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Abstract 10 

This review aims to critically examine the existing state-of-the-art forest fire detection systems that are 11 

based on deep learning methods. In general, forest fire incidences bring significant negative impact to 12 

the economy, environment, and society. One of the crucial mitigation actions that needs to be readied 13 

is an effective forest fire detection system that are able to automatically notify the relevant parties on 14 

the incidence of forest fire as early as possible. This review paper has examined in details 37 research 15 

articles that have implemented deep learning (DL) model for forest fire detection, which were 16 

published between January 2018 and February 2023. In this paper, in depth analysis has been 17 

performed to identify the quantity and type of data that includes images and video datasets, as well as 18 

data augmentation methods and the deep model architecture. This paper is structured into five 19 

subsections, each of which focuses on a specific application of deep learning (DL) in the context of 20 

forest fire detection. These subsections include 1) classification, 2) detection, 3) detection and 21 

classification, 4) segmentation, and 5) segmentation and classification. To compare the model’s 22 

performance, the methods were evaluated using comprehensive metrics like accuracy, mean average 23 

precision (mAP), F1-Score, mean pixel accuracy (MPA), etc. From the findings, of the usage of DL 24 

models for forest fire surveillance systems have yielded favourable outcomes, whereby the majority of 25 

studies managed to achieve accuracy rates that exceeds 90%. To further enhance the efficacy of these 26 

models, future research can explore the optimal fine-tuning of the hyper-parameters, integrate various 27 

satellite data, implement generative data augmentation techniques, and refine the DL model 28 

architecture. In conclusion, this paper highlights the potential of deep learning methods in enhancing 29 

forest fire detection that is crucial for forest fire management and mitigation. 30 
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 33 

1 Introduction 34 

Forest fires can be natural or manmade phenomena that occurred in natural ecosystems and usually, 35 

they spread uncontrollably (Pausas, 2012). According to Arteaga et al. (2020), The magnitude, 36 

intensity, and duration of forest fires have continually increased in recent years. It is projected that 37 

continuous climate change will raise the risk of forest fire in many parts of the world, mostly as a result 38 

of extended warm and dry periods, coupled with increased lightning intensity (Robinne, 2021; Krause 39 

et al., 2014; Flannigan et al., 2009). With a staggering 4 billion hectares of forest around the world, it 40 

is clear that the negative impact of forest fires on the environment and global community cannot be 41 

overstated (Seydi et al., 2022). From 2002 until 2016, it is reported that on annual average, more than 42 

420 million hectares of forest were burned globally (Giglio et al., 2018; Robinne, 2021). Forest fires, 43 

which is also frequently referred to as wildfires, are a worldwide occurrence that have significant 44 

implications to the ecosystem, inhabitants, and assets (Kumar, 2022). The utilization of forests, 45 

conversely, is usually done for the purpose of agriculture, logging, mining, and establishment of 46 

infrastructure that include power plants, dams, and roads (Ru et al., 2023). Besides that, the reduction 47 

of forest due to forest fire also will worsen the global warming impact (Aryan et al., 2022). 48 

Furthermore, the unpredictable and out-of-control forest fires can pose a serious hazard to the lives of 49 

communities (Zhao et al., 2018). 50 

Forest fires are typically regarded as inevitable calamities, particularly in the summer and 51 

during periods of drought (Ru et al., 2023). Both natural and controlled version of forest fires will 52 

significantly influence the natural forest ecosystems (Datta, 2021). There are three main categories of 53 

forest fires, which are crown fires, surface fires, and ground fires (Brown and Davis, 1973). A 54 

comprehensive explanation of these three forest fire categories can be found in Bennett et al. (2010). 55 

Ground fires primarily burn the duff layer without producing any visible flame. This type of fire can 56 

continually smoulder for an extended period of time with very minimal smoke. While for surface fire, 57 

it produces flaming fronts that consume various types of vegetation, including needles, moss, lichen, 58 

shrubs, and small trees. Out of all the three types of forest fire, surface fire is the most common type 59 

that is characterized by high intensity flames, which can lead to the formation of crown fires (Brown 60 

and Davis, 1973). Additionally, surface fires can also transition into ground fires, while crown fires 61 
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will become surface fires upon reaching the ground level (Enoh et al., 2021). Crown fires can be either 62 

passive or active, with passive fires involve the ignition of individual or group of trees. The intensity 63 

of these fires is commonly high that dependent on various factors, including topography, wind patterns, 64 

and the density of trees (Bennett et al., 2010). The classification of forest fires based on their size is 65 

commonly referred to as the size class, which facilitates the comprehension of fire attributes and the 66 

necessary resources for their management. The determination of forest fire according to the size class 67 

is typically based on the fire's area and the precise definition may differ from one country to another. 68 

Table 1 depicts the forest fire classification according to the size class in United States of America.   69 

Table 1 Forest fire classification according to the size class (National Wildfire 70 

Coordinating Group, 2023) 71 

Class Size of Forest Fire (acres) 

Class A < 0.25 

Class B 0.25 - 9.9 

Class C 10.0 - 99.9 

Class D 100 - 299 

Class E 300 - 999 

Class F 1000 or more 

 72 

It is essential to have forest fire detection and surveillance systems that are both accurate and reliable 73 

in order to minimize the negative impacts of forest fires. As a consequence, many forest fire 74 

surveillance systems employ a wide range of technologies, such as satellite imaging, ground sensors, 75 

and drones, in order to identify, analyse, and respond to the forest fire incidents in real time. The 76 

utilization of these sensors has led to significant advancements in forest fire detection technologies. 77 

Furthermore, the integration of deep learning (DL) models has also enhanced the accuracy of these 78 

technologies. Although, Harkat et al. (2023) and Yang et al. (2023) stated that DL cannot performed 79 

well due to limited data, generalization, lacks interpretability, and features but the integration DL with 80 

other method can increase the performance. In the context of remote sensing-based applications, deep 81 

semantic segmentation models are typically developed with the objective of extracting road networks, 82 

building detection, and land use classification (Elizar et al., 2022). In recent time, the use of remote 83 

sensing imagery has become a crucial tool for studying and detecting forest fires, whether through 84 

spaceborne or airborne, which has proven to be cost and time-effective means of monitoring forest 85 

fires over large areas of interest (Payra et al., 2023). The Landsat, Advanced Spaceborne Thermal 86 

Emission and Reflection Radiometer (ASTER), Sentinel, Moderate Resolution Imaging 87 
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Spectroradiometer (MODIS), Geostationary Operational Environmental Satellites (GOES-16), and 88 

Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data have gained widespread popularity 89 

as the input modality for detecting and monitoring forest fires. The utilisation of thermal remote sensing 90 

has also made a noteworthy contribution towards the identification of fire-related information such as 91 

fire risk, active fires, fire frequency, burn severity and affected areas (Szpakowski and Jensen, 2019; 92 

Chuvieco, 2009; Bar et al., 2020; Chaudhary et al., 2022). The application of remote sensing (RS) has 93 

provided extensive prospects for both qualitative and quantitative analysis of forest fires across various 94 

spatial scales (Bar et al., 2020; Chaudhary et al., 2022). The main limitations associated with the use 95 

of satellites have been discussed in several studies (Kasyap et al., 2022; Hussin and Juhari, 2012; 96 

Ramakrishna et al., 2016; Girshick, 2015), which have highlighted that the satellite imagery resolution 97 

is often inadequate, resulting in data averaging for a given area, which is less effective for detecting 98 

small fires within a specific pixel. However, the coverage area of satellite imagery is large, which 99 

requires a lot of pre-processing time before resurveying on the same region. Furthermore, the lack of 100 

real-time applications and inadequate precision of the imagery are deemed to be the main reason of not 101 

using satellite data for the continuous monitoring of forest fires. 102 

According to Allison et al. (2016), of the input data for a forest fire intelligent application 103 

should match the spatial and temporal scale required for a precise decision-making system. In order to 104 

prevent large number of false alarm cases in a video-based system, the deployed sensors must possess 105 

a high level of resistance to various forms of interference, such as steam, fog, dust pollution, and 106 

condensing water (Krüll et al., 2012). High-altitude aerial/space sensors, including satellites, could 107 

offer a comprehensive view of large regional areas, integrated with georeferencing to locate the fire 108 

positions (Allison et al., 2016). For instance, Gao et al. (2015) acquired data from the Canadian Forest 109 

Fire Weather Index (CFFWI) system to analyse and examine the impact of forest fire under different 110 

weather conditions due to change in temperature, humidity, wind speed, and precipitation. Another 111 

type of sensor modality is wireless sensor networks (WSNs) that utilizes wireless sensor nodes to 112 

achieve broad coverage of the designated regions (Dampage et al., 2022). According to Dampage et 113 

al. (2022), to improve usability of the sensors, a few peripherals that include microcontrollers, 114 

transceiver modules, and power supplies need to be integrated together.  115 

Another aerial modality, UAV which is also referred to as Unmanned Aircraft System (UAS) 116 

and colloquially known as drone, is a flying unit that operates without the presence of an on-board 117 

human pilot since it can be remotely controlled from a ground station (Cazzato et al., 2020; Treneska 118 
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and Stojkoska, 2021). UAV has emerged as a highly effective instrument for mitigating and managing 119 

natural disasters, including forest fires. UAV has been successfully incorporated as a crucial instrument 120 

for the purpose of detecting fires in Maryam et al. (2022). Its capability to reach remote and hazardous 121 

locations is well documented that enables effective environmental surveillance by capturing high-122 

resolution imagery (Dronova et al., 2021). Therefore, UAV is an ideal sensor modality for the purpose 123 

of forest fire mitigation and management, particularly for the regions with limited road access, where 124 

safety precaution is imperative. However, several critical constraints, especially on the performance, 125 

deployment, and design of the UAV, including autonomy, battery endurance, mobility, and limited 126 

flight time need to be addressed for an effective deployment (Mohsan et al., 2023). Additionally, harsh 127 

weather conditions and environments can further degrade the UAV performance. 128 

It is anticipated that the incidence of global forest fires will keep increasing due to climate 129 

change (Vilà-vilardell et al., 2020; Mohammed, 2022). As a result, a comprehensive review of the 130 

current state-of-the-art DL models for detection, mitigation, and management of forest fires is crucial, 131 

whereby the conventional approaches are more time-consuming, expensive, and labour-intensive. 132 

Currently, there is an increasing trend in using DL for forest fire detection. Mohnish et al. (2022) have 133 

combined satellite imagery, ground sensor datasets, and direct visual feeds from unmanned aerial 134 

vehicle (UAV) as the input for a DL model to identify forest fire incidences. These digital image 135 

modalities require extensive analysis and processing steps (Nakagawa et al., 2022), especially for the 136 

satellite imaging (Khryashchev and Larionov, 2020), whereby this sensor often requires heavy 137 

computational processing time and resource. In DL model, the features of interest are learnt 138 

hierarchically, to extract a set of complex patterns to represents the problem (de Almeida et al., 2020). 139 

It is often embedded with augmented data to enhance the possible attributes and features (Alzubaidi et 140 

al., 2021). In order to eliminate repeating inputs, the training data is modified by performing a series 141 

of image manipulations that include random erasing, rotating, flipping, cropping, and translation 142 

