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Abstract: Various statistical data indicate that mobile source pollutants have become a significant
contributor to atmospheric environmental pollution, with vehicle tailpipe emissions being the primary
contributor to these mobile source pollutants. The motion shadow generated by motor vehicles bears
a visual resemblance to emitted black smoke, making this study primarily focused on the interference
of motion shadows in the detection of black smoke vehicles. Initially, the YOLOv5s model is used to
locate moving objects, including motor vehicles, motion shadows, and black smoke emissions. The
extracted images of these moving objects are then processed using simple linear iterative clustering to
obtain superpixel images of the three categories for model training. Finally, these superpixel images
are fed into a lightweight MobileNetv3 network to build a black smoke vehicle detection model for
recognition and classification. This study breaks away from the traditional approach of “detection first,
then removal” to overcome shadow interference and instead employs a “segmentation-classification”
approach, ingeniously addressing the coexistence of motion shadows and black smoke emissions.
Experimental results show that the Y-MobileNetv3 model, which takes motion shadows into account,
achieves an accuracy rate of 95.17%, a 4.73% improvement compared with the N-MobileNetv3 model
(which does not consider motion shadows). Moreover, the average single-image inference time is
only 7.3 ms. The superpixel segmentation algorithm effectively clusters similar pixels, facilitating
the detection of trace amounts of black smoke emissions from motor vehicles. The Y-MobileNetv3
model not only improves the accuracy of black smoke vehicle recognition but also meets the real-time
detection requirements.

Keywords: intelligent transportation; motion shadows; superpixel segmentation; YOLOv5s
localization; MobilNetv3 classification

1. Introduction

Traditional control of motor vehicle exhaust pollution mainly occurs during processes
such as vehicle registration and annual inspections rather than effective supervision during
vehicle usage. The application of onboard detection technology and road remote sensing
monitoring technology can identify motor vehicles emitting black smoke exhaust on roads.
However, the size of detection devices is relatively large, making it difficult to deploy
them extensively on urban roads. In recent years, with the rapid development of artificial
intelligence, methods for automatically detecting black smoke-emitting vehicles based
on monitoring videos from road surveillance cameras have become more intelligent and
efficient. Cao et al. [1] utilized the Inceptionv3 convolutional neural network to capture
spatial information of suspected black smoke frames in monitoring videos, while a long
short-term memory network learned the temporal dependencies between video frames.
They built a dual-branch black smoke vehicle detection network based on the CenterNet [2]
framework, utilizing vehicle feature maps to generate attention mechanisms for guiding the
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training of black smoke feature maps. This model achieved a detection speed of 25.46 FPS
and mAP@0.5 of 92.5%. Xia et al. [3] proposed using a convolutional neural network model
based on LeNet-5 to detect vehicles emitting black smoke. Simultaneously, an Inception
module was introduced, and multiple convolutional kernels of different sizes were used to
perform convolution operations to extract black smoke features. Zhang et al. [4] proposed
a multi-frame classification network based on 2D-3D fusion for detecting black smoke-
emitting vehicles. They utilized both 2D and 3D convolutions to extract spatial and
spatiotemporal features of black smoke. The model achieved a recognition accuracy of
90.3%, with an average inference time of 45.9 ms per frame. Zhang et al. [5] designed two
lightweight networks, YOLOv3-M3-CBAM and YOLOv4-GhostNet, based on the YOLOv3
and YOLOv4 models. After improvement, both models achieved a detection speed of
20 FPS. Liu and others proposed a black smoke vehicle detection model based on a three-
dimensional convolutional network and a non-local attention mechanism. This model
utilizes three-dimensional convolutional kernels to learn the spatial features and temporal
information of black smoke videos. It jointly evaluates the existence of black smoke by
considering suspected black smoke regions across multiple consecutive frames [6].

