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Aviation statistics identify collision with terrain and obstacles as a leading cause of helicopter accidents. Assisting helicopter
pilots in detecting the presence of obstacles can greatly mitigate the risk of collisions. However, only a limited number of
helicopters in operation have an installed helicopter terrain awareness and warning system (HTAWS), while the cost of
active obstacle warning systems remains prohibitive for many civil operators. In this work, we apply machine learning to
automate obstacle detection and classification in combination with commercially available airborne optical sensors. While
numerous techniques for learning-based object detection have been published in the literature, many of them are data and
computation intensive. Our approach seeks to balance the detection and classification accuracy of the method with the size
of the training data required and the runtime. Specifically, our approach combines the invariant feature extraction ability
of pretrained deep convolutional neural networks (CNNs) and the high-speed training and classification ability of a novel,
proprietary frequency-domain support vector machine (SVM) method. We describe our experimental setup comprising
the CNN+SVM model and datasets of predefined classes of obstacles—pylons, chimneys, antennas, TV towers, wind
turbines, helicopters—synthesized from prerecorded airborne video sequences of low-altitude helicopter flight. We analyze
the detection performance using average precision, average recall, and runtime performance metrics on representative test
data. Finally, we present a simple architecture for real-time, onboard implementation and discuss the obstacle detection
performance of recently concluded flight tests.

Introduction

Controlled flight into terrain and collision with obstacles continue to
be the leading causes of helicopter accidents (Refs. 1, 2). Pilot judgment
and pilot situational awareness have overwhelmingly contributed to such
accidents according to these studies. Accident statistics are particularly
high for helicopters that operate in low-altitude missions and without any
terrain and obstacle warning equipment.

Airbus Helicopters is committed to ensuring a high-safety standard
for its fleet and operators. The company has put in place measures across
the complete life cycle, from design, engineering, and production to
maintenance, training, and partnerships towards an ambitious target for
aviation safety. (See https://www.airbus.com for details on Airbus He-
licopters initiatives for aviation safety). Knowing that accidents caused
by collision with terrain and obstacles represent a large proportion of the
overall accidents, offering operators with cost-effective obstacle aware-
ness systems is a logical step towards enhancing operational safety.

Contemporary solutions for obstacle awareness include helicopter ter-
rain awareness and warning systems (HTAWS) and active sensor-based
awareness systems. HTAWS produces cautions and alerts based on pre-
dictive algorithms that project the helicopter flight path and assesses
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terrain and obstacle conflicts using an on-board database (Ref. 3). The
terrain and obstacle databases on which the alerting decisions are based
are issued by aeronautical information publications. However, many of
the obstacle databases are overwhelmingly catered to the needs of com-
mercial fixed-wing operations so that obstacle data are rich in the vicinity
of airports but often poor in accuracy, coverage, and exhaustiveness else-
where. As helicopter missions become more complex and new rotorcraft
operations evolve in increasingly cluttered environments, real-time, on-
board, sensor-based obstacle detection capability will be a key enabler
to assist helicopter pilots in preventing mishaps.

Prior Work on Obstacle Sensing

Prior work on obstacle sensing has almost exclusively focused on
radar and LiDAR (light detection and ranging) sensors, a review of
which is given in Ref. 4. Airbus Helicopters has extensively evaluated
and flight-tested novel active and passive sensing technologies for rotor
strike alerting (Ref. 5), flight in degraded visual environments (DVE)
(Ref. 6), and automatic offshore rig approaches (Ref. 7). Military oper-
ators have also benefitted from advanced LiDAR sensors to mitigate the
risk of collisions during low-level flights in harsh environments. These
include the obstacle warning system (OWS) installation on the NH-90
helicopter (Ref. 8) that was also tested on the UH-60 helicopter (Ref. 9).
Recently, improved versions of the OWS were tested on the German
Aerospace Center (DLR) experimental EC135 helicopter (Ref. 10) and
an Airbus experimental H145 helicopter (Ref. 6). Recent U.S. Army re-
search into helicopter mission autonomy also used LiDAR sensors for
obstacle field navigation and safe landing area determination (Ref. 11).
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Although the aforementioned active sensing technologies based on light
and/or radio waves are promising, many civilian operators and missions
demand equivalent system performance at low SWaP-C (size, weight,
power, cost). These requirements continue to pose challenges to heli-
copter manufacturers and prevent large-scale commercial exploitation
of active obstacle awareness systems. Since many civilian helicopters
continue to fly mostly in visual meteorological conditions (VMC), and
despite a considerable risk of encountering marginal VMC or inadvertent
entry into instrument meteorological conditions (IMC) imaging sensors
in the visible spectrum paired with advanced image processing algo-
rithms can be a promising start for situational awareness enhancements
and piloting aids.

Computer Vision-Based Obstacle Detection: Opportunities
and Challenges

Towards improving pilot situational awareness at acceptable SWaP-
C, the detection and classification of potential threats and obstacles by
means of commercially available, airborne optical sensors holds great
promise. Recent advances in data-driven computing have shown the
potential to automate detection, recognition, and identification tasks in
vision systems. By combining camera images from different spectral
bands, a well-trained deep neural network architecture model hosted
on embedded graphical processing hardware can accurately detect and
localize obstacles in the sensor field of view. The detected obstacles
can then be used to either augment HTAWS obstacle databases, im-
prove the performance of active sensors, or simply be shown to the pilot
to draw attention to a potential threat. However, developing a reliable
computer vision-based obstacle detection system involves many tech-
nical challenges. First, training deep neural networks typically requires
large datasets, whereas aerial images of obstacles for training purposes
are typically very limited and expensive. Second, both training and im-
plementation of deep neural networks are computationally expensive
tasks. Therefore, the solution needs to be robust to the limited datasets
and yet achieve acceptable runtime performance on embedded airborne
computers.

