
Citation: Kovtun, V.; Zaitseva, E.;

Levashenko, V.; Grochla, K.; Kovtun,

O. Small Stochastic Data

Compactification Concept Justified in

the Entropy Basis. Entropy 2023, 25,

1567. https://doi.org/10.3390/

e25121567

Academic Editor: Donald J. Jacobs

Received: 13 October 2023

Revised: 15 November 2023

Accepted: 18 November 2023

Published: 21 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Small Stochastic Data Compactification Concept Justified in the
Entropy Basis
Viacheslav Kovtun 1,* , Elena Zaitseva 2 , Vitaly Levashenko 2, Krzysztof Grochla 1 and Oksana Kovtun 3

1 Internet of Things Group, Institute of Theoretical and Applied Informatics Polish Academy of Sciences,
Bałtycka 5, 44-100 Gliwice, Poland; kgrochla@iitis.pl

2 Department of Informatics, University of Žilina, 010 26 Žilina, Slovakia; elena.zaitseva@fri.uniza.sk (E.Z.);
vitaly.levashenko@fri.uniza.sk (V.L.)

3 Department of the Theory and Practice of Translation, Faculty of Foreign Languages, Vasyl’ Stus Donetsk
National University, 600-Richchya Str., 21, 21000 Vinnytsia, Ukraine; o.kovtun@donnu.edu.ua

* Correspondence: kovtun_v_v@vntu.edu.ua

Abstract: Measurement is a typical way of gathering information about an investigated object,
generalized by a finite set of characteristic parameters. The result of each iteration of the measurement
is an instance of the class of the investigated object in the form of a set of values of characteristic
parameters. An ordered set of instances forms a collection whose dimensionality for a real object is a
factor that cannot be ignored. Managing the dimensionality of data collections, as well as classification,
regression, and clustering, are fundamental problems for machine learning. Compactification is the
approximation of the original data collection by an equivalent collection (with a reduced dimension
of characteristic parameters) with the control of accompanying information capacity losses. Related
to compactification is the data completeness verifying procedure, which is characteristic of the data
reliability assessment. If there are stochastic parameters among the initial data collection characteristic
parameters, the compactification procedure becomes more complicated. To take this into account,
this study proposes a model of a structured collection of stochastic data defined in terms of relative
entropy. The compactification of such a data model is formalized by an iterative procedure aimed at
maximizing the relative entropy of sequential implementation of direct and reverse projections of data
collections, taking into account the estimates of the probability distribution densities of their attributes.
The procedure for approximating the relative entropy function of compactification to reduce the
computational complexity of the latter is proposed. To qualitatively assess compactification this
study undertakes a formal analysis that uses data collection information capacity and the absolute
and relative share of information losses due to compaction as its metrics. Taking into account the
semantic connection of compactification and completeness, the proposed metric is also relevant
for the task of assessing data reliability. Testing the proposed compactification procedure proved
both its stability and efficiency in comparison with previously used analogues, such as the principal
component analysis method and the random projection method.

Keywords: machine learning; data analysis; entropy; data reliability; small data; stochastic data;
compactification; completeness; parametric optimization

1. Introduction

The most valuable resource in the information society is data. It seems that “there is
no such thing as too much data”, but let us try to look at this catchphrase as data scientists.
The “curse of dimensionality” is a problem that consists of the exponential growth of the
amount of data that has occurred simultaneously with the growth of the dimensionality of
the space for data representation. This term was introduced by Richard Bellman in 1961.
Scientists dealing with mathematical modelling and computational methods were the first
to face this problem. Now, this problem is faced again as machine learning and artificial
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intelligence methods are implemented. In this study, we will illustrate the relevance of this
problem using the k-nearest neighbour method, which is popular for solving classification
problems [1–4]. The essence of the method is as follows: the instance belongs to the
same class as that which the majority of its nearest neighbour instances in the parametric
space belong. To ensure high-quality work with this method, the saturation density of
the parametric space with instances must be sufficiently high. How are the parametric
space dimensions, the density of instances, and their number related to each other? To
uniformly cover a unit interval [0, 1] with a density 0,01, we need 100 points, where the
coverage density is defined as the ratio of the number of points evenly distributed in
the target interval to the length of the latter. Now, imagine a 10-dimensional cube. To
achieve the same coverage density, we already need 1020 points, that is, 1018 times more
points compared to the original 1-dimensional space. This example demonstrates the
reason for the inefficiency of the brute force method in typical machine learning problems
(classification, clustering, and regression) [5–9]. The paradox is that it is impossible to solve
the mentioned applied problems using a small number of parameters and achieve adequate
results. One can simply turn a blind eye to the problem of dimensionality, which is the
paradigm of deep learning, where using non-parameterized models achieves a significant
increase in their quality despite the colossal increase in the number of calculations and
accepting as an axiom the potential instability of the training process. But this recipe
is unacceptable in the context of the machine learning ideology. The following Table 1
contains a more detailed comparison of these two methods.

Table 1. General comparison of the concepts of machine and deep learning.

Criterion Machine Learning Deep Learning

The number of data points One can use small amounts of data to
create forecasts

It is necessary to use large volumes of training data
to create forecasts

Dependence on equipment It can work on low-power computers.
Large computing power is not required

Depends on high-performance computers. At the
same time, the computer performs a large number
of operations on the matrix. The graphic processor

can effectively optimize these operations
The process of

constructing features
Requires an accurate determination of the

signs and their creation by users
Recognizes high levels based on data and

independently creates new signs

Claim to training
The training process is divided into small
steps. Then, the results of each step are

combined into a single output block

The problem is solved by the method of
thorough analysis

Training time Training takes relatively little time, from
a few seconds to several hours

As a rule, the training process takes a long time
since the deep learning algorithm includes

many levels

Output
The output data is usually a numerical

value, for example, assessment
or classification

The weekend can have several formats, such as
text, estimate or sound

Therefore, managing the dimensionality of data while preserving their quality and the
representativeness of the parametric space is an urgent scientific problem for machine learning.

