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Abstract

Chronic diseases within Indigenous communities constitute the most com-
pelling ill-health burdens and treatment inequalities, particularly in rural
and remote Australia. In response to these vital issues, a systematic liter-
ature review of the adoption of wearable, Artificial Intelligence-driven, elec-
trocardiogram sensors, in a telehealth Internet of Medical Things (IoMT)
context was conducted to scale up rural Indigenous health. To this end, four
preselected scientific databases were chosen for data extraction to align with
the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) technique. From the initially collected (n = 4436) articles, a to-
tal of 32 articles were analysed, being synthesised from the review inclusion
criteria, maintaining strict eligibility and eliminating duplicates. None of the
various studies found on this innovative healthcare intervention has given a
comprehensive picture of how this could be an effective method of care dedi-
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cated to rural Indigenous communities with cardiovascular diseases (CVDs).
Herein, we presented the unique concepts of IoMT-driven wearable biosen-
sors tailored for rural indigenous cardiac patients, their clinical implications,
and cardiovascular disease management within the telehealth domain. This
work contributes to understanding the adoption of wearable IoMT sensor-
driven telehealth model, highlighting the need for real-time data from First
Nations patients in rural and remote areas for CVD prevention. Pertinent
implications, research impacts, limitations and future research directions are
endorsed, securing long-term Wearable IoMT sensor-driven telehealth sus-
tainability.

Keywords: Artificial Intelligence, Cardiovascular Disease, Indigenous
population, Internet of Medical Things, Internet of Things, Machine
Learning, Telehealth, Wearable ECG sensors

1. Introduction

Indigenous healthcare provision is in dire need of delivery reform. A
recent study indicates that more than 370 million Indigenous inhabitants
live worldwide with low health standards compared with benchmark popula-
tions [1]. Indigenous communities bear a heavy burden of illness, leading to
lower life expectancy, severe infectious diseases, malnutrition, depression, in-
fant and child mortality, high maternal morbidity and mortality, rising levels
of cardiovascular diseases, and other chronic metabolic disease loads [2, 3].
Chronic diseases, including obesity, hypertension, CVDs, Diabetes mellitus,
chronic kidney disease (CKD), and renal failure, have become significant
health complications worldwide that cause millions of deaths every year [4].

CVD, an umbrella term for heart and blood vessel conditions, is a sig-
nificant concern in Australian rural indigenous communities [5]. Porykali et
al. [6] reveal that the indigenous populations of Australia experience higher
rates of CVD, leading to increased hospitalisations and mortality compared to
their non-indigenous counterparts. This pattern is not unique to Australia,
as indigenous communities worldwide face elevated CVD risks [7]. While
chronic diseases associated with health disparities among these communi-
ties are well documented, it remains unclear whether existing interventions
sufficiently address these issues [8]. Health inequalities persist, with the in-
digenous population bearing a disproportionate disease burden [9]. Crengle
et al. [10] demonstrate a high prevalence of clinical diagnoses related to CVD
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among indigenous populations in Australia and Canada [10], highlighting the
substantial health disparity [9].

Telehealth/telemedicine, particularly when integrated with intelligent wear-
ables through the Internet of Things (IoT)/ Internet of Medical Things
(IoMT), offers a potential solution to bridge healthcare access gaps [11].
These techniques substantially impact modern healthcare systems by bring-
ing value to health seekers, providing high-quality, cost-effective services,
and promoting effective remote care. This study aims to explore how IoMT-
driven telehealth can improve health outcomes and reduce health inequalities
among rural and remote indigenous communities in Australia, especially in
managing CVD through real-time patient monitoring and optimal disease
management [12, 13, 14, 15].

While prior studies have investigated chronic diseases among Australian
Aboriginal communities [9, 16, 7, 17], there is a gap in understanding how
smart telehealth, particularly IoMT-aided CVD care, can benefit these com-
munities comprehensively. This study presents innovative concepts of IoMT-
driven wearable biosensors tailored for rural indigenous cardiac patients and
their implications for cardiovascular disease management within the domain
of telehealth. This study contributes by identifying adoption determinants
for IoMT-driven telehealth for regional CVD care, advocating for real-time
care, and shedding light on how IoMT technologies can create a novel tele-
health model for remote CVD in Australia and similar settings.

This article proceeds as follows. Section 2 begins with the research ra-
tionale and conceptual model. Section 3 labels the research methods used.
Section 4 outlines the data analysis and results. Section 5 focuses on a dis-
cussion of the findings. Section 6 discusses the contribution and managerial
implications. Section 7 proposes the research impacts. Section 8 provides
limitations and suggestions for future research directions. Section 9 con-
cludes the article and underlines research highlights.

2. Research Rationale

CVD is the second most significant disease burden in Australia [18].
Among the Australian First Nation people, CVD is the leading cause of
disease burden and death and one of four chronic conditions that account
for 70% of indigenous Australian health gaps [18]. These Australian com-
munities suffer from heavy infectious disease loads, increasing cardiovascu-
lar and other chronic diseases, and overall poorer health indicators com-
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pared to their non-aboriginal counterparts [3]. Gibson et al. [17] remarked
that chronic diseases predominantly contribute to health disparities since the
life expectancy gaps peaked at 50% of Aboriginal and non-aboriginal Aus-
tralians. These findings exhibit a disproportionate burden of ill health and
social suffering upon Australian Aboriginal populations [9]. Unexpectedly,
much less attention has been given to reducing severe health burdens, social
suffering, and health gaps within this minority group and decreasing health
disparity between indigenous and non-indigenous populations. Smart wear-
able IoMT Sensors and AI-driven telehealth would be well suited to provide
cost-effective, high-quality, specialised cardiac patient care and minimise the
dominating determinants of health disparity.

A plethora of contemporary research is primarily focused on the appli-
cation of smart telemedicine (i.e., telehealth) for rural and remote patients
using IoT technology [19, 20, 21, 22, 23, 24, 25]. These innovative IoT-
aided healthcare systems are used in clinical and operational situations as
part of digitally transformative practices. For example, Sawyer et al. [25]
claimed that physicians make complex clinical decisions using medical big
data generated by smart wearable sensors/devices. This supports [26], who
asserted that big data holds great promise to create analytic models for bet-
ter disease predictions, prevention, and management. Morgan et al. [23]
suggested that the ground-breaking medical sensors embedded with IoMT-
driven telehealth services enable patients to receive enhanced treatments and
medical advice remotely. Within telemonitoring, Koya et al. [22] confirmed
that an algorithm is designed to run at the gateway node to optimise the
power efficiency of the sensor without causing a power drain at the gate-
way node. Medin-Eastwood et al. [27] stressed that wearable IoT sensors
act as enablers, incessantly producing a large volume of information from
structured and unstructured medical big data. This validates an underlying
contribution made by these traditional technologies and Medical technolo-
gies. Broadly these are trending towards an IoT-driven healthcare ecosystem
in mainstream healthcare provision.

The IoT refers to the interconnected network of physical objects (i.e.,
“Things”) that are integrated into the exchange of data between devices
and sensors through the Internet [28]. Bajao et al. [29] revealed that IoT
encompasses a network connected to the internet with various sensors, elec-
trical chips, and relevant hardware components. The combinations of sen-
sors technologies (MedTech) and IoT technologies have the novelty [30] to
make connections between people and objects via wearables a convenient to
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Figure 1: Conceptual Model of Wearable IoMT ECG AI-driven telehealth.

provide them with a convenient living environment [31]. In another study,
Dahlqvist et al. [30] landmark applications in diverse sectors, including smart
cities, smart homes, connected cars, and e-Health/telehealth/m-health. In
an application of IoT, Dwivedi et al. [28] noted that Wireless Body Area Net-
work (WBAN) systems play significant roles in building IoT-aided Telehealth
frameworks for real-time rural patient monitoring, treatment and disease
management. Similarly, Riley et al. [24] illustrate how wearable biomedi-
cal IoMT sensors and AI-driven telehealth can screen patient physiological
complexities and predict severe medical conditions. Dwivedi et al. [28] fur-
ther pointed out that the IoMT-driven robotic technology can interact with
patients after analysing medical data, providing vital signs and the status
of their body to predict the risk of CVD, and recommending the necessary
lifestyle changes to avoid associated complications.

As mentioned above, the fast-growing innovation of machine learning
(ML) and AI, further fuelled the digital transformation in healthcare ser-
vices to deliver a better patient experience and optimal care. Digital health
transformation technologies such as the IoMT, virtual care, real-time re-
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mote monitoring, robotic surgery, AI, Big Data analytics, smart wearables,
e-health/telehealth/telemedicine, and m-health platforms are part of modern
healthcare services [32]. These technologies enable the storage and sharing of
relevant health information across the health ecosystems, improving medical
diagnosis, the prognosis of medical risks, creating a continuum of care, and
improving health outcomes, thereby creating more evidence-based knowledge
for health professionals to support cutting-edge healthcare systems [32]. For
instance, IoT mobile, wearable devices and smart medical sensors are instru-
mental in developing a smart healthcare system (i.e., telehealth). These are
omnipresent, fast, and seamlessly accessible to patients [33] living in rural
and remote areas. Motivated by prior research on Wearable IoMT ECG AI-
driven telehealth [28, 34, 35, 25], the proposed conceptual model identifies
the associations between Wearable IoMT ECG determinants and AI-driven
telehealth determinants, contributing to developing a future model of care.
The conceptual model in Figure 1 investigates the research question.