To address these challenges, we propose an efficient obstacle de-
tection and classification technique using monocular two-dimensional
images from the helicopter-fixed forward-looking camera and evalu-
ate its performance on desktop and miniaturized graphical processing
platforms. Specifically, our approach combines pretrained, highly op-
timized deep convolutional neural networks (CNN) feature extractors
and a novel, proprietary, high-speed frequency-domain support vector
machine (SVM) implementation recently patented in Ref. 12. In this
work, the term “detection” refers to the identification of the presence of
obstacles and their localization in the image coordinates, whereas the
term “classification” refers to the identification of the class/type of the
detected obstacles. We, however, do not treat the subject of obstacle lo-
calization in the global (world) coordinates in this work. Likewise, we do
not address compliance demonstration and product certification aspects
of the onboard system installation.

The objectives of our work towards a concept for vision-based obsta-
cle awareness can be summarized as follows:

1) define the operational scope and requirements for obstacle aware-
ness;

2) gather representative datasets for training purposes;
3) train high-speed SVM classifiers and CNN feature encoders for

real-time obstacle detection and classification in forward-looking optical
cameras;

4) evaluate detection and runtime performance on a desktop work-
station and an airborne embedded general-purpose graphical processing
unit (GP-GPU).

The remainder of the paper is organized as follows. We first discuss
the basic ideas of machine learning applied to computer vision, introduce
the current state-of-the-art in artificial and convolutional neural networks
(ANN, CNN) and SVM, and present some recent automatic object detec-
tion and classification techniques. We discuss the merits and weaknesses
of these techniques and propose our computer vision method that lever-
ages the strengths while mitigating the drawbacks of these techniques
for the automatic obstacle detection and classification problem. We then
present our experimental setup for automatic detection and classification
of obstacles from airborne optical sensors along with some basic per-
formance metrics computed on a desktop computer. Finally, we present
obstacle detection and classification results of the airborne installation
consisting of an NVIDIA-embedded GP-GPU hosting our algorithm and
a helicopter-enhanced vision system (HeliEVS) sensor on an experimen-
tal Airbus H145 helicopter.

Machine Learning Framework for Automatic Object
Detection/Classification

Automatic object detection/classification has grown to be one of the
most popular applications of computer vision and deep learning. It ad-
dresses the problem of identifying the presence of objects of interest in an
image, their localization in the image coordinates, and their classification
by types, all without human intervention. Typically, the task of object
detection and classification can be divided into three main processes
(Ref. 13):

1) division of the input image into informative regions;
2) extraction of features from each region;
3) classification and localization.
Objects of interest can be present at different pixel positions in the

image in various sizes and aspect ratios. A natural solution to find all
the possible regions of interest (RoI) is to scan the entire image using
the sliding window technique. However, this generates a large num-
ber of windows, most of which may be redundant, making the process
computationally expensive. On the contrary, if only a limited number
of windows are considered, then some objects may be missed. Each
detected object can be identified by its unique features using popular
computer vision algorithms such as Scale Invariant Feature Transform
(SIFT), Histograms of Oriented Gradients (HOG), Haar wavelets etc., to
represent the object’s features (Refs. 14, 15).

The next step is to classify the objects according to the desired object
classes by recognizing their unique features. Some of the commonly used
classification techniques are AdaBoost, SVM, and deformable part-based
model (Ref. 15). Before the advent of modern neural networks, all these
three steps were programmed manually and were designed individually
based on the type of the data used. Recently, thanks to the ImageNet CNN
architectures (Ref. 17), feature extraction and classification have been
automated without the need for manual design of feature representors. In
addition, object detection models like You Only Look Once (YOLO; Ref.
18), single shot detector (SSD; Ref. 19), and hybrid models (Ref. 20)
also localize the objects by drawing bounding boxes around them using
techniques like regression (Refs. 14, 15). These algorithmic evolutions
have been accompanied by great strides in hardware performance in
terms of GP-GPU. Figure 1 shows the structure of an object detection
model from Ref. 16 including the different steps just discussed.

Convolutional neural networks

Artificial neural networks (ANNs) are inspired by the functions of
biological brains. ANNs imitate the neuronal structure of the cerebral
cortex of the human brain in a simplified way, which results in linear
and nonlinear relationships between the input and output information
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Fig. 1. A model of automatic object detection using deep learning (Ref. 16).

Fig. 2. Example of convolution operation in CNNs to extract vertical
edges (Ref. 25).

consistently. ANNs can be trained with a large collection of data relevant
to the task at hand. When the model is applied on new data, ANNs make
appropriate inferences based on the patterns the model was trained to
detect. Due to their widespread utility, ANNs have found applications
in autonomous driving, pattern recognition, data analytics, medical data
processing, and stock market prediction, among others (Ref. 21).

