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Abstract: A model of spacetime is presented. It has an extension to five dimensions, and in five
dimensions the geometry is the dual of the Euclidean geometry w.r.t. an arbitrary positive-definite
metric. Dually flat geometries are well-known in the context of information geometry. The present
work explores their role in describing the geometry of spacetime. It is shown that the positive-definite
metric with its flat 5-d connection can coexist with a pseudometric for which the connection is that of
Levi–Civita. The 4-d geodesics are characterized by five conserved quantities, one of which can be
chosen freely and is taken equal to zero in the present work. An explicit expression for the parallel
transport operators is obtained. It is used to construct a pseudometric for spacetime by choosing an
arbitrary possibly degenerate inner product in the tangent space of a reference point, for instance,
that of Minkowski. By parallel transport, one obtains a pseudometric for spacetime, the metric
connection of which extends to a 5-d connection with vanishing curvature tensor. The de Sitter space
is considered as an example.

Keywords: dually flat geometry; spacetime; information geometry; induced matter theory; membrane
theory; de Sitter space

1. Introduction

The embedding of four-dimensional spacetime as a submanifold of a higher-dimensional
space is a well-accepted paradigm of theoretical physics. A century ago, Kaluza [1] pro-
posed to embed the four-dimensional spacetime of general relativity in a five-dimensional
space in order to unify the theories of electromagnetism and of gravity. A few years later,
Klein [2] proposed a way to include quantum effects. In the present work, the quantum
reality is neglected, mainly because many approaches to quantization are possible. In
addition, the dimension of the embedding space is limited to five. A preliminary version of
the present work is found in [3].

The idea that the 4-d curved spacetime becomes flat when extended to higher dimen-
sions is not new. Proponents of the space–time–matter theory [4,5] invoke the theorem of
Campbell-Magaard [6] to embed spacetime into a five-dimensional Ricci-flat Riemannian
manifold. An alternative interpretation is given by membrane theory, in which spacetime
is a hypersurface in a five-dimensional space [7,8]. Higher-dimensional embeddings are in
use in the context of string theory and its successor theories [9]. The present work starts
from a specific curvature-free connection for the five-dimensional spacetime and explores
the curved geometries that can be obtained by selecting a subclass of geodesics and ignoring
the motion in the fifth dimension, with the argument that it can be observed only in an
indirect manner.

The geometry of four-dimensional spacetime is described locally in good approxi-
mation by the Levi–Civita connection of the Minkowski metric, which is a pseudo metric
with signature (+,−,−,−) or (−,+,+,+). The metric considered in the present work
is positive-definite. This is meaningful because the geometry under study is not the one
described by the Levi–Civita connection. The main result of the present work is that the
positive-definite metric and the pseudo metric can both coexist with a given geometry of
the four-dimensional spacetime.
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The curvature-free connection of the five-dimensional spacetime chosen in the present
work is the dual of the Euclidean connection w.r.t. an arbitrary metric. The dually flat
geometry is a corner stone of information geometry [10–12]. It derives its relevance from
the importance of exponential families, known in Statistical Physics as Boltzmann–Gibbs
distributions. The natural parameters of a model belonging to an exponential family are
affine parameters of the so-called e-connection, which is one of two flat geometries linked
by duality. The hope is that the dual of the Euclidean geometry can play a similar role in
the present context.

The coordinates xµ determine positions in four dimensional spacetime. The additional
coordinate is denoted x4. Summations in four-dimensional spacetime involve Greek indices
µ, ν, ρ, σ, · · · . In 5-d space Latin capitals A, B, C, · · · are used.

The next two sections introduce the dual of the Euclidean connection. The geodesics
of this curvature-free connection are characterized by five conserved quantities, denoted
PA. These are calculated in Section 4. Section 5 shows that fixing P4 restores the one-
to-one relation between geodesics with a common starting point x and common initial
velocities ẋµ. Starting from Section 6, the choice is made that P4, the fifth conserved quantity,
vanishes. This allows for an easy calculation of effective connection coefficients and an
explicit calculation of the corresponding parallel transport operators. Section 8 uses these
operators to construct a pseudometric with the property that the corresponding metric
connection coincides with the effective connection introduced before. Section 9 uses the de
Sitter space as an example. The final section is a short discussion of the results.