The most widely used method for reducing data dimensionality is singular value
decomposition (SVD, [10–12]). The matrices obtained as a result of SVD have a very specific
interpretation in the machine learning methodology. They can be used according to the
proven method both for principal component analysis (PCA, [13–15]) and (with certain
reservations) for non-negative matrix factorization (NMF, [16–18]). SVD can also be used
to improve the results of independent component analysis (ICA, [19–21]). It is convenient
to apply SVD because there are no restrictions on the structure of the original data matrix
(square when using the LU [22] or Schur distribution [23]; square, symmetric, or positive
definite when using the Cholesky distribution [24]; matrix with positive elements when
applying NMF). The essence of SVD is the representation of the original matrix X as a
product of matrices of the form X = UΣV∗, where U is a unitary matrix of order m and ∑ is
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a rectangular diagonal matrix of dimension (m × n), where m is a number of instances and
n is a number of measured observables, with singular elements on the main diagonal and
V∗ is a matrix of order n, obtained as a result of conjugate transpose of the matrix V. The
matrix ∑ is important for the dimensionality management problem. The squared singular
elements of this matrix are interpreted as the variance σ2 of the corresponding component.
Based on the value of these variances, the researcher can select the required number of
components. What is the best value ∑

m
σ2? Some recommend maintaining the inequality

∑
m

σ2 ≥ 0, 90, while others believe that ∑
m

σ2 ≥ 0, 50 is sufficient. The original answer to

this question is provided by Horn’s parallel analysis based on Monte Carlo simulation [25].
The disadvantage of both SVD and PCA is the high computational complexity of obtaining
a singular distribution (well-known randomized algorithms [26] slightly mitigate this
limitation). A more serious limitation is the sensitivity of SVD/PCA to outliers and the
type of distribution of the original data. Most researchers believe that SVD/PCA works
consistently with normally distributed data, but it has been empirically found that, as the
data dimensionality increases, there are exceptions even to this rule. Therefore, SVD/PCA
methods cannot guarantee the stability of the data dimensionality reduction procedure.

NMF is used to obtain the decomposition of a non-negative matrix X(m×n) into non-
negative matrices W(m×k) and H(k×n): X = WH. By choosing k << m, n, we can solve
the problem of reducing the dimensionality of the original matrix quite effectively. The
problem is that, unlike SVD, finding the X = WH decomposition does not have an exact
solution. There are specialized formulations of quadratic programming problems, such as
the support vector machine (SVM, [27–29]) [30]. However, we understand that this means
that NMF has the same limitations that have been pointed out for SVD/PCA.

The ICA method crossed into machine learning from the signal processing theory
and, in its original formulation, was intended for the decomposition of a signal with
additive components. At the same time, it was believed that these components have an
abnormal distribution, and the sources of their origin are independent. To determine
independent components, either minimization of mutual information based on Kullback–
Leibler divergence [19] or minimization of “non-Gaussianity” [20,21] (using measures such
as kurtosis coefficient and negentropy) are used. In the context of the dimensionality
reduction problem, the application of ICA is trivial: to represent the input data as a mixture
of components, divide them and select a certain number. There is no analytically consistent
criterion for component selection.

We have often mentioned machine learning methods in the context of the data di-
mensionality management problem. However, there are competitors originating from the
artificial intelligence field, i.e., the autoencoders [31–33]. This is an original class of neural
networks, created so that the signal given to the input layer is reproduced as accurately
as possible at the output of the neural network. The number of hidden layers should be
at least one, and the activation functions of neurons on these layers should be non-linear
(most often sigmoid, tanh, ReLu). If the number of neurons in the hidden layer is less than
the number of neurons in the input layer, and we reproduce the input signal at the same
time with sufficient accuracy as the output of the trained autoencoder, then the parameters
of the neurons of the hidden layer are a compact approximate representation of the input
signal. The advantage of this approach is that the neural network works for us. It is also
very easy to orient the autoencoder to solve the data dimensionality increasing problem:
it is sufficient that there are more neurons on the hidden layer than on the input layer.
Disadvantages are also known: empirical search for the optimal configuration of the neural
network (number of hidden layers, number of neurons on those layers, and selection of
their activation functions), empirical selection of both the training algorithm and its pa-
rameters), and the neural network regularization methods (L1, L2, dropout). And we have
not yet focused on the specific drawback of autoencoders, i.e., the tendency to degenerate
hidden layers in the training process.
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In recent years, there has been a growing interest in the research of data analysis,
particularly within the context of regression analysis applied to inhomogeneous datasets.
The existing research [34] explores the challenges presented by data that can be gathered
from various sources or recorded at different time intervals, resulting in inherent inhomo-
geneities that complicate the process of regression modelling. The conventional framework
of independent and identically distributed errors, typically associated with a single un-
derlying model, is inadequate for handling such data. As the authors claim, traditional
alternatives, like time-varying coefficients models or mixture models, can be computation-
ally burdensome and impractical. So, the paper [34] proposes an aggregation technique
based on normalized entropy (neagging) in contrast with such well-known aggregation
procedures as bagging and magging. This approach has shown great promise, and the
paper provides practical examples to illustrate its effectiveness using real-world datasets
across various scenarios. However, the authors position their solution for working with
large amounts of data or Big data. The issue of applicability of the mentioned procedures
for compactification of small variable data has not been considered.

Taking into account the strengths and weaknesses of the mentioned methods, we will
formulate the necessary attributes of scientific research.

The research object is the process of stochastic empirical data collection compactification.
The research subjects are probability theory and mathematical statistics, information

theory, computational methods, mathematical programming methods, and experiment
planning theory.

The research purpose is to formalize the process of finding the optimal probability
distribution density of stochastic characteristic parameters of the empirical data compact-
ification model with the maximum relative entropy between the original and compacti-
fied entities.

The research objectives are:

- formalize the concept of calculating the variable entropy estimation of the probabil-
ity distribution density of the characteristic parameters of the stochastic empirical
data collection;

- formalize the process of the stochastic empirical data collection compactification with
the maximization of the relative entropy between the original and compactified entities;

- justify the adequacy of the proposed mathematical apparatus and demonstrate its
functionality with an example.