(Balkenende et al., 2022; Yamashita et al., 2018). This augmentation process is able to enhance the 143 

efficiency of training a DL model Alzubaidi et al. (2021) and prevent the likelihood of model 144 

overfitting problem (Mohammed, 2022). 145 

Recent advancements in machine learning field have made DL the dominant method, 146 

outperforming conventional techniques used in computer vision tasks, such as object recognition, 147 

classification, and natural language processing (Zhao et al., 2017). Even for semantic segmentation 148 

task, DL architectures offer better feature extraction that allow it to retrieve contextual information at 149 
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various sizes and subsequently label the class of each pixel in an image (Lateef and Ruichek, 2019; 150 

Wu et al., 2020; Hu et al., 2021). A few instances of advanced semantic segmentation models are 151 

PSPNet, U-Net, DeepLab, SegNet, and FCN (Yang and Yu, 2021). These models can automatically 152 

decide optimal segmentation thresholds because of its ability to learn high-level features of forest fires. 153 

Hence, this enables the models to effectively separates the fires from the background, and circumvents 154 

the potential issues of complexity and subjectivity in selecting the manual thresholds (Li et al., 2021b).  155 

On the other hand, a simple forest fire detection that makes decision based on an image can be 156 

done through image classification, which aims to recognise semantic classes of  a particular image (Wu 157 

et al., 2020) and assign the appropriate labels (Harzallah et al., 2009; Kaur and Singh, 2022). A few 158 

popular instances of classification models are Inception Net, AlexNet, VGG, and DenseNet, which are 159 

frequently used in image classification problem of various applications. Apart from that, bounding 160 

boxes of the forest fire areas can be generated through object localization models (Harzallah et al., 161 

2009; Kaur and Singh, 2022). When these two previously mentioned processes are combined, they 162 

form the basis of object detection, a powerful tool used in computer vision to detect the class and areas 163 

of the object of interest (Zhao et al., 2019; Kaur and Singh, 2022). In general, object detection is the 164 

process of predicting an object's location by identifying the class to which its belong and reporting the 165 

bounding box information that surround the object (Pathak et al., 2018). Object detection framework 166 

can be classified into two categories: one-stage and two-stage. Models such as R-CNN, FPN, and Faster 167 

R-CNN are several examples of two-stage framework. While, models such as YOLO, Centernet, SSD, 168 

and EfficientDet are several instances of one-stage framework. A large variety of applications, such as 169 

content-based image retrieval, autonomous driving, security, augmented reality, and intelligent video 170 

surveillance are seldomly equipped with object detection capability to produce effective computer 171 

vision applications (Liu et al., 2020). 172 

The number of forest fires will keep increasing due to climate change. The forest fire needs to 173 

be controlled because forests protect biodiversity by providing habitats for plants and animals (Xu et 174 

al., 2022). Forest fires or wildfires pose a substantial danger, since it will bring major and damaging 175 

impacts on nature, properties, as well as humans (Ciprián-Sánchez et al., 2021b). In order to effectively 176 

manage and prevent forest fire incidences, it is essential to develop deep intelligent models with good 177 

precision and efficiency. This review will highlight the methods and architectures of DL models that 178 

have been applied that include the type of datasets used and their accompanying performance accuracy. 179 

This review also discussed the impact of data augmentation methods in training the DL models, which 180 
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focuses only on the recent works (2018–2023) of DL methods and architectures used for forest fire 181 

detection systems. These comprehensive findings are meant to guide researchers and practitioners to 182 

improve on the current limitations and issues of the current forest fire detection systems. In the 183 

methodology section, this paper discusses a few research questions, search engine databases, search 184 

terms, selection and rejection strategies, and other processes that are related to forest fires. While, in 185 

the discussion section, the results of analysis on the current DL methods in forest fire detection systems 186 

are discussed in depth. The conclusion section of this paper will summarize the review of forest fire 187 

detection using DL and provide several recommendations for future work to enhance the forest fire 188 

detection capability. 189 

 190 

2 Methodology 191 

2.1 Review Protocol 192 

In this paper, the preferred reporting items for standard systematic reviews and meta-analyses 193 

(PRISMA) principles strategy was utilised to conduct the survey, whereby a set of pre-planned 194 

questions was used to identify the related studies that were included in the survey (Theodosiou et al., 195 

2023). Firstly, this study started with a set of research questions to determine the possible manuscripts 196 

that were deemed suitable for forest fire cases. Then, the related manuscripts were searched from the 197 

prominent databases based on the research questions developed. The collected manuscripts were then 198 

analyzed, and the relevant data was extracted guided by the research questions. The final step is the 199 

documentation process of the extracted data before they are being analysed as required by the research 200 

questions. The following information describes the search engine sources, search terms, and the 201 

procedures for selection and rejection of the papers used in this work: 202 

a) Search Engine Source 203 

The search engine sources included in this review are IEEE Xplore, Web of Science (WOS), 204 

and Scopus databases, all of which are highly respected and good quality peer-reviewed 205 

sourced. 206 

b) Search terms 207 

In terms of search terms, the systematic search terms employed are a combination of main 208 

keywords such as "deep learning," "forest fire," "wildfire," and "detection" to ensure the 209 
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inclusion of all relevant studies. The included search period was selected for a specific timeline, 210 

which are from 2018 to 2023. 211 

c) Selection 212 

The main selection criteria limit the included research studies that utilise DL methods for the 213 

identification of forest fires. Only studies published in English that specifically address 214 

segmentation, detection, and classification of forest fires using DL models were included. The 215 

selected articles were extracted from a four-year period between 2018 and 2023, which 216 

comprises of journal articles, conference proceedings, and book chapters that are related to our 217 

studied topics. 218 

d) Rejection 219 

The rejection criteria for this review are review papers, manuscripts in languages other than 220 

English, and studies that were not peer-reviewed, or published as pre-prints or early works. 221 

Such studies were excluded to ensure the quality and reliability of the included studies. 222 

 223 

2.2 Research questions 224 

The number of DL projects that focused on forest fire detection has significantly increased recently. 225 

This progression in the number of scientific research can be interpreted using Population, Intervention, 226 

and Context (PICo) metric, which were used to formulate the research questions (Munn et al., 2018; 227 

Pollock and Berge, 2018; Kamaruzaman et al., 2023). In this specific research, the population was 228 

defined as "deep learning," while the intervention terms were reserved for “classification”, “detection”, 229 

and “segmentation” techniques. The context, on the other hand, was specifically targeted towards forest 230 

fire and wildfire. By using the PICo tool, this review was able to narrow down the research scope that 231 

focuses on specific aspects of forest fire detection, which is paper that relies on DL methods. 232 

The review report is based on three key research questions in an effort to simplify the analysis 233 

of the selected studies. The first question aims to identify the deep machine learning architecture used 234 

in each study: “What deep architecture has been used in the study?” This step is crucial due to the 235 

varying levels of effectiveness among different DL architectures used in detecting forest fires that use 236 

various input data sources such as satellite imagery, video feeds, and sensor networks. The second 237 

question goal is to determine the type of data that was used in the studies, which could include satellite 238 

images (e.g., Sentinel-1, Landsat-8, etc.), web images, UAV imaging, etc. through asking “What types 239 

of data have been utilised in the study?” The quality and quantity of the utilised data during training 240 
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and testing a deep model will have a significant impact on the model performance. Lastly, the third 241 

question focuses on evaluating the performance of the methods used in each study, measured by various 242 

performance metrics such as precision, accuracy, F1-score, recall, and mAP by asking the question – 243 

“How well is the selected method performance?”. This analysis can help in determining which of the 244 

methods are most effective that can provide insights into how to optimise the DL model for forest fire 245 

identification. 246 

 247 

2.3 Literature collection 248 

In order to perform the literature search, the following keywords have been used: “deep learning”, 249 

“forest fire”, “wildfire”, “detection”, “segmentation” and “classification”, and also their combined 250 

variations through Boolean operators ‘AND’ and ‘OR’. This study has conducted the search on three 251 

databases, which are Scopus, Web of Science (WoS), and IEEE Explore. A total of 117 manuscripts 252 

were obtained based on the searched keywords. These manuscripts were then categorised into four 253 

groups; identification, screening, eligibility, and inclusion as shown in Figure 1. For the first screening 254 

phase, we removed 18 manuscripts from the Scopus database and three manuscripts from the WoS 255 

database. Then, 21 manuscripts were also removed after being cross-checked using Desktop version 256 

of Mendeley, followed by removal of additional 12 manuscripts in favour of full-text manuscripts 257 

availability. After that, the final results after inclusion and exclusion processes, a set of 39 manuscripts 258 

were selected for the final systematic review. Figure 1 depicts the flow chart of manuscript selection 259 

for the final systematic review using the PRISMA framework method. 260 
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Records identified through database

- Scopus (n = 68)

-IEEE Xplore (n = 16)

-Web of Science (n = 33)

After initial screening of titles and abstracts

- Scopus (n = 50)

-IEEE Xplore (n = 16)

-Web of Science (n = 30) 

After duplicates removed

(n = 51)

Full-text articles assessed for eligibility

(n = 39)

Final

(n = 39)
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 261 

Figure 1 PRISMA framework method 262 

A total of 39 manuscripts were identified by the review process, covering the period from 263 

January 2018 until 2023. Only one journal article was found in the 2018 that has discussed the DL 264 

method for forest fire detection. In 2019, five studies were published, all of which were presented as 265 

conference papers. Six papers were released in 2020, with four articles being presented as conference 266 

papers and two articles being published in journals. The list of publications that were chosen for the 267 

final review and analysis is presented in Table 2. 268 

 269 

 270 
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Table 2 A list of articles that has been selected for the final review 271 

Authors Year Title 

Zhao et al. (2018) 2018 
Saliency detection and deep learning-based wildfire 

identification in UAV imagery 

Wang et al. (2019) 2019 
Early Forest Fire Region Segmentation Based on Deep 

Learning 

Toan et al. (2019) 2019 
A deep learning approach for early wildfire detection from 

hyperspectral satellite images 

Priya et al. (2019) 2019 
Deep Learning Based Forest Fire Classification and Detection 

in Satellite Images 

Jiao et al. (2019) 2019 
A Deep Learning Based Forest Fire Detection Approach 

Using UAV and YOLOv3 

Hung et al. (2019) 2019 
Wildfire Detection in Video Images Using Deep Learning and 

HMM for Early Fire Notification System 

Ban et al. (2020) 2020 
Near Real-Time Wildfire Progression Monitoring with 

Sentinel-1 SAR Time Series and Deep Learning 

Arteaga et al. (2020) 2020 Deep Learning Applied to Forest Fire Detection 

de Almeida et al. (2020) 2020 
Bee2Fire: A deep learning powered forest fire detection 

system 

Rahul et al. (2020) 2020 Early detection of forest fire using deep learning 

Khryashchev and 

Larionov (2020) 
2020 

Wildfire Segmentation on Satellite Images using Deep 

Learning 

Benzekri et al. (2020) 2020 
Early forest fire detection system using wireless sensor 

network and deep learning 

Li et al. (2021b) 2021 Early Forest Fire Segmentation Based on Deep Learning 

Ciprián-Sánchez et al. 

(2021a) 
2021 

FIRe-GAN: a novel deep learning-based infrared-visible 

fusion method for wildfire imagery 

Jiang et al. (2021) 2021 
Deep learning of qinling forest fire anomaly detection based 

on genetic algorithm optimization 

Bai et al. (2021) 2021 
Research on Forest Fire Detection Technology Based on Deep 

Learning 

Fan and Pei (2021) 2021 Lightweight Forest Fire Detection Based on Deep Learning 

Ciprián-Sánchez et al. 