2. The Dual Geometry

In five dimensions, a geodesic t 7→ xt with affine parameter t satisfies the equations
of motion

ẍA + ΓA
BC ẋB ẋC = 0. (1)

The coefficients ΓA
BC are the connection coefficients of the geometry and may still depend

on x in a smooth way. The 5-d space is treated here as a differentiable manifold. The
derivatives ẋB = dxB/ dt are components of a tangent vector field.

The metric is denoted gAB(x). It is chosen to be the positive-definite solution of

∂CgDB = gBAΓA
CD, (2)

if such a solution exists. This is the main assumption of the present work. The reason for
this choice is explained below.

The connection coefficients Γ∗A
BC of the dual-geometry, dual w.r.t. the metric tensor gAB,

are by definition fixed by
∂CgDB = gBAΓA

CD + gDAΓ∗A
CB .

Assumption (2) is therefore equivalent to the assumption that a metric g exists so that the
dual geometry has vanishing connection coefficients or, equivalently, that the coordinates
xA are affine coordinates for the dual geometry.

A well-known theorem states that a geometry has vanishing curvature if and only if
its dual has vanishing curvature. See, for instance, Theorem 3.3 of [10]. One concludes that
the assumption that a metric g(x) exists for which (2) holds implies that the geometry has
vanishing curvature because it is the dual of the Euclidean geometry.

The following result is what one expects intuitively.

Proposition 1. Let g be a solution of (2). The following are equivalent:

(a) g is the Hessian of a potential Φ(x);
(b) The connection with coefficients ΓA

BC is torsion-free.
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Proof. (a) implies (b)

Use gDB = ∂D∂BΦ to rewrite (2) as

∂C∂D∂BΦ = [∂B∂AΦ]ΓA
CD.

This implies either that ΓA
CD = ΓA

DC or that ∂B∂AΦ = 0 for all x in some region of R5. The
latter implies that the metric g is constant in that region and that the connection coefficients
vanish. In both cases, the connection is torsion-free.

(b) implies (a)

If the connection is torsion-free, then (2) implies

gFB∂CgDB = ΓF
CD = ΓF

DC = gFB∂DgCB

with gFB, the components of the inverse of g. This implies

∂CgDB = ∂DgCB.

This expression is the necessary and sufficient condition in a simply-connected domain for
the existence of functions ηB such that

gDB = ∂DηB.

Because the metric tensor is symmetric, it follows that ∂DηB = ∂BηD, which is the necessary
and sufficient condition for the existence of a potential Φ(x) such that ηB = ∂BΦ. One
concludes that

gDB = ∂DηB = ∂D∂BΦ(x).

3. Inverse Formulas

From now on, raising and lowering indices is carried out using the 4-d metric tensor
gµν. In particular, gµρ denotes the components of the inverse of the four-dimensional matrix
with components gµν. Note that the latter is positive-definite because the five-dimensional
matrix g is positive-definite.

Introduce the notations

λµ = gµρgρ4,

λν = gνµλµ = gν4

γ = g44 − λµgµνgν4 = g44 − λµλµ.

The vector field λµ controls the coupling of 4-d spacetime to the fifth dimension. Both λµ

and the scalar field γ depend in principle on 5-d coordinates xA.

Proposition 2. The positive-definitness of the metric tensor g implies that 0 < γ ≤ g44.

Proof. The scalar λµλµ is non-negative. This implies γ ≤ g44.
For any 5-vector, uA is

0 ≤ uAgABuB = uµgµνuν + 2uµλµu4 + g44(u4)2,

with strict inequality if the vector u does not vanish. Choose uµ = λµ and u4 = −1. Then,
it follows that 0 < γ.

The connection coefficients ΓA
CD can be calculated starting from the five-dimensional

metric tensor g. This follows from
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Proposition 3. Expression (2) implies

γΓρ
CD = γXρσ∂CgDσ − λρ∂CgD4, (3)

γΓ4
CD = ∂CgD4 − λµ∂CgDµ (4)

with
Xρσ = gρσ +

1
γ

λρλσ. (5)

Proof. Write (2) as

∂CgDµ = gµνΓν
CD + λµΓ4

CD,

∂CgD4 = λνΓν
CD + g44Γ4

CD.

