
Citation: Luo, S.; Zeng, W.; Sun, B.

Contrastive Learning for Graph-

Based Vessel Trajectory Similarity

Computation. J. Mar. Sci. Eng. 2023,

11, 1840. https://doi.org/10.3390/

jmse11091840

Academic Editor: Marco Cococcioni

Received: 25 August 2023

Revised: 9 September 2023

Accepted: 20 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Contrastive Learning for Graph-Based Vessel Trajectory
Similarity Computation
Sizhe Luo 1 , Weiming Zeng 1,* and Bowen Sun 2

1 Digital Image and Intelligent Computation Lab, Shanghai Maritime University, Shanghai 201306, China
2 Intelligent Science and Technology Lab, Shanghai Polytechnic University, Shanghai 201206, China
* Correspondence: zengwm86@163.com

Abstract: With the increasing popularity of automatic identification system AIS devices, mining
latent vessel motion patterns from AIS data has become a hot topic in water transportation research.
Trajectory similarity computation is a fundamental issue to many maritime applications such as
trajectory clustering, prediction, and anomaly detection. However, current non-learning-based
methods face performance and efficiency issues, while learning-based methods are limited by the lack
of labeled sample and explicit spatial modeling, making it difficult to achieve optimal performance.
To address the above issues, we propose CLAIS, a contrastive learning framework for graph-based
vessel trajectory similarity computation. A combined parameterized trajectory augmentation scheme
is proposed to generate similar trajectory sample pairs and a constructed spatial graph of the study
region is pretrained to help model the input trajectory graph. A graph neural network encoder is
used to extract spatial dependency from the trajectory graph to learn better trajectory representations.
Finally, a contrastive loss function is used to train the model in an unsupervised manner. We also
propose an improved experiment and three related metrics and conduct extensive experiments
to evaluate the performance of the proposed framework. The results validate the efficacy of the
proposed framework in trajectory similarity calculation.

Keywords: trajectory similarity computation; graph neural network; contrastive learning

1. Introduction

AIS devices play a crucial role as onboard navigation aids for communication and
data exchange between vessels and shores. These devices utilize very-high-frequency
(VHF) radio transceivers to broadcast vessel information to nearby vessels or shore-based
stations while also receiving AIS data transmitted by other vessels. AIS data provide essen-
tial information such as vessel identification, characteristics, real-time position, velocity,
heading, and other relevant details, which contribute to maritime traffic management and
collision avoidance. In recent years, extensive research has been conducted to extract the
spatiotemporal distribution patterns of vessels from historical AIS data, enhancing our
understanding of waterway traffic patterns [1]. Among these studies, the analysis of AIS
trajectories, derived from real-time position information in AIS messages, has garnered
significant attention across various research domains. The computation of AIS trajectory
similarity is a crucial task for several maritime applications, including trajectory clustering,
prediction, and anomaly detection. This necessitates the development of effective methods
and measures for assessing the similarity between AIS trajectories, facilitating improved
insights and decision-making in maritime operations [2–4].

The current research focus on trajectory similarity computation revolves around utiliz-
ing learning-based methods to indirectly calculate trajectory similarity through trajectory
representation learning. Feature-based approaches are employed to learn the feature repre-
sentation of trajectory data, enabling the mapping of trajectories with varying positions,
shapes, and lengths to a shared low-dimensional feature space. Subsequently, traditional

J. Mar. Sci. Eng. 2023, 11, 1840. https://doi.org/10.3390/jmse11091840 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11091840
https://doi.org/10.3390/jmse11091840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-8334-3935
https://doi.org/10.3390/jmse11091840
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11091840?type=check_update&version=2

J. Mar. Sci. Eng. 2023, 11, 1840 2 of 24

distance metrics such as Euclidean distance or cosine similarity are utilized to compute
the similarity between trajectories. However, the application of learning-based trajectory
similarity computation for vessel AIS data is still relatively limited, and there is a dearth of
modeling approaches that explicitly capture trajectory spatial dependencies through graph
learning and other techniques.

Vessel trajectories depict the continuous movement of vessels in three-dimensional
physical space over time. Ideally, a complete vessel trajectory in the real world is a mathe-
matically continuous and smooth curve, referred to as a latent path in this paper. However,
in practical situations, shipborne devices are unable to capture a continuous curve that
precisely represents the underlying latent path associated with a given trajectory. Instead,
they can only gather discrete positions of the vessel at irregular time intervals. As a result,
the challenge in trajectory representation learning lies in acquiring a representation vector
that effectively captures the genuine underlying latent path, considering the sparsely and
irregularly sampled trajectory data points.

In the research on learning-based trajectory similarity, there are mainly two methods:
supervised learning and unsupervised learning. Supervised learning aims to utilize neural
network methods to fit existing similarity measures in order to improve computational
efficiency; on the other hand, unsupervised learning methods do not have existing measures
as supervised signals, so each new unsupervised method develops new similarity measures.
Unsupervised learning is an important approach in the field of machine learning as it can
extract useful information and knowledge from unlabeled data. The automatic learning
of general vessel trajectory representations from massive unlabeled AIS trajectory data is
of great significance for ship trajectory similarity calculation. First, ship trajectory data
often exhibit characteristics such as long time spans, high dimensionality, complexity, and
noise [5–8]. Therefore, effective representation methods are needed in order to reduce
the dimensionality and complexity of the data, enabling better exploration of the intrinsic
structure and features of vessel trajectory data. Second, in order to enhance the model’s
ability to measure trajectory distances, new trajectory measurement methods need to be
proposed. The development of new trajectory representation learning models can only be
achieved through unsupervised learning. Finally, vessel trajectory data have a wide range
of applications in practical scenarios, such as route planning, trajectory prediction, trajectory
clustering, and anomaly detection. Effective general ship trajectory representations can
provide strong support and assurance for these application scenarios. Therefore, learning
general trajectory representations from massive unlabeled trajectory data holds significant
research value and practical importance.

To address the aforementioned issues, this paper proposes a graph neural network-
based framework called CLAIS for the unsupervised learning of optimal ship trajectory
representations. By calculating the distances between the learned trajectory representation
vectors, the framework determines ship trajectory similarity, which facilitates subsequent
research tasks such as ship clustering and anomaly trajectory detection. The contributions
of this paper are summarized as follows:

1. A graph-based trajectory contrastive learning framework, CLAIS, is proposed. It
constructs similar trajectory samples to learn robust trajectory representation vec-
tors and computes trajectory similarity based on the Euclidean distance between
representation vectors, leading to favorable similarity results.

2. A parameterized trajectory augmentation method is introduced to enhance the ro-
bustness of the model’s trajectory representation learning.

3. Improved evaluation experiments and three evaluation metrics are proposed to verify
the performance of the proposed framework in learning trajectory representations
and computing ship trajectory similarities.

The remaining structure of this paper is as follows: Section 2 introduces the relevant
research; Section 3 provides a detailed description of the proposed model framework;
Section 4 presents the proposed improvement experiments and details of the model evalua-
tion experiments; and Section 5 concludes the work of this paper.

J. Mar. Sci. Eng. 2023, 11, 1840 3 of 24

2. Related Work

To perform trajectory similarity computation using trajectory representations, it is
crucial to obtain effective trajectory representations. Currently, many popular methods
utilize deep neural networks to capture the feature representations of trajectories and
map them into a feature space. Yang et al. [9] proposed a deep learning-based trajectory
similarity computation model called T3S, which fits different trajectory similarity measures.
By employing long short term memory (LSTM) and self-attention-based networks, T3S can
retain the spatial and structural information of trajectories for similarity computation. It can
automatically adjust the weights of spatial and structural information based on different
similarity measures. Yang et al. [10] introduced TMN, which matches points from one
trajectory to points from another trajectory using an attention mechanism that enables
cross-trajectory point matching. The trajectory’s spatial information is then combined,
and a recurrent neural network (RNN) is used to learn the trajectory representation for
fitting different similarity measures. Zhang et al. [11] proposed Traj2SimVec for scalable
and robust trajectory similarity computation. Traj2SimVec acquires triplet training sam-
ples through fast trajectory compression and indexing. It further utilizes sub-trajectory
similarity information as auxiliary supervision. Additionally, the framework supports
point matching queries by modeling the optimal matching relationships of trajectory points
under different distance metrics. Yao et al. [12] introduced TrajGAT, which constructs
trajectories as quadtree structures and employs attention heads from the Transformer [13]
instead of graph attention networks (GAT) to learn trajectory representations for differ-
ent similarity measures. However, the aforementioned methods are supervised models
based on existing similarity computation methods. While they improve computational
efficiency, they cannot achieve better performance when facing the similarity computation
performance bottlenecks in existing models.