The term “deep learning” refers to ANNs that consist of multiple
layers of artificial neurons in contrast to shallower network architectures
that were predominantly used in the past. CNNs are a subdomain of
deep learning that represents the current state of the art (Refs. 17, 22,
23, 24). CNNs have a similar structure as ANNs and are composed
of a sequence of layers performing various operations to hierarchically
learn and represent the data. The major difference is that CNNs perform
the convolution operation on the input data with multiple successive
kernels. A kernel is a filter that extracts features of interest from the
input images. Mathematically, a kernel is a matrix that performs a dot
product on functions of the input images. The elements of these kernels
are learned during the training process. Also, unlike ANNs, the neurons
in the preceding layer of CNNs are not linked to all the neurons in the
successive layer but only to a small region around it. The size of the
region corresponds to the size of the kernel or filter. An example is
shown in Fig. 2, which illustrates the convolution operation on an input
image to extract its vertical edges. The output image is the result of the
convolution operation between the input image and the filter or kernel
(Refs. 24, 25).

After learning the elements of all the kernels, the actual classifica-
tion or regression task is performed by applying one or multiple “fully
connected layers” as they are known from standard ANNs. This pro-
cess leads to a significant reduction in parameters that need to be tuned
and stored and thereby greatly improves the runtime and generalization
performance of the network.

CNNs are most commonly used to solve classification problems. A
CNN that does classification has two major components: feature extrac-
tion by the “hidden layers” and classification by the “fully connected
layers.” Feature extraction by the hidden layers involves a series of con-
volution and pooling operations to detect the relevant features from the

input data, as seen in Fig. 1. Classification by the fully connected layers
involves computing the probability scores and depth values of the given
input data (Ref. 26).

Applying deep learning to computer vision tasks such as real-time
automatic object detection/classification on high-definition video se-
quences remains a challenge. The best methods in this direction currently
achieve a performance of about 5 frames/second for an image resolution
that is much smaller than full-high-definition (full-HD) (Ref. 22).

Support vector machines

SVM is a classical machine learning technique popularly applied
to classification problems. SVM is known for its high generalization
capabilities, accurate classification, and simplicity in computation. For a
given set of training samples, SVM builds an optimal separating surface
with a linear or nonlinear mapping function, a normal vector, and the
offset measure of the separating surface which is commonly known
as hyperplane. A margin in SVM is the minimum distance between
the support vector points and the hyperplane separating two classes, as
depicted in Fig. 3. In addition to finding a hyperplane that separates the
individual classes, a constraint is introduced that requires the hyperplane
to exhibit the greatest possible distance between the closest training
samples of each class (Ref. 28). This makes the optimization of SVMs
a convex problem for which the global optimum can always be found
(Ref. 29). Thus, as long as the relevant support vectors are contained
within the training data, the optimization will always result in the same
classifier, even if the training data are considerably reduced. The effect
of reducing training data size can be visualized in Figs. 3(c) and 3(d),
which shows the invariance of the SVM classifier with respect to the
size of the training dataset. In comparison, Figs. 3(a) and 3(b) depict
significant variance of linear ANN classifiers with respect to the size of
the training dataset. It can be seen that SVMs are more robust to the
size of the training data, and they generally exhibit better generalization
performance than deep CNNs. Furthermore, in contrast to CNNs, SVMs
can be computed much faster, enabling them to perform object detection
on HD videos in real time even on embedded hardware (Refs. 30, 31).

However, SVMs exhibit one major drawback, which is their depen-
dency on a strong feature extractor to provide the SVM with the rele-
vant information required for solving specific classification or regression
problems. Therefore, much of the prior research has focused on designing
the most suitable feature extractors for various computer vision tasks.

Recent automatic object detection/classification techniques

Faster Region-Based Convolutional Neural Network (RCNN),
YOLO (You Only Look Once), Single Shot MultiBox Detector (SSD),
and hybrid methods are some of the prominent state-of-the-art computer
vision techniques for automatic object detection/classification that we
review here for completeness. Faster RCNN consists of three separate
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Fig. 3. Visualization of the effects of decreasing training samples on the generalization performance of ANNs (a) and (b) and SVMs (c) and (d)
(Ref. 27).

networks to perform tasks like feature map generation (feature network),
ROI prediction (region proposal network), and final detection and
classification (final detection network) (Ref. 22). The input image is
divided into 2000 ROIs that contain potential objects and a set of class
predictions are made for each ROI. The advantage of Faster RCNN is that
it gives accurate predictions when compared to its predecessors (RCNN
and Fast RCNN in Ref. 32) and is robust to different sizes of objects
(Ref. 22). The drawbacks of Faster RCNN are that it has a complex
architecture with three different networks that are computationally
expensive and hence the technique is very slow (Ref. 18).

YOLO is the current state-of-the-art for object detection problems
(Ref. 18). The architecture of YOLO performs the tasks of feature ex-
traction, informative region extraction, and classification in a single net-
work which is similar to CNNs such as Visual Geometry Group (VGG)
(Ref. 23), AlexNet (Ref. 17), etc. YOLO divides the feature image into S
× S grid cells, and a set of anchor boxes of different sizes are generated
for each cell. The class predictions are further made for the regressed
bounding boxes. The advantage of YOLO is that it has a simpler architec-
ture when compared to Faster RCNN and hence is faster and also more
accurate (Ref. 18). The disadvantage is that the network is still complex
as expensive operations like regression are performed to generate accu-
rate results. There is also a faster version of YOLO with lesser layers but
in this case the accuracy drops (Ref. 33).