Multiply the former line with gρµ to obtain

Γρ
CD = gρµ∂CgDµ − λρΓ4

CD. (6)

Insert this result in the latter line. This gives

∂CgD4 = λµ∂CgDµ + γΓ4
CD.

This is result (4). Combine (6) with (4) to obtain (3).

Note that γXρσλσ = g44λρ. The positive-definite tensor Xρσ turns out to be a central
object in what follows. The inverse of the tensor Xνρ is denoted Yµν. It is given by

Yµν =
1

g44

[
gµνg44 − λµλν

]
.

It is positive-definite because it is the inverse of a positive-definite tensor.

4. Conserved Quantities

From now on, assume connection coefficients ΓA
BC, which are such that a metric g(x)

exists solving (2). Multiply expression (1) with gDA and use (2) to find

0 = gDA ẍA + gDAΓA
BC ẋB ẋC

= gDA ẍA + [∂BgCD] ẋB ẋC

= gDA ẍA + ẋC d
dt

gCD

=
d
dt

[gDA ẋA].

This shows that the quantities PD = gDA ẋA are constant along any geodesic. Write them as

Pµ = pµ + λµ ẋ4 with pµ = gµν ẋν, (7)

P4 = λµ ẋµ + g44 ẋ4. (8)

Solving these equations yields

γẋν = γXνµ Pµ − λνP4, (9)

γẋ4 = P4 − λµPµ. (10)

The conserved quantities PA can be used as local affine coordinates w.r.t. a reference
point x0. The exponential map determines a point x1 in 5d spacetime by following a
geodesic t 7→ xt with initial velocities ẋA starting from the reference point x0 at t = 0 up
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to x1 at t = 1. In this way, the geodesic characterized by the conserved quantities PA is
associated with a point x1 in 5d spacetime.

5. Geodesics in 4-d Spacetime

Distinct geodesics in five dimensions with common starting point x can have the same
initial velocity ẋµ when projected on four-dimensional spacetime, i.e., when neglecting
what happens in the fifth dimension. They are characterized by the proposition following
below. It shows that fixing the value of P4 restores the one-to-one relation between initial
velocity ẋν and geodesic.

Proposition 4. Geodesics in five-dimensional space with the common starting point x0 have the
same initial 4-d velocity components ẋµ

0 if and only if the conserved quantities PA that characterize
the geodesic give the same value at the point x0 to the quantities g44Pρ − λρP4.

Proof. From (7) and (8), one obtains

g44Pρ − λρP4 = g44 pρ − λρλσ ẋσ = g44Yρσ ẋσ.

The r.h.s. of this expression depends only on the 5-d position x and on the 4-velocity ẋµ

but not on ẋ4. Hence, if the 4-velocities coincide at x0 then the quantities g44Pρ − λρP4 do
concide as well.

The argument also works in the other direction because g44 is strictly positive and the
tensor Yρσ is invertible.

Note that the starting point x of any geodesic is a point in 5-d. The restriction of the
geodesic to four dimensions may still depend on the initial value of the fifth component x4.

6. The Choice P4 = 0

From now on, the choice P4 = 0 is made. In addition, a reference point x0 is chosen
in 5-d hyperspace. Then, by Proposition 4 there is a one-to-one correspondence between
vectors ẋ in the tangent space at x0 and the geodesics labeled by the conserved quantities Pµ.
These geodesics define a geometry in the neighborhood of x0. It is shown below that this
geometry can be described by an effective connection not referring to the fifth dimension.

The choice P4 = 0 implies that the 4-momenta pµ are given by

pµ =
g44

γ
Pµ.

The spacetime positions along the geodesic characterized by the conserved quantities
Pµ satisfy

ẋµ = XµνPν. (11)

The position x4 in the fifth dimension satisfies

ẋ4 = − 1
γ

λµPµ.