In unsupervised representation learning, Yao et al. [14] use sliding windows to extract a
set of spatiotemporal invariant features that capture the motion characteristics of trajectories.
They convert each trajectory into a feature sequence to describe the object’s movement
using a feature extraction module. They further employ a seq2seq autoencoder to learn
the trajectory representation. Li et al. [15] apply computer vision techniques to measure
similarity in vessel trajectories. They propose a similarity measurement method based
on a convolutional autoencoder, where vessel trajectories are transformed into trajectory
image data, treating each grid as a pixel. They then introduce a grid-based convolutional
autoencoder to extract feature vectors from trajectory data to learn the representation of the
original vessel trajectories. Fu et al. [16] propose a representation learning framework called
Trembr, which models trajectories and road segments separately. They designed an encoder–
decoder model called Traj2Vec based on a recursive neural network. By leveraging the
underlying road network and matching segments obtained using road network matching
techniques, they constrain the learning process. They also introduce Road2Vec, a neural
network-based approach to learn segment embeddings in the road network, capturing
various relationships between road segments. However, the aforementioned models do
not explicitly model the spatial structural features of trajectories using a graph, which may
compromise the model’s performance.

In the field of unsupervised learning, self-supervised learning is currently an important
trend and considered the future of unsupervised learning [17,18]. Currently, self-supervised
learning models can be mainly classified into two types: generative and contrastive learning
models. Traditional self-supervised learning methods based on generative models, such
as autoencoders, attempt to generate or model specific parts of input samples by using a
limited number of discrete trajectory positions in the input space, thereby inferring an ap-
proximate trajectory movement curve of the input sample [19,20]. However, this approach
aims to reconstruct the entire input sample by comparing the input original sample with
the reconstructed sample to compute the error and train the model. For sequential data
such as trajectories or time series, an autoregressive paradigm is often employed, where
the prediction result of the current position point f (xt−1) is obtained by using the fitted

J. Mar. Sci. Eng. 2023, 11, 1840 4 of 24

result of the previous position point f (xt) as the input, i.e., f (xt) = f (f (xt−1)). Generating
reconstructed data samples is computationally expensive, and this fine-grained approach
is often unnecessary for learning models that can distinguish between different samples. In
fact, it can even lead to performance degradation due to excessive focus on sample details.

Fortunately, contrastive learning provides a new approach to address this problem.
The core idea of contrastive learning is to compare different trajectory samples and establish
relationships among similar samples (i.e., positive samples) and differences among different
samples (i.e., negative samples). Through this comparison, the model can learn the intrinsic
structure and features of trajectory data, thus generating effective trajectory representations
that serve as a basis for subsequent trajectory analysis and processing. As an unsupervised
learning method, contrastive learning also does not require labeled data, which reduces
the barriers for practical applications and avoids the cost and complexity associated with
annotation. In contrast to generative methods that attempt to fully reconstruct the input
original trajectories, discriminative methods learn representations through objective func-
tions similar to supervised learning, but the input and supervisory signals during network
training come from unlabeled datasets. Discriminative contrastive learning methods based
on latent space have shown great potential and achieved state-of-the-art results [21,22].
Contrastive learning directly finds discriminative features that best differentiate different
trajectory samples in the feature space by comparing similar and dissimilar samples within
the sample set. Compared to generative methods, contrastive learning is more direct,
simple, and effective for discriminative tasks.

Currently, existing literature has attempted to apply contrastive learning to the pro-
cessing and analysis of trajectory data [23,24]. However, there is currently no existing
method for calculating similarity of ship AIS trajectories based on contrastive learning.
Therefore, this paper combines contrastive learning and graph learning to facilitate ship
trajectory representation learning, thereby calculating the distance between ship trajectory
representations to obtain vessel trajectory similarity. The CLAIS framework proposed in
this article benefits from the following three aspects with respect to performance: first,
by incorporating water area pretraining into trajectory graph construction, CLAIS learns
the spatial structural representation of water area in advance before modeling trajectories;
second, through the proposed parameterized augmentation scheme, CLAIS enhances its
robustness against erroneous AIS signals by learning potential signal errors through con-
trastive learning with real trajectories; and third, by introducing graph neural networks
to learn the representation of trajectory graphs, CLAIS strengthens its ability to learn
the spatial dependency relationships of trajectories in water areas. Compared to previ-
ous research, CLAIS achieves better model performance through improvements in these
three aspects.

3. Methodology

As shown in Figure 1, the CLAIS framework consists of three modules: the regional
graph pretraining module in the red box; the vessel trajectory contrastive learning module
in the yellow box; and the trajectory graph representation learning module in the green box.
After training, the specific similarity between trajectories can be obtained by calculating
the Euclidean distance of trajectory representation vectors output by the trajectory graph
representation model.

The regional graph pretraining module, located in the red box, first gridizes the study
area and establishes a spatial structural relationship graph based on the selected grid cells.
Then, the spatial dependency of the regional structural graph is pretrained, resulting in
pretraining representation vectors for each effective spatial grid.

The vessel trajectory contrastive learning module, highlighted in the yellow box, is the
main part of training in the CLAIS framework. It learns trajectory representation vectors
that minimize the loss through unsupervised contrastive learning. Initially, the input
ship trajectories undergo various types and methods of trajectory augmentation using
the proposed parameterized combination enhancement scheme, creating diverse similar

J. Mar. Sci. Eng. 2023, 11, 1840 5 of 24

samples. The trajectory samples are then processed by the trajectory graph representation
learning module to extract trajectory features and encode them into trajectory representation
vectors. During the training phase, the trajectory representation vectors are further passed
through a non-linear mapper. Finally, the contrastive loss component calculates the error to
optimize the model.

Figure 1. Overview of CLAIS framework.

The trajectory graph representation learning module, surrounded by the vessel tra-
jectory contrastive learning module, is an independent module that includes a trajectory
graph construction component and a proposed graph neural network encoder. The input
trajectories are first used by the trajectory graph construction component, combined with
the grid representation vectors obtained from the regional graph pretraining module, to
construct a trajectory map. Then, the graph neural network encoder performs feature
extraction on the trajectory graph, generating representation vectors for the trajectories.

Next, we will separately introduce the structural and methodological details of
each module.

3.1. Regional Graph Pretraining Module

The regional pretraining module consists of two components: the region graph con-
struction component and the node2vec pretraining component.

Figure 2 demonstrates the steps of the regional graph pretraining module. The region
graph construction component divides the study area into adjacent and non-overlapping
grids of equal size. It maps all the position points in the historical AIS database that fall
within a grid to that grid. After the grid mapping, grid filtering is performed. Specifically,
the ship trajectory database T is divided into square grids of equal size based on the given
area range, with the grid size determined by the experimental parameter “grid_size”. The
grids containing the number of position points from all the points in T are then counted.
Subsequently, a natural number parameter δ is manually selected, which represents the
threshold for the number of historical position points contained in a grid. By removing
grids in the area that do not contain position points or have a small number of position
points, grids that are not suitable for navigation from a data-driven perspective (such as
regions with obstacles such as islands or artificial structures) and grids that may contain
noise points are filtered out. The selected valid grids make the model training more robust
and construct a waterway chart that is more in line with reality, reducing unnecessary
computational complexity. Figure 3 shows the heatmap of historical AIS signal position
points received by onshore base stations in the gridified Shanghai Port waterway, with a
fixed grid size of 0.01◦. It can be observed that as the threshold δ gradually increases, the
grids containing noise signals (such as grids clearly corresponding to land areas) become

J. Mar. Sci. Eng. 2023, 11, 1840 6 of 24

fewer. However, a negative consequence is that some normal and sparsely populated
water area grids are also filtered out. Additionally, to handle position points in trajectories
that fall in invalid grids, an abstract grid is introduced to represent all the invalid grids
when dividing and constructing the water area graph. All trajectory position points falling
in invalid grids are correspondingly assigned to that grid. This grid does not contain
the real-world features present in normal valid grids, such as the central position of the
grid. Instead, it uses a zero vector representation to replace the normal grids for learning
embedding representation vectors.

Figure 2. Overview of the regional graph pretraining module.

Figure 3. Gridification and historical heatmaps of the study area under different signal thresholds in
the water domain. The grid size is set to 0.01◦, and δ ranges from left to right as 1, 5, and 10.