The aforementioned automatic detection methods for vehicles emitting black smoke
primarily focus on improving and optimizing model structures based on the target fea-
tures of black smoke emissions. However, factors that interfere with black smoke vehicle
detection in real-world scenarios have not been taken into consideration. For instance,
when vehicles are driving under clear weather conditions, they cast dynamic shadows.
These dynamic shadows exhibit certain visual similarities to black smoke emissions, which
significantly affect the recognition accuracy of black smoke vehicle detection. In areas
where shadows are cast and exhibit high brightness and saturation, their color values
closely follow a linear relationship with the background image. This principle can be
employed for shadow detection, where the brightness in shadow areas is lower than that
in non-shadow areas, while chromaticity remains consistent [7]. Khan et al. [8] employed
multiple supervised convolutional deep neural networks to learn shadow-related features.
However, due to a lack of labeled training data, this approach remains challenging in
practical application scenarios. Tian et al. proposed a normalized cross-correlation method
based on texture features, which involves calculating the NCC value by comparing the
texture similarity between the current frame and the background pixels at the same position
and their neighboring pixels for shadow judgment [9]. Shadow removal involves restoring
shadow regions in an image while preserving attributes such as texture and color on the ob-
ject’s surface. Shadow binary masks and shadow masks are commonly used for conditional
information for generators in generative adversarial networks. Shadow binary masks often
utilize alpha matting techniques to label shadow and non-shadow regions, but shadow
masks can be easily influenced by human errors [10,11]. The challenge in shadow detection
lies in accurately identifying the shadowed areas on object surfaces, while the challenge
in shadow removal is to protect object surface information from being altered. However,
due to the certain similarity between black smoke emissions and dynamic shadows, the
solution of detecting and then removing dynamic shadows is difficult to implement in the
task of automatic detection of vehicles emitting black smoke.

The existing intelligent algorithm for detecting smoky vehicles faces several challenges,
including difficulties in model deployment, limited model applicability, and the need to
improve accuracy in smoky vehicle identification. The large number of model parame-
ters and computational requirements make model deployment challenging, necessitating
the development of a more lightweight smoky vehicle detection network. The limited
model applicability and low recognition accuracy are due to the fact that existing methods
have not adequately considered factors that interfere with the smoky vehicle detection
process during optimization and improvement, such as the motion shadows produced by
motor vehicles on sunny days. Therefore, this study has designed an automatic smoky
vehicle detection solution that takes into account motion shadows, as shown in Figure 1.
Based on the “segmentation-classification” concept, it cleverly addresses situations where
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motion shadows coexist with smoky exhaust, and it achieves this by using a superpixel
segmentation algorithm called simple linear iterative clustering to cluster and re-segment
similar pixels in the image [12]. Directly detecting smoky exhaust using YOLO series object
detection models faces challenges such as missing small targets, misidentifying motion
shadows, and difficulty in associating detected smoky exhaust with motor vehicles in
high-traffic areas [13]. However, by locating moving objects that include motor vehicles,
smoky exhaust, and motion shadows, the target positioning effect is superior to traditional
motion object detection methods. This approach can exclude irrelevant moving objects,
such as roadside trees, that are not related to the research being conducted. The images of
moving objects are processed using the superpixel segmentation algorithm to obtain su-
perpixel images belonging to three categories: motor vehicles, smoky exhaust, and motion
shadows, which serve as training samples. The design of a lightweight network structure,
compared with convolutional neural networks, is more suitable for real-time detection tasks.
Therefore, the obtained segmented samples of different categories are fed into the smoky
vehicle automatic detection model built on the lightweight MobileNetv3 network [14–16]
for recognition and classification. In the task of automatic smoky vehicle detection, not
only accurate identification of smoky vehicles is required, but also the network inference
speed needs to be improved, especially when dealing with a large amount of surveillance
video data.
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2. Locating Moving Objects
2.1. Object Detection Model

Object detection, as a fundamental problem in computer vision research, involves
precisely locating all objects of given classes in an image and predicting the class for each
object. The traditional object detection process can be roughly divided into three steps:
candidate box generation, feature vector extraction, and region classification. Deep learning-
based object detection methods allow for end-to-end learning, eliminating the need for
staged training during the process. These methods include two-stage detection algorithms
based on candidate windows and single-stage detection algorithms based on regression.
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Single-stage detection algorithms do not require generating candidate regions and can
directly predict the class probabilities and location information of objects. The YOLO series
of algorithms improve accuracy through end-to-end training, and they are compatible and
suitable for industrial applications [17,18]. In 2020, YOLOv5 was introduced, followed by
the YOLOX model proposed by Megvii in the following year. In 2023, Ultralytics continued
to upgrade and optimize the previously introduced YOLOv5 model and released the
YOLOv8 model. The performance comparison of these three different models is shown in
Table 1. The YOLOXs model and the YOLOv5s model both use Focus and CSPDarknet53 as
the backbone networks, and the neck network adopts the FPN + PAN structure. Activation
functions include LeakyReLU and Sigmoid, with LeakyReLU used in the hidden layers and
Sigmoid used in the detection layers. The YOLOXs model uses a free anchor box strategy
for the prediction layer, while the YOLOv5 model learns anchor boxes automatically from
the training dataset, reducing the original three anchor box candidates to one and directly
predicting the four parameters for each target box [19]. The main feature of YOLOv8 is its
scalability, which can be applied not only to YOLO series models but also to non-YOLO
models and tasks such as segmentation, classification, and pose estimation. There have
been significant improvements in the neck part of the network, where all C3 modules
have been replaced with C2f modules, and all CBS modules before upsampling have
been removed, with upsampling operations directly performed using C2f modules [20].
YOLOv5 uses a simple convolutional neural network architecture, while YOLOv8 employs
multiple residual units and branches and is more complex. Table 1 presents the test
results comparison of different object detection models on our custom dataset in this study.
YOLOv5 has a smaller parameter count, faster inference speed, and is more suitable for
real-time motor vehicle detection.