This systematic review focuses on the clinical applications and evidence-
based interventions of wearable IoMT ECG sensors and applications of AI-
driven telehealth. In particular, this review focuses on IoT technologies that
prevent the risk of cardiovascular diseases and mortality among Australian
Aboriginal communities via smart telehealth ecosystems.

Meta-studies [7, 36, 17, 37] suggest research on Australian aboriginal pa-
tients with CVD has primarily been focused on conventional health care
interventions. Little evidence suggests how wearable AI-driven IoMT elec-
trocardiogram sensors can diagnose and predict Aboriginal patients’ risk of
CVD regardless of their geographical locations. Moreover, there is scant evi-
dence of a robust IoMT-driven telehealth model of CVD care for these com-
munities. These endeavours are predominantly missing and almost ignored
in most existing literature in this critical field. Additionally, there has been
little to no investigation into wearable IoMT ECG sensors or AI-driven tele-
health models to prevent CVD risks among Australian First Nations living
in rural, regional, and remote settings. The determinants of this knowledge
gap ought to be filled. The present review examines the following research
question:

RQ: How could wearable IoMT Electrocardiogram sensors that use Artificial
Intelligence-driven telehealth models be harnessed to prevent cardiovas-
cular disease-causing morbidity and mortality among First Nations peo-
ples living in rural, regional, and remote Australia?
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3. Research Methodology

Systematic reviews and meta-analyses are essential tools and techniques
for summarising the evidence extracted from the literature precisely, accu-
rately and reliably [38]. This systematic review uses the standard guide-
lines as the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis(PRISMA), an approach recommended by many scholars [39, 38].
PRISMA provides comprehensive review guidelines for each checklist item
related to research backgrounds, development, explanations, and rationale
that reviewers can follow to ensure the undertaken review processes and
meta-analysis are authentic and transparent [38].

3.1. Information Sources

This study conducted a comprehensive peer-reviewed journal article search
using four digital databases. The four digital databases, IEEE Xplore, Web
of Science, ScienceDirect, and PubMed, provide a broad view of health infor-
matics research from 2015 to 2021 and are deemed appropriate and relevant
to the study’s discipline. These data sources allowed us to extract a body of
scholarly work on the topic, enhancing the credibility of our research find-
ings. In addition, using four reputable databases ensured the inclusion of
high-quality articles, further strengthening the validity of our systematic lit-
erature review and enabling us to provide valuable insights into the topic and
contribute to the existing body of knowledge in health informatics.

3.2. Search approach

The search strategy for the targeted articles was limited to peer-reviewed
journals from 2015 to 2021. The initial search was started on 25 July 2020
and was updated on 31 June 2021 for relevant studies that the initial search
might have missed [39]. Addressing the PRISMA statement, the following
search strings are used for article extraction, “Internet of Things (IoT) on
cardiovascular disease prediction” OR “Indigenous Cardiovascular Disease-
causing death prediction through IoT embedded Telehealth”, AND “IoT-
based telemedicine”. We used a single and mix of keywords, including op-
erators “AND” and “OR”, such as “Indigenous Cardiovascular disease and
Telehealth”, OR “Indigenous-CVD-Telehealth”, “Australian Telehealth and
Indigenous CVD”, “Internet of Things and Cardiovascular disease”, “Aus-
tralian Rural Health and Aboriginal people”, “Indigenous people and Tele-
health”, “Cardiovascular Disease and telehealth”, AND “CVD and IoT based
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telehealth, OR IoT and Telehealth”, “Aboriginal people and Telehealth”,
OR “First people and telehealth”, “First People and Cardiovascular dis-
ease”, “Torres Islanders and Telehealth”, “Machine learning and Internet
of Things based wearables”, AND “Deep learning and Cardiovascular dis-
ease monitoring using wearable IoMT sensors”, OR “Artificial Intelligence
and Cardiovascular disease” AND “AI and CVD” OR “IoT and wearable
ECG devices”, AND “IoT and wearable ECG sensors”, OR “Wearable CVD
monitoring devices”.

3.3. Inclusion, Exclusion and Eligibility

This review included (inclusion criteria) strictly peer-reviewed published
journal articles in English related to the mainstream of research; others, in-
cluding duplications along with irrelevant resources, are excluded (exclusion
criteria). Furthermore, this review included studies involving wearable and
handheld electrocardiogram sensors, IoT technologies, as well as AI and ma-
chine learning applications. However, studies not directly related to cardio-
vascular disease detection, prevention, and management were excluded from
consideration. It is worth noting that this review included peer-reviewed ar-
ticles related to Aboriginal patients with CVDs as part of the search due to
the unavailability of sufficient relevant research on wearable IoT-aided elec-
trocardiogram sensors and AI-driven telehealth for Aboriginal patients with
CVD in rural and remote Australia and globally. To ensure the appropriate
article selection, the authors administered three rounds of screening and fil-
tering processes and removed all irrelevant articles, book chapters, conference
papers, and research notes, securing the most relevant items for analysis and
synthesis. By adhering to stringent inclusion and exclusion criteria and em-
ploying meticulous screening and filtering processes, this review maintained
a high standard of article selection, contributing to the accuracy of the study
findings. The following section discusses the major themes of this research
and the outcomes of the analysis. This is focused on the development of an
analytic model for CVD risk prediction and policy recommendation for sus-
tainable IoT/IoMT aided telehealth interventions for the rural and remotely
living Indigenous communities.

4. Analysis

This study presents the review results using PRISMA guidelines (see Fig-
ure 2) at each stage of the article classification (i.e., cleaning and filtering),
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Figure 2: Literature search and selection process using PRISMA technique
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Figure 3: Articles published globally optimising Wearable ECG Sensors for CVD care.

adhering to the selection processes. Continuing with this approach, initially,
this research yielded (n = 4436) articles from four digital databases, namely
IEEE Xplore, Web of Science, ScienceDirect, and PubMed. Upon the com-
plete screening of the title, abstract, and content and duplication, a total
(n = 190) of papers were primarily selected that were deemed relevant to the
purpose of this study. The filtering process was administered, and there were
(n = 56) articles included for congruency with the review inclusion criteria
and (n = 135) papers were excluded. Full-text articles were further assessed
to meet eligibility criteria since, after careful appraisal (n = 24), articles were
excluded due to not being strictly pertinent to the study’s subject matters.
Finally, a total of (n = 32) articles were finalised for data synthesis (see
Figure 2).

To summarise the existing findings, Figure 2 provides evidence of the lit-
erature search and selection process administered using the PRISMA review
technique. While Figure 1 demonstrates the conceptual model as the work-
flow of wearable IoMT ECG sensors, the AI-driven telehealth (IoMT, AI-TH)
model for the constant real-time monitoring the patients with CVD in rural
and remote areas is relevant to this study. In the present study, Table A.1 (see
Appendix A) and Table B.2 (see Appendix B) describe the characteristics
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Figure 4: Summary Characteristics of Studies on Wearable IoT-ECG Sensors, AI-Driven
Telehealth for CVDs Care.

of the articles published within the time frame. Figures 3 and 4 exhibit the
summary characteristics of diverse applications of wearable IoT-aided ECG
sensors and AI used to diagnose and prognosis the CVD described in the
literature. Moreover, our findings indicate that (19%) of studies validate the
compatibility of wearable IoT/IoMT ECG sensors with AI-driven telehealth
for CVD care across diverse settings. The key findings to be addressed in
the following sections are the reviews.

4.1. Statistical and Geographical Distributions of Published Articles

Figure 5 shows the number of articles published from 2015 to 2021, in-
dicating an overall increasing tendency, particularly in the USA (25%), ac-
counting for eight articles, followed by China (15.62%), and India (12.5%)
each contributing five and four respectively. Similarly, Australia (9.37%),
France (6.25%) and Poland (6.25%) each produced 3 and 2 articles, respec-
tively. Meanwhile, the UK (3.12%), Germany (3.12%), Belgium (3.12%),
Italy (3.12%), Singapore (3.12%), Malaysia (3.12%), Iran (3.12%), and Pak-
istan (3.12%) each presented similar papers in the review. The inclusion
of works from various countries offers a broader view of IoT/IoMT sensors-
driven telehealth models for rural CVD care, ensuring a more holistic analysis
and synthesis of the research landscape.

This distribution provides deep insight into the global interest and active
engagement of various countries in research related to Wearable IoT-ECG
Sensors, AI-Driven Telehealth for CVDs care. This validates that the USA,
China, and India have been particularly active in generating new findings
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Figure 5: Statistical Distribution of Articles Published in Several Countries.

on this innovative model of care, while other countries also have important
contributions with fewer publications.

Furthermore, the varied geographical distribution of research contribu-
tions from countries like the USA, China, and India (see Figure 6) reflect
their dominant engagements in this emerging field of research, reinforcing the
innovative nature of this model of care. The variation in the number of stud-
ies from these countries suggests disparities in research emphasis, adequacy
of funding and prevalence of the topic interest. This distribution also helps
identify potential collaborations in research within these countries, offering
significant opportunities for further exploration and cross-country compar-
isons. Additionally, the insights gained from this diverse pool of literature
will better identify the determinants of adopting IoT/IoMT wearable ECG
sensors and AI-driven telehealth models within Australia and similar set-
tings. Finally, the findings corroborate the identification of potential gaps
and opportunities for future research and practices within this innovative
field.