After completing the spatial grid structure partitioning, CLAIS utilizes node2vec [25]
to perform pretraining on the spatial graph structure. This process generates embedded
representation vectors for all valid grids, which are then used to construct trajectory graph
features in subsequent steps.

J. Mar. Sci. Eng. 2023, 11, 1840 7 of 24

3.2. Vessel Trajectory Contrastive Learning Module

After completing the region pretraining, the vessel trajectory contrastive learning
module takes the training set of trajectory data as input to train the model. Inspired by
previous research on contrastive learning [26], this module applies the self-supervised
learning paradigm to learn representations of ship trajectories by leveraging the dissim-
ilarity between data samples as the model loss, aiming to learn the most discriminative
trajectory representations.

Specifically, the module learns the representation model through contrastive learning
by automatically constructing similar instances (positive samples) and dissimilar instances
(negative samples). This is referred to as the trajectory graph representation learning
module of CLAIS. It ensures that positive samples projected in the embedding space by the
representation model are close in distance, while negative samples are far apart. CLAIS
follows the principles of SimCLR and employs a parameterized trajectory augmentation
scheme to construct positive and negative sample pairs. The trajectory graph representa-
tion learning module encodes trajectories into feature vectors, enabling different positive
samples generated from the same trajectory to have closer distances in the feature space.
The positive and negative sample pairs are constructed as follows: for a batch of trajectory
samples, two different augmentation techniques are randomly applied to a particular tra-
jectory sample, resulting in two trajectory samples that are positive samples to each other,
while the remaining random trajectories in the batch serve as negative samples.

The vessel trajectory contrastive learning module consists of two components: the
vessel trajectory augmentation component and the contrastive learning training compo-
nent. Figure 4 illustrates the schematic diagram of this module, with the vessel trajectory
augmentation component highlighted in red and the contrastive learning training compo-
nent highlighted in green. The following sections will provide detailed explanations of
each component.

Figure 4. Trajectory contrastive learning module.

(1) Vessel trajectory augmentation component
As mentioned earlier, generating reliable augmented samples (referred to as views)

from input trajectory samples to form similar positive samples is an important step. When it

J. Mar. Sci. Eng. 2023, 11, 1840 8 of 24

comes to enhancing ship trajectory samples, it is crucial to design reasonable, effective, and
interpretable augmentation schemes to facilitate effective trajectory contrastive learning.

In the field of contrastive learning, initially proposed in computer vision, image data
can be augmented through techniques such as affine transformations, cropping, color vari-
ations, and noise. However, most of these augmentation techniques may not be applicable
to trajectory data. Trajectory data exhibit clear sequential and geometric properties, and the
aforementioned augmentation techniques either do not apply to trajectories or may disrupt
the intrinsic characteristics of the data, making the learned trajectory representations unable
to accurately reflect the true attributes of the trajectories.

Due to the constrained nature of ship movement within a limited sea surface, it can be
simplified as two-dimensional plane motion. This study focuses solely on the geometric
and sequential features of trajectories, thus excluding other information such as times-
tamps, heading, and speed. Referring to previous research on trajectory augmentation
schemes [27,28], this study innovatively proposes a combined vessel trajectory augmen-
tation scheme, which includes two novel augmentation methods tailored to vessel signal
trajectories. The parameterized vessel trajectory augmentation scheme proposed in this
study consists of two augmentation scales: random position augmentation and random
segment augmentation. It also incorporates three augmentation methods: random noise,
segment distortion, and downsampling, resulting in a total of five individual augmenta-
tion methods. Furthermore, to strengthen the impact of augmentation techniques on the
model, this study combines these individual methods in a meaningful way, resulting in
six combined augmentation methods. In total, there are eleven individual and combined
augmentation methods. The following section will introduce these augmentation methods
in detail.

1) Random position noise
Adding noise is the most common and effective means of augmenting data, which

introduces distortions at the scale of individual position points. In the experiments con-
ducted in this study, random positional noise is applied by randomly selecting positions to
introduce noise based on the given parameter rp (position ratio), which represents the pro-
portion of position points in the entire trajectory that will be affected by noise. Since CLAIS
adopts a grid-based approach and AIS trajectories can experience significant trajectory drift
and positional errors, to enhance the model’s robustness against noise, the magnitude of
the noise (dxi

p , dyi
p) is calculated by multiplying a manually set constant “base_distortion”

and the experimentally controlled dp (position distortion) as coefficients. These coefficients
are then multiplied by samples drawn from a standard Gaussian distribution N (0, 1). The
position of a specific point (xi, yi) on a trajectory after introducing noise is given by the
following equation: (

x
′
i , y

′
i

)
= (xi, yi) +

(
dxi

p , dyi
p

)
. (1)

Here, dci
p = dp·bd·eci, where bd represents the base distortion set to 0.01◦ in this study

(both longitude and latitude), and eci ∼ N(0, 1), ci = xi or yi. It can be observed that not
only the magnitude of noise between longitude and latitude within the same coordinate
differs, but the noise magnitudes between random positional noise are also independent
of each other. This design ensures the authenticity and diversity of the learned random
positional noise.

In Figure 5, (a) represents an original AIS trajectory segment without obvious posi-
tional errors or anomalies before augmentation; (b) shows the trajectory after applying
random positional noise. Green dots represent the original normal position points, red dots
represent the erroneous position points after introducing noise, and yellow dots represent
the corresponding original normal position points before the occurrence of noise. It can
be observed that the points affected by noise and the degree of noise in the augmented
trajectory are random, ensuring that the generated noise follows a Gaussian distribution in
each training iteration. In the figure, dp is set to 2, indicating that the longitude and latitude
noise follows a standard Gaussian distribution with a standard deviation of 0.02◦. pr is set

J. Mar. Sci. Eng. 2023, 11, 1840 9 of 24

to 0.2, indicating that approximately one-fifth of the trajectory position points are affected
by noise.

Figure 5. Trajectory enhancement methods in CLAIS: (a) original trajectory; (b) random position
noise; (c) random position loss; (d) regular downsampling; (e) random segment distortion; (f) random
segment loss. Green, red and yellow dots represent normal positions, error positions and missing
normal positions respectively.

2) Random position loss
Random position loss is one of the most common errors in AIS trajectories, resulting

in the loss of position points. AIS messages may be lost due to occasional communication
disruptions, where they fail to be received by the vessel or shore-based stations. They can
also be filtered out by preprocessing programs due to obvious errors, leading to random
position signal loss. In CLAIS, the parameter lp is used to quantify the proportion of
randomly lost position points in the entire trajectory, and the lost positions are generated
completely randomly based on a uniform distribution. As shown in Figure 5c, green dots

J. Mar. Sci. Eng. 2023, 11, 1840 10 of 24

represent normal position points, while yellow dots represent positions where signal loss
has occurred. It can be observed that the positions where signal loss occurs are random. In
this example, the value of lp is 0.2, indicating that one-fifth of the position points experience
random position loss.

3) Regular downsampling
Downsampling is a common data augmentation technique where trajectory down-

sampling simulates the reduction of the trajectory data sampling rate by retaining a fixed
number of position points at regular intervals and discarding the remaining ones. By
applying regular downsampling to trajectories, the model can learn results that are more
aligned with scenarios where the data is generated with a lower sampling rate along latent
paths. In the augmentation scheme of CLAIS, the downsampling rate is controlled by an
integer ip (position interval), where ip represents selecting every ip position point from
the original trajectory to construct a new augmented trajectory. As shown in Figure 5d,
green dots represent the retained position points after downsampling, while yellow dots
represent the discarded position points. In this example, the sampling interval ip is set to 2,
indicating a downsampling rate of 50%.

4) Random segment distortion
Random segment distortion is an enhancement technique in CLAIS specifically de-

signed for the characteristics of AIS trajectories at the segment scale. It introduces noise
of the same direction and magnitude to trajectory segments, visually presenting the ef-
fect of distorting a single segment within the trajectory. Due to equipment and system
errors, AIS may experience consecutive segments with the same noise. This continuous
occurrence of fixed noise can easily mislead the recognition model into believing that the
vessel trajectory indeed traverses the positions indicated by the received signals, resulting
in significant performance loss. Similar to random positional noise, the random segment
distortion enhancement method is controlled by two parameters: rs (segment ratio) and
ds (segment distortion). The parameter rs determines the proportion of positions in con-
secutive segments where the noise occurs. The key distinction is that the added noise is
the same for all positions within a segment, rather than multiple independent noises. For
a trajectory T = [. . . , (xm, ym), . . . , (xn, yn), . . .], let TS = [(xm, ym), . . . , (xn, yn)], TS ⊂ T
be a segment within T. After distortion, the distorted segment is denoted as T

′
S, where for

∀(x
′
i , y

′
i) ∈ T

′
S, (

x
′
i , y

′
i

)
= (xi, yi) +

(
dx

s , dy
s

)
. (2)

Here, dc
p = dp·bd·ec, where bd represents the baseline error and ec ∼ N (0, 1),

c = x or y. It is important to note that in addition to the parameters mentioned above,
CLAIS also includes a parameter ns to control the number of augmented segments. In
Figure 5e, with ds set to 2 and a distortion occurrence rate of rs = 0.2, when ns = 2, there are
two distorted segments. The meaning represented by the green, red, and yellow colors is
the same as that of random positional noise. Green indicates normal positions, while yellow
represents the corresponding normal positions before the occurrence of the red noise.