The Single Shot MultiBox Detector (SSD) released in 2016 created
new records for object detection tasks with outstanding performance and

precision (Ref. 19). It is also a single network that performs the task of
informative region extraction, detection of objects, and classifying them.
Like anchor boxes in YOLO and ROIs in Faster RCNN, SSD proposes a
set of fixed bounding box priors (approximately 1400) for every region
that potentially contains object information. The bounding boxes are
selected by non-maximum suppression and class predictions are made.
The advantage is that SSD is the fastest of all the rest of the models,
and its accuracy is on par with other methods. The disadvantage is that
it is not robust to smaller objects and requires configuration of the prior
boxes according to the desired object sizes, which adds complexity.

A hybrid object detection model based on the works of Refs. 20 and
27 combines a pretrained deep CNN (such as AlexNet in Ref. 17) and
a powerful SVM classifier to perform the task of object detection. The
input image is divided into a definite number of fixed-sized patches.
The features are then extracted for each patch, and the SVM classifier
performs the classification on each patch. Hence, a separate classifier is
trained for each class (Ref. 20). The advantage of this hybrid approach
is that it is less complex than the previously discussed techniques in that
division of an image into fixed-size patches that contain potential objects
reduces the complexity of the model. Replacing the fully connected
layer of a CNN by an SVM improves the generalization performance as
demonstrated by these studies (Refs. 20, 27). The disadvantage of this
approach is that since the classifiers are fused together for multiclass
classification, the complexity and the inference time are affected when
the number of object classes to be identified is large.
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Combining CNN and SVM for Automatic Obstacle
Detection/Classification

In this section, we present key, high-level requirements for the au-
tomatic obstacle detection/classification problem and introduce our ma-
chine learning method to address the problem. We also present arguments
in support of our choice of the method in comparison to the notable com-
puter vision techniques discussed previously.

Key considerations for obstacle detection/classification

Although detailed functional requirements and installed performance
will not be discussed, we summarize below some of the main consider-
ations that guided our choice of learning-based obstacle detection and
classification method:

1) Given the limited amount of open-access airborne imagery and
the prohibitive costs of dedicated aerial data-gathering campaigns (es-
pecially without an industry-wide collaborative approach), the detection
performance needs to be robust to the small sizes of training datasets.

2) The system needs to be modular so that equivalent detection per-
formance can be readily assured with different types and suppliers of
imaging sensors.

3) The training process needs to be implementable on desktop work-
stations with acceptable training times.

4) The inference process needs to be implementable on embed-
ded, commercial off-the-shelf GP-GPUs with acceptable runtime per-
formance.

Proposed method

In view of the aforementioned considerations, we propose a hybrid
object detection model, that is a combination of CNN and SVM to lever-
age the strengths of each technique while overcoming their individual
limitations for automatic obstacle detection/classification. This approach,
previously introduced in Ref. 27, involves using a part of a pretrained
CNN to extract distinctive features in regard to the obstacles of interest.
This includes a cascade of several convolutional layers (deep CNN) as
an implicit feature extractor at several layers of abstraction. Research
has shown that CNNs that have been highly optimized for discriminat-
ing thousands of object classes on huge datasets can be successfully
reused as feature extractors for domains they have not even been trained
for (Refs. 34, 35). Relying upon this strong generalization performance
of the CNN feature extractors, we feed the output of pretrained CNN
feature extractors to our proprietary frequency-domain SVM classifier
implementation described in Ref. 12 for robust and accurate obstacle
classification.

The first benefit afforded by the present approach is that the com-
bined CNN+SVM model drastically reduces training data requirements
since the feature extraction part relies on CNNs that have been trained a
priori on large open-source datasets, while our proprietary SVM obsta-
cle classification requires only a small amount of training data for good
generalization, as discussed previously. The high generalization perfor-
mance of CNN+SVM with fewer data reduces the need to secure large
training datasets in comparison to the state-of-the-art methods discussed
previously. Furthermore, the drawback of CNN+SVM that it divides
each input image into fixed-sized patches is acceptable since the obsta-
cles to be detected do not vary significantly in size. Even the smallest-
sized objects can be detected by defining object subclasses based on size
(Refs. 20, 27).

The second benefit is in regard to the computational performance.
A CNN typically consumes the most processing time to propagate data
through the fully connected layers at the end of the network for object

classification purposes. In contrast, the convolutional layers for feature
extraction can be evaluated rather quickly using the parallel processing
capabilities of modern GP-GPUs. By replacing the fully connected lay-
ers of CNNs (i.e., those responsible for classification) with our SVM
classifiers known for their fast performance (Refs. 30, 31), the overall
processing time for obstacle classification is significantly improved in
comparison to some of the state-of-the-art methods.

In summary, our CNN+SVM model offers a highly efficient, gen-
eralizable, and computationally optimized method for onboard obstacle
detection/classification using commercially available airborne optical
sensors.

Experimental Setup

The proposed CNN+SVM approach has been previously evaluated
on DARPA’s Neovision2 dataset (Ref. 27). In the following sections, we
assess its performance and demonstrate its capability for the helicopter
obstacle detection/classification use case.