4.2. Wearable IoT/IoMT Sensors, AI-driven Telehealth Platform

IoT/IoMT-driven telehealth services have gained intensive attention and
sparked interest in successful adoption to create clinical and economic val-
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Figure 6: Geographical Distribution of Articles Published between 2015 to 2021.

ues amongst diverse global health providers. The continuous evolution of
technology and artifacts plays a key role in developing IoT/IoMT-based tele-
health services to ensure high-quality service, safe and secured health access
with affordable and reliable coordinated care for rural and remote patients.
Furthermore, with the growing recognition of the roles of the IoT/IoMT and
the multi-purpose biomedical devices and their interoperability of functions,
there is an increased impetus for building patient-centric ‘smart’ healthcare
systems. For example, Jin et al. [40] asserted that the IoMT technology has
gradually been used in remote patient monitoring, screening and treatment
using various innovative (i.e., MedTech) medical sensors and devices. The
authors proposed a multi-dimensional predictive model based on BP neu-
ral network [40]. The proposed study incorporates multi-dimensional data
analysis and achieves high prediction accuracy as an important guiding sig-
nificance for intelligent medical treatment.

To determine the sustainability of IoMT-based telehealth for cardiovascu-
lar care in rural settings, Hamil et al. [21] proposed a wearable IoMT ECG,
AI-driven telehealth model for arrhythmias of cardiovascular disease detec-
tion, prediction and management. The proposed wearable ECG can capture
the bio-signal data and analyse them using AI and ML approaches. The
authors found this model has achieved high prediction accuracy peaking at
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99.56%, demonstrating the future opportunity of a large-scale deployment.
Throughout this review, we will use IoT and IoMT interchangeably [21]. Util-
ising IoT in the MedTech industry context, Albahri et al. [19] mapped the
lifecycle and architecture of wearable IoT-based telemedicine (i.e., telehealth)
healthcare framework comprising IoT wearable sensors, network communi-
cations, cloud computing, hardware devices, smartphones, and AI technique.
The authors in [19] further show that the IoT-based healthcare systems (Lo-
RaWAN) contain four essential elements: data collector, analysis, treatment
plan generator and treatment plan executor. Similarly, Grooby et al. [41]
designed a wearable IoT phonogram (PCG), an AI-driven telehealth model
for the automatic estimation of heart rate (HR) and breathing rate (BR) of
CVD care. The performance and reliability of signal detection have been
tested for the proposed PCG [41]. A total of 88 ten-second-long chest sound
samples were taken from 76 preterm and full-term babies since this PCG suc-
cessfully detected high-quality sound data and analysed them using AI and
achieved a high prediction accuracy of heart rate and breath rate accounting
for 93% and 82%, respectively, elucidating a robust model of CVD care for
neonatal CVD patients for telehealth applications.

Taking a new approach to wearable IoT ECG sensor-based telehealth for
CVD management, Koya et al. [22] distinguished the era of the IoT and
hyperconnection with an ECG telemonitoring via WBAN or cloud-based
within telehealth framework. The authors found these models are easy to
use, self-configured, secure, plug-and-play systems with minimum hardware.
Furthermore, Koya et al. [22] investigated the adaptability of smartphones
as an IoT gateway for sending and receiving data to a remote server. Mobile
IoT gateways offer high potential due to their widespread usage, small size
with relatively high computational power, and seamless wireless connectivity
[22]. Similarly, integrating more technologies into wearable IoT ECG sensor-
driven telehealth systems, Beach et al. [12] proposed a wearable IoT Wrist-
Worn ECG sensor to monitor home-based patients with CVDs in out-of-
clinic settings in the UK. This wearable offers low-power consumption for
real-time CVD patients’ heart rate variability monitoring systems. These
studies conclude that wearables IoT/IoMT ECG sensor has great potential
for rural and remote CVD care.

Within IoMT-enabled applications, Sanamdikar et al. [15] proposed an
IoMT-integrated electrocardiogram (ECG) sensor (IoMT) to monitor five dif-
ferent forms of beat arrhythmias, including regular, supraventricular ectopic
beats, ventricular ectopic beats, the fusion of ventricular and normal, and fu-
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sion of placed and normal (N, S, V, F, Q) for early detection of heart problems
of CVD patients. The findings reveal that the proposed algorithm success-
fully predicted cardiac arrhythmias, accounting for 98% of accuracy in feature
extraction, classifications, and arrhythmia detection validating tremendous
value to the patients with CVDs [15]. Additionally, the authors further
clarified how the ECG beats classification technique can improve accuracy,
sensitivity, specificity, and precision associated with detecting cardiac ar-
rhythmias [15]. Dwivedi et al. [28] presented a comprehensive guideline of
the IoMT structure and its competitive advantages in the healthcare system,
along with various potential applications. The authors classified components
of IoMT into several categories, given the full details concerning the methods
and analysis used in the study.

From the prolific growth of MedTech, Rashid et al. [42] proposed a
portable ECG-based telemedicine model for real-time monitoring of patients
with CVD residing in non-clinical environments such as the home, office, or
remote rural areas. This lightweight, portable ECG sensor enables sensing
patients’ heartbeat, amplitude level, and PQRST wave via the Atmega-32
microcontroller using the RS-232 serial module. Likewise, Randazzo et al.
[43] designed wearable, wireless-based ECG Watch wrist-worn sensors for
real-time patients with CVD monitoring. The proposed algorithm detects
possible atrial fibrillation episodes within 10 seconds through a smartphone
or desktop App. The authors verified that this wrist-worn ECG Watch sensor
performed well in diagnosing and prognosis of atrial fibrillation disease since
this cannot be easily detected in reality [43]. Interestingly, both proposed
(portable ECG and wrist-worn ECG sensors) are designed for telehealth ap-
plications, but none was implanted with IoT/IoMT platforms. Likewise,
Wang et al. [44] proposed a dynamic ECG compatible with telemedicine to
prevent and diagnose CVD patients in Singapore. The authors applied ECG
signal analysing algorithms for external noise reduction captured by ECG
and found noise reduction performance outstanding. However, these sensors
could have been tested with IoT/IoMT platforms for validity checks within
the telehealth domain. To identify what elements of wearable IoT/IoMT-
based ECG sensors are compatible with the telehealth framework for rural
and remote CVD care.

4.3. CVD Challenges in Australian Aboriginal Communities

Research indicates that chronic disease is the single leading cause of death
among Aboriginal and Torres Strait Islander peoples in Australia [17]. Gi
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bson et al. [17] reviewed and highlighted the enablers and impediments re-
lated to adopting a primary healthcare model to support indigenous popula-
tions with chronic diseases in Australia, New Zealand, Canada and the USA.
Their findings have some similarities to the other publications. For instance,
Calabria et al. [7] found that the CVD risk is consistently higher in in-
digenous than non-indigenous populations indicating that Native American,
Canadian First Nation, Māori, and Australian Aboriginal and Torres Strait
Islander communities are at increased risk against their counterparts. Inter-
estingly, the authors found a high absolute CVD risk in young Australian
Aboriginal and Torres Strait Islanders under the age of 35 years [7], vividly
highlighting health inequalities between the two groups. Unfortunately, re-
search, strategies, policy implications, and individual and community-based
efforts are not being sufficiently put forward to recognise the realities of
chronic diseases. Health and well-being are also being ignored, pointing to
direct and indirect health disparities between Aboriginal and non-aboriginal
communities [9].

Apart from other chronic diseases, coronary heart disease (CHD), which
may appear without any symptoms of cardiovascular disease, is the leading
cause of morbidity and mortality worldwide [45]. The authors presented an
invasive CVD diagnostic measurement and evaluation of aortic stiffness in the
carotid-femoral pulse wave velocity (PWV) index to diagnose patients with
CVD [45]. This index explains how the velocity of arterial pulse moving along
the vessel wall indicates and predicts possible CVD events. The authors
further clarified the antecedents to CVDs causing events comprising age,
sex, blood pressure (BP), and heart rate (HR), all tied to be substantial
auxiliary factors of aortic stiffness representing an essential index for the
CVD diagnosis [45]. Moreover, they used cutting-edge AI (i.e., Artificial
Neural Network) technology to explore a new CVD characteristics/elements
pattern that could effectively detect coronary heart disease, prevention, and
management [45].

From an early detection point of view, Shomaji et al. [46] proposed a
novel wearable diagnostics system for CVD patients in the USA. These au-
thors outlined a set of CVD diagnostic tools that can assist physicians in
detecting heart diseases, including CT heart scan, chest X-rays, blood tests,
cardiac catheterisation, heart MRI, stress test, pericardiocentesis, myocar-
dial biopsies, and coronary angiography. Further, they designed the essen-
tial hardware components for wearable imaging systems and an algorithm
to predict intima-media thickness (IMT), an indicator of CVDs. Likewise,
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in Belgium, De et al. [47] offered a multi-parameter wearable sensor for
follow-up cardiac rehabilitation patients. The authors applied AI and ML
approaches to visualise the relationships between sensor-derived biomark-
ers and sensors’ capability to monitor remote CVD patient tracking. Lin
et al. [35] presented an IoT-aided wearable ECG sensor for real-time pa-
tient monitoring with CVDs. They found the five different sensors that
can be used to detect cardiovascular diseases such as Pulse Wave Veloc-
ity (PWV), electrocardiogram (ECG), phonocardiogram (PCG), Seismocar-
diogram/ballistocardiogram (SCG/BCG) and apexcardiogram (ACG). The
same was found in the study by Yang et al. [48], who proposed an IoT-cloud-
based ECG sensor for real-time patients with CVDs monitoring. These au-
thors classified bio-signal data into five different ECG signal categories (P
wave, T wave, Q wave, R wave and S wave) that should allow physicians to
diagnose cardiovascular diseases [48].