The Motivation. One derives quantitative information on a class of objects by measur-
ing a set of observables (“characteristic parameters”) on a sample of objects taken from the
class of interest. A set of values taken by the chosen observables on one of the objects is an
instance. One of the basic problems in general data analysis is finding the optimal number
of instances and the optimal (minimal) number of observables, that allow, in the presence
of noise, to build regression models, estimate correlations between observables, and clas-
sify and cluster the objects in a machine learning approach. In this perspective, which is
a very relevant one, the authors propose a model of noisy data based on a conditional,
relative entropy [Equation (6)]. The article introduces a consistent and tunable method of
“compactification” that performs quite well concerning other established methods, such as
PCA and random projection methods.

2. Models and Methods
2.1. Statement of the Research

Let us characterize the researched process using a model in terms of linear program-
ming, that is, by a function z = f (v, w) that summarizes n weighted characteristic parame-
ters v ∈ Rn, where the weights w are interval stochastic values: w ∈W = {w− ≤ w ≤ w+},
the properties of which are characterized by the probability distribution density P(w).

Suppose that, as a result of m observations of the investigated process, empirical
data with the structure 〈V, y〉 were obtained, where V is the training collection and each
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empirical parametric vector v(i) = (vi1, . . . , vin) ∈ V, v(i) ∈ Rn, corresponds to an empirical
initial value yi ∈ y, ∀i = 1, m. When substituting data V into the model z, the equality of

z = {zi} = Vw, i = 1, m, (1)

must be fulfilled and which is provided by the training of the model z.
We consider that the values yi of the original empirical vector y contain interference,

which are represented by stochastic vector values εi ∈ ε, i = 1, m, ε ∈ E = {ε− ≤ ε ≤ ε+},
with the probability density function L(ε) of a stochastic vector ε. Taking into account
interferences, we present expression (1) as

u = z + ε = V(m×n)w + ε, (2)

where u ∈ U = [u−, u+], u− = Vw− + ε−, u+ = Vw+ + ε+.
In the context of the formulated equation, the machine learning methodology is

focused on determining the estimates
_
P(w) and

_
L (ε) of the corresponding probability

distribution densities. The basis for this is model (2) and a set of empirical data V. Based on

the known estimates of
_
P(w) and

_
L (ε), it is possible to outline the domain of stochastic

vectors u ∈ U. Such a problem will be referred to as a d-problem. The authors devoted the
article [35] directly to the solution of the d-problem.

On the other hand, the problem of compactification of the parametric space V of model
(2) is solved by reducing the dimension of the characteristic parameters from n to r units,
r < n, is also of practical value. Such a problem will be referred to as a c-problem.

Suppose that, as a result of the compactification of the original empirical data with
the structure 〈V, y〉, a shortened parametric space Rr is obtained where each parametric
vector y(i) = (vi1, . . . , vir) ∈ Y, y(i) ∈ Rr, or i = 1, m, corresponds to the original interval
stochastic value a ∈ A = {a− ≤ a ≤ a+}, j = 1, r, with the probability distribution density
A(a).

To describe compactified data 〈Y, a〉, we define the model

b = Y(m×r)a, a ∈ Rr, b ∈ Rm, (3)

and the vector of observations is expressed as

s = b + ξ, (4)

where the stochastic vector ξ is formed by interval values Ξ = {ξ− ≤ ξ ≤ ξ+} with the
probability distribution density Z(ξ). The vectors s defined by expression (4) are interpreted
as S = [s−, s+], s− = Ya− + ξ−, s+ = Ya+ + ξ+.

Our further actions will be aimed at formulating:

- optimality criterion of the compactified data matrix Y(m×r);
- a method for calculating the elements of the optimal compactified data matrix Y(m×r);
- a method for comparing the probability distribution densities of outputs of models (2)

and (4) as an indicator of the effectiveness of the proposed compactification concept.

2.2. The Concept of Entropy-Optimal Compactification of Stochastic Empirical Data

Let us focus on the analytical formalization of the entropic properties of empirical data,
summarized by the matrix V. Let there be m independent instances in the collection of class
X, each of which is characterized by the values of n attributes (characteristic parameters).
The selection of instances in the collection X is random. In this context, the matrix X
summarizes xij, i = 1, m, j = 1, n, stochastic attributes whose values are real numbers:

xij ≥ 0, i = 1, m, j = 1, n, satisfying the condition
m
∑

i=1

n
∑

j=1
xij ≤ W, where W is determined

by the region of origin of instances of the class X.
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We normalize the values of the elements of the matrix X relative to the selected scale
with a resolution of ∆: hij =

⌈
xij/∆

⌉
, i = 1, m, j = 1, n,

m
∑

i=1

n
∑

j=1
hij ≤ A ≥ dW/∆e. The step

∆ is chosen to ensure sufficient variability of the resulting integer values of the stochastic
elements of the matrix H =

(
hij
)
, i = 1, m, j = 1, n.

Let us formalize the process of forming the values of the elements of the matrix H. Let
us have A atomic units of the resource, which are distributed among m × n elements of the
matrix H, and the probability of a resource unit falling into the element hij is characterized
by the probability pij, i = 1, m, j = 1, n. The probability distribution of such a process is
defined as

P(H) = A!
m

∏
i=1

n

∏
j=1

p
hij
ij

hij!
. (5)

If the Moivre–Stirling approximation of factorials of large numbers is applied to the
logarithmic representation of expression (5), we obtain an expression that characterizes the
process described above based on the relative entropy:

E(H|P ) = −
m

∑
i=1

n

∑
j=1

hij ln
hij

pij
, (6)

where P =
(

pij
)
, i = 1, m, j = 1, n.