We performed the experiments in two steps. The first step involved
model training and performance evaluations on a standalone desktop
workstation hosting an NVIDIA Quadro K2200 (a mid-range GPU) and
using different sets of prerecorded airborne video sequences in the visual
and infrared spectral bands. This step included a training phase and an
inference phase to assess detection and runtime performance. The sec-
ond step involved system implementation and model testing/inferencing
onboard an experimental H145 helicopter using a low-cost, low-weight,
and small form factor NVIDIA Jetson AGX Xavier developer kit. For this
second step, we reused the offline trained classifiers for online inference
onboard the helicopter.

As the timescale for experimental flight testing on full-scale heli-
copters is typically long, the testing time limited, and the datasets propri-
etary, we conducted the experiments only with the proposed CNN+SVM
method. Performance comparisons with other state-of-the-art methods
described previously are beyond the scope of this work.

Sensor setup

The airborne sensor suite that delivered the data included two electro-
optical sensor systems. The first system is a HeliEVS sensor developed
by Elbit Systems, operating in the visible, near-infrared, and long-wave
infrared spectral bands and providing automatic image fusion from the
three spectral bands. The full datasheet of the camera is available in
Ref. 36. Our choice of this camera was motivated by two reasons. First,
Airbus Helicopters and Elbit Systems had entered into a cooperation
agreement for joint research in DVE mitigation for helicopter missions.
The research objectives, installation details, and main results of the DVE
mitigation program have been summarized in Ref. 6. In the frame of
this cooperation, Elbit Systems had supplied Airbus Helicopters with
a HeliEVS prototype for experimental flight testing. That cooperation
provided a ready-to-use camera installation on the experimental aircraft.
Second, Elbit has designed the HeliEVS camera according to the ap-
plicable aviation industry design standards for vision systems (RTCA
DO-315), environmental conditions (RTCA DO-160), and airborne elec-
tronic hardware (RTCA DO-254). These considerations are essential to
achieving the applicable safety objectives and showing compliance with
civil airworthiness requirements.

The second sensor system is a high-definition, commercially available
visible spectrum flight-test instrumentation (FTI) camera called Atom-
One manufactured by Dream Chip Technologies. The full datasheet of
the camera is available in Ref. 37. The choice of this FTI camera was
motivated by the fact that it is a standard installation during experimen-
tal testing at Airbus Helicopters. Being commercially available in the
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Fig. 4. Operational, training, and test spaces (Ref. 38).

consumer electronics market, it provides full high definition (1920 ×
1080 pixels) at a low cost. Although the camera itself is not designed
according to the aviation industry design standards, it has been qualified
by Airbus Helicopters in regard to essential environmental requirements
for installation on experimental helicopters. This latter aspect makes it
a viable low-cost alternative in future airworthiness compliance demon-
stration activities requiring lower safety objectives.

Accordingly, the dual sensor setup allowed us to test the CNN+SVM
model on cameras meeting different levels of performance and safety
objectives for airborne applications.

Dataset generation

In regard to the datasets for machine learning, it is necessary to first
outline the concepts of operational space, test space, and training space
(Ref. 38). Operational space refers to the range of conditions in which
the model operates and is expected to function as intended. Training
space refers to the range of conditions for model training, and test refers
to the range of conditions for model testing. For the automatic obstacle
detection/classification to perform accurately, it is essential that all three
spaces are aligned as discussed in Ref. 38 and shown in Fig. 4.

Due to the lack of publicly available datasets for objects that repre-
sent obstacles for low-altitude helicopter flight, we used airborne video
sequences from proprietary flight test for gathering training data. These
training data were generated as part of a flight-test program in a recently
concluded DVE technology demonstrator project on the H145 helicopter
between November 2017 and May 2018 in Ref. 6. These flight tests were
conducted primarily in the Donauwörth area of Germany.

We manually extracted images depicting different obstacle types from
the aforementioned airborne video sequences in different lighting con-
ditions and different orientation angles. During the training phase, we
manually annotated the image coordinates representing the obstacles of
interest. The obstacle classes consisted of ground-fixed objects, namely
wind turbines, antennas, pylons, chimneys, and TV towers. We defined an
additional class for aerial obstacles that principally included helicopters.

We used a sufficiently similar training dataset for training the
CNN+SVM model and test dataset for performance assessment to en-
sure alignment between the operational, training, and test spaces, to avoid
outliers, and to draw meaningful conclusions from our experiments. We
also assessed the generalization performance on a few selected visual
and infrared video clips of the same set but originating from different
real helicopter flights.

We note that the total number of training images per obstacle class
was in the order of hundreds of images obtained from about a dozen
hours of flight data recordings, which is significantly lower compared to
the training dataset requirements of most state-of-the-art deep learning
techniques for computer vision.

Desktop experimental setup

The first step of the experiment involved desktop setup for the train-
ing and inference of the CNN+SVM model, for which we used the
Airbus Defense & Space proprietary software package for automatic tar-
get recognition described in Ref. 27 and installed on a standalone desktop
workstation hosting an NVIDIA Quadro K2200 GPU. In this package,
the implementation of the CNN feature extractor is built upon the Caffe
Framework (Ref. 39), which has been developed by the Berkeley Vision
and Learning Center and which provides a number of pretrained CNNs
such as Alexnet (Ref. 17), GoogleNet (Ref. 24) or VGG (Ref. 23) that
are highly optimized on large image datasets. The implementation of the
SVM classifier is based on Ref. 12.