Creating value in chronic care for Aboriginal populations via telehealth,
Brazionis et al. [16] proposed a telehealth model for remote and very re-
mote indigenous patients with CVD and Diabetes. Due to insufficient data
availability, the authors could not strongly conclude whether telehealth ap-
plications can facilitate best practices in CVD and Diabetes care and disease
management in remote indigenous communities in Australia. This unan-
swered question demands an avenue of research for this exciting new area.
Table A.1 and Table B.2 (appendix) provide evidence that almost all studies
used wearable ECG sensors for CVD care. At the same time, the aggrega-
tion of findings Tables A.1 and B.2 (appendix), and Figures 3-6 confirm that
existing literature recognized the potential significance of IoT/IoMT-ECG
sensors AI-driven telehealth for rural and remote CVD care.

4.4. Wearable IoT/IoMT ECG Sensors-based CVD Patients Monitoring

In Figure 3 and Table B.2 (appendix), diverse applications of wearable
IoT-aided ECG sensors to diagnose and prognosis CVD reported in the litera-
ture were exhibited. Much work on various wearable, handheld, and dynamic
ECG sensors integrated into IoT, artificial intelligence-based algorithms-
driven sophisticated systems to real-time monitoring patients with CVDs
proposed by Hamil et al. [21]. For instance, various ECGs are made of flex-
ible materials, lightweight, and low-cost and are successfully and purpose-
fully used for biomedical sensing. For example, Balsam et al. [49] proposed
a biomedical shirt-based electrocardiography (ECG) sensor to monitor pa-
tients with CVD in various clinical situations. The proposed wearable ECG
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sensor uses Nuubo ECG systems, enables monitoring of patients with CVD,
captures high-quality ECG recordings and ensures comfort for patients while
wearing a biomedical shirt [49]. This novel wearable ECG technology was
tested using four independent patient groups with CVD comprising patients
after pulmonary veins isolation (PVI) procedure, cardiac resynchronisation
therapy recipients(CRT), patients during cardiac rehabilitation after the my-
ocardial infarction, and paediatric patients with supraventricular tachycardia
(SVT) [49]. The authors found this highly effective in improving CVD di-
agnosis in different situations since this is washable, allowing greater patient
comfort and cost-effectiveness. The biomedical shirt ECG is used in con-
tinuous real-time recordings with a battery life lasting up to 36 hours [49].
Additionally, this wearable ECG has become viable for clinical applications
certified by European Union [49].

From advances in medical sensors and leveraging patients’ care point of
view, Lin et al. [35] summarised various sensor technologies and their flex-
ible bio-signal sensing mechanisms, what is known as an electrocardiogram
(ECG), phonocardiogram (PCG), seismocardiogram/ballistocardiogram (SCG/BCG),
and apexcardiogram (ACG) used for managing cardiovascular diseases in
China. Lin et al. [35] explicated how these sensors capture bio-signals, pulse
wave signals, and the characteristics/elements that play key roles in CVD
incidents. Similarly, Borujeni et al. [50] presented a four-layer IoT-driven
intelligent healthcare system for real-time monitoring of patients with cardio-
vascular diseases. In the proposed model, a patient’s vital signs are measured
using a body sensor network and sent to an intelligent healthcare domain.
Their findings confirm a significant improvement of 70% in response time
and scalability compared to the state-of-the-art techniques. Another study
by Al-Alusi et al. [51] configured several groups of wearable ECG sensors
comprising AlivCor Kardia devices, AlivCor Apple Watch Series 4, and sev-
eral others are available for clinical use since these wearables are commonly
integrated into the health network infrastructure. For instance, QardioCore
and Hexoskin are chest-worn-based sensors capable of recording high-quality
ECG signals and tracking patients when placed in their bodies [51], thereby
helping physicians manage patients with CVDs even remotely.

By optimising CVD care, advancing detection and diagnosis via ECG sen-
sors, Baghel et al. [52] designed a phonocardiogram (PCG) for automated
and real-time cardiac disease diagnostic systems that detect the present heart
conditions of remote patients. Baghel et al. [52] used machine learning, AI-
based (i.e., convolutional neural network) algorithms for biosignal data clas-
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sifications and analysis captured by PCG sensors. They achieved high model
accuracy, peaking at 98.60%, validating the robustness for multi-cardiac dis-
ease prevention, prediction and management [52]. The authors further high-
lighted the functional features of the PCG, which is compatible with any
computing device, single-board computing processors, and Android hand-
held devices. Similarly, McRae et al. [53] proposed a Cardiac ScoreCard -
a multivariate index assay system for early detection and frequent monitor-
ing of traditional risk factors along with novel biomarkers for patients with
CVDs. The proposed Cardiac ScoreCard system exhibited high-performance
functionality and diagnostic accuracy. Another study by Pevnick et al. [54]
presented broadened features of existing medical wearables adopted and ac-
cepted by many physicians for patients’ heart rate and heart rhythm tho-
racic fluid monitoring. Behind these, to better understand characteristics
and reap the benefits of various other wearables points of view, authors pro-
vided recommendations for future wearables and their potential in disease
management and adoption impediments that must thoroughly be addressed
[54].

With the pervasive application of wearables (i.e., ECG) from clinical prac-
tices, Sanamdikar et al. [15] implemented an IoT-based ECG that categorises
five different beat arrhythmias (N, S, V, F, U), which are essential to iden-
tify a patient’s heart problems. The evidence from their findings suggests
that the device remained pivotal in screening, detection and prediction of
cardiac arrhythmias than other approaches and achieved high predictive ac-
curacy accounting for 98% [15]. This supports Beach et al. [12] findings,
who proposed a wearable IoT Wrist-Worn ECG sensor to monitor home-
based patients with CVDs in out-of-clinic settings in the UK. The authors
confirmed that the proposed wearable IoT Wrist-Worn ECG sensor is signif-
icantly effective, user-friendly and lightweight 50g, including the strap, has
low power consumption, and is compatible with SPHERE (Sensor Platform
for Healthcare in a Residential Environment) smart home architecture [12].
Similarly, Florez et al. [55] demonstrated an efficient wearable, IoT-aided
BlooXY sensor for cardiovascular disease control, prevention, treatment, and
management. The proposed IoT-based BlooXY sensor can sense and monitor
patients’ blood pressure, heart rate, and blood oxygen level (oximetry-SPO2),
which are the essential characteristics of CVD detection and prevention [55].
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4.5. Applications of AI and ML in CVD Care
Widespread adoption interest in machine learning technology has revi-

talised the field of data science, and AI-powered applications have become
a driving engine in many organisations [56], including health care. Tsay et
al. [56] provided an overview of how AI and ML approaches promote real-
time care for patients with CVDs. In this context, the authors outlined the
strategies to strengthen existing clinical processes to increase accessibility,
effectiveness, efficiency and availability of CVD care. Bini et al. [57] asserted
that ML as a subset of AI is experiencing exponential growth in healthcare
applications and has a profound impact on care delivery refinement. The
author’s purpose is to demystify these technology innovations for practising
data scientists so they can better grasp how and where to apply them [57].

AI applications for diagnosis and prognosis are sustained in various branches
of health, including oncology, dermatology, neurology, and cardiology [21].
For instance, Raj et al. [14] proposed automated handheld arrhythmias de-
tection ECG systems for CVD diagnosis in India. The authors presented
high-performance metrics that yield an overall accuracy peaked at 92.81%,
92.68% and 92.42% with average sensitivity, specificity and positive predic-
tivity, respectively. Krittanawong et al. [58] asserted that deep learning (DL)
is well-suited to cardiovascular medicine. Figure 4 illustrates that the wear-
able IoT/IoMT ECG sensors AI-driven telehealth for CVD research peaked
at 38% between 2015 and 2021. Likewise, ML, DL, and AI-powered diag-
nostic tools used for various wearable ECG sensors’ sensing bio-signal data
analyses for CVD detection, prediction, management and control articles
peaked at 66% since different algorithms used papers peaked at 84%. In ad-
dition, wearable IoT/IoMT aided ECG, AI-driven telehealth/telemedicine/e-
Health/Smart Health papers peaked at 53%. These findings (see Figure 4)
validate the continued growth of digital healthcare infrastructure along with
virtual CVD care research in this exciting field.

A plethora of literature indicates that cardiovascular diseases are largely
preventable but unpredictable due to underlying risk factors that may appear
without any symptoms or compliance [45]. Taking this severe challenge of
developing novel ML and AI-driven methods for CVD risk prediction is of
immediate scientific and practical interest [45].