Taking into account the proposed physical interpretation of the process of the matrix
H values formation, it is appropriate to introduce such a characteristic parameter as the
resource units a priori distribution, i.e., V =

(
vij = pij A

)
, i = 1, m, j = 1, n. Taking this

parameter into account, expression (6) can be redefined as

E(H|V ) , −
m

∑
i=1

n

∑
j=1

hij ln
hij

vij
. (7)

Equality (7) is defined with accuracy up to the constant AlnA. The essential connection
between the sources of origin of the elements of the matrices X and H allows us to define
the cross-entropy function as

E(X|V ) , −
m

∑
i=1

n

∑
j=1

xij ln
xij

vij
. (8)

Based on expression (8), we write:

E(G|P ) = −W ln
W
A
−

m

∑
i=1

n

∑
j=1

gij
gij

pij
, (9)

where gij = xij/W ∈ [0, 1], i = 1, m, and j = 1, n, and the second term is the relative
uncertainty characteristic of the stochastic matrix X.

Function (8) is concave for the entire range of values of the argument X and reaches a
single extremum at the point x∗ij = vij/e, e = 2, 718, i = 1, m, j = 1, n. The extreme value of
function (8) is equal to

Emax(x∗|V ) =
1
e

m

∑
i=1

n

∑
j=1

vij. (10)

The value (10) characterizes the maximum uncertainty of the matrix X for a defined
matrix V. Let us emphasize other useful properties of function (8).
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Let us define a matrix L with elements lij
(
xij, vij

)
= ln

(
xij/evij

)
, i = 1, m, and j = 1, n.

Considering V = L(X, V), expression (8) can be rewritten as

E(X|V ) = E(X, L(X, V)) = −
m

∑
i=1

n

∑
j=1

xijlij
(

xij, vij

)
= Sp

(
XLT(X, V)

)
= Sp

(
L(X, V)XT

)
, (11)

where the symbols Sp and T represent the operations of trace finding and matrix transposi-
tion, respectively.

Based on the definition lij
(
xij, vij

)
, we obtain the following inequality for the logarith-

mic function:
lij
(
xij, vij

)
≤
(
xij − vij

)
/vmin, i = 1, m, j = 1, n, (12)

where vmin = min
i,j

vij.

Having transformed expression (11) and taking into account inequality (12), we deter-
mine the upper limit of cross entropy (8):

Ê(X|V ) = Sp
(

XXT
)
− Sp

(
XVT

)
. (13)

Function (13) is concave and follows all the properties of function (8).
Consider a non-degenerate

(
det
(

VT
(n×m)V(m×n)

)
6= 0

)
matrix of empirical data V(m,n)

with positive elements. Let us set the desired dimension of the parametric space: r, r < n,
and enter into the matrix Q =

(
qij ≥ 0

)
, i = 1, n, and j = 1, r. We obtain a direct projection

of the matrix Q(n×r) onto the parametric space Rmr: Y(m×r) = V(m×n)Q(n×r). We obtain the
inverse projection on the space Rmn using the matrix S(r×n), and the values of all elements
which are positive: X(m×n) = V(m×n)Q(n×r)S(r×n). The dimensionality of both the obtained
matrix X and the original matrix V is the same: (m × n).

Let us express the cross-entropy functional E(X|V ) = E
(

X(m×n)

∣∣∣V(m×n)

)
, taking into

account the existence of the matrices Q(n×r) and S(r×n):

E(X|V ) = E(Q, S|V ) = E
(

Q(n×r), S(r×n)

∣∣∣V(m×n)

)
= −

m

∑
i=1

n

∑
j=1

eij

(
Q(n×r), S(r×n)

∣∣∣V(m×n)

)
, (14)

where

eij

(
Q(n×r), S(r×n)

∣∣∣V(m×n)

)
= xij

(
Q(n×r), S(r×n)

∣∣∣V(m×n)

)
ln
(

xij

(
Q(n×r), S(r×n)

∣∣∣V(m×n)

)
/vij

)
,

xij

(
Q(n×r), S(r×n)

∣∣∣V(m×n)

)
=

r

∑
k=1

n

∑
l=1

skjqlkvil , i = 1, m, j = 1, n.

The optimal configuration of the values of the positive matrices Q and S in the entropy
basis is described by the expression

(Q∗, S∗) = arg max
(Q,S)≥0

E(Q, S|V ). (15)

We will search for the extremum of the objective function (15) by the iterative gradient
projection method [36,37], taking into account the need to cut off elements with negative
values (observing condition (Q, S) ≥ 0).

Let us analytically express the partial derivatives of the function E(Q, S|V ) in terms
of the arguments, i.e., the elements of matrices Q and S:

∂E(Q, S|V )

∂qkl
= −

m

∑
i=1

n

∑
j=1

∂eij(Q, S|V )

∂xij

∂xij(Q, S|V )

∂qkl
(16)
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∂E(Q, S|V )

∂slh
= −

n

∑
i=1

m

∑
j=1

∂eij(Q, S|V )

∂xij

∂xij(Q, S|V )

∂slh
(17)

where ∂eij(Q, S|X )/∂xij = ln
(
xij/vij

)
+ 1, ∂xij(Q, S|V )/∂qkl = sl jvik, ∂xij(Q, S|V )/∂slh =

n
∑

k=1
qklvih, i = 1, m, j = 1, n, k = 1, n, l = 1, r, and h = 1, n.

Let us derive vectors
→
q and

→
s as a result vectorization of matrices Q and S, respectively.

We identify the gradient vector of the relative entropy functional (14) with components (16)
∇Q

(→
q ,
→
s
)

. We identify the gradient vector ∇S

(→
q ,
→
s
)

of the relative entropy functional
(14) with components (17). We initialize the iterative procedure for finding the extremum
of the objective function (15) based on the gradient projection method and in terms of the
introduced entities.