Table 1. Comparison of different models in the YOLO series.

Model Batch_Size mAP (%) Params (M) FLOPs (G)

YOLOv5s 256 95.8 7.2 16.5
YOLOXs 128 95.2 9.0 26.8
YOLOv8s 128 94.5 11.2 28.6

The overall structure of the YOLOv5s model consists of an input layer, backbone
network, neck network, and prediction layer; as shown in Figure 2. Image preprocessing
includes mosaic data augmentation, adaptive image scaling, and adaptive anchor boxes.
Mosaic data augmentation involves combining four images through random cropping,
flipping, and other methods. This enhances the network’s robustness and addresses issues
of insufficient dataset samples and uneven size distribution [21]. The backbone feature ex-
traction network is primarily composed of Conv modules, C3 modules, and SPPF modules.
In version 6.0, the previous version’s focus module has been replaced with a convolutional
layer with a kernel size of 6, stride of 2, and padding of 2. For GPUs with limited perfor-
mance, using a convolutional layer in this context is more efficient than using the focus
module. While earlier versions used the CSP module to reduce model computation and
achieve cross-layer fusion of local image features, version 6.0 employs the C3 module with
a similar role. The difference lies in the removal of the Conv after concatenation, and the
standard convolution module after Concat has replaced the Relu activation function with
SiLU. In version 6.0, the SPP module is replaced with the SPPF module, both of which
aim to fuse output features and enlarge the object receptive field [22,23]. The neck network
combines a feature pyramid network with a path aggregation network to reprocess fea-
tures extracted at different stages. The feature pyramid network transfers strong semantic
information from deep feature maps to shallow ones through upsampling, while the path
aggregation network transfers positional information from shallow feature maps to deep
ones through downsampling. This simultaneous upsampling and downsampling achieves
multi-scale feature fusion [24,25]. The prediction layer is responsible for detecting the class
and position of target objects. It mainly consists of the loss function and non-maximum sup-
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pression. The loss function is the sum of localization loss, confidence loss, and classification
loss. Non-maximum suppression is employed to eliminate redundant bounding boxes.
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Figure 2. Overall architecture of YOLOv5s model.

2.2. Motion Object Extraction

Motion object detection is a crucial component of intelligent video surveillance sys-
tems. Currently, mainstream methods for motion object detection include optical flow,
frame differencing, and background subtraction [26–28]. Background subtraction involves
comparing the current image with a background image. This method can adapt to changes
in application scenarios and handle noise disturbances to some extent [29,30]. Frame differ-
encing is simple to implement, has low computational requirements, and exhibits strong
adaptability and robustness in dynamic environments. However, in the presence of large
areas of similar grayscale values on the surface of the moving object, frame differencing
may result in holes in the image [31,32]. In recent years, deep learning technology has
shown its remarkable feature extraction capabilities. Object detection algorithms can locate
motion objects, thereby predefining the scope of study and reducing the interference of
influencing factors. Two-stage object detection algorithms have slow processing speeds,
making them inadequate for real-time detection tasks. On the other hand, the YOLO series
of one-stage object detection algorithms can significantly improve detection speed while
sacrificing only a slight decrease in accuracy. Thus, this study chooses the YOLOv5 model,
which excels in object detection performance, to locate the regions of moving objects in
road traffic surveillance videos. Based on network depth and width, the model is available
in four sizes: small, medium, large, and extra-large. In practical applications, there is a
need to balance the relationship between model accuracy, speed, and volume. Considering
the relatively small dataset and the requirement for real-time detection, the YOLOv5s
model with the smallest volume is selected to locate motion objects. The extracted motion
object regions include moving vehicles, black smoke emissions from the tailpipes, and
the dynamic shadows generated by vehicles under clear weather conditions. Figure 3
demonstrates the motion object regions with both black smoke emissions and dynamic
shadows extracted by the YOLOv5s model from road traffic surveillance videos.
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3. Motion Target Segmentation
3.1. Optimal Segmentation Parameters