Similarly, Faust et al. [59] proposed a cost-effective hybrid IoT and ad-
vanced AI-based Heart Health Monitoring Service Platform (HHMSP) for
CVD management. The proposed hybrid model advocates that humans and
computers work together to improve cost efficiency while maintaining the
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reliability of diagnosis and prognosis of the CVDs [59]. From ML and AI
in clinical care point of view, Bini et al. [57] presented how AI can act as
a tool amplifying human cognitive functions for health providers to provide
healthcare support to increasingly complicated patients. Krittanawong et
al. [58] revealed that deep learning is deemed an appropriate method for
cardiovascular medicine. Hemodynamic and electrophysiological indices are
constantly captured by wearable sensors and image segmentation in cardiac
imaging. Tsay et al. [56] demonstrated how AI platforms improve the opera-
tional delivery of cardiac care. These corroborate that AI and ML integrated
into the health domain should keep pushing forward towards the novel future
journey of chronic care for rural and remote communities.

From an IoT, phonography AI-driven telehealth point of view, Grooby et
al. [41] offers a new approach to heart rate and breathing rate estimation
from noisy neonatal chest sounds. The evidence from their proposed model
demonstrated high accuracy in prediction, accounting for 93% heart sound
and 82% lung sound, bolstering future telehealth applications for CVD de-
tection, prevention, treatment, management and control in rural and remote
Australia. Another study by Hamil et al. [21] designed a secured IoT, ECG
AI-driven telehealth for predicting the automatic identification of arrhyth-
mias (cardiac state) and achieved high accuracy peaking at 99.56%. The
proposed model showed functional robustness, allowing a good balance be-
tween low costs and high performance while maintaining ease of use with
prompt access to multiple bio-signals, thereby preventing loss of life during
patients’ critical situations [21].

Ma et al. [60] investigated Atrial fibrillation (AF) for CVD events. They
found it is one of the most common arrhythmias related to CVDs which is
difficult to monitor in real-time monitoring due to its intermittent nature.
These authors proposed a wearable ECG, AI-driven telemedicine for AF de-
tection and prevention. The proposed model achieved the highest sensitivity
accounting for 99.3%, specificity of 97.4% and prediction accuracy of 98.3%,
demonstrating an outperforming model of CVD care [60]. Similarly, Wang et
al. [44] presented how a dynamic ECG sensor embedded with telemedicine
can be implemented for real-time patient monitoring and diagnosing and pre-
venting CVD events. The authors used a deep neural network to demonstrate
how external environmental interferences (noises) could be reduced from the
dynamic ECG signal classifications [44].

From an AI-powered ECG signal analysis and prediction point of view,
Al-Alusi et al. [51] revealed that sensor manufacturers create algorithms that
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interpret ECG sensing bio-signal data governed by all the same parameters,
such as negative predictive values. For example, Apple Heart Study sets a
target sensitivity and specificity for their devices (Apple Watch Series 4), ac-
counting for 92% and 90%, respectively, for AF detection algorithm [51]. A
recent study by Baghel et al. [52] presented the performance and prediction
accuracy of various algorithms used for analysing phonocardiogram (PCG)
signal data to diagnose and prognosis of cardiac diseases. The proposed al-
gorithms of Support Vector Machine (SVM), Random Forest (RF), Artificial
Neural Network (ANN), Deep Neural Network (DNN), K-Nearest Neighbour
(K-NN), Convolutional Neural Network (CNN) without augmentation, and
Convolutional Neural Network (CNN) with augmentation peaked at 87.65%,
97.78%, 95%, 89.30%, 96.50%, 96.23% and 98.60% respectively leading its
high accuracy and robustness to automatically diagnose and predict cardiac
disorders from the PCG signals [52]. Similarly, Hamil et al. [21] presented
a novel wearable IoT, ECG sensor, AI-driven telehealth model with secure
wireless transmission and classification of the bio-signal platform and Xbee
module with Arduino Uno and Raspberry Pi as data acquisition and pro-
cessing. Authors used ECG signal data for arrhythmias (i.e., CVD event)
prediction using different AI algorithms and ML methods, comprising ANN,
CNN, SVM, KNN, and RF and the best classification accuracy achieved
accounting for 99.56%, [21].

5. Discussion of the results

This is the first study to shed light on the feasibility of adopting wearable
IoMT ECG sensors, an AI-driven telehealth model for rural communities,
especially suitable for Aboriginal patients with CVDs living in rural and re-
mote Australia. This review revealed that the wearable IoMT ECG sensors’
AI-driven telehealth model (see Figure 1) delivers tremendous value to rural
patients in an innovative way transforming their journey towards preventive
and predictive CVD care. Figure 3 summarises IoT/IoMT embedded wear-
able ECG, AI/ML, algorithm, and telehealth as analysed from the reviewed
studies. The aggregation of findings from the analysis (see Tables A.1 and
B.2 (Appendix A and Appendix B), and Figures 3, 4, 5, and 6) concurs
that the adoption of the wearable IoMT ECG sensors AI-driven telehealth
continues to accelerate potential opportunities in reducing health inequal-
ities between urban and rural counterparts. The results from the studies
from 2015 to 2021 (see Figure 3) have grown exponentially and exceeded the
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numbers from previous years concerning IoT/IoMT-wearable ECG sensors
and AI-driven telehealth for CVD care. These findings validate the assertion
that empirical research strongly emphasises the significance of this innova-
tive model of care. This could unfold future models of CVD care for rural,
regional, remote, and very remote patients with CVD regardless of the in-
digenous and non-indigenous communities in Australia and similar settings.
Referring to health disparity between two groups, Power et al. [61] found
stark health disparities between Aboriginal and non-aboriginal Australians.
Another study by Haynes et al. [1] described the colonial legacies result-
ing in trauma, loss, and grief, contributing to a range of inequitable health
and well-being outcomes. Prior research by Adelson et al. [9] asserted that
health disparities point to underlying various causes of the imbalances that
constantly reside outside the typically constituted health domain.

Empirical evidence from the review shows that chronic disease threat dif-
fers between the indigenous and non-indigenous populations in Australia and
globally. The assumptions from the study provide evidence that CVDs have a
potential impact on human health in general since the treatment period is ex-
tended, thus posing a significant threat to patients’ health [35]. On this basis,
a recent study by Heraganahally et al. [62] demonstrate chronic respiratory
conditions among indigenous inhabitants are highly predominant, particu-
larly in English-speaking countries. However, there appears to be significant
knowledge gaps concerning indigenous inhabitants in non-English speaking
countries. Haynes et al. [1] show how chronic Rheumatic heart disease pre-
dominantly impacts young people with the contemporary age-standardised
occurrence at 60 times higher in the Australian aboriginal population than
non-Aboriginal Australians < 55 years of age. We found that demographic
characteristics are dominant factors contributing to chronic disease preva-
lence between indigenous and non-indigenous groups. For example, Brown
et al. [63] revealed that the Indigenous population’s age-adjusted cardiovas-
cular disease death remained the most significant single cause of death and
was three times higher than in the non-Aboriginal community.

With regard to age factors dominantly influencing high mortality, Brown
et al. [63] further illustrated that age-specific CVD causes mortality rates
to even worsen between the ages of 25 and 54, peaking at 7 and 12 times
that of non-Indigenous populations. Geographical factors also significantly
impact chronic disease conditions among indigenous communities. For ex-
ample, CVD-causing morbidity and mortality ratios also provide important
insight into the cardiovascular disease burden for rural and remote aboriginal
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inhabitants in Australia. In covering these issues, a recent study by Gaffney
et al. [64] asserted that rural and remote residents have inadequate resources
to treat and prevent chronic obstructive pulmonary disease (COPD) than
their urban counterparts in America. This validates that facing higher costs
involving chronic conditions, which are more challenging and expensive to
treat, patients are less likely to visit physicians due to additional expenses
[64]. Our findings suggest that these statistics could consider a more holistic
approach to adopting wearable IoMT ECG and AI-driven telehealth systems
to tackle chronic disease-causing morbidly and mortality risks and reduce
health inequalities in these underserved communities.

The findings from the review confirmed that tackling a growing number
of patients with cardiovascular, pulmonary, and metabolic chronic diseases
requires a closer look at their symptoms [65]. This corroborates that man-
aging these diseases remains a complex clinical task because it occurs with
comorbid conditions. Effective medical treatment of these chronic diseases
typically requires lifestyle and food habit changes, medication regimens, and
close patient monitoring [66]. Research suggests telehealth is remarkably con-
sistent with satisfying patient care requirements in a challenging healthcare
environment [25]. To this proposition, Butten et al. [67] argue that telehealth
is persistently valuable and relevant to provide primary and specialist health
care for disadvantaged communities who often have unfavourable health ac-
cess to mainstream healthcare compared with the general population. From
a practice point of view, we found that 19% of studies confirm that wear-
able IoT/IoMT ECG sensors are compatible with AI-driven telehealth for
CVD care. The remaining 81% of studies have not been explored within
the telehealth domain, indicating a significant gap in the research that our
conceptual model aims to bridge.