5) Random Segment Loss
Random segment loss is another enhancement method in the CLAIS augmentation

scheme specifically designed for AIS trajectories at the segment scale. Random segment
loss is also a common anomaly in AIS data, such as consecutive signal loss due to station
malfunctions or the removal of trajectory segments with abnormal vessel speeds by pre-
processing programs. Incorporating this augmentation technique can greatly improve the
model’s ability to handle consecutive segment losses and reduce the occurrence of the
model recognizing disconnected segments as multiple independent trajectories.

Similar to random positional loss, the parameter ls (segment loss) is used to quantify
the proportion of randomly lost position points within the entire trajectory, with the lost
positions being completely random. Figure 5f illustrates the occurrence of consecutive
segment loss when ls = 2 and ns = 2. The two segments of yellow position points
demonstrate the consecutive loss of two trajectory segments.

J. Mar. Sci. Eng. 2023, 11, 1840 11 of 24

6) Combined augmentations
In addition to the five individual enhancement methods mentioned above, CLAIS

innovatively incorporates combined enhancement schemes. These schemes combine the
five enhancement methods based on their realism, feasibility, and the purpose and signif-
icance of the enhancement operations, resulting in six combined enhancement methods.
Figure 6 illustrates the visual effects of these six combined enhancement methods, which are
pairwise combinations of two noise (or distortion) operations and three position loss opera-
tions: 1© random positional noise + random position loss (Figure 6a); 2© random positional
noise + random segment loss (Figure 6b); 3© random positional noise + regular down-
sampling (Figure 6c); 4© random segment distortion + random position loss (Figure 6d);
5© random segment distortion + random segment loss (Figure 6e); 6© random segment

distortion + regular downsampling (Figure 6f). The parameters used in the enhancement
methods in Figure 6 are consistent with their respective methods in Figure 5.

Figure 6. Combined trajectory augmentation: (a) position noise + position loss; (b) position
noise + segment loss; (c) position noise + downsampling; (d) segment distortion + position loss;
(e) segment distortion + segment loss; (f) segment distortion + downsampling. Green, red and yellow
dots represent normal positions, error positions and missing normal positions respectively.

J. Mar. Sci. Eng. 2023, 11, 1840 12 of 24

(2) Contrastive learning training component
CLAIS utilizes contrastive loss functions proposed in previous studies [21,29,30].

For a randomly selected mini-batch of N samples, each sample undergoes augmentation
operations to generate two positive samples that are similar trajectories. A contrastive
prediction task is defined, and the loss function for positive sample pairs is as follows:

li,j = −log
exp

(
si,j/τ

)
∑2N

k=1 1[k 6=i] exp(si,k/τ)
. (3)

Here, 1[k 6=i] represents the indicator function when k 6= i. This is the same as the
approach described in the literature [31]. The remaining 2(N − 1) augmented trajectories
in the mini-batch are implicitly considered as negative samples.

3.3. Vessel Trajectory Representation Learning Module

(1) Trajectory graph construction component
The construction of the trajectory map is an essential part that explicitly transforms

the input trajectories into a graph data structure with spatial dependencies. For ship
trajectory coordinates, each real trajectory point is mapped to a divided grid, generating a
spatial grid sequence of the same length as the trajectory’s position points. Next, the grid
sequence is traversed to remove consecutive repeated grids. Once all the grids representing
the trajectory are obtained, the edges of the trajectory map are generated by connecting
these grids.

The edges in the trajectory map connect two types of neighboring nodes: sequence
neighbors and spatial neighbors. For sequence neighbors, Nseq neighboring grids in the
sequence that are adjacent to the current grid node’s front or back are added to the sequence
neighbor set based on the obtained grid sequence. As for spatial neighbors, all spatial
neighbors of the current grid in the region map are set as spatial neighbors. The union of
the aforementioned sequence neighbor set and spatial neighbor set yields the complete
neighbor set of the grid nodes. Bidirectional edges are established between each node and
its neighbors, along with self-loops, creating the adjacency relationships between all the
edges of the nodes.

Once the trajectory map structure is obtained, the grid embedding representation
vectors generated by the region map pretraining are retrieved based on the grid indices.
These vectors serve as the node features for the corresponding grids. After obtaining the
pretraining embeddings for all the nodes, the trajectory map is constructed, and the next
step of trajectory representation learning begins.

(2) Trajectory graph representation learning component
After the previous component enhances trajectory modeling into a trajectory graph

structure, it is inputted to the trajectory graph representation learning component in
this section.

The structure of the trajectory graph representation learning component in CLAIS
consists of two layers of graph convolutional networks (GCN), one layer of GAT, and a
two-layer bidirectional gate recurrent unit (GRU) as the readout function.

GCN is responsible for learning the relationships between grid nodes and the spa-
tial local context information of the grids. The first graph convolution layer takes the
input trajectory graph and performs information propagation and aggregation through
its own node embedding and the embedding of neighboring nodes, resulting in a layer of
node representations. The second graph convolution layer takes the node representations
from the first layer as input and further propagates and aggregates information to obtain
higher-level node representations. Multiple layers of GCN can learn more complex graph
structure features. Each GCN layer is followed by a batch normalization layer [32,33] and a
ReLU function that generates non-linearities [34,35]. Graph convolution can be formalized
as follows:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
, (4)

J. Mar. Sci. Eng. 2023, 11, 1840 13 of 24

where Ã = A + IN , A is the neighbor matrix of constructed trajectory graph, IN is the
identity matrix representing self-loop, and D is the degree matrix of Ã. H(l) is the input
feature matrix in the l-th layer, and H(0) = X, i.e., the original input is the pretrained
embedding of grids. W(l) is the parameter matrix in the l-th layer, and σ represents the
activation function, which is ReLU in our case. Graph convolution can be seen as an
effective extension of the Laplacian operator applied to the graph domain, analogous to its
application on images. Further detail is in [36].

After the two GCN layers, a GAT layer is used to measure the importance weights
between nodes. GAT [37] is a graph neural network that uses attention mechanisms. It
can adaptively assign different weights to each neighboring node, dynamically selecting
and focusing on important neighbor nodes to better capture the relationships between
nodes and enhance the representation capability of graph data. GAT first performs a linear
transformation on the features of each node to generate node representation vectors. Then,
it learns the correlations between nodes by calculating attention weights between them.
In this case, GAT also uses multiple attention heads, each generating a set of different
attention weights to capture information between nodes from different perspectives. In
this way, the model can selectively aggregate node features from different attention heads
to better capture the relationships between nodes. The graph attention mechanism in GAT
is formalized as follows:

aij =
exp(LeakyReLU(

→
a

T[
Whi

∣∣∣∣Whj
]
))

∑k∈Ni
exp(LeakyReLU(

→
a

T
[Whi||Whk]))

, (5)

where aij is attention weight between node i and j, hi and hj are representations of node i
and j, which is the output of GCN layers, W is a shared parameter matrix that transforms
the input features, [·||·] concatenates transformed features, and

→
a is a linear weight, which

is realized here with a single-layer feed-forward neural network that maps the concatenated
feature into a real number. Thus, the relevance of node i and j can be learned by W and
→
a . LeakyReLU is a nonlinearity activation function derived empirically which, in fact, is
ReLU with leak. It is formalized as follows:

LeakyReLU(x) =
{

x, x > 0
αx, x ≤ 0

. (6)

Then, so f tmax normalizes features into the output attention score aij. After obtaining
aij, the final representation from multi-head attention is calculated as follows:

→
h
′

i =‖K
k=1 σ

(
∑ j∈Ni αk

ijW
k
→
h j

)
, (7)

where ‖ represents concatenation.
GRU is a type of recurrent neural network used for processing sequential data [38].