Image segmentation involves dividing an image into different regions with specific
semantic meanings based on certain similarity criteria. In the early days, image segmenta-
tion was mostly performed at the pixel level, using a two-dimensional matrix to represent
an image, without considering the spatial relationships between pixels [33]. Simple linear
iterative clustering uses the similarity of features between pixels to group pixels and classify
pixels of the same type. This is advantageous for reducing data dimensions and computa-
tional complexity, thus enhancing the efficiency of image processing [34]. The objective of
this research is to automatically detect vehicles emitting black smoke emissions. However,
the presence of dynamic shadows generated by vehicles under clear weather conditions can
impact the accuracy of black smoke vehicle detection. Therefore, a superpixel segmentation
algorithm is employed to process the images of the regions, with moving objects extracted
by the YOLOv5s model. This process aims to obtain superpixel images belonging to three
categories: vehicles, black smoke emissions, and dynamic shadows. These superpixel
images are then used as training samples.

The implementation process of the SLIC involves converting a color image into a
five-dimensional feature vector V = [L, a, b, x, y] in the CIELAB color space and XY
coordinates. Each pixel’s color vector (LL, aa, bb) and position vector (xx, yy) together form
a five-dimensional feature vector, enabling the local clustering of image pixels [35]. Firstly,
the color space conversion is performed, and a nonlinear tone mapping of the image is
achieved using the gamma function. The initial set of k superpixel seed points is evenly
distributed over the image containing N pixels [36]. The generated seed points might fall
on the edges of superpixels with significant gradients or noisy pixel locations. Therefore,
the initial seed points are generally chosen as the positions with the smallest gradient
values within a 3 × 3 neighborhood. The similarity between pixel points and seed points is
measured using a distance metric that combines color distance and spatial distance. The
parameter m represents a weight factor that gauges the relative importance between color
and spatial distances, while S denotes the distance between adjacent seed points. The
value of D indicates the similarity between two pixels, with higher values implying greater
similarity [37].

dLab =
√
(Li − Lj)

2 + (ai − aj)
2 + (bi − bj)

2 (1)
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dxy =
√
(xi − xj)

2 + (yi − yj)
2 (2)

D =

√
(dLab)

2 + (
dxy

S
)

2

m2 (3)

In the equation, Li, ai, and bi represent the three channel components of a pixel in
the CIELAB color space, while xi and yi, respectively, denote the horizontal and vertical
coordinates of pixel i.

To enhance the computational efficiency of the SLIC, a search for similar pixels is
conducted within a 2S × 2S region centered around the seed point. Clustering involves
calculating the distance metric between all pixels within this region and the seed point.
Through repetitive iterations and assignments, similar feature pixels are grouped to form
super pixel blocks. The initial number of seed points, k, and the weight factor, m (which
determines the relative importance between color distance and spatial distance), both
influence the generation of the superpixel image [38,39]. Therefore, in this experiment, a
controlled variable method is employed to analyze and compare the effects of different
parameter combinations on the segmentation of motion object regions. This analysis aims
to determine the optimal parameter values for the SLIC.

In the first set of comparative experiments, the balancing parameter m of the SLIC was
set to 10 and the number of seed points, k, was set to 500, 1000, 1500, and 2000, respectively.
The segmentation results of motion object regions are shown in Figure 4. In Figure 4,
the red rectangular boxes highlight the segmentation outcomes at the junctions between
vehicle tail, dynamic shadow, and road surface. As the number of seed points increases, the
under-segmentation phenomenon at the junctions of different objects gradually diminishes,
resulting in more consistent content within the generated superpixel blocks. When the
segmentation accurately captures the junctions between different objects, increasing the
number of seed points will lead to a higher number of superpixel blocks generated during
motion object region segmentation. Consequently, this can amplify the computational
workload during model classification. Considering the segmentation outcomes from the
four different parameter settings, the best segmentation results were achieved when the
number of seed points, k, was set to 1500.