(2021b) 
2021 

Assessing the impact of the loss function, architecture and 

image type for deep learning-based wildfire segmentation 

Li et al. (2021a) 2021 Early Forest Fire Detection Based on Deep Learning 

Mohnish et al. (2022) 2022 Deep Learning based Forest Fire Detection and Alert System 

Seydi et al. (2022) 2022 
Fire-Net: A Deep Learning Framework for Active Forest Fire 

Detection 

Ghali et al. (2022)  2022 
Deep Learning and Transformer Approaches for UAV-Based 

Wildfire Detection and Segmentation 

Khan and Khan (2022) 2022 
FFireNet: Deep Learning Based Forest Fire Classification and 

Detection in Smart Cities 

Sun (2022) 2022 
Analyzing Multispectral Satellite Imagery of South American 

Wildfires Using Deep Learning 

Gayathri et al. (2022) 2022 
Prediction and Detection of Forest Fires based on Deep 

Learning Approach 
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Mohammed (2022) 2022 
A real-time forest fire and smoke detection system using deep 

learning 

Mohammad et al. (2022) 2022 
Hardware Implementation of Forest Fire Detection System 

using Deep Learning Architectures 

Kang et al. (2022) 2022 
A deep learning model using geostationary satellite data for 

forest fire detection with reduced detection latency 

Ghosh and Kumar (2022) 2022 

A hybrid deep learning model by combining convolutional 

neural network and recurrent neural network to detect forest 

fire 

Wang et al. (2022) 2022 Forest Fire Detection Method Based on Deep Learning 

Li et al. (2022) 2022 
A Deep Learning Method based on SRN-YOLO for Forest 

Fire Detection 

Tahir et al. (2022) 2022 Wildfire detection in aerial images using deep learning 

Wei et al. (2022) 2022 
An Intelligent Wildfire Detection Approach through Cameras 

Based on Deep Learning 

Peng and Wang (2022) 2022 Automatic wildfire monitoring system based on deep learning 

Tran et al. (2022) 2022 
Forest-Fire Response System Using Deep-Learning-Based 

Approaches with CCTV Images and Weather Data 

Mashraqi, et al. (2022) 2022 
Drone Imagery Forest Fire Detection and Classification Using 

Modified Deep Learning Model 

Almasoud (2023) 2023 
Intelligent Deep Learning Enabled Wild Forest Fire Detection 

System 

Alice et al. (2023) 2023 Automated Forest Fire Detection using Atom Search 

Optimizer with Deep Transfer Learning Model 

Xie and Huang (2023) 2023 Aerial Forest Fire Detection based on Transfer Learning and 

Improved Faster RCNN 

 272 

Figure 2 shows the division of retrieved studies according to the year and type of publications. 273 

The number of publications has increased in 2021 with seven papers, of which four of them were 274 

conference papers and the remining three were journal articles. However, in 2022, there was a 275 

remarkable surge in the number of publications with regards to the reviewed topic with a total of 17 276 

publications, of which seven of them were conference papers and the remaining ten were published as 277 

journal articles. As of February 2023, only one journal paper and two conference papers have been 278 

selected for forest fire detection using DL techniques. Overall, most of the studies were presented as 279 

conference papers, accounting for 22 out of the 39 studies. Nevertheless, there was a noticeable 280 

increase in the number of studies published in journals in the later years, indicating that there is a 281 

growing interest in this field of research. Figure 3 shows the percentage of journal and conference 282 

publications according to the publication year (2018 –2023). 283 

 284 
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 285 

Figure 2 Journal and conference publications from January 2018 until February 2023 286 

 287 

Figure 3 The distribution of the selected publications according to (a) the publication 288 

type and (b) publication year (2018- 2023) 289 

 290 

3 Discussion 291 

The DL techniques have been widely applied in various computer vision tasks that include image 292 

classification, detection, and segmentation. Due to the various different tasks associated with the forest 293 

fire surveillance, this section was split into five subsections depending on the type of tasks; 294 

classification, detection, detection and classification, segmentation, and segmentation & classification. 295 

In the discussion section, a summary of the DL models used in the selected studies, the type of input 296 

data, the usage of augmented data augmentation, and the DL model's performance for each manuscript 297 
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are summarized in details. Figure 4 shows the overall types of DL model applications that have been 298 

used in forest fire detection studies.  299 

 300 

Figure 4 DL model applications for forest fire surveillance system 301 

 302 

3.1 Classification 303 

Classification task is one of the earliest and extensively researched topics in in intelligent forest 304 

monitoring systems (Liao et al., 2023). According to Shinozuka and Mansouri (2009), image 305 

classification is the procedure of categorising and labelling sets of pixels or vectors inside an image in 306 

accordance to asset of predetermined criteria. They argued that it is possible to develop the 307 

classification rule by using one or a combination of spectral or textural properties in an image 308 

(Shinozuka and Mansouri, 2009). The main objective of picture classification is to ensure that all 309 

images are classified based on their respective sectors or categories (Abu et al., 2019). Based on the 310 

selected reviewed papers, the work by Benzekri et al. (2020) produced the greatest accuracy in 311 

classifying the incident of forest fires. They have compared the performance of three DL models, which 312 

are long short-term memory (LSTM), recurrent neural networks (RNN), and gated recurrent units 313 
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(GRU). The experimental results show that GRU achieved the highest accuracy compared to the other 314 

two models. In general, all three models attained performance accuracy of more than 90% and eight 315 

studies have not applied data augmentation technique to their dataset/study. However, the resultant 316 

accuracy for forest fires classification system is still good even without applying any data augmentation 317 

technique. 318 

 319 

3.1.1 InceptionV3 320 

In a study by Priya and Vani (2019), InceptionV3 has been explored to improve the classification 321 

performance of the forest fire satellite images. Their work was validated using 534 satellite images that 322 

consists of 239 fire images and 295 non-fire images. For training purpose, 481 satellite images were 323 

randomly chosen, while the remaining 53 satellite images are dedicated to testing purposes. Uniquely, 324 

the authors have classified the satellite data on forest fires using imbalanced data with a relatively small 325 

number of training data, which frequently leads to overfitting problems. 326 

 327 

3.1.2 ResNet + VGG 328 

Rather than exploring a single ResNet model, Arteaga et al. (2020) investigate multiple pre-trained 329 

CNN models for forest fire classification, which were deployed on mobile platform of the Raspberry 330 

Pi. This study used a medium-sized database of 1,800 images that were downloaded from secondary 331 

source of internet. The authors applied a set of augmented data as part of the training dataset. The data 332 

was augmented by using cropping technique into 224-pixel-wide range, before it is rotated horizontally 333 

with a 50% likelihood, and finally, normalised using the ImageNet database's standard deviation and 334 

mean values. The authors explored several variants of pre-trained VGG and ResNet models. The results 335 

showed that ResNet-18 produced good accuracy performance of 0.9950, processed in less than 2.12 336 

seconds. In addition, their study found that the ResNet-34, ResNet-101, ResNet-50, and ResNet-18 337 

models are more suitable for mobile platform implementation compared to the VGG variants in 338 

detecting forest fires. However, the authors should experiment with large datasets to test whether the 339 

algorithms can work with large dataset or not in real world forest fire situations. 340 

 341 
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3.1.3 Ban et al. Architecture 342 

In Ban et al. (2020), their CNN model was used to automatically detect burned zones using a 343 

combination of Synthetic Aperture Radar (SAR) imagery acquired during wildfire incidents and also 344 

SAR imaging time-series data before the incidents to extract the temporal backscatter changes 345 

information. They have also used Sentinel-2 imagery as an inventory map to verify and validate their 346 

findings, which consists of 10000 points of burned and unburnt areas. Furthermore, they also used 347 

visual comparisons to pad up the datasets, which can be derived from SAR-based progression maps 348 

and burned area maps that were obtained from Sentinel-2. By utilizing training images that were 349 

automatically generated from the coarse binary transition map, the CNN model is fitted and trained 350 

with the goal to improve burned area recognition by producing burned confidence maps. These 351 

confidence maps will then be binarized using Otsu thresholding technique, and the resultant maps will 352 

be gradually merged to increase output reliability and certainty. The limitations of using Sentinel-1 353 

SAR data are not addressed, such as spatial resolution and signal degradation in specific environmental 354 

conditions. 355 

 356 

3.1.4 RNN, LSTM, and GRU 357 

In this study, Benzekri et al. (2020) presented a novel DL model that uses 2 hidden layers of 50 neurons 358 

and an output layer with either RNN, LSTM, or GRU to predict the final label. The network used Adam 359 

optimizer to backpropagate the loss function. The LSTM model made four incorrect predictions, the 360 

simple RNN model made two incorrect predictions, and the GRU model made one incorrect prediction. 361 

The authors examined the three models using around 2000 sample data points. The LSTM model 362 

achieved 0.0298 loss and 99.82% accuracy on the test data. The simple RNN model had 99.77% 363 

accuracy and a loss of 0.0062. Overall, the GRU model is the most consistent and suitable for early 364 

forest fire detection. The authors claimed that the model was more precise than traditional surveillance 365 

approaches. However, the high accuracy results were only tested on a small dataset compared to the 366 

real world; we need to test them on a large dataset.  367 

 368 

3.1.5 Bee2Fire 369 

The authors developed the method, namely Bee2Fire, to detect forest fires (de Almeida et al., 2020). 370 

The forest fire localization algorithm of Bee2Fire is based on a ResNet-18, which was pre-trained with 371 

ImageNet data. The authors fine-tuned the system outcomes for three output classes of cloudy sample, 372 
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smoke sample, and clear sample using transfer learning approach. In addition to scaling each image to 373 

224x224 pixels, additional data augmentation techniques consisted of minor random transformations 374 

such as jitter, zoom, and rotation were also added to the main training dataset. The final training dataset 375 

comprises of 1903 images with 475 images were reserved for validation purpose. The method has 376 

attained an accuracy of 82.35% and a specificity of 99.99%. Using the raw sensor input for the 377 

experiments, Bee2Fire sensitivity is 73.68%, and it improves significantly using adapted sensor 378 

readings to 93.33% sensitivity. However, the model has low sensitivity and specificity during the 379 

testing period to detect smoke columns and fire.  380 

 381 

3.1.6 ResNet-50 382 

A comparative study between three DL architectures was carried out by Rahul et al. (2020). The authors 383 

applied ResNet-50, VGG-16, and DenseNet-121 models for the forest fire detection analysis. The input 384 

images are scaled to 224 pixels-wide, which are then augmented using shearing, flipping, etc. The 385 

general CNN layer configuration comprises of a SoftMax layer, a pooling layer, a ReLu activation 386 

layer integrated with dropout, a batch normalisation layer, and a convolutional layer for the purpose of 387 

image classification. The stochastic gradient descent (SGD) optimizer was found to be the optimal 388 

update backpropagation approach with the best global extremum. In conclusion, ResNet-50 performed 389 

better in comparison to VGG-16 and DenseNet-121. The findings also indicate that the SGD optimizer 390 

is more suitable for forest fire detection compared to the Adam optimizer. However, the specific dataset 391 

used for training and testing the model is not mentioned in the paper, making it challenging to assess 392 

the generalizability of the results. 393 

 394 

3.1.7 Jiang et al. Architecture 395 

Jiang et al. (2021) used genetic algorithm (GA) to tune their CNN model hyperparameters for detecting 396 

fire incidents with excellent accuracy. The authors benchmarked their method with back propagation 397 