Two-layer bidirectional GRU refers to using two layers of GRU and concatenating the results
of forward and backward propagation. This allows for the capturing of the contextual
information of nodes at different time steps and acquisition of richer node representations.
The final GRU layer serves as the readout function, aggregating and extracting graph-level
information from the node-level representations to generate the final representation of the
trajectory graph.

4. Experiment

In this section, experiments were conducted to validate the effectiveness of the pro-
posed CLAIS framework. The experimental design included various comparative experi-
ments from different perspectives, aiming to verify the performance of CLAIS and observe
the effects of different parameter settings on CLAIS and the comparison models.

J. Mar. Sci. Eng. 2023, 11, 1840 14 of 24

4.1. Data & Preprocess

The experiments in this paper utilized AIS data from Shanghai Port between August
and October 2022, resulting in a total of 46,079 trajectories after preprocessing. For the
experiments, a subset of 31,000 trajectories was selected from the dataset. The statistical
information of the dataset and the parameters of the preprocessing methods are shown in
Tables 1 and 2, respectively.

Table 1. Statistical information of the dataset.

Statistic Information Value

Longitude range [121.167◦ E, 122.000◦ E]
Latitude range [31.215◦ N, 31.632◦ N]

Number of recorded positions 37,406,189

Table 2. Preprocess parameter.

Parameter Value

Maximum signal time interval 10 min
Minimum velocity 0 knots
Maximum velocity 50 knots

Minimum trajectory length 100
Maximum trajectory length 4000

4.2. Experiment Metrics

To evaluate the model’s ability to measure trajectory similarity, appropriate metrics
are needed in order to quantify the results generated by the model. Since CLAIS is based on
unsupervised learning, there are no real labels or matching samples available to guide the
model’s error calculation. Inspired by previous research [27,39,40], this paper introduces a
new metric called trajectory augmentation invariance based on self-similarity experiments.
This metric quantifies the model’s ability to recognize similar trajectories.

First, the concept of self-similarity experiments to evaluate unsupervised learning are
introduced, followed by the introduction of the proposed evaluation metric, i.e., trajectory
augmentation invariance.

As mentioned earlier, a well-performing vessel trajectory similarity calculation model
should ideally be able to accurately distinguish different trajectory sequences sampled from
the same underlying path. For this purpose, the idea behind self-similarity experiments
suggests simulating two different trajectories sampled from the same underlying path by
splitting a sampled trajectory into two sub-trajectories. Specifically, for the self-similarity
task, given a test trajectory dataset referred to as the trajectory database set D, and an
empty set Q, the following steps are performed: We randomly select q trajectories Tq from
D and split the trajectories in Tq into two sub-trajectories by alternating the order of their
internal position points (e.g., extracting odd-indexed points and retaining even-indexed
points, or vice versa). These two sub-trajectories are considered to be twin sub-trajectories
of each other. Next, the q odd-indexed sub-trajectories Tq·odd are added to the empty set Q,
while the other half of q even-indexed sub-trajectories Tq·even are returned to the database
set D. This process creates a database set that includes the other half of the trajectories
corresponding to the set Q, which is referred to as the query set. Now the model can
compute the similarity between each trajectory Ti in Q and the trajectories in D. To avoid
interference from the distribution of trajectory lengths, the trajectories in D that do not
belong to Tq undergo an operation of selecting every other half of the trajectory points.
Since the q trajectories Tq·even in Q correspond to trajectories generated from the same
underlying path in D, a prior assumption is made that these trajectories should be the
closest to each other, indicating the highest similarity. Therefore, in the self-similarity
experiment, the similarity rankings should place these trajectories at the top. Based on this,

J. Mar. Sci. Eng. 2023, 11, 1840 15 of 24

the model’s ability to capture trajectory similarity can be evaluated using the following
three metrics:

1. Precision P represents the proportion of queries where the corresponding twin
sub-trajectory is ranked first (ordinal number 0 in computer indexing). For ∀Ti∈Q, if
the rank calculated by the model is denoted as ri, then the precision P can be calculated
as follows:

P =
∑Ti∈Q 1(ri=0)

|Q| , (8)

where 1(ri=0) = 1 if ri = 0 otherwise 0, and |Q| represents element number of Q,
i.e., |Q| = q.

2. The mean rank Rµ is the mean rank of Ti representing the twin sub-trajectory in the
ranking, denoted as follows:

Rµ =
∑Ti∈Q ri

|Q| . (9)

3. The rank standard deviation represents the sample standard deviation of the ranks
ri. It is denoted by Rσ, and the formula is as follows:

Rσ =

√√√√∑Ti∈Q
(
ri − Rµ

)2

|Q| − 1
. (10)

Rσ is a newly proposed evaluation metric in this paper, aiming to observe the sta-
bility of the model’s ability in similarity computation. If the model demonstrates good
robustness in perceiving trajectory similarity in self-similarity experiments, the results of
the query trajectory ranking should be relatively stable, indicating a smaller rank standard
deviation Rσ.

However, the aforementioned self-similarity experiments have some limitations. Un-
der the above-mentioned self-similarity experiment approach, whether or not augmentation
operations are performed, the method only evaluates the ability to detect the twin sub-
trajectories of the original trajectory before augmentation or the twin sub-trajectories of the
variant trajectory after augmentation. In this case, the evaluation of the model’s ability in
self-similarity experiments may lead to misunderstandings, as the model might mistakenly
identify variant trajectories as another trajectory. The model’s ability to recognize trajectory
similarity is merely based on its capability to detect twin sub-trajectories between the
original and variant trajectories, i.e., without evaluating whether the model retrieves the
original trajectory through the variant trajectory.

Based on the above, this paper argues that a trajectory similarity computation model
should possess the ability to perceive the corresponding original trajectory even in the
presence of noise and positional loss in a given trajectory, thereby identifying the ownership
of the original trajectory. This requirement implies that a model with good similarity
computation performance should not only be able to recognize twin sub-trajectories of the
original trajectory but also the twin sub-trajectories of corresponding variant trajectories
of the original, alongside its the capability to identify the original trajectory through the
variant trajectories. Therefore, the self-similarity experiment metric needs to evaluate
the model’s ability to find both the corresponding variant twin sub-trajectory and the
original twin sub-trajectory before augmentation. Thus, this paper introduces the concept
of trajectory augmentation invariance: a trajectory similarity computation model should
be capable of simultaneously finding the original twin sub-trajectory and the variant
twin sub-trajectory before and after augmentation, respectively, for a trajectory in a given
trajectory set.

Therefore, the self-similarity experiments in this paper are improved as follows. Given
a trajectory database collection D, an empty augmented trajectory database collection D

′
,

and a query trajectory collection Q, the following steps are performed:

J. Mar. Sci. Eng. 2023, 11, 1840 16 of 24

1. Randomly select q trajectories, Tq, from D. Divide Tq into two sub-trajectories, Tq·odd
and Tq·even, based on the order of their internal positional points.

2. Apply selected augmentation operations to the trajectories in Tq to create variant
trajectories, T

′
q. Split T

′
q into T

′
q·odd and T

′
q·even.

3. Add T
′
q·odd to the empty set Q. Place Tq·even back into the database collection D and

add T
′
q·even to D

′
.

4. Subsequently, randomly downsample half of the trajectories in D that do not belong
to Tq and place them back into D. Downsample the augmented trajectories and add
them to D

′
.

By following this procedure, the rankings of the corresponding counterpart trajectories
in D and D

′
can be obtained through the query collection Q.

The aforementioned three evaluation metrics can be improved as follows:

1. Augmentation invariance precision (P) represents the proportion of queries where
the corresponding trajectory is ranked highest in both D and D

′
. Let us denote the

rankings of ∀Ti∈Q in D and D
′

as ri and r
′
i , respectively. Then, the enhanced invariant

precision can be calculated as follows:

P =
∑Ti∈Q 1

(ri=0,r′i=0)

|Q| . (11)

2. Augmentation invariance mean rank (Rµ) represents the average rank of the corre-
sponding twin sub-trajectory Ti in both D and D

′
. It can be calculated as the average

of the ranks in D and D
′

for each Ti∈Q. Mathematically, it can be expressed as follows:

Rµ =
∑Ti∈Q

(
ri+r

′
i

)
2

|Q| . (12)

3. Augmentation invariance rank standard deviation (rank std), denoted as Rσ, repre-

sents the sample standard deviation of the average ranks

(
ri+r

′
i

)
2 . It measures the

variability in the average ranks of the corresponding twin sub-trajectories in D and
D
′
. The formula for calculating Rσ is as follows:

Rσ =

√√√√∑Ti∈Q(
(ri+r′i)

2 − Rµ)2

|Q| − 1
. (13)

Based on the aforementioned three metrics, we conducts enhanced invariant self-
similarity experiments to evaluate the proposed CLAIS framework and compare its perfor-
mance and robustness with the control models.