The second set of comparative analysis experiments involved setting the number of
seed points in the SLIC to 1500. The balancing parameter was varied as 5, 10, 15, and
20, respectively. The segmentation results of motion object regions are shown in Figure 5.
In Figure 5, the red rectangular boxes highlight the segmentation details at the junction
between black smoke emissions and the road surface. When the balancing parameter is
set too small, the boundaries of the object’s contours appear blurry. Conversely, when the
balancing parameter is set too large, the boundary segmentation of the object’s contours
becomes imprecise. Considering the segmentation outcomes from the four different param-
eter settings, the best segmentation results were achieved when the balancing parameter
m was set to 10. Consequently, the optimal parameters for the SLIC in this application
scenario are selected as k = 1500 and m = 10.
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3.2. Creating Dataset

The three essential elements of deep learning are data, algorithms, and computing
power. Data hold a crucial position in deep learning, as a high-quality dataset often
improves the accuracy of model predictions. When data are scarce, it is also crucial to
utilize existing data resources to create high-quality datasets. A high-quality dataset not
only considers the quantity and quality of the raw data but also takes into account the
factors that can interfere with experiments during the data preprocessing process. In this
study, the data are sourced from road traffic monitoring videos, and the research goal is to
automatically detect motor vehicles emitting black smoke on the road. First, the original
images containing motor vehicles are obtained through video frame-by-frame processing
and selection, as shown in Figure 6.
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Based on the YOLOv5s model, we located moving targets and obtained a total of
2900 images containing motor vehicles. Next, based on the 2900 images of located mov-
ing targets, two sets of experimental plans were designed to obtain training samples for
different models. The automatic detection model for black smoke vehicles considering
motion shadows is referred to as “Y-MobileNetv3”, while the model not considering motion
shadows is referred to as “N-MobileNetv3”. The extracted images of moving targets were
processed using a superpixel segmentation algorithm, resulting in 1082 images of black
smoke emissions, 1035 images of motion shadows, and 1118 images of motor vehicles as
training samples for the Y-MobileNetv3 model. The extracted images of moving targets
include heavy-duty trucks, medium-sized vans, and light sedans. Adaptive thresholds
were designed based on the aspect ratios of the extracted images of moving targets. The
last third of the images was selected as the suspected black smoke region, resulting in a
total of 2320 non-black smoke emissions and 580 black smoke emissions used as input
for training the N-MobileNetv3 model. The process for creating training samples with
and without considering motion shadows is shown in Figure 7. The experimental process
ensures the consistency of YOLOv5s in locating images of moving targets, with the differ-
ence being that the training samples for the model considering motion shadows undergo
superpixel segmentation to classify non-black smoke emissions into motor vehicles and
motion shadows as two separate categories.
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The settings of two key parameters in the superpixel segmentation algorithm need
to be adjusted according to the specific application scenarios. When selecting training
samples from different categories after motion target segmentation, it is important to
ensure that superpixel images taken from the center of each category region are preserved.
This approach helps avoid issues related to excessive segmentation of neighboring objects
from different categories, which can negatively impact the quality of training samples.
Superpixel images with a resolution of 100 × 100 are saved, as shown in Figure 8, for
training samples of some motor vehicles, black smoke emissions, and motion shadows.
For motor vehicles, key features that are easy to identify, such as vehicle taillights, rear
bumpers, and vehicle body colors, are selected for the superpixel images. The dataset
covers various types of motor vehicles, including heavy-duty trucks, medium-sized vans,
and light sedans. Superpixel images of black smoke emissions exhibit a hazy and blurry
appearance with no distinct texture features, while superpixel images of motion shadows
have clearer texture features. These visual differences help distinguish between the two
categories.
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4. MobileNetv3 Classification

In 2017, the Google team introduced the lightweight MobileNetv1 model. While
ensuring model accuracy, this model significantly reduced the computational load of net-
work model parameters, making it suitable for running applications on mobile terminal
devices. Compared with the traditional convolutional neural network VGG16 model, the
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MobileNetv1 model had 1/32 of the parameters, while only sacrificing 0.9% of classification
accuracy [40,41]. The MobileNetv2 model is an optimized and upgraded version of the
MobileNetv1 model by the Google team. It boasts higher accuracy and a smaller model size.
This model dramatically reduces the computational load of parameters, making it highly
efficient for deployment on mobile devices and suitable for real-world applications. Similar
to MobileNetv1, the design of the MobileNetv2 model’s architecture also incorporates
depthwise separable convolutions instead of standard convolutions. A pointwise convolu-
tion is added before the depthwise convolution to increase the dimensionality, allowing the
network model to extract features in a higher-dimensional space [42]. Drawing inspiration
from the design philosophy of the ResNet network architecture, the input and output
are added together in the model, facilitating the flow of information between layers; this
aids in feature reuse during forward propagation and mitigates the vanishing gradient
problem during backward propagation. The most innovative aspect of the MobileNetv2
model’s architecture design is the inverted residual structure. A shortcut connection is
only established when the stride is 1 and the input and output feature matrices have the
same shape.