(BP) neural network, support vector machine (SVM), GA-CNN, and CNN approaches. The testing and 398 

training data sets, which all together comprise of 1900 images, form the development dataset. The 399 

majority of the images consist of smoke and fire incidents, which contain both positive and negative 400 

images. It performs well in terms of true-positive level, accuracy, and false-alarm level across a wide 401 

range of evaluation conditions. The accuracy value of the optimised GA-CNN method is 95%, which 402 

is better than the accuracy values of the unoptimized CNN algorithm (85%), BP neural network 403 
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algorithm (73%), and SVM algorithm (90%). The study also concluded that the GA-CNN method is 404 

suitable for use in forest fire detection. The imbalanced data could lead to an overfitting issue; 405 

therefore, the authors should consider the precision and recall metrics for better result interpretation. 406 

 407 

3.1.8 Gayathri et al. Architecture 408 

Instead combining CNN with normal LSTM, Gayathri et al. (2022) utilised LSTM and CNN in a hybrid 409 

setting of bidirectional algorithm. The approach incorporated Google's Firebase, which can be linked 410 

to mobile or IoT devices via notifications for alert purposes. The proposed model achieved 96% 411 

accuracy for training dataset and 92% accuracy for test dataset. The findings indicate that the 412 

integration of two DL models for the purpose of forest fire classification can yield more favourable 413 

outcomes. Based on the results, it shows that this study has an overfitting problem because it obtained 414 

a high accuracy value but low precision and recall results.  415 

 416 

3.1.9 Ghosh and Kumar Architecture 417 

Rather than using a single model, Ghosh and Kumar (2022) combined both RNN and CNN networks 418 

to extract the features, which are then passed to  two fully-connected layers for final classification. For 419 

the Mivia dataset, there are a total of 22,500 images, of which 12,000 contain fire or smoke sequences 420 

while the remaining 10,000 contain neither fire nor smoke. For the Kaggle dataset, a total of 1000 421 

images are available with 755 of the images are of fire class, whereas the other 245 images are normal 422 

class. Ghosh and Kumar (Ghosh and Kumar, 2022) managed to achieve accuracy values of 99.62% 423 

and 99.10% for the Mivia lab and Kaggle fire datasets, respectively. The integration of CNN and RNN 424 

networks points to the possibilities for improved performance in detecting forest fires with a more 425 

comprehensive feature extraction model. However, this work lacks data augmentation, which can be 426 

used to balance the dataset. The authors applied preprocessing (augmentation) before training the 427 

dataset, which shows that the preprocessing would help to avoid overfitting and obtain good accuracy 428 

in classification.  429 

 430 
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3.1.10 FFireNet 431 

In FFireNet, Khan and Khan (2022) freeze the MobileNetV2 original weights and implement fully-432 

connected layers on top of the feature extraction layers. They have used a dataset with evenly 433 

partitioned images, where 950 images were assigned to the fire class and the rest of 950 images were 434 

assigned to the no-fire class. Moreover, the authors applied augmentation techniques to the training 435 

dataset and reduced the size of the input images to 224x224 pixels in order to better represent the 436 

variety of images in the dataset. The FFireNet achieved an accuracy of 98.42% with an error rate of 437 

1.58%, a recall of 99.47%, and a precision of 97.42%. It outperformed several benchmarked CNN 438 

models such as Xception, NASNetMobile, ResNet152-V2, and Inception-V3. FFireNet, which has 439 

been introduced recently, has shown that the inclusion of fully connected layers into the MobileNetV2 440 

model results in more favourable outcomes compared to the models without it. In this paper, the lack 441 

of a training dataset could lead the model to classify dense fog as fire smoke, and the model will have 442 

low accuracy when the dataset has a low-quality image. 443 

 444 

3.1.11 Modified MobileNet-v2 445 

In this study, Mashraqi et al. (2022) the focus of the work is to explore drone images that will be used 446 

to find and classify forest fires using a modified version of the DL model called DIFFDC-MDL. In 447 

order to produce the optimal set of feature vectors, DIFFDC-MDL enhanced the basic MobileNet-v2 448 

architecture by integrating a hybrid LSTM-RNN layer. The shuffled frog leap algorithm (SFLA) is 449 

used to optimize the hyperparameter so that the model can achieve an even higher rate of classification 450 

performance. In concise form, SFLA imitates the foraging behaviour of frog populations. The authors 451 

utilised the SFLA on Fire Luminosity Airborne-based Machine Learning Evaluation (FLAME) dataset, 452 

which comprises 6000 samples divided into two balanced groups (fire images, 3000, and no-fire 453 

images, 3000). The DIFFDC-MDL produced a good performance accuracy of 99.38%, which proved 454 

that an optimized set of hyperparameters can potentially enhance the efficacy of the DL model. 455 

 456 

3.1.12 Inception-ResNet-V2 457 

In this study, Mohammed (2022) focuses on transfer learning technique to extract features of smoke 458 

and forest fires from the ImageNet dataset. The compiled dataset, which contains 1,102 images for 459 

every fire and smoke class were used as input to a pre-trained Inception-ResNet-V2 network. Data 460 

augmentation methods were also performed by using scaling and flipping operations. Inception-461 

ResNet-V2 network was utilised in this study to extract the optimal features from the dataset, whereby 462 
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ResNet layers were tasked to learn residual parameters to prevent diminishing weights problem. The 463 

authors utilised the Adam optimizer with the following configurations; dropout rate, batch size fixed 464 

at 55 images, momentum update rate, initial learning rate (LR) of 0.001, 10 backpropagation epochs, 465 

categorical cross-entropy loss function, and callback using a threshold of 2 for early stopping, 466 

respectively. The convolutional layer dimension is decreased using average pooling layers, while the 467 

likelihood overfitting is prevented via dropout layers. The proposed model achieved a 99.09% 468 

accuracy, 100% precision, 98.08% recall, a 98.09% F1-score, and a 98.30% specificity for the forest 469 

fire classification task. The authors also implemented transfer learning method, which enables them to 470 

enlarge the training dataset, which has been proven to work well for their system. The author 471 

implemented the data augmentation to increase the dataset and applied the dropout layers to avoid 472 

overfitting results. However, the author does not show results for training and testing, which causes 473 

doubt in the results of this work. 474 

 475 

3.1.13 AlexNet 476 

In this work, Mohammad et al. (2022) analysed CNN-9, ResNet-50, MobileNet V2, GoogleNet, 477 

AlexNet, SqueezeNet, and Inception V3 to establish the ideal model for standalone module deployment 478 

on Raspberry Pi hardware. Two sources were utilised, which are the Kaggle wildfire detection and 479 

Mendely datasets that contain 275 fire images and 275 no-fire images. They further increased dataset 480 

variation by performing augmentation methods. Their findings indicate that AlexNet architecture 481 

produced the best accuracy (99.42%), followed by GoogleNet, MobileNet, ResNet-50, CNN-9, and 482 

Inception V3. However, there is no information relay system has been deployed from the Raspberry Pi 483 

via emails or messaging services in case of fire incidents. The authors only applied a small dataset and 484 

it worked well for the models. However, the forest fire system needs a larger dataset in the real world 485 

to train the different conditions of forest fire. 486 

 487 

3.1.14 Kang et al. Architecture 488 

Due to the great temporal resolution of satellite sensors in geostationary, Kang et al. (2022) found that 489 

forest fires can be spotted immediately if the data is used smartly. They have utilised 91 incidences of 490 

forest fires, in which seven of these occurrences have caused extensive damage to huge forest fires. 491 

Using just basic data augmentation methods through rotation and flip operations, the model was trained 492 

until convergence. The input data comprised of 9x9 window images having N input characteristics, 493 

and the outcome was a binary class, representing whether or not the centre pixel of the window showed 494 
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a forest fire incident. The simulation results produce precision, F1-score, accuracy, and recall values 495 

of 0.91, 0.74, 0.98, and 0.63, respectively. The effectiveness of their CNN model in detecting forest 496 

fires improved when data augmentation and spatial patterns were utilised during model fitting. 497 

However, the models predicted larger areas than actual areas of forest fire. Table 3 shows a summary 498 

of classification applications used in forest fire detection studies. 499 

 500 

3.1.15 AFFD-ASODTL 501 

The AFFD-ASODTL model automates forest fire detection using Atom Search Optimizer with Deep 502 

Transfer Learning, improving response times and reducing wildfire damage (Alice et al., 2023). The 503 

authors used the DeepFire dataset to detect forest fires. The AFFD-ASODTL approach was tested on 504 

a dataset of 500 samples, with 250 fire and 250 non-fire samples. The paper highlights the superior 505 

performance of the AFFD-ASODTL method compared to other models. Providing additional 506 

information about the dataset's characteristics or sources would greatly assist in evaluating its 507 

representatives and generalization. 508 

 509 

 510 

Table 3 The selected reviewed papers that applied classification algorithm for forest fire detection 511 

Authors Year Metho

d 

Architectur

e 

Accuracy Application Augmenta

tion  

Type 

of 

Data 

Priya et al. 

(2019) 

2019 CNN Inception 

V3 

Accuracy 

- 98% 

Classification No Satellit

e 

Image 

Arteaga et 

al. (2020) 

2020 CNN ResNet + 

VGG 

Accuracy 

- 99.5% 

Classification Yes Image 

Benzekri et 

al. (2020) 

2020 RNN, 

LSTM 

and 

GRU 

RNN, 

LSTM, 

GRU 

Accuracy 

- 99.89% 

Classification No Image 

de Almeida 

et al. (2020) 

2020 CNN ResNet18 Specificit

y - 99%  

Classification Yes Image 

Rahul et al. 

(2020) 

2020 CNN ResNet-50, 

VGG-16, 

DenseNet-

121 

Accuracy 

- 92.27% 

Classification Yes Image 

Ban et al. 

(2020) 

2020 CNN CNN Accuracy 

- 83.53% 

Classification No Satellit

e 

Image 
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Jiang et al. 

(2021) 

2021 CNN BP NN, GA, 

SVM, GA-

BP 

Accuracy 

- 95%  

Classification No Image 

Ghosh and 

Kumar 

(2022) 

2022 CNN RNN Accuracy 

- 99.62% 

Classification Yes Image 

Kang et al. 

(2022) 

2022 CNN CNN & RF Accuracy 

- 98% 

Classification Yes Satellit

e 

Image 

Khan and 

Khan (2022) 

2022 CNN FFireNet, 

MobileNetV

2 

Accuracy 

- 98.42% 

Classification Yes Image 

Mashraqi et 

al. (2022) 

2022 DIFFD

C-

MDL 

hybrid 

LSTM-

RNN, 

MobileNet 

V2 

Accuracy 

- 99.38%.  

Classification No Image 

Mohammad 

et al. (2022) 

2022 CNN Resnet 50, 

GoogleNet, 

CNN-9 

Layers, 

MobileNet, 

InceptionV3

, AlexNet  

Accuracy 

- 99.42% 

Classification Yes Image 

Mohammed 

(2022) 

2022 CNN Inception-

ResNet 

Accuracy 

- 99.09% 

Classification Yes Image 

Gayathri et 

al. (2022) 

2022 CNN CNN Accuracy 

- 96%  

Classification No Image 

Alice et al. 