During the training phase, we divided each obstacle class into three
subclasses for size (small, medium, and large) based on the average pixel
size of the main class. This way, the SVM classification models can
cope with some amount of scale invariance of the objects to be identified
from different viewing ranges. For each obstacle class, we trained one
SVM classifier according to the principle of one-versus-all (Refs. 20,
40), which is a scheme of using binary classification algorithms for
multiclass classification. Finally, for a comparative assessment of the
runtime performance of the CNN+SVM model, we also compared the
results with published data on state-of-the-art object detection methods,
namely Faster RCNN (Ref. 22) and YOLOv3 (Ref. 18), whose results
we present in the next section.

Helicopter experimental setup

The second step of the experiment involved the onboard implemen-
tation and flight testing in the period May 2021 to August 2021, shown
later in Table 5. Figure 5 shows the four components involved in the func-
tional chain and illustrates the simplicity of the onboard implementation.
Note that this simple implementation only considers a display device; no
pilot command and control and alerting concept were considered at this
stage.
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Fig. 5. Architecture for implementation in flight.

The optical sensor in Fig. 5 is either the HeliEVS camera or the
FTI camera used interchangeably. Both sensors were installed exter-
nally on the nose section of the experimental H145 helicopter. The
sensors transmit video frames in SMPTE 292 standard, which is en-
coded to H.265/H.265 format and transmitted via HTTP or RTP protocol
over Ethernet to the NVIDIA Jetson AGX Xavier GP-GPU developer
board shown in Fig. 6. The NVIDIA board hosts the real-time inference
software for the CNN+SVM algorithm, which retrieves camera video
frames via the Ethernet port, detects and classifies obstacles in the in-
coming image frames, superimposes bounding boxes and obstacle types,
and transmits the resulting video sequences to the display device over
HDMI.

Figure 7 shows the sensor installations on the helicopter. Figure 8
shows the experimental hardware setup installed on the aircraft cabin
floor. Figure 9 shows the classified obstacles presented on a display
device inside the cockpit cabin.

Results and Discussion

In this section, we present quantitative and qualitative results of
the CNN+SVM model from both desktop testing and flight testing.
Due to the importance of the real-time capability for obstacle detec-
tion/classification, we present runtime performance figures achieved on
a desktop workstation and the NVIDIA Jetson AGX Xavier GP-GPU
installation on the helicopter described previously.

Figures 10–15 show the qualitative results of the CNN+SVM method
using images in both visual and infrared spectral bands. These images are
snapshots taken out of the video recording of the CNN+SVM inference
algorithm running on the desktop workstation. The detection perfor-
mance was satisfactory in all lighting conditions for which training data
were available, in all viewing angles and spectral bands.

Detection accuracy

One quantitative criterion is the accuracy of the detection of each
obstacle class in the visual and infrared spectral bands. In computer
vision applications, accuracy is often measured in terms of the average

Fig. 6. NVIDIA Jetson AGX Xavier GP-GPU developer board.

precision and average recall for all instances of each obstacle class in
the test dataset, along with the mean values of the average precision and
average recall across all classes.

Precision is defined as the number of true positives (T P ) divided by
the sum of true positives and false positives (FP ):

Precision = T P

T P + FP

Recall is defined as the number of true positives divided by the sum
of true positives and false negatives (FN ):

Recall = T P

T P + FN

Precision indicates what proportion of the objects detected by the
algorithm is relevant, whereas recall indicates what proportion of all
relevant objects the algorithm has actually detected. Precision and recall
usually share an inverse relationship, and both are dependent on the
model score threshold. Figure 16 illustrates how precision and recall are
computed for a single camera frame and a generic test sample.

Table 1 presents the accuracy of the CNN+SVM model from desktop
simulations. This result is based on a selective set of 50 test images for
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Fig. 7. FTI and HeliEVS sensor installations on an experimental H145 helicopter.

Fig. 8. Experimental electronic hardware installation on the cabin floor.

Fig. 9. Real-time display of the CNN+SVM output in the operator
cabin console. Fig. 10. Wind turbine detection from the FTI camera.
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Fig. 11. Wind turbine detection from the HeliEVS camera.

Fig. 12. Chimney detection from the FTI camera.

each class so as to provide a common basis for all classes. To produce this
result, we manually selected test images that cover all possible obstacle
variations such as scale, size, perspective, and lighting conditions in the
available dataset.

As seen in Table 1, the average precision and average recall for
all classes are better than 90%. The mean average precision across all
classes is 96%, and the mean average recall across all classes is 95%.
From these results, we infer that the accuracy of the CNN+SVM method
is satisfactory, considering that the model training dataset had only a few
hundreds of images. However, we note that the accuracy can drop if the
dataset has a larger number of images with greater variations in their
appearance.

Based on the precision and recall values in Table 1, we can also infer
that the accuracy is slightly better on the HeliEVS imagery than on the
FTI visual imagery (cf. obstacle classes wind turbine and chimney in
Table 1). The main reason for this observation is the effect of weather
conditions on the visual spectrum images that reduces the clarity of the
appearance of obstacles. By virtue of combining multispectral images,
the effect of weather and daylight on HeliEVS is smaller. The HeliEVS

Fig. 13. Chimney detection from the HeliEVS camera.