The inverted residual structure shown in Figure 9 utilizes a 1 × 1 pointwise convolu-
tion before the depthwise separable convolution to increase the channel dimension of the
feature map, followed by a 1 × 1 convolution for dimension reduction. The classic order of
residual blocks is reversed to form the inverted residual structure. The ReLU6 activation
function is employed within the inverted residual structure, while the linear activation
function is used in the final 1 × 1 convolution layer. In this context, using the ReLU6
activation function would lead to significant loss of low-dimensional feature information.
The overall design of the inverted residual structure is characterized by narrower channels
at the two ends and a wider middle section. Applying a linear activation function helps
mitigate information loss in the output. The MobileNetv3 model, proposed by Howard and
his team in 2019, continues to utilize depthwise separable convolutions from the v1 version
and the inverted residual structure from the v2 version [43]. The MobileNetv3 model
introduces a new SE (squeeze and excitation) attention mechanism and replaces the swish
activation function with the h − swish activation function. The SE attention mechanism
comprises compression and excitation parts, involving two fully connected layers with
Relu6 and h − swish activation functions, respectively, after global average pooling of
features [44,45]. The original authors approximated the swish activation function with
ReLU6 to create the h − swish activation function, which effectively addresses the issue of
complex gradient calculation [46,47]. The computation formula for the h-swish activation
function is as follows:

swish(x) = x · sigmoid(βx) (4)

Relu = max(0, x) (5)

h − swish(x) = x
Relu(x + 3)

6
(6)
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In the equation, x represents the input and β is a constant or a training parameter.
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The MobileNetv3 model strengthens feature extraction through a combination of
3 × 3 standard convolutions and the neck structure. It further enhances the model by
incorporating a max pooling layer, substituting 1 × 1 convolution blocks for fully con-
nected layers, and implementing a series of operations to reduce network parameters and
complexity [48]. The MobileNetv3 model comes in two scale sizes: “large” and “small”.
In the ImageNet classification competition, the MobileNetv3-large network achieved a
4.6% increase in accuracy and a 5% improvement in detection speed compared with the
v2 version [49]. Similarly, the MobileNetv3-small network demonstrated a 3.2% accuracy
improvement and a 15% increase in detection speed over the v2 version.

Taking into account the small size of the experimental dataset and the real-time
detection requirements, the MobileNetv3-small model, which has a smaller volume, was
chosen for identifying black smoke-emitting vehicles in this study. The training process
of the Y-MobileNetv3 model for automatic detection of black smoke-emitting vehicles
with consideration of motion shadows is depicted by the loss function variation curve in
Figure 10. As the training epochs reach 120 rounds, the loss function fluctuates between 0.1
and 0.2, indicating that the model training is effective and stable.
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5. Experimental Results and Analysis
5.1. Experimental Environment Configuration

The experimental hardware and software environment configuration parameters are
shown in Table 2. The hyperparameters of the YOLOv5s model were determined based
on previous relevant research and comparative experiments, with input image resolution
uniformly scaled to 640 × 640. Prior to training, the initial anchor boxes were clustered
using the k-means algorithm, resulting in (10, 13, 16, 30, 33, 23), (30, 61, 62, 45, 59, 119), and
(116, 90, 156, 198, 373, 326) The YOLOv5s model was trained for a total of 200 epochs, with
a batch size of 8. The Adam optimizer was selected, and the initial learning rate was set to
1 × 10−3 with an initial decay rate of 1 × 10−5. The learning rate reduction was performed
using the cosine annealing strategy. For the MobileNetv3 model, the initial learning rate
was set to 0.0001, and the batch size was set to 16 for a total of 130 epochs. The training
process utilized the mosaic data augmentation method to enhance the model’s robustness,
and the SGD optimizer was employed for gradient updates during training.
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Table 2. Experimental environment configuration.