4.3. Comparative Baselines and Parameter Setting

To ensure the comprehensiveness and representativeness of the control models, the
experiments compare five trajectory similarity calculation methods, including CLAIS. Three
of these methods are classical trajectory similarity metrics or computation methods: Fréchet
distance, Hausdorff distance, and dynamic time warping (DTW) distance. Additionally,
a representative sequence neural network model, LSTM [41], is included. To ensure
fair comparisons in the experiments, the LSTM-based method, which is also based on
learning, is combined with CLAIS’s spatial pretraining method, augmentation scheme, and
contrastive learning method. This means that the sequential LSTM is used to replace the
encoder in CLAIS, participating in the model comparison experiments. In the following
experiments, CLAIS refers to the complete CLAIS framework, with the graph neural

J. Mar. Sci. Eng. 2023, 11, 1840 17 of 24

network encoder proposed in this paper. Table 3 provides important parameter settings for
the training of both learning models.

Table 3. Training parameter setting.

Model Parameter Value Augment Parameter Value

Train set size 1000 position ratio 0.2
Batch size 1024 position distort 2

Pretrain epoch 10 position loss 0.2
Train epoch 200 position interval 2
Hidden size 128 segment ratio 0.2
Output size 128 segment distort 2

Grid size 0.01◦ segment loss 0.2
segment num 2

4.4. Model Comparison Experiment

To validate the effectiveness of the CLAIS framework, model comparison experiments
were conducted. Using the WSK dataset, a database collection of 2 k to 10 k trajectories
with a maximum length of 4000 was selected. The query trajectory collection consisted of
100 trajectories. The performance of different models was tested under different database
sizes, using the metrics P, Rµ, and Rσ. The results of the experiments are shown in Table 4,
with the best-performing metric indicated in bold.

Table 4. Performance comparison of different database sizes, bold indicates best performance.

Database Size 2 k 4 k 6 k 8 k 10 k

P

Fréchet 0.16 0.14 0.12 0.10 0.10
Hausdorff 0.12 0.08 0.07 0.06 0.06

DTW 0.44 0.41 0.40 0.39 0.39
LSTM Encoder 0.79 0.67 0.66 0.66 0.64

CLAIS 0.78 0.72 0.68 0.62 0.62

Rµ

Fréchet 35.43 70.32 105.85 141.67 176.04
Hausdorff 52.91 104.19 156.00 208.20 258.84

DTW 11.21 21.76 33.54 44.57 55.46
LSTM Encoder 0.81 1.71 2.39 3.11 3.79

CLAIS 0.40 0.81 1.20 1.60 1.89

Rσ

Fréchet 51.73 103.01 154.11 204.48 251.07
Hausdorff 77.06 152.45 227.31 302.33 371.82

DTW 18.72 35.33 54.13 71.9 89.71
LSTM Encoder 3.41 6.758 9.38 12.17 14.45

CLAIS 1.85 3.91 5.55 7.421 8.695

From Table 4, it can be observed that among the three traditional methods, DTW, as the
most effective and commonly used distance measure, achieves the best results in terms of
precision, mean rank, and rank standard deviation, outperforming the other two methods.
However, both learning methods based on the CLAIS framework significantly outperform
the traditional methods represented by DTW. In terms of precision, both the LSTM encoder
and CLAIS achieve their best results at different database sizes, demonstrating the good
performance of the CLAIS framework with both types of encoders. In terms of mean
rank, CLAIS consistently outperforms the LSTM encoder, maintaining an error of less than
two ranks under the enhanced invariant experimental conditions even at the 10 k data level.
Examining the standard deviation further shows that the differences in ranks are minimal,
indicating that the CLAIS model remains stable when dealing with a large amount of error
in vessel trajectories at the 10 k data level.

J. Mar. Sci. Eng. 2023, 11, 1840 18 of 24

4.5. Robustness Experiment

The robustness of the models in the face of parameter variations plays a crucial role in
the comprehensive evaluation of model performance. In this experiment, the robustness of
the models in measuring trajectory similarity when facing trajectory errors was observed
by fixing other parameters and varying a single parameter in the setting where the query
set size was 100 and the database size was 1 k. The fixed parameter values were the same
as the enhancement parameters in Table 3. Due to space limitations, the variations of five
parameters are presented.

Figure 7 illustrates the variations in different trajectory similarity calculation methods
with respect to the pos_ratio parameter, which controls the proportion of random position
noise in the trajectories. In terms of precision, the traditional calculation methods generally
maintain a relatively stable performance as the proportion of noise positions increases.
On the other hand, the learning-based methods exhibit a relatively larger performance
decline, but still outperform the non-learning methods. Regarding the mean rank metric,
the traditional calculation methods also maintain a relatively stable level. The method
based on the LSTM encoder experiences a significant performance decline after a pos_ratio
value of 0.5, while the method based on the GNN encoder shows a slight increase but still
maintains the best performance among all methods.

Figure 7. Variation of model performance w.r.t. pos_ratio (A–C) are P, Rµ, and Rσ w.r.t
pos_ratio respecticely.

Figure 8 demonstrates the variations of the models with increasing pos_distort. The
parameter pos_distort controls the magnitude of random position noise in the points. It can
be observed that both methods based on CLAIS exhibit high robustness and are minimally
affected by large variations in pos_distort. On the other hand, traditional methods may
experience significant performance loss due to their own definitions and other factors.
For example, the definition of the Hausdorff distance as the maximum of the minimum
distances between sets may not remain stable when the pos_distort increases.

Figure 8. Variation of model performance w.r.t. pos_distort. (A–C) are P, Rµ, and Rσ w.r.t
pos_distort respecticely.

Parameter pos_loss controls the proportion of randomly lost positions. In Figure 9,
the traditional methods maintain a relatively stable performance, and there is even a
phenomenon where the average rank decreases as the loss increases. The analysis suggests

J. Mar. Sci. Eng. 2023, 11, 1840 19 of 24

that this may be due to the loss of excessive noisy positions, resulting in the measurement
of only the truly valid trajectory points. As a result, the performance of finding similar
trajectories slightly improves.

Figure 9. Variation of model performance w.r.t. pos_loss. (A–C) are P, Rµ, and Rσ w.r.t
pos_loss respecticely.

The parameter seg_ratio controls the proportion of position points involved in segment
distortion. As shown in Figure 10, it can be observed that the LSTM experiences a significant
performance decline similar to pos_ratio when a large amount of distortion occurs. In
contrast, CLAIS still maintains the best robustness.

Figure 10. Variation of model performance w.r.t. seg_ratio. (A–C) are P, Rµ, and Rσ w.r.t
seg_ratio respecticely.

The parameter seg_distort controls the proportion of position points involved in
segment distortion. As shown in Figure 11, it can be observed that the model performance
exhibits a similar trend to pos_distort, maintaining overall stability as the seg_distort
parameter varies.

Figure 11. Variation of model performance w.r.t. seg_distort. (A–C) are P, Rµ, and Rσ w.r.t
seg_distort respecticely.

4.6. Grid Size Experiment

The size of the grid is crucial to CLAIS, as it is a common challenge in grid-based
approaches. For a given waterway, the width of the channel affects the density of naviga-

J. Mar. Sci. Eng. 2023, 11, 1840 20 of 24

tion, which, in turn influences the extent to which the grid granularity can preserve the
geometric features of the trajectories. Finer grids can represent more detailed trajectory
shapes so that the proposed model can identify different underlying paths. However, due
to computational costs, the grid size cannot be infinitely reduced. Therefore, different wa-
terways theoretically have different optimal grid sizes to balance computational complexity
and performance. To illustrate how the grid size affects the ability of the proposed model
to identify different trajectories, we conducted experiments on augmentation invariance
self-similarity under various grid sizes. The experiment took the grid size as a variable,
query size and database size were fixed to 1 k and 10 k, respectively, and the remaining
model parameters were kept the same as those in Table 3. The average results of metrics
for five runs of experiments can be seen in Table 5.

Table 5. Experiment on grid size.