Fig. 14. Antenna and helicopter detection from the HeliEVS camera.

Fig. 15. TV tower detection from the HeliEVS camera.
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Fig. 16. Illustration of the elements used in the evaluation of precision and recall metrics: a camera image showing detection of pylons (left)
and a generic test sample (right).

Table 1. CNN+SVM obstacle detection accuracy for desktop simulations

Classes Camera Source Ground Truth True Positives False Positives Missed Detections Average Precision Average Recall

Wind turbine FTI 50 48 3 2 0.94 0.96
Wind turbine HeliEVS 50 50 0 0 1.0 1.0
Chimney FTI 50 46 2 4 0.95 0.92
Chimney HeliEVS 50 49 1 1 0.98 0.98
TV tower HeliEVS 50 49 0 1 1.0 0.98
Antenna HeliEVS 50 44 3 6 0.93 0.88
Helicopter HeliEVS 50 47 2 3 0.96 0.94
Pylon HeliEVS 50 48 5 2 0.91 0.96

sensor also provides a better contrast of the obstacles of interest against
background clutter. The CNN+SVM algorithm was also able to detect
partially occluded, overlapping, and smaller sized obstacles.

Training time and runtime performance

Another quantitative criterion is the performance of the obstacle de-
tection in terms of the training time and the inference time. This measure
is important considering that our requirements include the ability to train
the algorithm with smaller datasets and to host the algorithm on airborne
embedded devices onboard the helicopter.

We measure training time by the amount of time taken to train the
complete set of images for each obstacle class. We measure inference
performance by the number of frames of video processed per second on
a target computing platform.

Table 2 presents the training times required to build each of the clas-
sifiers. We performed the measurement on the selected set of images per
class as given in the table. The overall training time for all classes com-
prising 877 images is about 35 min. Given the small number of images
and low training time, the CNN+SVM model is well-suited to carry
out repeated experiments until the desired accuracy is achieved in wider
operational domains. We estimate that testing the model in different op-
erational environments would require at least a few thousands of images
per class with all possible variations in the data based on the obstacle
detection/classification mission requirements for good generalization.

Table 3 presents the inference performance of the CNN+SVM model
on an NVIDIA Quadro K2200 GPU. It shows that the inference perfor-
mance is high, which makes it suitable to run the model on flight-test
videos in a real-time sense to obtain a list of detected obstacles in each
frame.

Table 4 presents the runtime performance of the CNN+SVM model
and compares it with two state-of-the-art methods running on an NVIDIA
Jetson AGX Xavier board based on the results presented in Ref. 33. It can

Table 2. Training time to build the CNN+SVM model

Class Camera Source Number of Images Training Time (min)

Wind turbine FTI 112 3.56
Wind turbine HeliEVS 124 4.02
Chimney FTI 98 4.12
Chimney HeliEVS 101 4.02
TV tower HeliEVS 136 6.44
Antenna HeliEVS 84 3.03
Helicopter HeliEVS 102 3.22
Pylon HeliEVS 120 5.51

also be seen that the embedded performance of the proposed CNN+SVM
approach is significantly better than the Faster RCNN and comparable to
YOLOv3. This is because, unlike YOLOv3, our approach has a separate
SVM classifier for each object class, and the number of classes affects the
runtime performance of our system. However, we note that the training
needs of the CNN+SVM model are far lower than YOLOv3.

Flight data analysis

Following a successful desktop experimentation, we conducted flight
testing from May 2021 to August 2021 in an experimental H145 heli-
copter using the test setup described in the previous section. Here we
provide qualitative and quantitative analysis of the onboard obstacle
detection performance on an embedded NVIDIA Jetson AGX Xavier
GP-GPU from live forward looking camera feeds. For these flight tests,
we only connected the HeliEVS camera to the CNN+SVM model due
to its better detection performance noted during desktop testing. We also
recorded the video output of the NVIDIA Jetson AGX Xavier to be used
later for postflight analysis. The classifiers we considered for these ex-
perimental flights correspond to obstacles that appeared most frequently
during flight testing: wind turbine, pylon, and antenna. Moreover, we
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Table 3. Inference performance of the CNN+SVM model on a desktop workstation hosting an NVIDIA Quadro K2200 GP-GPU

Number of Images Model Performance (frames/second) Total Inference Time (s) Inference Time per Image (ms)

400 35 11.43 28.575

Table 4. Runtime performance comparison of the
CNN+SVM model on an NVIDIA Jetson AGX Xavier

GP-GPU board

Model Runtime performance (frames/second)

Faster RCNN 1.3
CNN+SVM 10–13
YOLO V3 16–18

performed all flight tests under visual flight rules during daytime. Table
5 presents the environmental conditions prevalent during each of the
three flight-test scenarios.

Onboard detection accuracy

We measured the onboard obstacle detection accuracy using the same
precision and recall metrics described previously. The main point of in-
terest of the flight testing was to assess the onboard detection accuracy
for obstacles that are observed by the camera during different times of
the day and from different camera viewing perspectives that may not
be fully captured by the test datasets. Table 6 presents the detection ac-
curacy of three classes: wind turbine, pylon, and antenna for the three
aforementioned flight-test scenarios. Expectedly, we found that the av-
erage recall and precision values were lower than those observed during
offline desktop simulations (comparing with Table 1). Yet, average pre-
cision greater than 0.85 indicates that false positives accounted for less
than 15% of the overall obstacle detections. Likewise, average recall
greater than 0.80 indicates that less than 20% of the obstacles remained
undetected. We note that the detection performance will tend to worsen if
the operating environment includes newer obstacle geometries, viewing
angles, lighting conditions, and such variations that were not part of the
training process. On the contrary, the detection performance will tend
to improve as new observations are continuously fed into the training
process to revise the model parameters.

