implement appropriate measures to ensure compliance with applicable
data protection laws and regulations. Some privacy requirements and suggestions for IoT
implementations include:

1.

Data Protection Impact Assessments (DPIAs): Conducting DPIAs can help identify
potential privacy risks and ensure that appropriate measures are in place to mitigate
these risks.

Privacy by Design: Implementing privacy by design principles can help ensure that
privacy is integrated into developing IloT systems and devices from the outset.
Encryption and Access Controls: Encryption and access controls can help protect
sensitive information and personal data from unauthorized access or disclosure.
Regular Vulnerability Assessments: Regular assessments can help identify and ad-
dress security and privacy vulnerabilities in IoT systems and devices.

Employee Training: Ensuring that employees are trained in privacy requirements and
best practices can help minimize the risk of insider threats and improve the overall
privacy posture of the organization.

Compliance with Applicable Data Protection Laws and Regulations: Compliance
with applicable data protection laws and regulations, such as the GDPR [134] in the
European Union, is essential for protecting the privacy rights of individuals and
organizations involved in IloT operations.

Regular Review of Privacy Policies and Procedures: Regularly reviewing and up-
dating privacy policies and procedures can help ensure that they are up-to-date and
effective in addressing emerging threats and risks.

By implementing these privacy requirements and suggestions, IloT implementations

can better protect against privacy threats and ensure the safe and responsible use of
technology and data in industrial settings. In addition, the industrial partners will en-
able disruptive business models for personalization and full automation of secure and
private processes.
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9. Discussion

The adoption of the secure and privacy-enhanced Industrial Internet of Things (IIoT)
in Industry 4.0 solutions presents significant challenges for businesses, as they strive to
seamlessly integrate emerging technologies into their production processes. This challenge
primarily revolves around the readiness and maturity of companies to incorporate robust
security technologies within their production infrastructure, encompassing both secure in-
frastructure and privacy-preserving services. By successfully adopting privacy-preserving
IIoT technologies, businesses can establish the foundation for flexible manufacturing,
enabling them to promptly respond to dynamic market changes and demands.

The research findings offer a comprehensive overview of the IloT and its integration
with intelligent systems within the Industry 4.0 ecosystem. It sheds light on the prevalent
security issues faced by IloT deployments, emphasizing the crucial need for privacy protec-
tion within these systems. The paper meticulously examines how industry norms can be
met in terms of privacy requirements for IloT environments. Furthermore, it provides an
in-depth analysis of current strategies and solutions for effectively managing privacy risks
within industrial settings [135].

The paper’s focal point on privacy concerns within the IloT ecosystem, along with its
valuable recommendations for addressing privacy risks, significantly contributes to the
existing literature on this subject. By comprehensively addressing privacy concerns and
security risks, the paper adopts a more holistic approach towards ensuring the safety and
privacy of the IloT ecosystem and its end-users.

For organizations, the paper provides valuable insights into the privacy risks asso-
ciated with the IIoT and recommendations for addressing those risks. By implementing
the strategies outlined in the paper, organizations can better protect sensitive information
and ensure compliance with data protection regulations and other applicable laws. This
can help organizations maintain the trust of their stakeholders and protect their reputation
while benefiting from the efficiency and productivity gains associated with the IloT.

In summary, the paper’s insights into the privacy needs and risks of the IIoT ecosys-
tem are important for policymakers and organizations to understand and develop regula-
tions, guidelines, and strategies that ensure the safety and privacy of the technology and
its end-users.

However, in general, some possible limitations or drawbacks of the study include
the following:

1.  Limited scope or focus: The study may cover only some aspects or perspectives
related to the research question, or it may focus on a particular issue, industry, or
geography.

2. Methodological limitations: The study may have limitations in data collection, analy-
sis, or interpretation, which can affect the validity and reliability of the findings.

3. Lack of generalizability: The study findings may not be generalizable to other contexts,
populations, or settings due to specific sample selection criteria or limitations in the
study design.

4. Bias: The study may be affected by biases or assumptions, conscious or unconscious,
that can influence the research process, interpretation, and conclusions.

10. Conclusions

The IIoT has brought significant benefits to industrial organizations, including greater
efficiency, productivity, and cost savings. However, the IloT also poses significant pri-
vacy risks that must be addressed to ensure both the network and its end-users’ safety
and privacy.

This paper has focused specifically on the privacy needs of the IloT ecosystem, includ-
ing protecting personal data and the privacy dimensions specified by industry standards.
The paper has also provided an overview of contemporary approaches and solutions for ad-
dressing privacy risks in the IloT, such as encryption and anonymization techniques, access
controls and authorization mechanisms, and monitoring and surveillance technologies.
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