(2023) 

2023 Deep 

Transfe

r 

Learni

ng 

Quasi 

Recurrent 

Neural 

Network 

(QRNN), 

ResNet50 

and optimize 

parameter 

used Atom 

Search 

Optimizer  

Accuracy 

– 97.33% 

Classification No Image 

 512 

3.2 Detection 513 

For the object detection task, the goal is to localize and provide the label to a particular object within 514 

an image or video. The process of object detection involves not only identifying the object category, 515 

but also making prediction regarding the location of each object through bounding box representations 516 
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(Wu et al., 2020). Zaidi et al. (2022) described that the concept of object detection is a logical 517 

progression from object classification, which is originally focused on solely object identification within 518 

an image. Object detection creates individual computational model for each object, which becomes 519 

essential input for computer vision-based applications (Sharma and Mir, 2020). Previously, the 520 

researchers used color-based and machine learning method for forest fire detection. Color-based forest 521 

fire detection is a technique that utilizes the color properties of forest fire and smoke to identify pixels 522 

(Zhentian et al., 2018). Meanwhile, object detection in machine learning is detection and locates the 523 

object in images or videos (Rahul et al., 2023). This method also known as traditional method (Patkar 524 

et al., 2024). There were nine selected studies that have applied object detection method in detecting 525 

forest fires. Four out of the nine studies have implemented data augmentation techniques to further 526 

enrich the training dataset. Apart from that, hyperparameter optimization has also been implemented 527 

in Almasoud et al. (2023) work to further improve the accuracy. In general, one of the selected studies 528 

used a UAV-based image dataset, two of the studies used satellite image datasets, and the remaining 529 

studies utilised ground fire image dataset for the purpose of detecting forest fires. 530 

 531 

3.2.1 YOLOv3-tiny 532 

In Jiao et al. (2019) work, they have used UAV-captured aerial imagery as a training dataset to fit their 533 

YOLOv3-tiny model. The backbones of the network are ResNet and Darknet-19, which are used to 534 

extract the optimal set of features. A multi-scale approach through feature pyramid network (FPN) are 535 

used to locate the best bounding box. The training process for the model consisted of 60,000 epochs, 536 

with each batch utilises a set of 64 images. The results indicate that the detection rate is 83%, tested on 537 

a set of 60 images. However, in order for the proposed model to be useful for a small-scale detection, 538 

it needs to further enhanced since it is not capable to detect early-stage fires before they become 539 

wildfires. They also found out that data augmentation usage, when applied to a larger image dataset 540 

can enhance the accuracy of forest fire detection system. However, the authors also do not mention the 541 

limitations of using small-scale UAVs for forest fire detection.  542 

 543 

3.2.2 DNCNN + Hidden Markov Model 544 

In order to reduce the number of false alarms, Hung et al. (2019) developed a method that integrates 545 

DL model with the Hidden Markov Model (HMM). The authors utilised a set of standard data 546 

augmentation techniques, which include image rotation and flipping of the horizontal and vertical axes. 547 

Jo
urn

al 
Pre-

pro
of



 

24 

The authors used the CNN model with the aim of determining the status of each picture in each frame. 548 

The deep normalisation CNN (DNCNN) architecture was considered as the object detection algorithm. 549 

For buffer checking, Faster R-CNN model was employed during the training phase. For the training of 550 

the HMM, the output of DNCNN is used to identify the video frame class. The authors have utilised 551 

4,555 test images and 5,295 training images for the CNN analysis. On the other hand, the video dataset 552 

consists of 613 testing frames and 827 training frames. The results show that the DNCNN outperformed 553 

AlexNet, ZF-Net, and GoogleNet in terms of prediction performance. The authors claimed that the 554 

suggested method reduces the number of false alarms from 288 to 33 incidents, or an 88.54% reduction 555 

rate. The paper lacks a comparison between the proposed system and current fire detection methods or 556 

algorithms, hindering the evaluation of its performance in comparison to other approaches. 557 

 558 

3.2.3 h-EfficientDet 559 

In this work, Li et al. (2021a) have developed a deep model based on object detection approach, called 560 

h-EfficientDet, which was adapted from the well-known DL algorithm, EfficientDet. The revised 561 

model substitutes the nonlinear activation function from swish to the hard swish version and combines 562 

it with an effective feature fusion system known as BIFPN. The resultant detection accuracy could 563 

reach as good as 98.35 %. The suggested fire detection method was evaluated using a dataset of 4,282 564 

fire images, trained using an Adam optimization adaptive learning rate strategy. Three performance 565 

measures were utilised that include frame rate (FPS), mean absolute precision (mAP), and miss rate 566 

(MR) to validate the efficiency of the forest fire detection. The proposed system is very efficient at 567 

detecting tiny forest fire incidences, with a real-time detection rate of 97.73% accuracy. However, the 568 

authors do not compare the performance of h-EfficientDet with other algorithms, making it difficult to 569 

assess its superiority. 570 

 571 

3.2.4 SRN-YOLO 572 

In this study, the authors proposed SRN-YOLO, which is an upgraded version of YOLO-V3 combined 573 

with a sparse residual network (SRN) in order to identify forest fires precisely by using a more efficient 574 

network architecture (Li et al., 2022). There are a total of 880 images, whereby 704 images are for 575 

training and 176 images are for testing. The batch size is configured to be 64, while the momentum is 576 

fixed at 0.9 and the subdivision size is configured to be 8, as well as the decay is configured to be 577 

0.005. In order to increase the convergence rate of the model during the early stages of training, the 578 

LR is fixed at 0.001; after which, the number of iterations hits 2500, 5000, and 7500, the LR value 579 
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decreases by a factor of 10% compared to the prior value. The results indicate that the proposed 580 

approach produces a good balance of performance with a minimal missed detection rate and is more 581 

accurate compared to the other YOLO architectures. This demonstrates the usefulness of the proposed 582 

approach in identifying forest fire incidents. However, the authors only used eight videos of forest fire, 583 

which is quite small and did not mention about non-forest fire videos. Therefore, the authors need to 584 

use more videos of different situations to test the strength of the model in real forest fire conditions. 585 

 586 

3.2.5 Mohnish et al. Architecture 587 

Mohnish et al. (2022) has implemented another CNN-based object detection algorithm to detect and 588 

send warnings about forest fires that has been employed on a Raspberry Pi platform. The developed 589 

system was trained and validated by using a set of 2500 fire and 2500 non-fire images that were 590 

retrieved from an open-source website. The authors have also used an image generator to augment the 591 

training dataset. A dropout is embedded into the architecture to reduce the likelihood of overfitting 592 

issue. However, the authors only use accuracy results but in image classification we need other metrics 593 

to prevent overfitting results and give more information about the results. 594 

 595 

3.2.6 ResNet18-saliency 596 

In order to develop a comprehensive forest fire detection system, Peng and Wang (2022) combined 597 

several techniques and then deployed them in a real-time C++ environment. The system consists of 598 

three main components, which are motion detection, visual saliency detection (VSD), and classification 599 

of fire images using transfer learning methodology. In order to effectively retrieve the relevant object 600 

of interest, the authors only applied the VSD algorithm to the maps that contained moving objects by 601 

using ResNet-18 as the backbone. They have used a real-world video dataset of 11 videos with fire 602 

incidences and 16 videos without fire incidences for the validation purposes. One frame is sampled 603 

from a video data for every eight frames to update the background model of the system. Their system 604 

has detected 15 false alarms out of 1,329 detections for 16 non-fire videos, producing 1.12% false 605 

positives with overall accuracy of 99.28%. The authors concluded that the classification strategy based 606 

on DL has offered the benefits of rapid detection with good identification accuracy. The authors do not 607 

address the possible constraints of implementing the suggested approach on various platforms. 608 

 609 
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3.2.7 YOLOv5 610 

Another object detection work that focuses on UAV imaging to map out the fire zone was designed by 611 

Tahir et al. (2022). They proposed a YOLOv5-based object detection system to detect fires based on 612 

the FireNet and FLAME aerial image datasets. These datasets have been augmented using image 613 

processing operators such as brightness, exposure, noise, cropping, saturation, cut-out, hue, blur, 614 

mosaic, etc. Operators that have produced additional three outputs for the training dataset. The LR and 615 

batch size have been fixed at 0.00001 and 16, respectively and trained for a maximum epoch of 350. 616 

The resultant outputs showed that the average accuracy is 97.14%, recall is 91.89%, and F1-score is 617 

94.44%. The loss rate of the training box is 0.0168, while the loss of the training object is 0.00738. 618 

Based on the results, the model is efficient in real-time fire detection with good accuracy. However, 619 

the authors have also incorporated other types of wildfire images, not limited to UAV, which makes 620 

the system require large input data as illustrated in Figure 5.  621 

 622 

Figure 5 Three significant phases of YOLOv5 (Tahir et al., 2022) 623 

 624 

Jo
urn

al 
Pre-

pro
of



 

27 

3.2.8 YOLO 625 

Wang et al. (2022) proposed an object detection model that could detect and identify the incidence of 626 

forest fire rapidly and precisely using minimal computation, low level equipment, and a small DL 627 

model. The authors suggested that their approach has a good level sensitivity and accuracy when tested 628 

using fire dataset that contains 1442, 617, and 617 of training, testing and validation images, 629 

respectively. The model is 27 initialized with a transfer learning approach and then trained for 80 630 

epochs with a batch size fixed at 8, and 0.001 LR, coded on the PyTorch framework. The reported 631 

results indicated that the proposed model's prediction accuracy is 83.9% and its recall rate is 96.9%. 632 

This model is useful for development of lightweight forest fire monitoring products. Nevertheless, the 633 

test images that contain forest fires are relatively scarce and lead to the dataset imbalance problem, 634 

which can be addressed by using data augmentation techniques.  635 

 636 

3.2.9 ACNN-BLSTM 637 

An intelligent DL-based wild forest fire detection and warning system, IWFFDA-DL, was developed 638 

by Almasoud (2023). To identify the presence of a forest fire, an ACNN-BLSTM model, which is an 639 

attention-based convolutional neural network with BiLSTM was used. This ACNN-BLSTM 640 

hyperparameters were tuned using the bacterial foraging optimization (BFO) method, which directly 641 

enhances the detection efficiency. When a fire incident is discovered, the authorities will receive 642 

signals from the Global System for Mobile (GSM) modem, allowing them to take immediate 643 

appropriate mitigation action. The model achieved a good accuracy rate of 99.56%, recall – 99.46%, 644 

F-Score – 98.65, and exceeded the other benchmarked methods performance. This paper is another 645 

example of works that utilizes hyperparameter optimization to demonstrate better performance 646 

outcomes, and directly validated the importance of the model optimization. However, this work only 647 

focuses on three classes, namely normal, potential and extreme. Therefore, we cannot determine 648 

whether this model is good or not for forest fire detection. The structure of the BLSTM model utilized 649 

in this work of forest fire warning and detection is illustrated in Figure 6. 650 
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 651 

Figure 6 BLSTM model structure (Almasoud, 2023) 652 

 653 

3.2.10 Fire-GAN 654 

In this research, the authors Ciprián-Sánchez et al. (2021a) evaluated the effectiveness of Generative 655 