For the 0th iteration, we take X(0), V(0),
→
q
(0)

> 0,
→
s
(0)

> 0.
For the nth iteration, we write:

→
q
(n+1)

=


→
q
(n)

+ γ→
q
∇Q

(
→
q
(n)

,
→
s
(n)
)
∀→q

(n+1)
≥ 0,

→
q
(n)
∀→q

(n+1)
< 0,

→
s
(n+1)

=


→
s
(n)

+ γ→
s
∇S

(
→
q
(n)

,
→
s
(n)
)
∀→s

(n+1)
≥ 0,

→
s
(n)
∀→s

(n+1)
< 0,

→
q
(n+1)

⇒ Q(n+1),
→
s
(n+1)

⇒ S(n+1), X(n+1) = Q(n+1)S(n+1)V,

E(n+1) = E
(

Q(n+1), S(n+1)|V
)
=

m
∑

i=1

r
∑

j=1
x(n+1)

ij ln
x(n+1)

ij
vij

,

(18)

where parameters γ→
q

, γ→
s

regulate increments in the corresponding dimension.
Iterative process (18) ends when the dynamics of the change in the value of the relative

entropy functional becomes less than the threshold δ:

δE = E(n+1) − E(n) =
I(V)− I(Y(Q|V ))

I(V)
≤ δ, (19)

where I(V) =
m
∑

i=1

n
∑

j=1
vij ln vij is the information capacity of the positive matrix V(m×n). By

analogy, we write: I(Y(Q|V )) =
m
∑

i=1

r
∑

j=1
yij(Q|V ) ln yij(Q|V ), where yij =

n
∑

l=1
vilql j.

The computational complexity of the implementation of the iterative procedure just
described increases nonlinearly with the increase in the dimension of the analyzed empirical
matrices. Considering this circumstance, it is acceptable to define the elements of the matrix
of the reduced dimension Q based on the approximately defined relative entropy functional
Ẽ. For example, let us use the approximation of the logarithmic function at the point x0 = w:
ln x < ln w + (x− w)/wmin. For points w = xij we find:

E(Q, S|V ) ≈ Ẽ(Q, S|V ) =
n

∑
i=1

m

∑
j=1

(
x2

ij(Q, S|V )− xij(Q, S|V )vij

)
. (20)

Let us present the expression (20) in the matrix form:

Ẽ(Q, S|V ) = Sp
(

XXT
)
− Sp

(
XVT

)
,= †(X(Q, S), X(Q, S))− †(X(Q, S), V) (21)

where the symbol † represents the Frobenius scalar product: Sp
(

ABT) = Sp
(

BAT) =
†(A, B) = †(B, A).
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With a fixed matrix of empirical data V, we will minimize the functional Ẽ(Q, S|V ) on
the set of positive matrices Q and S:(

Q̃∗, S̃∗
)
= arg min

(Q,S)≥0
Ẽ(Q, S|V ). (22)

The procedure for finding
(

Q̃∗, S̃∗
)

also uses components (16), and (17), which should
be adapted to the scalar form of representation of the entities involved. Applying the rules
of matrix differentiation to the functional (21), we obtain the following scalar interpretations
of components (16), and (17):

∆Q(Q, S) =
∂Ẽ(Q, S|V )

∂X
∂X
∂Q

= 2SXQX− SX, (23)

∆S(Q, S) =
∂Ẽ(Q, S|V )

∂X
∂X
∂S

= 2QTXQX−QTX, (24)

where X = XXT; ∆Q(Q, S) and ∆S(Q, S) are the gradients of matrices Q and S, respectively.
The results of expressions (23), and (24) will be matrices of dimension (n × r).

We initialize the iterative procedure for finding the extremum of objective function
(22) based on the gradient descent method and in terms of entities (23), and (24).

For the 0th iteration: we take X(0), V(0).
For the nth iteration, we write:

Q(n+1) =

{
Q(n) + γQ∆QẼ

(
Q(n), S(n)|V

)
≥ 0∀Q(n+1) ≥ 0,

Q(n)∀Q(n+1) < 0,

S(n+1) =

{
S(n) + γS∆SẼ

(
Q(n), S(n)|V

)
≥ 0∀S(n+1) ≥ 0,

S(n)∀S(n+1) < 0,

X(n+1) = VQ(n+1)S(n+1), E(n+1) =
m
∑

i=1

r
∑

j=1
x(n+1)

ij ln
x(n+1)

ij
vij

.

(25)

The iterative process (25) ends when the dynamics of the change in the value of the
functional Ẽ(Q, S|V ) becomes less than the set threshold δ: E(n+1) − E(n) ≤ δ.

In [35], the authors described the basic concept of solving the d- and c-problems
mentioned in Section 2.1 for empirical data of the type V and Y, respectively. The result is
the optimal probability distribution densities of characteristic parameters and interference
(for the d-problem: P∗(w), L∗(ε), and for the c-problem: A∗(a), Z∗(ξ), respectively). The
mathematical apparatus presented in Section 2.2 allows, based on linear models (2), and
(4), to calculate normalized U ∩ S probability distributions Fd

(→
u
)

and Fc

(→
s
)

to determine
the absolute difference between these functions in terms of relative entropy [38–41].

To preserve the integrity of the presentation of the material, we will demonstrate how
the basic concept of solving the d-problem is implemented in the context of model (2). Let’s
define the functional E(P(w), L(ε)) on the probability distribution densities P∗(w) and
L∗(ε). We need to solve the optimization problem with the following objective function
and constraints:

E(P(w), L(ε)) = −
∫
W

P(w) ln P(w)dw−
∫
E

L(ε) ln L(ε)dε→ max∫
W

P(w)dw = 1,
∫
E

L(ε)dε = 1, M{z} =
∫
W

VwP(w)dw +
∫
E

εL(ε)dε = y.
(26)

The solution to the optimization problem (26) in analytical form looks like

P∗(w) = exp(−θ, Vw)/
∫
W

exp(−θ, Vw)dw, L∗(ε) = exp(−θ, ε)/
∫
B

exp(−θ, ε)dε,
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where the Lagrange multipliers θ are determined as a result of solving the system of balance
equations M{z} in the interpretation

∫
W

VwP∗(w)dw +
∫
E

εL∗(ε)dε = y.