Name Version Model

Operating system Windows 10
CPU Intel(R) Core (TM) i5-11400F @2.60 GHz
GPU NVIDIA GeForce GTX 1650

Programming language Python 3.8.13
Deep learning framework Pytorch 1.13.0, CUDA 11.7

5.2. Comparative Experimental Analysis

The test results for automatic detection of black smoke vehicles based on the Mo-
bileNetv3 model are shown in Table 3. Y-MobileNetv3 represents the automatic detection
model for black smoke vehicles considering motion shadows. The training samples input
for Y-MobileNetv3 are superpixel images obtained through segmentation of motion target
regions extracted by YOLOv5s. N-MobileNetv3 represents the automatic detection model
for black smoke vehicles without considering motion shadows. The training samples
input for N-MobileNetv3 are motion target images extracted by YOLOv5s. The confusion
matrix, also known as an error matrix, is capable of determining the quality of the model’s
classification. Predicted values and actual values for all classes are placed in the same table,
providing a clear view of the number of correct and incorrect recognitions for each class.
Each column of the confusion matrix represents the predicted class of images, with the
values indicating the number of images predicted for each class. Each row of the confusion
matrix represents the actual class of images, with the values indicating the number of
images belonging to each actual class. The results of the confusion matrix can be used
to calculate more advanced classification evaluation metrics such as average accuracy,
precision, and recall. Average accuracy is the most commonly used classification evaluation
metric, calculated by dividing the number of correctly classified instances by the total
number of samples. A higher value indicates better classification performance of the model.

Table 3. Test results based on MobileNetv3 modeling.

Confusion Matrix
Y-MobileNetv3 N-MobileNetv3

Smoke No Smoke Smoke No Smoke

True value
smoke 145 8 138 15

no smoke 6 131 13 124

The average accuracy variation curves based on the MobileNetv3 model are presented
in Figure 11. The red curve represents the Y-MobileNetv3 model for automatic detection of
black smoke vehicles considering motion shadows, while the black curve represents the
N-MobileNetv3 model for automatic detection of black smoke vehicles without considering
motion shadows. Observing the average accuracy variation curves reveals that the trends
of average accuracy for both models change similarly with the epochs, and their learning
efficiency is comparable. When the training epochs reach around 80, the average accuracy
of the Y-MobileNetv3 model fluctuates around 95%, while the average accuracy of the
N-MobileNetv3 model fluctuates around 90%.
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Through the confusion matrix in Table 3, we can compute the model evaluation metrics,
as shown in Table 4. The average accuracy of the Y-MobileNetv3 model is 95.17%, while
the average accuracy of the N-MobileNetv3 model is only 90.34%. Average accuracy is an
evaluation metric for the entire classification model, but for evaluating each category, we
primarily use precision and recall. Precision refers to the proportion of samples identified
by the model as black smoke exhaust that are actually black smoke exhaust. Recall is the
proportion of actual black smoke exhaust samples that the model correctly predicts as
black smoke exhaust. The Y-MobileNetv3 model has a precision of 96.03% and a recall
of 94.77%, both of which are 4.64% and 4.58% higher than the N-MobileNetv3 model,
respectively. The Y-MobileNetv3 model has a single-image inference speed of 7.3 ms,
slightly faster than the N-MobileNetv3 model. This improvement is due to the superpixel
segmentation algorithm that groups and classifies similar pixels, enhancing the efficiency
of model recognition and classification computations. Compared with existing research
on black smoke vehicle detection algorithms, the algorithm proposed in this study, which
takes into account motion shadows, has advantages in both detection speed and accuracy,
as shown in Table 5. The most important contribution of this research is that it goes beyond
previous detection algorithms that solely rely on improving the model network structure
to enhance detection performance. Instead, it considers the mutual influence between the
research objectives and interfering factors, thereby improving both recognition accuracy
and model generality. Under the same test dataset, the Y-MobileNetv3 model’s average
accuracy improves by 4.73%, clearly demonstrating that using the superpixel segmentation
algorithm in the data preprocessing phase to process motion target images and classify
motion shadows as a separate category can effectively enhance the recognition accuracy
and computational efficiency of the automatic black smoke vehicle detection model.

Table 4. Evaluation metrics based on MobileNetv3 model.

Motion Shadow Average
Accuracy Precision Recall Inference Speed

per Image

N-MobileNetv3 90.34% 91.39% 90.19% 8.7 ms
Y-MobileNetv3 95.17% 96.03% 94.77% 7.3 ms
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Table 5. Test results of different algorithms for detecting black smoke vehicles.