Adversarial Networks (GAN) method, to enable the DL model to adapt to various forest fire scenarios. 656 

Firstly, the authors employed a VGG-19 network that has already been pretrained on ImageNet to 657 

extract multi-layer features. A GAN-based network model was proposed to integrate infrared and 658 

visible channels. The authors used the Corsican Fire Dataset, which includes ground truth segmentation 659 

map of the forest fire regions, along with 640 sets of visible and near-infrared (NIR) fire images. In 660 

addition, 477 visible-NIR image combinations without fire incidents are also added to the RGB-NIR 661 

data collection. After performing the data augmentation techniques, there are 128 image combinations 662 

for the validation set and 8192 images for the training set. The model developed by the authors can 663 

identify the best performing combination of these parameters. The efficiency of the model can be 664 

improved and overfitting can be reduced by collecting more pairs. The authors stated that their study 665 

could improve wildfire fighting by using visible-NIR images to detect and segment wildfires 666 

accurately. Table 4 shows the summary of detection-based methods in forest fire detection studies. 667 

 668 

3.2.11 Transfer Learning and Improved Faster RCNN 669 

The author proposed a method for forest fire detection using transfer learning and improved Faster 670 

RCNN (Xie and Huang, 2023). Transfer learning with pre-trained ResNet50 network and Faster RCNN 671 

with feature fusion and attention were integrated. The ImageNet dataset was used for transfer learning, 672 
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initializing the convolutional layer of Faster RCNN. The method achieved 93.7% detection accuracy 673 

in aerial images. However, it is important to note that the authors did not provide a thorough analysis 674 

of the computational requirements or efficiency of the proposed method. Such a lack of detail could 675 

potentially pose a limitation in real-world applications. 676 

 677 

 678 

Table 4 Detection-based methods for forest fire monitoring and surveillance. 679 

Authors Year Meth

od 

Architecture Accuracy Applicat

ion 

Augmentat

ion  

Type of 

Data 

Hung et 

al. 

(2019) 

2019 DN-

CNN 

Faster R-CNN, 

Hidden Markov 

Model (HMM) 

Detection 

rate - 96% 

Detectio

n 

Yes Image 

& 

Video 

Jiao et al. 

(2019) 

2019 CNN YOLOv3 the 

detection 

rate can 

reach 83%.  

Detectio

n 

No UAV 

Image 

Li et al. 

(2021a) 

2021 h-

Effici

entDe

t 

EfficientDet and h-

EfficientDet  

Accuracy - 

98.35% 

Detectio

n 

No Image 

Peng and 

Wang 

(2022) 

2022 CNN SqueezeNet1.1, 

AlexNet, 

MobileNetV3 

Large and Small 

MobileNetV1 0.25 

& 1.0, 

MobileNetV2 0.25 

& 1.0, ResNet18, & 

VGG-16  

Accuracy - 

99.28%. 

Detectio

n 

No Image 

Li et al. 

(2022) 

2022 CNN YOLOv3, YOLO-

LITE, Tinier-

YOLO 

mAP - 

96.05%  

Detectio

n 

No Image 

Mohnish 

et al. 

(2022) 

2022 CNN CNN Accuracy - 

92.20% 

Detectio

n 

Yes Image 

Tahir et 

al. 

(2022)  

2022 CNN YOLOv5 F1-score - 

94.44%. 

Detectio

n 

Yes UAV 

Image 

Wang et 

al. 

(2022) 

2022 CNN YOLO Accuracy - 

83.9% 

Detectio

n 

No Image 

Almasou

d (2023) 

2023 IWFF

DA-

DL, 

ACNN-BLSTM 

optimized BFO & 

YOLO v3 

Accuracy - 

99.56%. 

Detectio

n 

No Image 
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ACN

N-

BLST

M 

Ciprián-

Sánchez 

et al. 

(2021a) 

2021 CNN Fire-GAN, VGG-

19 

Informatio

n entropy 

EN - 10  

Classific

ation 

Yes Image 

Xie and 

Huang 

(2023) 

2023 Trans

fer 

Learn

ing 

and 

Impro

ved 

Faster 

RCN

N 

ResNet50 network 

and Faster RCNN 

with feature fusion 

and attention 

Accuracy - 

93.7% 

Detectio

n 

No UAV 

image 

 680 

3.3 Segmentation 681 

Apart from classification and detection tasks, image segmentation technique has also been explored by 682 

many researchers to detect the forest fire incidents. Segmentation can be defined as a technique 683 

employed to partition an image into multiple sections or segments (Tan, 2016). It can be conceptualized 684 

as instructing an individual to delineate boundaries surrounding objects in a given image. The resultant 685 

output of the segmentation process is a set of segmented areas that collectively encompass the entirety 686 

of the image or a series of contours extracted from the image (Nadipally, 2019). In this comprehensive 687 

review, only five studies have employed the segmentation algorithm for forest fires detection. Out of 688 

these five papers, Seydi et al. (2022) work that used a Deep CNN model has produced the highest level 689 

of precision. Besides, three of the studies rely on satellite imagery, while the other two studies rely on 690 

ground forest fire imagery. The five proposed DL architectures are 3D CNN, SqueezeNet, F-Unet, 691 

Fire-Net, and Fully CNN, which have been finetuned for segmentation application.  692 

 693 

3.3.1 Toan et al. Architecture 694 

Instead of using the popular Landsat satellite imagery, Toan et al. (2019) have used the GOES-16 695 

satellite imagery as the training data for their study. The multilayer structure of DL architectures, 696 

especially deep neural networks, allow the usage of multispectral input in both temporal and spatial 697 
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dimensions, whereby they have used VIIRS-AFP, MODIS-Terra, GOES-AFP, and AVHRR-FIMMA 698 

methods. The authors implemented a layer of patch normalisation to improve the dataset's training 699 

potential with a relatively small dataset of 168 images of fire and 48 images of non-fire. Their results 700 

show that the proposed technique achieves 96.05% precision, 91.89% recall, and 94% F1-score by 701 

using only random search hyperparameter optimization. The purposely-built model also has a low lag 702 

time, with only 2.6 hours of training time compared to the other models. The authors used the data 703 

augmentation method to increase the dataset and avoid high errors in the proposed model. The 704 

utilization of a spatio-spectral deep neural network has been found to be useful for predicting the early-705 

stage forest fires as shown in Figure 7. 706 

 707 

Figure 7 The utilization of a spatio-spectral deep neural network has been proposed as 708 

a means of predicting wildfires in their early stages (Toan et al., 2019) 709 

 710 

3.3.2 SqueezeNet 711 

For extracting the fire maps, Wang et al. (2019) have employed SqueezeNet as the backbone and 712 

incorporated an additional framework to produce a precise forest fire segmentation model. The authors 713 

used the CIFAR-10 dataset, which contains 60,000 images that are split into 10 classes, resulting in 714 

6,000 images for each class. Fifty thousand images are used for training, while ten thousand images 715 

are used for testing purposes. The parameter size of the improved SqueezeNet is 0.53 MB that produces 716 

detection accuracy of 0.942%. The authors have further tested the proposed model on two more forest 717 

fire videos for experimental purposes. The authors have elucidated that the proposed methodology is 718 

capable of segmenting the forest fire areas, even when the image is partially obstructed by smoke noise. 719 

The outcomes proved that the proposed methodology is appropriate for forest fire monitoring, 720 
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especially in detecting early breakout fires. However, the authors need to provide other metrics results 721 

to give more information about model’s performance.  722 

 723 

3.3.3 F-Unet 724 

In this study, the authors utilized a segmentation model of F-Unet framework, which is modified from 725 

U-Net models, for the identification of forest fires (Li et al., 2021b). The authors have utilised the 726 

FLAME dataset, which consists of 2003 fire images. This study shows that the addition of a feature 727 

fusion network to the U-Net architecture enable the model to incorporate several feature maps of 728 

varying sizes effectively in an attempt to improve the model's segmentation accuracy. The results 729 

showed that F-Unet enhances the mean pixel accuracy (MPA) of Unet by 8.42% and improve the mean 730 

intersection over union (MioU) of Unet by 7.45%. The findings demonstrated that F-Unet is suitable 731 

as a forest fire segmentation model that greatly enhances the efficiency of the early detection system. 732 

The findings also proved that the incorporation of feature-fusion module can lead to a more efficient 733 

segmentation model of forest fires with a reduced FPS. However, the authors have not addressed 734 

possible challenges in implementing the proposed feature fusion network. 735 

 736 

3.3.4 Fire-Net 737 

In this study, Seydi et al. (2022) have suggested the utilization of Landsat-8 RGB and thermal images 738 

as a training dataset for the development of a novel segmentation model, which they have named as 739 

Fire-Net. The authors prepared 722 patches of 256x256 pixels, in which they are divided into training 740 

dataset of 469 patches, validation dataset of 109 patches, and testing dataset of 144 patches. For 741 

hyperparameter configurations, the authors used a batch size of 7 patches, a LR of 0.0001, and a 742 

maximum epoch of 250 epochs.  The Fire-Net works very well in segmenting both non-active fire and 743 

active fire regions according to the performance metrics of F1-score, overall accuracy (OA), miss 744 

detection (MD), precision false positive rate (FPR), recall, and the kappa coefficient. It achieves an 745 

overall accuracy of 97.35% and can detect small active fires. The authors proved that the proposed 746 

model namely, Fire-Net could be applied to segment forest fire regions accurately using satellite 747 

imagery input. However, the authors do not mention the possible difficulties or disadvantages of 748 

utilizing Landsat-8 imagery for identifying fires. 749 

 750 
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3.3.5 Fully CNN 751 

Instead of using a single forest fire event location, Sun (2022) trained a Fully CNN (FCNN) 752 

segmentation model using Landsat-8 images. The results are very promising with F1 and F2 scores of 753 

0.928 and 0.962, respectively. While, the precision performance is 0.878, and its recall value is 0.989. 754 

In summary, there were active fires in 14,274 of the sampled images, and there were non-fire cases in 755 

10,685 of the images. This model rarely missed identifying the active fire pixels, although sometimes 756 

it was excessively sensitive and misidentified non-fire pixels for fire ones. The author should have 757 

implemented data augmentation or transfer learning on the dataset to prevent overfitting issue. Table 758 

5 shows the summary of segmentation architecture used in forest fire detection studies. 759 

 760 

Table 5 Segmentation-based methods for forest fire monitoring and surveillance. 761 

Authors Year Method Architecture Accuracy Application Augmentation Type of 

Data 

Toan et 

al. 

(2019) 

2019 CNN 3D CNN F1-score 

- 94% 

Segmentation Yes Satellite 

Image 

Wang et 

al. 

(2019) 

2019 CNN SqueezeNet Accuracy 

- 94.2% 

Segmentation No Image 

Li et al. 

(2021b) 

2021 CNN F-Unet, U-

net 

MPA - 

94.77% 

Segmentation No Image 

Seydi et 

al. 