In the context of the model (2), the probability distribution density F(u) of the observa-
tion vector u is defined as

F(u) =
∫
E

Π(u− ε)L∗(ε)dε = Fd(u), (27)

where Fd(u) is the desired probability distribution density of the d-problem model, and
Π(u− ε) is the density of the stochastic vector u − ε. From expression (27) we find
w = VTz/VTV.

Considering the interval nature of the vector z: z ∈ Z = [z− = Vw−, z+ = Vw+],
we write η(z) = P∗

(
VTz/VTV

)
. Having normalized the function η(z), we express the

probability distribution density of the vector z as Π(z) = η(z)/
∫
Z

η(z)dz.

To determine the probability distribution density Fc(s) in the context of the model (4)
(c-problem), it is necessary to repeat the sequence of actions embodied in expression (27)
based on the empirical data matrix Y.

To compare the functions Fd(u) and Fc(s), it is necessary to normalize them on the
common carrier Λ = U ∩ S:

F̃d(λ) = Fd(λ)/
∫
Λ

Fd(λ)dλ, F̃c(λ) = Fc(λ)/
∫
Λ

Fc(λ)dλ. (28)

To find the absolute share of information losses between functions F̃d(λ) and F̃c(λ)
due to compaction ∆E we define in terms of the relative entropy of RE as

RE
(

F̃d, F̃c

)
=
∫
Λ

F̃c(λ) ln
(

F̃c(λ)/F̃d(λ)
)

,

∆E =
1
2

RE
(

F̃d, F̃c

)
+ RE

(
F̃d, F̃c

)
. (29)

Note that the minimum ∆E = 0 is reached at F̃d(λ) = F̃c(λ).

3. Results

Let us begin the experimental Section by demonstrating the functionality of the math-
ematical apparatus proposed in Section 2.2 on a simple abstract example.

Suppose we have initial empirical data of the form V(m=2×n=2) =

(
0, 100 0, 800
0, 800 1, 000

)
.

In the context of model (2), we write u = Vw + ε. Suppose that w ∈ W = [0, 000; 5, 000],
ε ∈ E = [−0, 500; 0, 500]. The output component is defined by the vector y = (0, 600; 1, 400).

Let r = 1, then Y(2×1) = V(2×2)Q(2×1), where Q(2×1) =

(
q11
q21

)
is the matrix for the

direct projection. The compactification model (4) for the above values and conditions looks
like this s = Ya + ξ, where a ∈ a = [0, 000; 5, 000], ξ ∈ Ξ = [−0, 500; 0, 500]. The inverse
projection operation is analytically characterized as X(2×2) = V(2×2)Q(2×1)S(1×2), where
S(1×2) =

(
s11 s12

)
is the matrix for the inverse projection.

Our example is characterized by a small dimension, so we will use procedure (18)
to determine the cross entropy. In this context, the cross entropy E between the original
empirical matrix V(2×2) and the matrix X(2×2) obtained as a result of direct-inverse projec-

tion will be analytically determined by the expression E = −
2
∑

i=1

2
∑

j=1
xij ln

xij
vij

. The function
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E(Q, S) reaches an extremum at Q∗max =

(
0, 356
0, 768

)
, S∗max =

(
0, 257 0, 559

)
. Accordingly,

the optimal compactified matrix Y has the form Y∗ =
(

0, 356
0, 768

)
.

The optimal probability distribution densities of the characteristic parameters w and in-
terference ε for the matrix V defined at the beginning of the Section are characterized by the func-
tions P∗(w) = 1, 221 exp(−0.888w1 − 1, 419w2) and L∗(ε) = 0, 982 exp(−0, 642ε1 − 0, 136ε2).
To compare the functions Fd(u) and Fc(s), it is necessary to normalize them on the com-
mon carrier, so, using (28), we find 0 ≤ λ1 ≤ 1, 778, 0 ≤ λ2 ≤ 3, 842. Then, with the
defined functions (2), (4), and P∗(w), the absolute share of information losses (29) of re-
ducing the dimensionality of the space of characteristic parameters from n = 2 to r = 1(

V(2×2) → Y∗(2×1)

)
is equal to ∆E = 0, 245, which allows us to consider the result of the

proposed compactification procedure of the original empirical matrix V as adequate.
To prove the effectiveness of the proposed compactification method (18) (Met3), the

method should be compared with popular analogues, namely, with the principal com-
ponent analysis method (Met1) and the random projection method (Met2). Considering
the linear nature of functions (2) and (4), we will experiment in the context of solving the
verification problem (dichotomous classification) with a linear classifier. Let’s formulate
such a problem based on the terminology used.

We define the linear classifier model as

z(sk) = sign

(
n

∑
i=1

wivi(sk)

)
=


+1∀

n
∑

i=1
wivi(sk) ≥ 0,

−1∀
n
∑

i=1
wivi(sk) < 0,

(30)

where k ∈ {1, m} and the values of the weights w ∈ Rn are unknown a priori.
Empirical data with the structure

〈
V(m×n), y(m×1)

〉
are available, and

yk =

{
+1∀z(tk) = +1,
−1∀z(tk) = −1,

where tk is an instance of a class 〈V, y〉with a number k ∈ {1, m}.

The training of the classifier (30) is reduced to the minimization of the empirical risk func-

tion of the form R(w) =
m
∑

i=1
‖y− z(w|V )‖2. To test the trained classifier (30), test empirical

data with the structure
〈

U(l×n), x(l×1)

〉
were used.

The results of the classification b(tk) = sign
(

n
∑

i=1
ŵiui(tk)

)
= {−1, 1}∀k = 1, l are syn-

chronously compared with the corresponding elements of the vector x and taken into account

in the form of the value of the function I =
l

∑
k−1

∆(tk), where ∆(tk) =

{
1∀b(tk) = x(tk),
0∀b(tk) 6= x(tk).

.

Accordingly, classification accuracy is defined as α = I/l.
The conducted experiment consisted of solving the verification problem using classifier

(30) for:
e0—basic empirical dataset

〈
V(m×n), y(m×1)

〉
+
〈

U(l×n), x(l×1)

〉
;

{e1, e2, e3}—the dataset 〈V, y〉+ 〈U, x〉, the dimension of the attributes of the matrices
V and U which underwent compactification from the initial n to the specified r elements by
the method {Met1, Met2, Met3}.