The evidence from the review shows that the IoMT remained a fascinat-
ing digital innovation that seems poised to cross over into human biology,
technology, and medical devices to treat rural and remote communities with
specialised primary care via telehealth ecosystems. For instance, Albalawi
et al. [20] revealed that the IoMT enables interconnecting patients, health
providers, medical devices, and machines to promote evidence-based, safe,
secure, and reliable patient care. This is consistent with Zhu et al. [68],
who highlighted that telehealth is shown to be tied to the effectiveness of
reducing risks of heart failure, diabetes, and other chronic diseases, main-
taining successful distance communications between patients and physicians
and increasing patients’ health outcomes compared with conventional health-
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care systems. This suggests wearable AI-driven telehealth provides potential
health solutions for rural and remote CVD care. This is congruent with
Cronin et al. [69] explanation of smart healthcare monitoring systems us-
ing cardiovascular devices (CIED: cardiac implantable electronic devices) for
remotely living patients conferred a 50% relative decrease in CVD causing
deaths than attending clinics follow-up. Similarly, Yang et al. [48] offers
a portable ECG integrated into an IoT-based monitoring system to diag-
nose remotely living patients with cardiovascular diseases. From a low-cost
wearable ECG sensor on the mobile devices context, Martinez et al. [70]
proposed a wearable ECG sensor from e-Health (i.e., Telehealth) Biomet-
ric Sensor Platform designed by Libelium could be used for real-time CVD
patients’ heart rate variability monitoring.

The findings suggest that electrocardiogram (ECG), blood pressure (BP),
and blood oxygen saturation level (SpO2) sensors integrated into IoT-driven
telemedicine enable the collecting of data from remote patients with chronic
diseases (i.e., CVD). Secondly, transmitting results can be close to real-time
through a remote server connected with computers located in the medical
centre [71]. For instance, Albalawi et al. [20] asserted that patients with
chronic diseases get alerts if their health conditions deteriorate. The sensors
instantly send the recorded information to the physicians via digital health
networks. As the above review demonstrates, there is growing support for
implementing this technology. This is consistent with our review as it out-
lines various dynamic electrocardiograms for real-time cardiovascular patient
monitoring and demonstrates the tremendous growth of these MedTech de-
vices in recent years. For example, Beach et al. [12] presented a wearable
wristband ECG integrated into an IoT-driven model for CVD care. Simi-
larly, Scheffler et al. [72] designed wearable wristband ECG sensors that are
compatible with telemedicine and suitable for rural patients with CVD care.
These validate that this wrist-worn ECG is ideal for detecting, predicting and
managing CVD care, especially for the populations (i.e., patients) living in
rural regional and remote areas. For example, Cugliari et al. [73] employed
machine learning and AI approaches to predict the biomarkers (i.e., biolog-
ical molecules found in blood, body fluids, or tissues are the sign of disease
conditions) of CVD in Italy and achieved high prediction accuracy, peaked at
90%. These authors describe how myocardial infarction, acute coronary syn-
drome, ischemic cardiomyopathy, coronary (carotid) revascularisation, and
ischemic or haemorrhagic stroke play a key role in CVD events.

In experimental research, Pevnick et al. [54] revealed that wrist-worn
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ECG could measure heart rates with less than 10% error compared to slan-
dered devices under ideal circumstances. However, these devices remain
largely outside usual channels [74]. More specifically, these devices detect,
transmit, store and analyse data but in a database not linked to and incom-
patible with traditional health records resulting in useful information being
unavailable for the physician unless patients volunteer it [74]. This suggests
today’s healthcare systems have yet to take full advantage of IoT/IoMT-
enabled sensors/devices to provide extensive medical support and keep pa-
tients healthier longer [74]. However, Kindle et al. [75] argue that integrating
decision support systems (CDSS) to real-time remote patient monitoring by
physicians remained a formidable challenge. It is important to recognise that
the advancement of ML algorithms and large databases for CDSS develop-
ment provide substantial hope that a renaissance in tele-ICU care (intensive
care unit) is coming soon [75]. Likewise, Liu et al. [76] proposed classification
and recognition methods of encrypted ECG data based on neural networks
and found satisfactory accuracy, efficiency and feasibility compared to other
solutions.

From the characteristics, adaptability, and compatibility of wearable ECG
sensors, this review revealed interest in whether these novel MedTech sensors
can benefit patients with CVDs. For example, Al-Alusi et al. [51] asserted
that the ECG sensor technology is currently being built into wearable forms
capable of real-time monitoring, diagnosing and prognosis of remote patients
with CVDs. Similarly, Dwivedi et al. [28] revealed that wearable medical
devices with in-built sensors enable the screening of various human body
infections and transfer data to monitor the real-time status of symptomatic
patients. Majumder et al. [77] confirmed that an electrocardiogram (ECG)
is a non- invasive approach commonly used by physicians for measuring the
different forms of arrhythmia diseases (i.e., CVD events). Although many
arrhythmias are uncategorised as life-threatening, such as myocardial infarc-
tion (MI), it may lead to cardiac arrest if not responded to immediately
[77]. The review demonstrated various flexible MedTech sensors are cur-
rently being used in recent years. Compared with hospital devices, wearables
are smaller, have lower power consumption, and can be worn comfortably
[78]. These include wristbands, smart watches, glasses, body metric textiles,
and more [78]. The advantages of scalability, flexibility, lightweight, and
cost-effectivity, polymer films or fabrics advocate designing diverse wearable
biomedical flexible sensors [79].
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5.1. Recent Advancement (2022-2023)

With recent advancements in current literature, further findings have
emerged to strongly support our case. For instance, Blake et al. [80] studied
Cardiac Analytics and Innovation for CVD care from an Australian perspec-
tive and highlighted the ’siloed’ and poorly linked nature of its healthcare
data. In contrast, Deniz et al. [81] found that the determinants of AI and Big
Data in m-Health adoption in remote care facilities were impossible without
ensuring data privacy, security, and quality assessment. IoT-driven eHealth
research by Sun et al. [82] found that the high classification accuracy of inter-
patient ECGs is crucial in diagnosing Arrhythmia (CVD), given the pertinent
risk of misclassification in eHealth settings. To resolve such problems, DL
methods must be implemented to maintain high classification accuracy in
AI-driven eHealth for CVD care [83].

Similarly, to improve the accuracy of IoT-driven ECG sensors, data fu-
sion algorithms that outperform the baseline “20 Channel RR-Interval” av-
eraging approach by ≃ 54% and ≃ 21% at signal-to-noise ratios (SNR) of
20dB, respectively were developed [84]. In the context of AI-driven CVD
care for Indigenous populations, Jeong et al. [85] pointed out that AI and
ML-based predictive models could be robust solutions to CVD care rather
than conventionally-used methods of care. In an experiment, Rajkumar et
al. [86] echoed the superiority of IoT and DL-based methods in predicting
CVD onset with an accuracy of 98.01%, boasting an error rate of 91.11%
compared to other existing techniques.

5.2. Summary of Key Findings

The findings indicate that this unique model of care delivers substantial
value, transforming the journey towards predictive and preventive CVD care
and improving health outcomes for First Nations people. Further, adopting
IoT/IoMT sensor-driven telehealth can reduce health inequalities and accel-
erate opportunities between urban and rural communities. The findings also
emphasised the potential of wearable IoMT ECG and AI-driven telehealth
systems to address chronic disease burdens in underserved communities and
minimise health gaps between urban, rural, and remote regions.

The most consistent finding in this review highlighted the potential of in-
tegrating IoMT technology with telehealth ecosystems to provide evidence-
based, safe, and reliable patient care for CVD. This indicates that wear-
able ECG and other biomedical flexible sensors offer significant advantages
such as scalability, flexibility, low power consumption, and cost-effectiveness.
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This research suggests that wearables, IoT/IoMT electrocardiogram sensors,
and AI-driven telehealth present potential opportunities for CVD diagnosis,
prognosis, and management for rural and remote patients. Nevertheless, the
review proposes that wearable IoMT ECG and AI-driven telehealth have the
potential to transform CVD care for rural, regional, and remote aboriginal
and non-aboriginal populations, providing accessible, cost-effective, and effi-
cient smart healthcare solutions. In conclusion, this review points out that
the long-term sustainability of the innovative IoT/IoMT sensor-driven tele-
health care in various settings would be an enormous challenge for Australian
rural healthcare infrastructure, combined with the complexity of the public
healthcare administration.

In particular, the studies highlighted the disjointed nature of Australian
healthcare data, the importance of accurate ECG signal classifications, and
secured data privacy in facilitating the adoption of AI and big data in re-
mote mHealth care settings. Further, AI-based predictive models emerged as
robust solutions to address these issues, emphasising the superiority of wear-
able IoT-driven telehealth methods for CVD care dedicated towards remote
Aboriginal peoples in Australia.

5.3. Barriers and Facilitators of Wearable IoT/IoMT sensors-driven Tele-
health for CVD Care

Following the evidence from this review, for example, [19, 52, 12, 47, 21,
1, 75] we argue that the wearable IoT ECG sensors, AI-driven telehealth
methods of care have had clear benefits for CVD care for rural, remote com-
munities globally. A key question for future research to consider is: what are
the barriers that prevent this life-saving technology from being implemented
in rural Australia and similar settings?