(2022) 

2022 CNN Deep CNN Accuracy 

- 99.98 

Segmentation No Satellite 

Image 

Sun 

(2022) 

2022 CNN Fully - CNN, 

U-Net, U-

Net Light 

F1-score 

- 0.928 

Segmentation No Satellite 

Image 

 762 

3.4 Detection and Classification 763 

There are four studies have been selected for forest fire monitoring systems using a combination of 764 

detection and classification tasks. Out of the four methods, only the work by Fan and Pei (2021) did 765 

not implement any data augmentation method for the forest fire detection. On the other hand, the 766 

highest accuracy out of the four methods is attained by Bai and Wang (2021) with 96.5% accuracy. 767 

Bai and Wang (2021) have used a combination of YOLO and VGG architectures in their work.  768 

 769 
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3.4.1 YOLO+VGG 770 

In this study, a combined YOLO+VGG have been to produce a joint decision for fire warning system. 771 

This study used a transfer learning technique to initialised the models to identify the presence of smokes 772 

and flames (Bai and Wang, 2021). The top layers of the original VGG are removed, while retaining 773 

the bottom feature extraction layers. The decision-making layer for VGG has been improved by adding 774 

leaky ReLU activation function, and dropout layers. Then, the YOLO network was configured with a 775 

LR of 0.001, a parameter of weight decay of 0.0005, and a value of momentum of 0.9. A total of 3,500 776 

images were included that consists of 1,600 images of forest fire and 1,900 images of non-forest fire. 777 

The dataset was further expanded by a factor of 10 using data augmentation techniques through random 778 

crop, translation, and scale operators. The detection speed run at 30.9 frames per second with a mAP 779 

performance of 96.5%. These results shown that the data augmentation is important to prevent the 780 

overfitting issue when used imbalanced dataset. This work is suitable for early detection of forest fire 781 

systems that rely on low FPS input using an optimized YOLO structure as shown in Figure 9. 782 

 783 

 784 

Figure 8 The network structure of YOLO that has been optimized and demonstrated 785 

by Bai and Wang (2021) 786 

 787 
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3.4.2 YOLOv4-Light 788 

The second method that employed a combination of detection and classification was proposed by Fan 789 

and Pei (2021) that modifies lightweight network structure YOLOv4-Light to detect forest fires. For 790 

the feature extraction network, MobileNet replaces the standard YOLOv4's backbone, while PANet's 791 

original convolution is replaced with a depth-wise separable convolution, which increases the 792 

prediction performance and makes it more appropriate for embedded system applications. The authors 793 

developed a FDRLS dataset that contains over 6,000 images, whereby the background class is 794 

significantly enriched with various information, whereas the forest class also covers a wide range of 795 

unique forest types from cold, tropical, and temperate zones. The authors also applied Mosaic for data 796 

enhancement. The authors also highlighted that they tested the false alarm of forest fire detection before 797 

and after the addition of red leaf recognition. They also produced good speed detection and model size 798 

to ensure it complied with the system. 799 

3.4.3 YOLOV5S+MFEN 800 

In this study, Wei et al. (2022) introduced YOLOV5S architectures, a recently introduced deep object 801 

detection model for detecting forest fires. The authors have setup a ratio of training to testing images 802 

to 80:20 that results in a self-created dataset with 11,520 training and 2,880 testing images. The authors 803 

utilized mosaic data augmentation techniques, including scaling, rotation, translation, and cropping 804 

operations, at both the image-level and pixel-level. The SGD optimizer with a cosine annealing LR set 805 

to 0.01 was used to fit the model for a maximum of 900 epochs. The batch size value was fixed at 32, 806 

while the momentum and weight decay coefficient were set to 0.937 and 0.005, respectively. In order 807 

to extract contextual information from multi-scale objects in complex visual scenes, the authors devised 808 

a model with multi-scale feature extraction network (MFEN). This technique works particularly well 809 

for real-time forest fire monitoring, making it appropriate for deployment to edge devices with limited 810 

computing resources. However, the model required a larger size to detect the wild flame compared to 811 

wild smoke compared to DNCNN-based model.  812 

 813 

3.4.4 DetNAS 814 

The last algorithm that uses a combination of detection and classification models to identify forest fire 815 

incidents was introduced by Tran et al. (2022) that is based on neural architecture search-based object 816 

detection (DetNAS). The authors deployed Faster R-CNN, testing it with various backbones that 817 

include ResNet, VoVNet, FBNetV3, and ShuffleNet V2. Furthermore, a part of ShuffleNetV2 block 818 
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has also been embedded in the network as a searchable element in the backbone network. The batch 819 

size is set at 16 images, and the models were trained for a maximum of 10,000 epochs with an initial 820 

LR of 0.15. The authors found a forest fire detection performance of 27.9 mAP, supporting the use of 821 

a lightweight ShuffleNet V2 model. The model was trained using 349,774 combined CCTV images 822 

and weather data, and evaluated on 39,243 CCTV images. Simple data augmentation techniques were 823 

used to enrich the training dataset. The results were validated on a forest fire outbreak dataset with 824 

2,128 events. The RMSE for each test fold is about 2.6, which indicates that the model overfits the 825 

train data and generates subpar predictions using the test dataset. The models obtained a low mAP 826 

value due to the smoke visual similarities as well as many classes of dataset. The modified Faster R-827 

CNN architecture, as depicted in Figure 9, has been first introduced by Tran et al. (2022). Table 6 828 

shows the summary of detection and segmentation applications in forest fire detection studies. 829 

 830 

Figure 9 Architecture of Faster R-CNN illustrated by Tran et al. (2022) 831 

 832 

 833 

Table 6 A combination of detection and segmentation-based methods for forest fire monitoring and 834 

surveillance. 835 

Autho

rs 

Year Method Architecture Accuracy Type Augmenta

tion 

Type of 

Data 

Bai 

and 

Wang 

(2021) 

2021 CNN YOLO & VGG 

network 

Accuracy - 

96.5% 

Detection 

& 

Classificati

on 

Yes Image 

Fan 

and 

Pei 

(2021) 

2021 CNN YOLOv4 & 

MobileNet 

mAP - 

75.72 

Detection 

& 

Classificati

on 

No Image 
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Wei et 

al. 

(2022) 

2022 CNN YOLOv5S & 

Mobilenetv3 

Accuracy - 

90.5% 

Detection 

& 

Classificati

on 

Yes Image 

Tran 

et al. 

(2022) 

2022 DetNAS ShuffleNetV2, 

Faster R-CNN 

model with 

VoVNet, 

ResNet, & 

FBNetV3 

mAP - 

27.9 

Detection 

& 

Classificati

on 

Yes Image 

 836 

3.5 Segmentation and Classification 837 

Among the selected papers, there are only four studies that have used a combination of segmentation 838 

and classification methods. Interestingly, all of these studies have implemented some forms of data 839 

augmentation techniques. The accuracy attained by Ghali et al. (2022) produced the best forest fire 840 

detection score of 99.95% accuracy by deploying a combination of DenseNet-201 and EfficientNet-841 

B5 models (TransUNet and TransFire) with the DCNN (EfficientSeg) architecture. 842 

 843 

3.5.1 Fire_Net 844 

In a study by Zhao et al. (2018), they have utilized a 15-layered Deep Convolutional Neural Network 845 

(DCNN) called Fire_Net, which was modified from the 8-layered AlexNet model. The authors argued 846 

that the methodology for integrating saliency identification and Deep Learning (DL) for forest fire 847 

recognition has not yet been made available. Thus, they utilised 1500 imagery taken from various 848 

modalities to explore optimal model configuration for forest fire recognition. This combined dataset 849 

comprises of 908 images without fire incidents and 632 images with fire incidents. The saliency 850 

segmentation method was employed by the authors to augment the training dataset to a total of more 851 

than 3,500 images. The results indicate that the model achieved an accuracy of 98% and 97.7% for 852 

with and without augmented data, respectively. However, the proposed model is weak against the mist 853 

noise during fire incidents. The authors suggested IR sensors be incorporated as part of the decision-854 

making layers to assess whether or not a fire has occurred.  855 

 856 
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3.5.2 U-Net, ResNet34, and U-ResNet34 857 

Another work that combines both segmentation and classification models for forest fire recognition 858 

was proposed by Khryashchev and Larionov (2020) that uses a combined approach of ResNet-34, U-859 

Net, and U-ResNet34 to recognize forest fires based on satellite images. The model was trained and 860 

tested using 1457 and 393 high-resolution satellite images, respectively. For the data augmentation 861 

techniques, the authors employed random chromatic distortion method applied in HSV colour format. 862 

This method improves the robustness of the algorithm for noisy imagery due to glare from reflective 863 

surfaces and small clouds.  The authors also highlighted that augmented data have improved the model 864 

performance from F1-score of 0.371 to 0.465. However, when the authors applied the random 865 

chromatic distortion method, the model could not recognize the forest fire in clay areas. Therefore, the 866 

authors need to apply another data augmentation method to improve the models.  867 

 868 

3.5.3 EfficientNet-B5 + DenseNet-201, EfficientSeg, TransUNet + TransFire 869 

Instead used a single deep model, Ghali et al. (2022) employed ensemble DL approach through two 870 

vision transformers to identify and classify forest fire incidents. They have integrated the DenseNet-871 

201 and EfficientNet-B5 models and also EfficientSeg with two vision transformers (TransFire and 872 

TransUNet) to perform forest fires segmentation and localization. They have validated the performance 873 

by using FLAME dataset, which is a freely accessible database with a total of 48,010 RGB images, 874 

which have been divided into 17,855 images of non-fire incidents and 30,155 images of fire incidents. 875 

For the purpose of forest fires segmentation, an additional collection of 2003 RGB images has been 876 

added to the training dataset. The following data augmentation methods were used by the authors: shift 877 

with random values, zoom, shear, and rotation. The proposed ensemble model of classification 878 

obtained higher accuracy compare to other models. However, the proposed ensemble model needed 879 

more inference time. For segmentation, the TransUNet-R50-ViT also obtained good accuracy – 880 

99.90% and F1-score – 99.90%. This model also needed more inference time after TransFire and 881 

EfficeintSeg.  882 

 883 

3.5.4 U-Net, FusionNet, VGG-16 884 

In this last work, Ciprián-Sánchez et al. (2021b) argued that a deep segmentation model for fire 885 

detection is primarily affected by the model's loss function and architecture. The models that have been 886 
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evaluated by the authors are VGG-16-based Frizzi architecture, visible FusionNet-based Choi 887 

architecture, U-Net-based Akhloufi architecture, Focal Tversky, Dice, and Unified Focal losses. The 888 

performance was verified using NIR images from the Corsican Fire Database, as well as additional two 889 

kinds of merged visible-NIR images created by Li et al. (2018) and Ciprián-Sánchez et al. (2021a). 890 

After the data augmentation methods have been applied, the full dataset consists of 8192 images of 891 

training data and a 128 images of test data. For performance and correlation analysis, the Akhloufi + 892 

Focal Tversky + visible combination is the best combination and hyperparameter setting. However, 893 

when the authors added the attention modules to improve the results, the combination only slightly 894 

improved the results. The authors have also demonstrated that forest fire recognition performance can 895 

be influenced by both its loss function and architecture. Table 7 shows the summary of detection and 896 

segmentation applications used in the selected forest fire detection studies. 897 

 898 

Table 7 A combination of segmentation and classification-based methods for forest 899 

fire monitoring and surveillance. 900 

Authors Year Metho

d 

Architecture Accurac

y 

Applicati

on 

Augmentat

ion 

Type of 

Data 

Zhao et al. 