The value r was iteratively reduced: r = n− 1, n− 2, . . . , 1, forming a set of datasets
at each of the stages {e1, e2} with the corresponding compactification degree. The number
of compactification procedures e3 was determined by the set of threshold values (19).

For experiments, as necessary, tables of synthetic data of the required size were gener-
ated. For this, the sklearn.datasets.make_classification(n_class = 2, n_clusters = 2, n_redundant = 0,
class_sep = 1.0, n_informative = {10, 15}) function of the Python programming language was
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used. Before use, all generated data were normalized to fall within the unit interval [0, 1].
The experiments were carried out using scipy.stats.bootstrap cross-validation.

The algorithmic designs of the {Met1, Met2, Met3} methods were implemented by the
functions of the scipy and sklearn libraries. The classifier (30) was implemented as a support
vector machine with a linear kernel using the function sklearn.svm.SVC. The Met1 Met2 meth-
ods were implemented using the sklearn.decomposition.PCA and sklearn.random_projection.
GaussianRandomProjection functions, respectively. The basis for the implementation of the
author’s method (18) was the scipy.optimize.minimize function (after inverting the objective
function (15)). At the same time, the attribute ftol was considered to be related to the
threshold (19).

As already mentioned in Section 2.2, the author’s empirical data compactification
method proposed in the form of procedure (18) is comparatively computationally complex
(this is what prompted the authors to formalize the “simplified” iterative procedure (25)).
However, Met1, Met2 analogues have their disadvantages, which appear when compacting
large-dimensional data. For example, with a sufficiently large number of instances of data
m and their heterogeneity, Met1 becomes unstable. We will conduct the first experiment
of the form α = f (m, Met, r) for m = 5, 10, n = 10, r = 10, 5, Met = {Met1, Met2, Met3}. The
obtained results are visualized in Figure 1.

The previous experiment characterized the ultra-compact empirical data compact-
ification procedure: m ≈ n, n/2 ≤ r ≤ n. Now, let us investigate how the verification
accuracy α depends on the compactification of the initial data, for which m >> r, m > n.
The experiments were carried out for two generated datasets DS1 and DS2. The first was
characterized by dimension (m = 100, n = 10) and the second by dimension (104, 102). When
processing the first dataset, we set r = {100, 90,. . ., 50} When working with the second
dataset, we set r = {100, 90,. . ., 50} The obtained results are presented in Figure 2.

The following experiment is specific to Met3 because it concerns the detection of the
dependence between the verification accuracy α and the dynamics of such parameters as
the compactification degree r and the value of the threshold δ = {0, 5; 0, 4; . . . ; 0, 1} (see ex-
pression (19)). To preserve the common information background, the remaining parameters
were borrowed from the previous experiment without changes, namely: DS = {DS1, DS2},
r(DS1) = {10, 9,. . ., 5}, and r(DS2) = {100, 90,. . ., 50}. The resulting dependencies are visual-
ized in Figure 3.

The empirical data compactification process is accompanied by an information loss.
The absolute error as an indicator of information loss during compactification can be calcu-
lated by expression (29). The relative share of information losses during compactification
can be calculated directly by expression (19) when implementing the compactification
procedure (18). Figure 4 presents the calculated dependences of the relative share of in-
formation loss δE on the compactification method Met = {Met1, Met2, Met3} for datasets
{DS1, DS2} with the corresponding ranges of changes in the compaction degree r.

Finally, we will conclude the Experimental Section with a study of Met3, the de-
tection of the dependence between the relative share of information loss δE, and the
dynamics of such parameters as the compactification degree r and the threshold value
δ = {0, 5; 0, 4; . . . ; 0, 1} (see expression (19)). To ensure a holistic perception of the material
of the Section, the remaining parameters were borrowed from the previous experiment.
The resulting dependencies are shown in Figure 5.
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4. Discussion

The research subject was chosen to reveal the characteristic features of the research
object. This axiom works in all areas of science. Data analysis is no exception. There can
be a huge, large, or small amount of data. The case with a small amount of data may be
complicated by the fact that the source of the data, the process of its collection, or both, may
not be under the researchers’ control. In this case, data scientists will have to work with
small stochastic data. The mathematical apparatus presented in Section 2.2 is focused on the
problem of analyzing such data. Objective functions (15), and (22) implement the principle
of maximum entropy formulated by Willard Gibbs in the context of compactification of
(small) stochastic empirical data. Gibbs’ work says that the most characteristic probability
distributions of the states of an uncertain object are distributions that maximize the chosen
measure of uncertainty, taking into account the available reliable information about the
investigated object. The effectiveness of this approach is demonstrated by the results
presented in Figure 1. Recall that, in this experiment, the compactification of extremely
small data was carried out (the number of instances m in the data collection approached the
number of attributes n). From Figure 1a,b, it can be seen that both the principal component
analysis method (Met1) and the random projection method (Met2) demonstrated cases of
non-functionality in situations when m < r, where r was the desired number of attributes in
the compactified collection. The author’s method (Met3) remained functional under any
requirements determined by the experiment.

As shown in Figure 1, the results characterized the small empirical data compacti-
fication process: m ≈ n, n/2 ≤ r ≤ n, then the results presented in Figure 2 show how
the verification accuracy α depends on the compactification of the initial data, for which
m > n (a sufficient amount of empirical data, Figure 2a) or m >> r (“big” empirical data,
Figure 2b). From Figure 2a, it can be seen that r ≤ 7 of function α(Met3) shows a monotonic
linear character, in contrast to functions α(Met1) and α(Met2). This circumstance indicates
that it was the author’s method that made it possible to find the optimal configuration of
the characteristic parameters space. Instead, the change of r in all functions α(Met) from
Figure 2b is characterized by a non-linear character. It can also be seen that, with r ≤ 60, it is
the author’s compactification method Met3 that generates the least informative parametric
space in comparison with analogues. This fact can be explained by the fact that optimiza-
tion method (18) does not have time to come close to the optimal distribution ensemble for
the maximum number of iterations set of the algorithm (attribute maxiter= 1000 for the
function scipy.optimize.minimize). The way out in such a situation can be the application
of the approximate version of algorithm (18), represented by expressions (25).