This model of care has clinically been tested in various CVD conditions
(adults, children, male, and female patients), and almost all types of car-
diovascular disease have been screened and predicted remotely. This novel
model of care provides patients and physicians with greater opportunities
and flexibilities for CVD detection, early prediction, prevention, and man-
agement. This virtual model of care appears sound and could become a
benchmark model to study AI-driven telehealth within the Aboriginal health
domain. We believe the successful deployment of this innovative model of
care will improve rural indigenous patients with CVDs and reduce health
inequality among indigenous communities. Our claims are consistent with
Calabria et al. [7]. CVDs are responsible for 21% of fatal diseases burden and

28



the most prominent health disparity between aboriginal and non-aboriginal
Australians [7]. Telehealth is suitable for serving broader rural and remote
patients with CVD due to its technology-driven nature. Waller et al. [87] re-
vealed that functional telehealth serving remote patients providing real-time
consultation, diagnosis (e.g., echocardiogram), monitoring (e.g., EKG, glu-
cose monitor and patients with congestive heart failure) and mentoring (e.g.,
another specialist observes and provide advice a remote real-time operation
and virtual ICU). In a case study, Taylor et al. [88] echoed that A Children’s
Mercy Hospital (CHM) in Kansas City, MO, telemedicine dominantly sup-
port children in a variety of settings incorporating primary care, speciality
care, pulmonary function tests, radiographs, and echocardiograms. This case
study demonstrates positive public acceptance and demand for telemedicine
in rural Missouri and Kansas and has led to a massive expansion, resulting in
over 2000 outpatient encounters last year with a high growth rate exceeding
over 40%. CHMs facilitated telemedicine now encompasses 27 paediatric spe-
cialities across four regional locations with additional expansions underway
[88].

Similarly, Albahri et al. [19] commented that the wearable IoMT ECG
Sensor, AI-driven telehealth, promises a vast improvement of services for re-
mote care without incurring high medical costs. AI-based predictive aspects
in the systems can assist in avoiding delays whilst timely medical treatment
even before patients with CVD reach a severe condition [19]. Likewise, Zerna
et al. [89] argue that multidisciplinary stroke expertise physicians are suffi-
ciently unavailable in many rural areas, which makes delivering appropriate
CVD (i.e., stroke) care in such areas a significant public health challenge.
The heart of this novel method (i.e., wearable IoMT sensors, AI-driven tele-
health) of care lies in its perspective on how it benefits both remote living
care seekers (i.e., Aboriginal community) and urban-based care providers
(i.e., physicians) and continues to serve them well.

To summarise, the contemporary literature discussed above on wearable
IoMT sensors used for CVD care has had a narrow focus on clinical practices
via AI-driven telehealth, particularly for rural patients. Insufficient attention
has been directed towards conducting clinical trials using a large sample
size. This inadequacy is reflected in the infrastructure facilities accessed
and through evidence-based clinical practices. This review also exposes that
the determinants of patients’ acceptance, expectations, and satisfaction with
this virtual care are still unidentified. What is lacking is an insight into
how wearable IoMT ECG sensors collect bio-signal data and analyse them
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to arrive at a course of medical treatment via telehealth (medical decisions)
for rural and remote communities. To point out this could drastically reduce
fatalities, treatable illnesses, and related problems substantially.

From a compatibility standpoint, it is also unclear how these various
MedTech technologies are compatible with traditional IoT/IoMT technolo-
gies and fit together, shaping a smart telehealth platform to create potential
opportunities for rural and remote care. This indicates that research was
undertaken haphazardly in recent decades. This drawback and limitations of
current literature remind us that the AI-driven telehealth systems and under-
lying various services/facilities are not entirely recognised, even though the
need is dire, and applications are readily available. Given these outcomes,
we argue that health providers, policymakers, researchers, and stakeholders
demand new knowledge about each aspect of this virtual care. The potential
to bring health equality outcomes and reduce fatalities in treatable condi-
tions in these communities is paramount. This new knowledge could also be
shared between and across health industries strengthening service productiv-
ity, systems sustainability, and growth in Australia and globally.

6. Contribution and Managerial Implications

This study has a threefold contribution to health informatics literature.
The first contribution is the investigation and identification of the adoption
determinants of the wearable IoMT sensor-driven telehealth model for rural
CVD care, which continues to be an under-researched area. To the authors’
knowledge, this is a novel study that sheds light on the viability of adopting
wearable IoMT ECG sensors within an AI-driven telehealth framework for
Indigenous patients with CVD living in rural and remote Australia. This
review demonstrates that there is a need for better care in rule and indige-
nous communities; that is, there is an inequality of access to good health-
care because of the remoteness and inaccessibility of healthcare professionals.
These inadequacies are evident in the existing research both in Australia and
abroad.

Second, this review demonstrates the need for adopting a wearable IoMT
sensor AI-driven telehealth model for real-time care appropriate for Abo-
riginal and non-Aboriginal patients with CVD living in rural and remote
Australia and similar settings. The adoption of this technology widens tele-
health scope in developed countries’ rural contexts and could drastically im-
prove health outcomes. Thus, we believe this research further broadens the
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scope of AI-based health informatics research and provides helpful directions
to health providers, policymakers, health authorities and stakeholders to in-
tegrate approaches to strengthen telehealth adaptability and sustainability
for locational disadvantaged communities.

Third, this study makes a significant contribution to indigenous health,
particularly by clarifying further how the various IoT/IoMT and sensor
(MedTech) technologies could work together to build a novel telehealth model
for remote CVD care in Australia and similar settings. Further, the long-term
sustainability of the smart telehealth project is one of the most dominating
challenges for rural healthcare infrastructure, alongside the complexity of the
rural public healthcare administration. Failure to recognise these challenges
could undermine their potential efficacy and years of hard work.

From a managerial perspective, the findings from the research have impor-
tant implications for information systems, particularly in health informatics
research. This review’s findings illustrate that this care model has been clin-
ically tested in various CVD conditions (adults, children, males, and female
patients), and almost all types of CVD have been screened and predicted
remotely. This novel model of care provides patients and physicians with
greater opportunities and flexibilities for CVD detection, early prediction,
prevention, and management. This virtual model of care appears sound and
could become a benchmark model to study AI-driven telehealth within the
Aboriginal health domain. This suggests that the successful deployment of
this innovative model of care will improve rural indigenous patients with
CVDs and reduce health inequality among indigenous communities. Given
these discoveries, health providers and policymakers should design effective
strategies, develop favourable policy guidelines, and implement Aboriginal
CVD management plans for achieving goals.

7. Research Impact

The present study’s underlying impacts are classified into four-dimensional
categories: knowledge, novelty, Australian First Nations Peoples, and de-
veloped country. This study’s ability contributed to defining, distinguish-
ing, explaining, and interpreting wearable IoT/IoMT-ECG sensors and AI-
driven telehealth adoption determinants in contexts of developed countries’
rural, regional, and remote settings. It provides unique insights into ru-
ral Australian First Nations’ CVD treatment regarding telehealth services.
This study explored the adoption determinants of the AI-driven telehealth
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model for CVD care. This study focused on adopting an AI-driven telehealth
ecosystem for potentially applicable indigenous communities living in rural
and remote Australia and similar settings. This research highlighted how
this novel model of care provides patients and physicians with greater op-
portunities and flexibilities for CVD detection, early prediction, prevention,
and disease management. This research identified wearable ECG sensors,
such as a wrist-worn, dynamic watch that can detect cardiovascular signals
for early diagnosis, predict patients’ current CVD conditions, and manage
cardiovascular diseases by early interventions.

This study introduced smart wearable IoT embedded MedTech, func-
tional materials, network configurations, and bio-signal detection algorithms
(i.e., AI and Machine Learning/Deep Learning) and their advantages. It
emphasised how innovative telehealth synchronises digital and physical ther-
apeutic modalities, reduces remote diagnostic hurdles, facilitates adaptable,
comfortable, reliable, and economical healthcare interventions, and bridges
inequality gaps between urban and rural health landscapes. Further, this
research identified four areas of impact, namely (1) research-related (i.e., re-
search problem, methods used, research management and communication),
(2) policy (i.e., level of policy making, type, nature and policy networks),
(3) service (i.e., health services, service management, quality of care and
information systems) [90].

8. Limitations and Future Research

Nevertheless, several limitations should be considered when interpreting
these research findings. This review used only four scientific databases for
data extraction and synthesis. The future review should include additional
databases to extract more data that may influence the broad view of the phe-
nomenon. The future search should broaden by including other chronic dis-
ease risks and management using these technologies to observe the viability
and effectiveness of this model of care on a large-scale adoption. Finally, our
study did not undertake a formal quality assessment of the incorporated liter-
ature, thus constraining our ability to critically evaluate the sources utilised
to substantiate our assertions.

9. Conclusion

One relatively unexplored research area involves the broad adoption of
wearables IoMT sensors AI-driven telehealth focusing on rural and remote
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communities. Although wearables Internet of Medical Things electrocardio-
gram sensors, Artificial Intelligence-driven telehealth hold increased oppor-
tunities for cardiovascular disease diagnosis, prognosis, and management for
rural and remote patients. Incorporating a large volume of research on the
issues discussed in this review serves as a comprehensive guideline and list
of the sources to lead the way in adopting this novel model of care for the
Aboriginal communities living in rural and remote Australia.