(2018) 

2018 DCNN Deep CNN - 

Saliency 

Accurac

y - 98% 

Segmentat

ion and 

Classificat

ion 

Yes Aerial, 

UAV, 

Satellite 

and 

Ordinary 

View 

Image 

Khryashche

v and 

Larionov 

(2020) 

2020 CNN U-Net & 

ResNet34 

F1-score 

- 0.465 

Segmentat

ion and 

Classificat

ion 

Yes Satellite 

Image 

Ciprián-

Sánchez et 

al. (2021b) 

2021 CNN U-Net, 

FusionNet & 

VGG-16 

F1-score 

- 0.9263 

Segmentat

ion and 

Classificat

ion 

Yes Image 

Ghali et al. 

(2022) 

2022 DCNN TransU-Net, 

TransFire, 

EfficientSeg, 

EfficientNet-

B5 and 

DenseNet-

201 

Accurac

y - 

99.9% 

Segmentat

ion and 

Detection 

Yes Image 
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4 General Discussion 903 

This review provides a comprehensive investigation on the forest fires detection using DL methods, 904 

emphasising both the significant potentials and drawbacks of the reviewed methods. While DL models 905 

have shown the capacity to successfully analyse vast and complex data, which have enhanced the 906 

detection accuracy over conventional approaches, this review would like to highlight a number of 907 

limitations that must be overcome to fully realise the complete systems.  908 

Classification-based algorithm is the most popular method used to detect forest fires and 909 

wildfires among the reviewed DL methods. A total of 15 studies have primarily designed forest fires 910 

recognition system based on the classification-algorithms, followed by 11 studies that utilized object 911 

detection algorithms. Furthermore, five reviewed studies have focused on image segmentation-based 912 

algorithms that subdivide the images into distinct regions or segments. Additionally, four of the 913 

reviewed studies have implemented a combination approach of segmentation and classification 914 

algorithms, while another four studies employed a combination of detection and segmentation 915 

strategies. The forest fires image dataset was used as the primary input modality for most of the 916 

reviewed studies that includes both forest fire and non- forest fire images. Some researchers have also 917 

included smoke images as part of the training data. Due to the dataset imbalance between the videos, 918 

satellite images, and UAV images, many authors have employed data augmentation techniques to 919 

produce a more balanced training dataset. Based on the statistics, 20 of the reviewed studies have 920 

employed data augmentation methods, while the remaining 19 studies did not. This review also 921 

discovered that studies that used data augmentation methods typically performed better and produced 922 

better performance accuracy (> 90%). Figure 10 depicts a summary of the type of dataset, type of DL 923 

algorithms, and number of reviewed studies that have used data augmentation methods. 924 
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 925 

Figure 10 A summary of (a) DL applications for selected forest fire studies (b) Type 926 

of data used in forest fire studies (c) Number of publications that have used data 927 

augmentation techniques. 928 

 929 

One of the biggest problems among the current methods is the needs for a wide range of high-930 

quality training data that accurately mimics different scenarios of forest fire incidents. To capture this 931 

set of intricate feature representations, a significant amount of diverse training data is necessary for a 932 

deep learning network (Abdani et al., 2022). Without this kind of data, DL models run the risk of 933 

becoming too specific to the training data and do not able to make a good generalization when it 934 

encounters a new data. Moreover, many researchers note that DL models are frequently referred to as 935 

"black box" models, which might hinder interpretability and transparency of the model as many 936 

architectures needs to be fine-tuned for any specific applications. Therefore, Quach et al. (2023) 937 

employed a two-part approach involving Explainable Artificial Intelligence for smart agriculture to 938 

assess how effectively deep learning models recognise various features within images: (1) evaluating 939 

the deep learning model's accuracy using assessment techniques, and (2) employing Grad-CAM to 940 

interpret the model's ability to detect image features. Additionally, Huang et al. (2023) utilised 941 

Bayesian Deep Detectors (BDD) to evaluate uncertainty in SAR target detection. Their primary 942 

objective is to offer insights into the confidence levels associated with classification and localization 943 
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results. The ability to generalise well is crucial in many applications, and data augmentation has 944 

become a crucial method for increasing the accuracy and reliability of the DL model (Elizar et al., 945 

2023). For example, Kang et al. (2022) and Khryashchev and Larionov (2020) have utilized data 946 

segmentation methods to increase their training dataset size, which have resulted in improved forest 947 

fire detection performance.  948 

Another issue that needs to be resolved in most of the reviewed studies is the imbalanced class 949 

distribution of the data. If a DL model is trained with imbalanced dataset, undesirable outcomes might 950 

occur as the training process will skew towards a particular class (Alzubaidi et al., 2021). Therefore, 951 

some studies generated advanced synthetic data through the usage of conditional GAN, with the aim 952 

of equalizing the quantity of training data across different classes based on their respective labels 953 

(Zulkifley et al., 2020, 2022). Another interesting finding is many studies that have optimized their 954 

hyperparameter configuration generally produced a better forest fires detection rate as proposed by 955 

Mashraqi et al. (2022). Besides that, we found another important factor affecting the DL-based 956 

segmentation performance model, which are loss function and architecture design as highlighted by 957 

Ciprián-Sánchez et al. (2021b). In general, we have also identified the three most common types of 958 

classes for the purpose of forest fire surveillance system, as illustrated in Figure 11. 959 

 960 

Figure 11 The general forest fire surveillance system class division. 961 

 962 
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Resolving bottlenecks in deep learning-based forest fire detection models is a critical attempt 963 

that requires comprehensive approaches to challenges. Therefore, the solution to this problem involves 964 

a number of approaches, such as hyperparameter tuning, hybrid transfer learning, and a combination 965 

of DL and machine learning methods. For instance, we can apply the Guo and Liu (2021) proposed 966 

method to DL-based forest fire detection model. Guo and Liu (2021) proposed the adoption of GAN 967 

for soft sensor modeling to address these DL limitations. Guo and Liu (2021) also introduced a hybrid 968 

framework that combines mechanisms and data-driven approaches to create a GAN-based soft sensor 969 

model, aiming to enhance interpretability and reliability in sensor-based predictions. Additionally, the 970 

transfer learning method can be applied to the forest fire detection model to improve the accuracy of 971 

detection. For instance, Xie and Huang (2023) have used ImageNet data for the purpose of transfer 972 

learning, initializing the convolutional layer for the Faster RCNN model. The proposed model has 973 

shown improvements in detection accuracy. Alice et al. (2023) employed Atom Search Optimization 974 

(ASO) to tune the hyperparameter ResNet model and transfer learning method. Based on the results, 975 

the authors found that the proposed method obtained good accuracy compared to the other models. 976 

Therefore, the review found that hybrid frameworks, transfer learning, and hyperparameter tuning can 977 

enhance the performance of DL-based models. 978 

This review has demonstrated the efficacy of several DL architectures in identifying forest fires, 979 

trained by using different data sources, including fire images, satellite imagery, and UAV images. In 980 

addition, we have also highlighted the possible implications of collaboration between researchers and 981 

practitioners to enhance data sharing, device or tool improvement, and DL processes in forest fire 982 

detection. Although DL has significant potential for improving forest fire prevention and management, 983 

a significant improvement is still required in a number of critical areas, especially for detecting small 984 

size fire incidents, which is crucial for early detection system. Some of the domains that can be 985 

improved include the exploration of novel architectures and methods, the optimization of 986 

hyperparameters, and the consideration of practical issues of DL model (computational burden, 987 

memory size, etc.) for the detection of forest fires. DL models may become a useful method for forest 988 

fires prevention and management with continued research and collaboration among the researchers. 989 

Figure 12 depicts the summary of application, issues, and future work for forest fire detection using 990 

the DL models. 991 
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 992 

Figure 12 A summary of application, issues and future works for forest fire detection 993 

using DL model 994 

 995 

5 Conclusion  996 

This review paper presents an evaluation of the current state-of-the-art in forest fire detection and 997 

monitoring systems using DL-models. This review also evaluates the effectiveness and efficiency of 998 

several DL algorithms. We have also highlighted several limitations and challenges with the current 999 

methodologies, such as lack of training data and imbalanced dataset issues. These limitations will serve 1000 

as the guidance to address the drawbacks with the aims to develop more reliable and precise forest fire 1001 

detection systems. A direct performance comparison between the reviewed models or studies cannot 1002 

be determined due to differences in applications and training datasets. Therefore, it is recommended to 1003 

make performance comparison between different architectures using the same type of input modality 1004 

and training dataset for the future work. In general, the adoption of the DL-model has substantially 1005 

improved the capability of forest fire monitoring and mitigation strategies, but more researches are 1006 

needed to fully realise their potential. 1007 

This aim of this review is to provide valuable implications for the development of more 1008 

effective forest fire detection systems and provide valuable insights and recommendations for 1009 

researchers and practitioners. By establishing more dependable and precise forest fire detection 1010 

technologies, we can help prevent and reduce the destruction caused by forest fires. Based on this 1011 
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review, several recommendations are made for future work on forest fire detection: Parameter 1012 

optimization using meta-heuristics or bio-inspired optimization techniques such as ant colony 1013 

optimization and firefly optimization can be applied to determine the optimal hyperparameter settings. 1014 

An area of potential research for forest fire monitoring and surveillance involves the integration 1015 

of multi-modality input from satellite imagery, unmanned aerial vehicles (UAV), and drones. This 1016 

multi-input system has the potential to offer precise and prompt information to relevant authorities. For 1017 

example, satellite imagery can be utilized to identify the location of a forest fire or to conduct a 1018 

preliminary assessment. While, UAV and drones have the potential to serve as a means of transmitting 1019 

live data pertaining to the magnitude of the burned areas and providing detailed images for loss 1020 

analysis. Additionally, they can be used to capture image of the affected areas, which is surely hard to 1021 

access. The utilization of UAV and drones not only mitigates the safety risk for the authorities, but also 1022 

enables the acquisition of high-resolution images that are conducive for further detailed analysis. 1023 

Furthermore, real-time data can be obtained at a lower cost compared to conventional methods. 1024 

There is also a potential for model improvement through hybridization or integration of several 1025 

DL models, instead relying on one model. By utilising more prediction models, the complexity of the 1026 

system can be increased. In fact, an ensemble method can be explored by stacking two or multiple 1027 

models, limited by the computational resources. A more complex utilization of regularization can also 1028 

be implemented that include dropout, batch normalization and data augmentation methods. The 1029 

regularization method can reduce the likelihood of model overfitting as well as reduce the model’s 1030 

memory usage.  1031 

The presence of an imbalanced dataset in a deep learning model poses a considerable obstacle 1032 

to achieving good levels of accuracy. To counteract the potential for overfitting and low accuracy, 1033 

sophisticated data augmentation techniques must be utilized. Neural Style Transfer, Generative 1034 

Adversarial Networks (GAN), and Neural Architecture Search (NAS) are some of the promising 1035 

methods that offer extensive generation of synthetic data for the forest fire applications. Moreover, we 1036 

found that no studies have utilized different dataset partitioning. Therefore, it is worth to explore 1037 

whether partitioning of the training dataset can affect the model's performance. In conclusion, this 1038 

review aims to benchmark the capabilities of the DL-model for forest fire surveillance and monitoring 1039 

systems and provide a significant resource for researchers and policymakers working on this topic by 1040 

summarizing the comprehensive assessment of the reviewed studies. 1041 
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