Proposition 5. Torsion-free effective connection coefficients Γ̄τ
µν exist such that any geodesic in 5-d

satisfying P4 = 0 also satisfies the 4-d geodesic equations

ẍτ + Γ̄τ
µν ẋµ ẋν = 0. (12)

The effective connection coefficients are given by

Γ̄τ
µν =

1
2

Γτ
µν +

1
2(g44)2 Γτ

44λµλν −
1

2g44

(
Γτ

µ4 + Γτ
4µ

)
λν

+ (µ↔ ν).
(13)
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Here, µ↔ ν means that the preceeding expression is repeated with the symbols µ and ν interchanged.

Proof. Subtract (1) from (12) to obtain

Γ̄τ
µν ẋµ ẋν = Γτ

µν ẋµ ẋν + Γτ
44(ẋ4)2 +

(
Γτ

µ4 + Γτ
4µ

)
ẋµ ẋ4. (14)

Use that P4 = 0 to obtain

γ2
(

Γ̄τ
µν − Γτ

µν

)
XµρPρXνσPσ

= Γτ
44(λ

µPµ)
2 − γ

(
Γτ

µ4 + Γτ
4µ

)
XµρPρλσPσ.

This condition should hold for all Pµ. This implies

γ2
(

Γ̄τ
µν −

1
2

Γτ
µν −

1
2

Γτ
νµ

)
XµρXνσ

= Γτ
44λρλσ − 1

2
γ
(

Γτ
µ4 + Γτ

4µ

)
Xµρλσ − 1

2
γ
(

Γτ
µ4 + Γτ

4µ

)
Xµσλρ.

Multiply the above expression with YρπYσξ . This gives

γ2
(

Γ̄τ
πξ −

1
2

Γτ
πξ −

1
2

Γτ
ξπ

)
Xνσ

= Γτ
44Yρπλρ Yσξ λσ − 1

2
γ(Γτ

π4 + Γτ
4π)Yσξλσ − 1

2
γ
(

Γτ
ξ4 + Γτ

4ξ

)
Yρπλρ.

Finally use that

λσYσξ =
γ

g44
λξ

to obtain (13).

7. Parallel Transport

In the present section, the connection coefficients Γ̄τ
νρ are those defined by (13). In

particular, all geodesics under consideration satisfy P4 = 0. An explicit expression is
obtained for the parallel transport operators.

Choose basis vectors eµ defined by eρ
µ = gρ

µ. The tangent vector ẋ is then given by

ẋ = ẋµ eµ.

Parallel transport Π(t) along a smooth curve t 7→ xt is represented by a matrix Πµ
ν (t)

defined by
Π(t)eν(0) = Πµ

ν (t) eµ(t).

For convenience, here and at many occasions in what follows, t is written instead of xt and
0 instead of x0. The operator Π(t) maps the tangent space at x0 onto the tangent space at
xt. Choose

Πµ
ν (t) = Xµρ(t)Yρν(0).

This choice of parallel transport determines a connection [13]. Let us show that it reproduces
the geometry determined by the effective connection coefficients Γ̄τ

νρ. If t 7→ xt is a geodesic
determined by the conserved quantities Pµ, as given by (11), then one has
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Π(t)ẋ0 = ẋν
0 Π(t)eν(0)

= ẋν
0 Πµ

ν (t) eµ(t)

= Xνσ(0)Pσ Xµρ(t)Yρν(0))eµ(t)

= Pρ Xµρ(t)eµ(t)

= ẋµ(t)eµ(t)

= ẋ(t).

(15)

This shows that the operators Π(t) implement parallel transport for the connection studied
in the previous sections.

8. The Pseudometric

Choose an arbitrary starting point x in spacetime and a pseudometric G(x) in the
tangent plane at x. This pseudometric can be, for instance, that of Minkowski: G(x) = η
with η = [+,−,−,−]. Next, use parallel transport to define the pseudometric G on a
neighborhood of x. This gives

Gµν(y) = Yµτ(y)Xτρ(x)Gρσ(x)Xσξ(x)Yξν(y). (16)

Proposition 6. The parallel transport operators Π(x) defined in the previous section conserve the
metric tensor Gµν(y) given by (16).