The novelty of this study has advanced a pragmatic understanding of sus-
taining this cutting-edge model of care tackling high risks of CVD, causing
deaths, challenges, and potential future directions of continuous monitoring
and ubiquitous medical treatment via telehealth for underprivileged and vul-
nerable aboriginal communities. The study findings highlight the essential
tools and resources that should be taken into consideration by the relevant
authorities for extensive adoption. The government, health authorities, pol-
icymakers, health providers, and stakeholders are urged to work together,
emphasising the implementation strategies for an initial pilot project as set-
ting up a foundation before its widespread adoption in rural Australia and
similar settings. The successful adoption of a wearable IoMT sensor-driven
telehealth model of care could help reduce health inequalities affecting under-
privileged rural/remote minorities. Rural regional and remote populations
often have limited access to dedicated public medical facilities, and most
lack private after-hours medical practitioners [34]. Hence, these locational
disadvantages and sparsely populated regions should continue to be a priority
[34].
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n
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[1
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d
ia

D
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t
of
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d
h
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d

C
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d
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c
E
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n
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M
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it
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S
y
st

em
.
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n
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p
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C
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p
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t

A
n

al
y
si

s
an

d
F

ee
d

-f
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w
ar

d
N

eu
ra

l
N

et
w

or
k
s.

S
en

si
ti

v
it

y
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.8
1%

,
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ec
i-

fi
ci

ty
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.6
8%
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d

p
re

-
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si
on
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.4
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at
ed
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d
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h
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ra
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C
G
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it
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S
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r
S
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ar

t
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lt
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.
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.
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0.
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h
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rt
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E
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G
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r
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r

re
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e
p

at
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n
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it

h
C

V
D

s
m

on
it

or
in
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T

h
e

p
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em
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re

li
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le
in
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n
g

an
d

d
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p
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C
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h
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h
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p
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B
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u
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ra
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d
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re
ta

b
le

M
L
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k

p
ro
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p
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n
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d
u
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n

g
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c
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h
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at
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n
.

S
u

p
p
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V
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to
r

M
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h
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V
M
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%
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u
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i-
p

ar
am

et
er

w
ea

ra
b
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n
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r
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r
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at
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p
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n
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u
m

.
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b
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M
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s
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b
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rs
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p
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d
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ra
b
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u
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u

n
d
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ra
b
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m
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U
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.
P
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p

os
ed
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b
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u
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u
n

d
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g
d
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C
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u
gh

a
q
u

an
ti

ta
ti

ve
ca

ro
ti

d
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s
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d
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d
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b
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ra
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d
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n
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T

h
e
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s
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in
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a
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t
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d
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os
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c
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s
in
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u

d
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g
C

T
h
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s,
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t

X
-r

ay
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b
lo

o
d

te
st

s,
ca

rd
ia

c
ca

th
et

er
is

at
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n
,

h
ea

rt
M

R
I,

st
re

ss
te
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,

p
er
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ar

d
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n
te
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m
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l

b
io

p
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,

an
d
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n
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h
y.

C
on

ti
n
u

ed
on

n
ex

t
p

ag
e

57



T
ab

le
A

.1
–

co
n
ti

n
u

ed
fr

om
p

re
v
io

u
s

p
ag

e
ID

Y
e
a
r
A
u
th

o
r

C
o
u
n
tr
y

o
f

S
tu

d
-

ie
s

S
tu

d
y

P
ro

p
o
sa
l

M
e
th

o
d
s

A
cc

u
ra

cy
(%

)
O
b
je
ct
iv
e
s
a
n
d

O
u
tc
o
m
e
M

e
a
su

re
s

15
20

21
[2

1]
F

ra
n
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D
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n
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a
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d
te
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h
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h
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em

b
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m
u
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b
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s
d
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an
d

cl
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si
fi

ca
ti

on
.

A
rt

ifi
ci

al
N

eu
ra

l
N

et
w

or
k

(A
N

N
),

C
on

vo
lu

ti
on

al
N

eu
ra

l
N

et
w

or
k

(C
N

N
),

S
u

p
p

or
t

V
ec

to
r

M
ac

h
in

e
(S

V
M

),
K

-N
ea

re
st

N
ei

gh
b

ou
r

(K
N

N
)

an
d

R
an

d
om

F
or

es
t

(R
F

).

99
.5

6%
.

P
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p
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a

w
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ra
b

le
Io

M
T

E
C

G
,

A
I-

d
ri

ve
n

te
le

h
ea

lt
h

m
o
d

el
fo

r
ar

rh
y
th

m
ia

s
of

C
V

D
d

et
ec

ti
on

,
p

re
d

ic
ti

on
,

an
d

m
an

ag
em

en
t.

T
h

e
p

ro
p

os
ed

w
ea
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b

le
E

C
G

ca
n

ca
p

tu
re

th
e

b
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si
gn
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d
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a

an
d
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y
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u
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n
g

A
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M
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[4

1]
A

u
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a
N
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n

at
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h
ea
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&
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n

g
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u
n

d
q
u

al
it

y
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se
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m
en

t
fo

r
h

ea
rt

an
d

b
re
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h

in
g

ra
te

es
ti

m
at

io
n

.

S
u

p
p

or
t

V
ec

to
r

M
ac

h
in

e
(S

V
M

),
K

-N
ea

re
st

N
ei

gh
b

ou
rs

(K
N

N
),

D
ec

is
io

n
T

re
e

(T
re

e)
.

93
%

fo
r

h
ea

rt
so

u
n

d
s,

an
d

82
%

fo
r

lu
n

g
so

u
n

d
s.

D
es

ig
n

ed
a

w
ea

ra
b

le
Io

T
p

h
on

og
ra

m
(P

C
G

),
an

A
I-

d
ri

ve
n

te
le

h
ea

lt
h

m
o
d

el
fo

r
th

e
au

to
m

at
ic

es
ti

m
at

io
n

of
h

ea
rt

ra
te

an
d

b
re

at
h

in
g

ra
te

of
C

V
D

p
at

ie
n
ts

.
A

n
al

y
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d
a

to
ta

l
of
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-s
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d

-l
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g
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u

n
d
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m

p
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p
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[4

4]
S

in
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p
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eE
C

G
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al

d
en
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n
g

b
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d
ee

p
fa
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an
al

y
si

s.

D
ee

p
fa

ct
or

an
al

y
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s
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r
n
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d

u
ct

io
n

.

U
n

sp
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ifi
edP

ro
p
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ed

a
d

y
n
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ic

E
C

G
co

m
p

at
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le
w

it
h

te
le

m
ed

ic
in

e
to

p
re

ve
n
t

an
d

d
ia

gn
os

e
C

V
D

p
at

ie
n
ts

.
T

h
e

au
th

or
s

ap
p
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ed

E
C

G
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gn
al

an
al

y
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n
g

al
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ri
th

m
s
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r
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al

n
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re

d
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[4

5]
F

ra
n

ce
C
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y

h
ea

rt
d
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ea

se
d

ia
gn
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is

b
y

ar
ti

fi
ci

al
n

eu
ra

l
n

et
w

or
k
s

in
cl

u
d

in
g
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rt

ic
p

u
ls

e
w

av
e

ve
lo

ci
ty

in
d

ex
an

d
cl
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al
p

ar
am

et
er

s.

A
rt

ifi
ci

al
n

eu
ra

l
n

et
w

or
k
s

(A
N

N
s)

.

63
-9

3%
P

re
se

n
te

d
an

in
va

si
ve

C
V

D
d
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gn

os
ti

c
m

ea
su

re
m

en
t

an
d

ev
al

u
at

io
n

of
ao

rt
ic

st
iff

n
es

s
in

th
e

ca
ro

ti
d

-f
em

or
al

p
u

ls
e

w
av

e
ve

lo
ci

ty
(P

W
V

)
in

d
ex

to
d
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gn

os
e

p
at

ie
n
ts

w
it

h
C

V
D

s.
T

h
e

in
d

ex
ex

p
la

in
s

h
ow

th
e

ve
lo

ci
ty

of
ar

te
ri

al
p

u
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e
m
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g
al

on
g
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e
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el
w

al
l
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d
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es
an

d
p
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d
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e

p
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si
b
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C

V
D
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en
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.

U
se

d
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tt
in
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A

I
(i

.e
.,

A
N

N
)
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p
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n
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C
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ac

te
ri

st
ic

s/
el

em
en

ts
p

at
te

rn
.

C
on

ti
n
u

ed
on

n
ex

t
p

ag
e

61



T
ab

le
A

.1
–

co
n
ti

n
u

ed
fr

om
p

re
v
io

u
s

p
ag

e
ID

Y
e
a
r
A
u
th

o
r

C
o
u
n
tr
y

o
f

S
tu

d
-

ie
s

S
tu

d
y

P
ro

p
o
sa
l

M
e
th

o
d
s

A
cc

u
ra

cy
(%

)
O
b
je
ct
iv
e
s
a
n
d

O
u
tc
o
m
e
M

e
a
su

re
s

19
20

18
[7
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u
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ra
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C
V

D
ri

sk
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d
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p
id

-l
ow

er
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g
th

er
ap

y
am

on
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ra
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s.

R
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k
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t
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d
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m

an
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t
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th
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.
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n
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.
F
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n

d
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e
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V
D
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st
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y

h
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h
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s
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n
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u
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d
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,
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n

F
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at
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n
,

M
āo
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,

A
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A
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,
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d
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