Model P (%) mAP (%) FPS (ms)

Improved LeNet-5 [3] 87.34 86.75 8.2 ms
CenterNet-ResNet18 [2] 89.67 90.54 22.2 ms

2D-3D Fusion Network [4] 88.93 87.45 45.9 ms
YOLOv3-M3-CBAM [5] 92.57 93.80 49.2 ms
Ringelman-3D CNN [6] 88.56 86.74 5.9 ms

Ours 96.03 95.17 7.3 ms

The results of the Y-MobileNetv3 model are illustrated in Figure 12. Figure 12a, depicts
an example where the moving object consists solely of black smoke exhaust. In Figure 12b,
an example shows a moving object consisting exclusively of motion shadows. In Figure 12c,
an instance demonstrates the coexistence of black smoke exhaust and motion shadows.
On clear days, motor vehicles generate motion shadows, and the Y-MobileNetv3 model is
capable of excluding the interference of motion shadows and accurately identifying black
smoke exhaust. The left side of Figure 9 displays the motion object regions extracted by the
YOLOv5s model, while the right side showcases the visualized images of the Y-MobileNetv3
model’s test results. Superpixels marked in green represent black smoke exhaust, while
those in red denote motion shadows. The motion object regions are recognized and
classified by the Y-MobileNetv3 model. The presence of superpixel images indicating black
smoke exhaust in the classification results serves as the basis for determining whether a
motor vehicle emits black smoke. When black smoke exhaust and motion shadows coexist
within the same superpixel block, the model’s classification will identify it as black smoke
exhaust.
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The YOLOv5s model locates the moving target regions of motor vehicles, effectively
avoiding interference from other irrelevant moving objects in the research. Experimental
results indicate that the N-MobileNetv3 model exhibits false positives and false negatives
when detecting motor vehicles emitting trace amounts of black smoke exhaust. In contrast,
the Y-MobileNetv3 model can accurately identify them. As shown in Figure 13, the primary
reason for false positives and false negatives in the N-MobileNetv3 model is the imprecise
identification of suspected black smoke regions. However, the Y-MobileNetv3 model
identifies the entire motion target region obtained through the superpixel segmentation
algorithm, allowing for accurate recognition of motor vehicles emitting trace amounts of
black smoke exhaust. The superpixel segmentation algorithm groups pixels based on the
similarity of their features. This characteristic not only aids in distinguishing between black
smoke exhaust and motion shadows but also assists the model in identifying motor vehicles
emitting trace amounts of black smoke exhaust. By processing the extracted motion target
regions using the superpixel segmentation algorithm and classifying motion shadows as
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a separate category, it effectively improves the recognition accuracy of automatic black
smoke vehicle detection.
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Figure 13. The N-MobileNetv3 (left) and Y-MobileNetv3 (right) models recognize motor vehicles
emitting trace amounts of black smoke exhaust.

6. Conclusions

In the context of road traffic surveillance videos, deep learning-based methods can
be employed for automatic detection of black smoke-emitting vehicles. However, these
methods often suffer from challenges such as lower recognition accuracy and limited
model generalization. The “segmentation-classification” approach effectively distinguishes
between black smoke exhaust and motion shadows, reducing instances where motion
shadows are misclassified as black smoke exhaust. This approach breaks away from the
conventional technique of detecting first and then removing shadows, enhancing both the
accuracy of identifying black smoke-emitting vehicles and the general applicability of the
automatic detection model. Using the same test dataset, the Y-MobileNetv3 model for black
smoke vehicle automatic detection, which considers motion shadows, achieves an average
accuracy of 95.17%, precision of 96.03%, and recall of 94.77%. In comparison with the
N-MobileNetv3 model, which does not consider motion shadows, all evaluation metrics
show significant improvement in results, and the Y-MobileNetv3 model also demonstrates
faster inference speeds. The recognition computation time for the Y-MobileNetv3 model
is 7.3 ms per image, ensuring real-time detection of black smoke-emitting vehicles while
maintaining accuracy.

The model’s recognition and classification results are visually displayed through
color-coded superpixel images, effectively illustrating the model’s successful differentiation
between black smoke exhaust and motion shadows. The SLIC aggregates and classifies
neighboring pixels with similar features, not only distinguishing between black smoke
exhaust and motion shadows but also significantly enhancing the model’s deployment
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applicability. The superpixel images generated during image segmentation are beneficial
for detecting vehicles emitting small amounts of black smoke exhaust, thereby reducing the
false negative rate of the automatic detection model. Currently, quantitative calculation of
black smoke exhaust concentration from road surveillance video data using computer vision
technology remains challenging. However, a color-coded approach can roughly depict the
outline of black smoke exhaust. Further research will be to conduct in-depth research on
image segmentation of moving targets, to further explore the differences between black
smoke exhaust and moving shadows, with the aim of more accurately depicting the black
smoke exhaust outline. It realizes the hierarchical classification management of smoky
vehicles and helps relevant law enforcement departments to efficiently monitor smoky
vehicles.
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