Figure 3 demonstrates the dependence of the verification accuracy α on the dy-
namics of such parameters as the compactification degree r and the threshold value
δ = {0, 5; 0, 4; . . . ; 0, 1} (see expression (19)) of the completion of the iterative procedure (18).
Let us notice that threshold δ is also a parameter that determines the maximum allowable
reduction of the information capacity for the compactification data matrix. The usefulness
of parameter δ lies in the fact that, based on its value, we can choose the permissible
compaction degree r, not empirically (as, for example, in Met1) but analytically; if, after
reducing the dimensionality of the dimension of the characteristic parameters to the value
r(n), the estimate δE has decreased too much, then the compactification process should be
stopped and the algorithm should be rolled back to the previous value of r(n−1). This is
exactly the behaviour we observe in Figure 3a. Instead, as shown in Figure 3b, the situation
is not stable. The probable explanation for this is similar to the one we mentioned regarding
Figure 2b.

Figure 4 presents the calculated dependences of the relative share of information loss
δE on the compactification method Met = {Met1, Met2, Met3} for datasets {DS1, DS2}
with the corresponding ranges of changes in the compactification degree r. It can be
seen that it is the function δE = f (r, Met3) with the growth r that grows significantly more
slowly, surpassing competitors by almost two times. Note that this advantage was observed
both for the “large” dataset DS1 and for the “Big” dataset DS2.
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Figure 5 shows the relationship formalized by expression (19) between the relative
share of information loss δE and the dynamics of such parameters as the compactification
degree r and the threshold value δ. It is interesting that, for the dataset DS1 (Figure 5a), all
values of r the condition δE ≤ δ are fulfilled, that is, algorithm (18) managed to find optimal
distributions without exceeding the set limit on the permissible number of iterations. On
the other hand, the circumstances were different for the “Big” dataset DS2. This can explain
the unstable nature of the values presented in Figure 5b.

In general, the results presented in Section 3 prove both the functionality and the effec-
tiveness of the mathematical apparatus presented in Section 2 in comparison with classical
analogues, namely, the principal component analysis method and the random projection
method. The obvious advantage of the author’s method is the demonstrated stability of the
small stochastic data compactification process and the possibility of analytical control of
the loss of information capacity of the compactification data matrix. On the other hand, the
disadvantage of the author’s method is the computational complexity, which is especially
evident when processing large data matrices. However, to mitigate this limitation, the
authors propose an approximating simplified version (25) of the basic compactification
procedure (18).

To implement the cross-entropy version of the author’s compactification method, the
method of conditional optimization on a non-negative orthant (CONNO) is adapted, and
implemented in the scipy library. We note that, for some combinations of input data, the
basic version of the CONNO method does not find a solution for the given optimization
parameters. To test this concept, a series of experiments were adopted. The first series
of experiments focused on identifying the dependence of classification accuracy on the
number of objects (i.e., sample size). The study of this dependence for three compactification
methods (PCA, RP, and author’s) is important to identify areas of their application. It is
known that entropy maximization methods and their derivatives, in particular the author’s
method, are usually used when the amount of data is limited compared to the dimension
of the feature space. With “Big Data,” there are no fundamental restrictions on their use,
but computational difficulties increase significantly. The next series of experiments was
focused on identifying the dependence of classification accuracy in conditions where the
number of measurements significantly exceeds the number of characteristic parameters.
The next series of experiments was focused on identifying the dependence of classification
accuracy for the author’s method on the acceptable reduction in the information capacity
of the dataset. The next series of experiments was focused on assessing information losses
from compactification implemented using and for the author’s method. The experiments
described above have already been carried out and results that positively characterize the
author’s method have been obtained. The problem is that, in its final form, the description,
results obtained, and discussion are already more than 10 pages long. Increasing the
size of this (already massive) article does not seem practical; therefore, if the mentioned
experimental results interest you, dear reader, then I ask you to contact the corresponding
author and he will be happy to share with you the results mentioned above.

5. Conclusions

Measurement is a typical way of gathering information about the investigated object,
generalized by a finite set of characteristic parameters. The result of each iteration of
the measurement is an instance of the class of the investigated object in the form of a
set of values of characteristic parameters. An ordered set of instances forms a collection
whose dimensionality for a real object is a factor that cannot be ignored. Managing the
dimensionality of data collection, as well as classification, regression, and clustering, are
fundamental problems of machine learning.

Compactification is the approximation of the original data collection by an equivalent
collection (with a reduced dimension of characteristic parameters) with the control of
accompanying information capacity losses. Related to compactification is the data com-
pleteness verifying procedure, which is characteristic of the data reliability assessment. If
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there are stochastic parameters among the initial data collection characteristic parameters,
the compactification procedure becomes more complicated. To take this into account, the
research proposes a model of a structured collection of stochastic data defined in terms
of relative entropy. The compactification of such a data model is formalized by an itera-
tive procedure aimed at maximizing the relative entropy of sequential implementation of
direct and reverse projections of data collections, taking into account the estimates of the
probability distribution densities of their attributes. The procedure for approximating the
relative entropy function of compactification to reduce the computational complexity of
the latter is proposed. For a qualitative assessment of compactification, the metric of such
indicators as the data collection information capacity, and the absolute and relative share
of information losses due to compaction, are analytically formalized. Taking into account
the semantic connection of compactification and completeness, the proposed metric is also
relevant for the data reliability assessment task. Testing the proposed compactification
procedure proved both its stability and efficiency in comparison with such used analogues
as the principal component analysis method and the random projection method.

Further research is planned to attempt to simplify the procedure for finding entropy-
optimal matrix projectors while observing the limit on permissible information losses
from compactification.
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