Proof. A straightforward calculation shows that

(Π(x 7→ y) eµ(x), Π(x 7→ y)eν(x))y = Gµν(x)

= (eµ, eν)x.

One concludes from this proposition that the geometry defined by the connection
coefficients Γ̄τ

νρ is the metric connection, also called the Levi–Civita connection, for the
(pseudo)metric G.

An important property of the metric connection is that the square

|ẋ|2 = ẋµḠµν ẋν

of the length of the velocity 4-vector is constant along any geodesic t 7→ xt. If the square
length vanishes, then the geodesic is called a null-geodesic.

Assume that G is given by (16). Then, one finds

|ẋ|2 = ẋµYµτ(t)Xτρ(0)Gρσ(0)Xσξ(0)Yξν(t)ẋν

= PτXτρ(0)Gρσ(0)Xσξ(0)Pξ .
(17)

If v is any vector of the null-cone at the reference point x0, i.e., a vector satisfying vµGµν(0)vν

= 0, then the geodesic with Pµ = Yµνvν starting at x0 is a null-geodesic.

9. The de Sitter Space

The following example reproduces the geometry of the de Sitter space in the region
|x| < L with L the de Sitter length and with

|x| =
(

3

∑
a=1

(xa)2

)1/2

.

Introduce a positive function α(x) defined by
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α = −1 +
L√

L2 − |x|2
.

Use it to define the metric tensor gµν

g00 = g44 = 1,

g04 =

√
α

1 + α
,

g0a = ga4 = 0, a = 1, 2, 3,

gab = δab + α
xaxb

|x|2 , a, b = 1, 2, 3.

(18)

It is easy to verify that the tensor g is positive-definite. In the limit of large L, the function α
tends to zero. This implies that the metric tensor converges to the identity matrix.

From the definition of the function γ, one obtains

γ =
1

1 + α
.

The 4-by-4 tensor Y is found to be given by

Y00 =
1

1 + α
,

Y0a = Ya0 = 0, a = 1, 2, 3

Ya,b = gab, a, b = 1, 2, 3.

(19)

The inverse X of Y is the identity matrix at |x| = 0. Hence, (16) with G(0) = η yields

Gµν(y) = Yµτ(y)ητρYρν(y)

=

(
(1 + α)2 0
0 −g2

)
.

(20)

This gives

G00(y) =
L2 − |x|2

L2 ,

G0a(y) = 0, a = 1, 2, 3,

Gab(y) = −δab −
xaxb

L2 − |x|2 , a, b = 1, 2, 3.

(21)

This result is the pseudometric tensor of the de Sitter model in static coordinates [14].

10. Discussion

The geometry of spacetime is usually described by a pseudometric and the corre-
sponding metric connection. For a free-falling observer, this pseudometric is in good
approximation equal to the Minkowski metric. The present work considers a large class
of models for which the connection is obtained from a curvature-free connection in a
five-dimensional space by neglecting what happens in the fifth dimension. The curvature-
free connection is the dual connection of the 5-d Euclidean geometry w.r.t. an arbitrary
positive-definite metric. It is shown that the connection obtained in this way can be the
metric connection for a well-chosen pseudometric.

The focus is on mathematical aspects. Physical relevance is not yet investigated. The
embedding of spacetime in higher-dimensional spaces is an extensively studied topic. This
raises the obvious question of how the present class of models relates to those of the existing
literature. The viewpoint of neglecting what happens in the fifth dimension is close to
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that of induced matter theory, while the majority of studies adopt the point of view that
spacetime is embedded in the higher-dimensional space as a curved hypersurface.

For the sake of simplicity, the dimension of the embedding space is taken equal to five.
An extension of the present approach to higher dimensions is obvious. It would not alter
the main conclusion of the work, namely, that it is meaningful to work with two metric
tensors simultaneously, one of which is a Minkowski-like pseudometric and the other of
which is positive-definite and is used to control the geometry.

A limitation of the present work is the assumption made in the final sections that the
additional conserved quantity P4 vanishes. The general case with P4 6= 0 needs further
investigation. The complication that arises is that effective forces induced by motion in the
fifth dimension may be velocity-dependent.
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