Obstacle detection range

The detection range is an important criterion to measure how far
obstacles can be reliably detected towards ensuring sufficient lead time
to pilots for situational awareness. During flight testing, we asked the test
pilot to approach each obstacle or a cluster of obstacles head on to ensure
they remain in the camera field of view from as far away as possible.
Table 7 shows the furthest distances at which each obstacle class could
be reliably and correctly detected. It is clear that wind turbines were
detected from the furthest distance whereas antennas had the lowest

Table 6. CNN+SVM obstacle detection accuracy during three
flight-test scenarios

Flight Object Camera Average Average
Scenario Class Source Precision Recall

Flight 1 Wind turbine HeliEVS 0.927 0.900
Pylon HeliEVS 0.842 0.800

Antenna HeliEVS 0.947 0.900
Flight 2 Wind turbine HeliEVS 0.894 0.850

Pylon HeliEVS 0.850 0.850
Antenna HeliEVS 0.882 0.750

Flight 3 Wind turbine HeliEVS 0.936 0.880
Pylon HeliEVS 0.885 0.850

Antenna HeliEVS 0.940 0.800

Table 7. CNN+SVM maximum obstacle
detection range from flight tests

Obstacle Class Maximum Detection Range (m)

Antenna 685
Pylon 1280
Wind turbine 3386

maximum detection range. We also note that the maximum wind turbine
detection range occurred when approaching from the front view so that
three wind turbine blades were readily apparent. Since wind turbines have
a unique shape and geometry (mast with three blades) that cannot easily
be confused with other objects in the environment, its detection range
was the highest. In contrast, an antenna having a single mast and devoid
of peculiar features could only be correctly detected at about 685 m.
These observations highlight the challenges faced by deep learning-based
computer vision methods, namely the need for unique and distinguishable
features and the availability of representative training datasets.

Future Work

Qualifying machine learning–based computer vision techniques for
enhanced obstacle situational awareness on helicopter platforms has
many open challenges—robustness, generalization capability, opera-
tional space expansion, trustworthiness, design assurance, data quality
and quantity, among others—that should be addressed as part of future
work. Recent research has led to concepts such as few shot obstacle
detection (Ref. 41), which are a collection of learning techniques that,
when trained on large, publicly available annotated datasets, are capable
of detecting novel objects having smaller annotated datasets. Likewise,

Table 5. Summary of flight-testing scenarios

Flight Date Time Outside Temperature Weather Visibility

Flight 1 June 17, 2021 0940–1020 24◦C CAVOKa >3000 m
Flight 2 July 22, 2021 1345–1500 25◦C Partly cloudy >3000 m
Flight 3 August 13, 2021 0800–0845 22.5◦C CAVOKa >3000 m

aCeiling And Visibility [are] OK
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computer-generated synthetic data have shown great promise to augment
the limited real-world training data. Recent works have investigated min-
imal sets of real-world training data for equivalent detection performance
(Ref. 42) and new synthetic datasets for airborne applications (Ref. 43),
advances that will help address the aforementioned challenges.

Conclusions

We have presented a hybrid automatic obstacle detection and classi-
fication method that is tailored to low-altitude helicopter missions. Our
method leverages the potential of state-of-the-art deep CNNs for efficient
obstacle feature extraction and pairs them with a proprietary high-speed
SVM for obstacle classification. The proposed CNN+SVM obstacle de-
tection and classification method has the following highlights:

1) It requires comparatively small amounts of training data which is
particularly advantageous for airborne use cases.

2) It has a high generalization ability and detection accuracy.
3) It has light resource consumption in terms of training time and

runtime performance on commercial off-the-shelf NVIDIA GP-GPUs.
4) It has a simple architecture (CNN+SVM) with fast convergence.
5) It gives good performance when the operational context is well-

defined and the training datasets are representative of the testing condi-
tions.
We have reported experimental results from both offline desktop-based
testing and low-altitude flight testing with forward-looking imaging
sensors and an airborne GP-GPU setup. Our offline training required
about 35 min for 877 images covering eight different obstacle classes,
which is significantly lower compared to contemporary state-of-the-art
object detection methods. Moreover, our inference performance on the
NVIDIA Quadro K2200 GPUs was 35 frames/second, while on a minia-
ture NVIDIA Jetson AGX Xavier board it was 10–13 frames/second. We
could achieve better than 90% detection accuracy from offline desktop-
based testing measured using the average precision and average recall
metrics, and better than 80% detection accuracy in flight tests, albeit
on operationally limited datasets and scenarios. Furthermore, we have
noted slightly better detection accuracy on the HeliEVS multispectral
sensor, which provides an automatic fusion of visual, near-infrared, and
long-wave infrared spectral bands, as compared to a purely visual FTI
optical sensor.

The proposed deep learning approach holds promise for improved
pilot situational awareness against potential obstacles in low-altitude
missions and towards fulfilling Airbus Helicopters’ aviation safety am-
bitions.
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