Grid Size P Rµ Rσ

0.0010◦ 0.7286 2.2438 34.5396
0.0015◦ 0.6976 1.4097 7.6423
0.0020◦ 0.6736 2.2986 19.8756
0.0025◦ 0.6258 3.1892 16.2722
0.0030◦ 0.6060 3.7766 30.2616
0.0040◦ 0.5246 5.2674 25.2150
0.0050◦ 0.4070 8.4100 22.8003

From Table 5, it can be observed that when the grid size is smaller than 0.002, although
there is a slight decrease in top-1 precision, it remains relatively stable. The proposed model
is able to accurately identify the underlying real trajectories corresponding to the variant
trajectories; even when the grid size increases to 0.003, the top-1 precision is still above 60%.
Furthermore, by examining the average ranking, it can be noted that this metric performs
even better than the top-1 precision. Within the range of under 0.003, the model consistently
ranks the original trajectory among the top 4 out of 10,000 trajectories when searching for
1000 variant trajectories on average. However, when the grid size increases to 0.005, the
top-1 precision drops to 40.7%, and the average ranking decreases to 8.41. Additionally,
the standard deviation of the average ranking shows an increasing trend. This indicates
that the grid size parameter indeed has an impact on the model, but despite this influence,
the model can still maintain good performance within an appropriate trajectory size range.
Moreover, depending on the specific requirements for application, a trade-off can be made
between model performance and computational complexity.

4.7. Visualization

In the previous experiments, the performance of different comparison models was
quantitatively evaluated, but it is difficult to intuitively understand the differences between
various distances. In this section, visual experiments were conducted to observe whether
the results of ship trajectory similarity calculation using CLAIS align with intuition, i.e., if
visually similar trajectories exhibit a higher spatial proximity. The experiment randomly
selected 500 trajectories from the dataset and chose two different target trajectories as
query trajectories. For all comparison methods, pairwise similarity scores were computed
between the query trajectories and the remaining trajectories (excluding themselves) in
the dataset. The top 1% (i.e., the top 5) most similar trajectories were visualized. The
visualization results, as shown in Figure 12, depict the query trajectory in red and the top-k
nearest trajectories in blue.

J. Mar. Sci. Eng. 2023, 11, 1840 21 of 24

Figure 12. Top five similar trajectories of query trajectory.

From the figure, it can be observed that due to the dataset being located in a harbor
area, the trajectories are very close to each other, posing a significant challenge for similarity
measurement. All methods obtained trajectory sets with tight spatial distances. Among
the traditional methods, DTW achieved the best results, identifying the characteristics of
trajectories such as the entrance to the harbor area and turning points at the mouth of
the Huangpu River. The learning-based method based on the LSTM encoder successfully
recognized the trajectories in the harbor area but had misjudgments at the turning point of
the Huangpu River. On the other hand, the proposed CLAIS demonstrated the strongest
ability to identify similar trajectories and successfully recognized the entrance direction
and turning points, visually demonstrating the effectiveness of the proposed framework.

4.8. Discussion

In this section, three important experiments were conducted. The first experiment, the
model comparison experiment, tested the ability of different models to retrieve the closest
trajectories by calculating AIS trajectory similarity under different database sizes. The
second robustness experiment examined the performance degradation of each comparison
model under different variations. The third nearest neighbor experiment visualized the
distribution of the closest trajectories obtained by different models.

In the robustness experiment, the pos_ratio parameter controlled one aspect. In terms
of accuracy, both learning-based methods experienced a certain degree of decline when the
random position noise increased significantly. The analysis suggests that these methods
adopt an average pooling approach to obtain the final representation vector, making it
difficult to maintain stable feature vectors in the presence of a high proportion of position
noise. In terms of average rank, the significant performance drop of the LSTM encoder
may be attributed to its modeling of the trajectory within a grid while neglecting the spatial
features. As the positions with noise increase, the LSTM tends to misidentify positions that
fall into other grids as belonging to other trajectories, leading to a substantial decrease in
identification accuracy. On the other hand, CLAIS, based on the GNN encoder, demon-
strates the advantage of incorporating spatial modeling. By performing message passing
on neighboring grids’ features, it can identify erroneous positions within a close range and
recognize them as part of its own trajectory, exhibiting relatively better performance.

It is worth noting that observing the changes in pos_ratio and seg_ratio reveals similar
patterns. A performance increase exceeding the expected trend occurs when both distortion
values are set to 2. This can be attributed to setting the distortion value to 2 during the
training phase, which enables the model to fit better to the scenario with a distortion value
of 2 compared to other parameters during inference.

5. Conclusions

Similarity calculation between vessel trajectories is one of the fundamental and crucial
problems in vessel trajectory analysis. It directly impacts applications such as vessel
trajectory prediction, route planning, and anomaly detection. Therefore, it holds great
significance in domains such as maritime safety and maritime regulation, where vessel
trajectory analysis plays a vital role. There is still significant room for improvement in the
trajectory representation learning capability of existing ship trajectory similarity calculation

J. Mar. Sci. Eng. 2023, 11, 1840 22 of 24

methods, especially in terms of explicitly modeling the spatial structure of trajectories.
Additionally, with the accumulation of AIS data, a large amount of unlabeled data remains
underutilized, resulting in significant waste. There is an urgent need for a method in AIS
trajectory similarity calculation that possesses good ship trajectory representation learning
capability and similarity calculation under unsupervised conditions.

This work makes contributions in the following three respects. First, to achieve
good performance in region and trajectory learning models, this paper proposes utilizing
a historical trajectory database to model water areas as regional graphs and leverages
pretraining to learn the spatial dependency relationships of the regional grid. By modeling
regional graphs and pretraining, the model has already learned spatial features such as
the habitual routes and adjacency relationships of the spatial grid before modeling the
trajectory graph. This approach reduces training costs and achieves better performance.
Second, the proposed CLAIS framework in this paper enhances the model’s ability to
capture the potential real trajectories of trajectories under erroneous AIS signals, such as
noise or position loss, through a contrastive learning approach. By employing different
augmentation techniques on trajectories, the model generates similar augmented trajectory
sample pairs using the proposed parameterized augmentation scheme. These augmented
trajectories are then modeled as trajectory graphs, and graph neural networks are used
to learn the spatial dependency relationships of the trajectory graphs and improve the
model’s capability to extract the spatial features of trajectories.

Lastly, this paper proposes three metrics for trajectory similarity experiments under
contrastive learning and conducts extensive experiments to validate the model’s perfor-
mance. The experiments are conducted five times with different random seeds, and the
average results demonstrate the effectiveness of CLAIS. When the database size is 10 k,
CLAIS achieves a high level of accuracy in the most similar trajectory accuracy metric with
a value of 62%, an average rank of 1.89, and a low standard deviation of only 8.695. In
comparison, the best-performing traditional method with the DTW metric achieves values
of 39%, 55.46, and 89.71, respectively. Even replacing the CLAIS encoder with an LSTM
that only models sequential features yields performance of only 64%, 3.79, and 14.45 for
the corresponding metrics.

Although this paper effectively contributes to the research on AIS trajectory similarity
computation, there are still aspects that require further investigation. First, this paper only
considers the geometric features, directional features, and sequential features of vessel
trajectories, while neglecting important information such as speed, heading, timestamps,
and seasons, as well as vessel type and tonnage. This may not fully reflect real-world
scenarios and can have a significant impact on trajectory analysis. Second, the contrastive
learning method in this paper compares trajectory graphs constructed based on the grid
features of water areas, overlooking trajectory-level features and water area-level features.
It is worth considering future research that incorporates joint contrastive learning for
features at different levels to enhance representation learning capabilities. Furthermore, the
augmentation scheme in this paper does not take into account the specific AIS signal error
conditions in a particular real-world water area. It will be necessary to conduct research in
the future that adapts the augmentation scheme parameters based on statistical information
about signal errors, making the model more suitable for handling specific erroneous signals
in the studied water area.

Author Contributions: Methodology, S.L.; Software, S.L.; Validation, S.L. and B.S.; Writing—original
draft, S.L.; Writing—review & editing, W.Z. and B.S.; Supervision, W.Z.; Funding acquisition, W.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this research is provided by hifleet.com.

hifleet.com

J. Mar. Sci. Eng. 2023, 11, 1840 23 of 24

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shelmerdine, R.L. Teasing out the Detail: How Our Understanding of Marine AIS Data Can Better Inform Industries, Develop-

ments, and Planning. Mar. Policy 2015, 54, 17–25. [CrossRef]
2. Tao, Y.; Both, A.; Silveira, R.I.; Buchin, K.; Sijben, S.; Purves, R.S.; Laube, P.; Peng, D.; Toohey, K.; Duckham, M. A Comparative

Analysis of Trajectory Similarity Measures. GISci. Remote Sens. 2021, 58, 643–669. [CrossRef]
3. Zhao, L.; Shi, G. A Novel Similarity Measure for Clustering Vessel Trajectories Based on Dynamic Time Warping. J. Navig. 2019,

72, 290–306. [CrossRef]
4. Zhao, L.; Shi, G. Maritime Anomaly Detection Using Density-Based Clustering and Recurrent Neural Network. J. Navig. 2019, 72,

894–916. [CrossRef]
5. Sang, L.; Wall, A.; Mao, Z.; Yan, X.; Wang, J. A Novel Method for Restoring the Trajectory of the Inland Waterway Ship by Using

AIS Data. Ocean Eng. 2015, 110, 183–194. [CrossRef]
6. Zhao, L.; Shi, G.; Yang, J. Ship Trajectories Pre-Processing Based on AIS Data. J. Navig. 2018, 71, 1210–1230. [CrossRef]
7. Yan, R.; Mo, H.; Yang, D.; Wang, S. Development of Denoising and Compression Algorithms for AIS-Based Vessel Trajectories.

Ocean Eng. 2022, 252, 111207. [CrossRef]
8. Lee, W.; Cho, S.-W. AIS Trajectories Simplification Algorithm Considering Topographic Information. Sensors 2022, 22, 7036.

[CrossRef]
9. Yang, P.; Wang, H.; Zhang, Y.; Qin, L.; Zhang, W.; Lin, X. T3S: Effective Representation Learning for Trajectory Similarity

Computation. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22
April 2021; pp. 2183–2188.

10. Yang, P.; Wang, H.; Lian, D.; Zhang, Y.; Qin, L.; Zhang, W. TMN: Trajectory Matching Networks for Predicting Similarity. In
Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May
2022; pp. 1700–1713.

11. Zhang, H.; Zhang, X.; Jiang, Q.; Zheng, B.; Sun, Z.; Sun, W.; Wang, C. Trajectory Similarity Learning with Auxiliary Supervision
and Optimal Matching. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama,
Japan, 7–15 January 2021; pp. 3209–3215.

12. Yao, D.; Hu, H.; Du, L.; Cong, G.; Han, S.; Bi, J. TrajGAT: A Graph-Based Long-Term Dependency Modeling Approach for
Trajectory Similarity Computation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, 14–18 August 2022; ACM: New York, NY, USA, 2022; pp. 2275–2285.

13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Association
for Computing Machinery: New York, NY, USA, 2017; Volume 30.

14. Yao, D.; Zhang, C.; Zhu, Z.; Hu, Q.; Wang, Z.; Huang, J.; Bi, J. Learning Deep Representation for Trajectory Clustering. Expert Syst.
2018, 35, e12252. [CrossRef]

15. Li, S.; Liang, M.; Liu, R.W. Vessel Trajectory Similarity Measure Based on Deep Convolutional Autoencoder. In Proceedings of the
2020 5th IEEE International Conference on Big Data Analytics (ICBDA), Xiamen, China, 8–11 May 2020; pp. 333–338.

16. Fu, T.-Y.; Lee, W.-C. Trembr: Exploring Road Networks for Trajectory Representation Learning. ACM Trans. Intell. Syst. Technol.
2020, 11, 1–25. [CrossRef]

17. Balestriero, R.; Ibrahim, M.; Sobal, V.; Morcos, A.; Shekhar, S.; Goldstein, T.; Bordes, F.; Bardes, A.; Mialon, G.; Tian, Y.; et al. A
Cookbook of Self-Supervised Learning. arXiv 2023, arXiv:2304.12210.

18. Gui, J.; Chen, T.; Zhang, J.; Cao, Q.; Sun, Z.; Luo, H.; Tao, D. A Survey of Self-Supervised Learning from Multiple Perspectives:
Algorithms, Applications and Future Trends. arXiv 2023, arXiv:2301.05712.

19. Chen, X.; Xu, J.; Zhou, R.; Chen, W.; Fang, J.; Liu, C. TrajVAE: A Variational AutoEncoder Model for Trajectory Generation.
Neurocomputing 2021, 428, 332–339. [CrossRef]

20. Miguel, M.Á.D.; Armingol, J.M.; García, F. Vehicles Trajectory Prediction Using Recurrent VAE Network. IEEE Access 2022, 10,
32742–32749. [CrossRef]

21. Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised Feature Learning via Non-Parametric Instance Discrimination. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–23 June 2018;
pp. 3733–3742.

22. Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; Hinton, G. Big Self-Supervised Models Are Strong Semi-Supervised Learners.
In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12
December 2020; Curran Associates Inc.: Red Hook, NY, USA, 2020; pp. 22243–22255.

23. Liu, X.; Tan, X.; Guo, Y.; Chen, Y.; Zhang, Z. CSTRM: Contrastive Self-Supervised Trajectory Representation Model for Trajectory
Similarity Computation. Comput. Commun. 2022, 185, 159–167. [CrossRef]

24. Jing, Q.; Yao, D.; Gong, C.; Fan, X.; Wang, B.; Tan, H.; Bi, J. TrajCross: Trajecotry Cross-Modal Retrieval with Contrastive Learning.
In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021;
pp. 344–349.

https://doi.org/10.1016/j.marpol.2014.12.010
https://doi.org/10.1080/15481603.2021.1908927
https://doi.org/10.1017/S0373463318000723
https://doi.org/10.1017/S0373463319000031
https://doi.org/10.1016/j.oceaneng.2015.10.021
https://doi.org/10.1017/S0373463318000188
https://doi.org/10.1016/j.oceaneng.2022.111207
https://doi.org/10.3390/s22187036
https://doi.org/10.1111/exsy.12252
https://doi.org/10.1145/3361741
https://doi.org/10.1016/j.neucom.2020.03.120
https://doi.org/10.1109/ACCESS.2022.3161661
https://doi.org/10.1016/j.comcom.2022.01.001

J. Mar. Sci. Eng. 2023, 11, 1840 24 of 24

25. Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 855–864.

26. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020; Volume 119, pp. 1597–1607.

27. Li, X.; Zhao, K.; Cong, G.; Jensen, C.S.; Wei, W. Deep Representation Learning for Trajectory Similarity Computation. In
Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April 2018;
pp. 617–628.

28. Deng, L.; Zhao, Y.; Fu, Z.; Sun, H.; Liu, S.; Zheng, K. Efficient Trajectory Similarity Computation with Contrastive Learning. In
Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21
October 2022; ACM: New York, NY, USA, 2022; pp. 365–374.

29. Sohn, K. Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates Inc.: Red Hook,
NY, USA, 2016; pp. 1857–1865.

30. Van den Oord, A.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. arXiv 2018, arXiv:1807.03748.
[CrossRef]

31. Chen, T.; Sun, Y.; Shi, Y.; Hong, L. On Sampling Strategies for Neural Network-Based Collaborative Filtering. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August
2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 767–776.

32. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456.

33. Santurkar, S.; Tsipras, D.; Ilyas, A.; Mądry, A. How Does Batch Normalization Help Optimization? In Proceedings of the
32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Curran
Associates Inc.: Red Hook, NY, USA, 2018; pp. 2488–2498.

34. Hahnloser, R.H.R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital Selection and Analogue Amplification
Coexist in a Cortex-Inspired Silicon Circuit. Nature 2000, 405, 947–951. [CrossRef]

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

36. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
37. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903.
38. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

Using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha,
Qatar, 2014; pp. 1724–1734.

39. Ranu, S.; Deepak, P.; Telang, A.D.; Deshpande, P.; Raghavan, S. Indexing and Matching Trajectories under Inconsistent Sampling
Rates. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April
2015; pp. 999–1010.

40. Su, H.; Zheng, K.; Wang, H.; Huang, J.; Zhou, X. Calibrating Trajectory Data for Similarity-Based Analysis. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; Association for
Computing Machinery: New York, NY, USA, 2013; pp. 833–844.

41. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1807.03748
https://doi.org/10.1038/35016072
https://doi.org/10.1145/3065386
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276

	Introduction
	Related Work
	Methodology
	Regional Graph Pretraining Module
	Vessel Trajectory Contrastive Learning Module
	Vessel Trajectory Representation Learning Module

	Experiment
	Data & Preprocess
	Experiment Metrics
	Comparative Baselines and Parameter Setting
	Model Comparison Experiment
	Robustness Experiment
	Grid Size Experiment
	Visualization
	Discussion

	Conclusions
	References

