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Abstract. The nearshore oceans, home to rich benthic ecosystems, remain an area of significant
research interest. While 2D visual representations have been the mainstay in this area, the intricate,
multi-dimensional nature of the seafloor ecosystems underscores the need for 3D modeling to capture
their full essence. This research introduces a methodology tailored for static image processing and 3D
modeling using Neural Radiance Fields (NeRF), specifically the optimized instantNGP variant. A
streamlined pipeline has been developed, focusing on mitigating the visual challenges posed by light
interference and seawater in underwater imaging. This pre-processing approach effectively prepares
images for the NeRF-based 3D reconstruction without an excessive computational burden. Visual
enhancements successfully corrected color imbalances in underwater images, addressing the common
blue-green tint caused by light conditions. Furthermore, by dynamically detecting and eliminating
seawater borders, the pipeline ensures that the reconstruction models remain concentrated on the
seafloor ecosystem. This process does not necessitate extensive datasets or immense computational
resources, marking it as an efficient solution for near coast underwater images. Offering a
cost-effective and efficient alternative to traditional methods, this research provides marine ecologists
with a robust tool for RGB-based 3D modeling of nearshore environments. However, its application
might benefit from integration with neural networks for better adaptability across various marine
scenarios.

Keywords: Benthic 3D reconstruction, NeRF, Underwater Image Enhancement, Seawater Detection

1. Introduction
The vastness and intricacies of the world’s oceans present significant challenges and opportunities for
scientific exploration. One particular area of interest lies in the study of benthic organisms and
ecosystems situated in the near shore regions [1]. Detailed analyses of these entities, predominantly
driven by visual data, offer insights into the marine environment’s complex dynamics. However, while
advances in underwater imaging tools have provided substantial data, much of the marine research is
still constrained to 2D visual representations.

Such two-dimensional portrayals, although informative, may not capture the full complexity of
the seafloor, especially in nearshore environments. These areas boast a multitude of lifeforms,
geological formations, and ecosystems, all interacting in a three-dimensional space. The limitation of
2D images suggests an urgent need for more comprehensive and immersive 3D models to depict the
marine landscape accurately, for example, structured light [2] modeling is laborious to model and
susceptible to underwater environments, while sonar modeling does not allow for RGB-based modeling
[3] for follow-up studies.

To address this gap, this research introduces a method designed for static image processing,
culminating in 3D modeling using Neural Radiance Fields (NeRF) [4]. The popularity of NeRF in
recent research stems from its capability to transform 2D images into detailed 3D reconstructions.
Unique to the approach proposed in this study is its efficient design, achieving commendable 3D
outcomes without an excessive reliance on computational resources. This efficiency ensures that
comprehensive 3D modeling remains accessible without being computationally prohibitive.

Central to this approach is a refined pipeline. This streamlined process, optimized for
cost-effectiveness and efficiency, prepares images specifically for NeRF, ensuring enhanced 3D
reconstruction. Underwater imaging inherently presents challenges, notably the impact of light
refraction, diffusion, and absorption in water. Such challenges can result in distorted images with color
inaccuracies. The methodology outlined in this study adeptly mitigates these issues, ensuring that 3D
models are both accurate and representative of the true underwater environment.
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The potential applications and implications of this methodology extend far beyond academic
interest. Specifically, marine ecologists, especially those focusing on benthic ecology, can leverage this
RGB-based 3D modeling technique. By providing a precise and efficient tool for understanding the
nearshore environment, this study contributes to the field of marine ecology, potentially influencing
both research methodologies and conservation strategies.

In summary, the oceans, with their vast and uncharted territories, continue to challenge and
inspire scientific research. The move from 2D to 3D representations, as facilitated by the present
research, promises to enrich the understanding of marine environments, enabling a deeper exploration
of the nearshore marine world.

2. Background and Related Work
Underwater environments offer a unique vista that remains largely unexplored. The deep seas and
oceans, with diverse terrains and marine life, hold invaluable information essential for fields ranging
from marine biology to geology. Accurate mapping and visualization of these environments are pivotal
for further scientific discoveries and advancements.

While satellite imaging and sonar technologies have made strides in underwater mapping,
visual-based 3D reconstructions provide a richer, more detailed representation. These reconstructions
rely heavily on high-quality input images. However, underwater imaging is fraught with challenges.
Water absorbs and scatters light, leading to images plagued with non-uniform lighting, low contrast,
and color cast, among other issues.

2.1 NeRF, InstantNGP, and Reconstruction
Neural Radiance Fields (NeRF) has established itself as a pivotal method for 3D scene reconstruction
from 2D images. Instead of relying on traditional depth maps or voxel grids, NeRF uses a neural
network to represent a continuous volumetric scene function. Its performance and adaptability in
diverse environments have been emphasized in prior works, but its practicality in underwater settings
has been less explored.

Building on the foundational principles of NeRF, the introduction of Instant Neural Graphics
Primitives (InstantNGP) [5] marks a notable advancement in the field of 3D reconstruction.
InstantNGP streamlines the reconstruction process, enabling near real-time 3D visualization. This
accelerated performance is achieved by optimizing the underlying neural structures and leveraging
more efficient rendering techniques. Given the time-sensitive nature of many underwater exploration
tasks, the adoption of InstantNGP offers potential benefits in terms of rendering speed without
compromising on the quality of the reconstruction. The current research aims to tailor and optimizing
the capabilities of InstantNGP for underwater environments, exploring its nuances and potential
advantages in subaqueous 3D modeling.

2.2 Machine Learning-Based Segmentation
Image segmentation in underwater environments poses unique challenges, primarily due to the
scattering and absorption of light rays by water and suspended particles. A prevalent methodology to
address this problem is based on machine learning techniques [6][7], which have shown significant
capability in segmenting distinct objects submerged in water. Notably, recent efforts in this domain
have largely gravitated towards segmenting marine life, often sidestepping the intricacies of the
underwater terrain or seabed. While these methods have proven effective in many scenarios, they may
have limitation on critical details pertaining to landforms.

2.3 Underwater image process
The realm of underwater image enhancement has seen considerable advancements in recent years. A
distinctive method hinged on a conditional generative adversarial network (cGAN) was employed for
real-time image betterment. This approach critically assessed perceptual image quality across various
metrics, and to support this, introduced the large-scale EUVP dataset of underwater images. Notably,
these enhanced images showed improved compatibility with standard underwater object detection
models [8]. Another study explored adaptive histogram equalization, introducing regional histogram
equalization for real-time enhancement, implemented using the Field Programmable Gate Array
(FPGA) [9][10]. Dehazing in underwater images, a challenge due to the pronounced effects of light
scattering in turbid waters, was addressed using an algorithm that estimated scene depth by leveraging
the differential attenuation across image color channels [11].
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3. System Design and Implementation
3.1 Methodology for Underwater Image Color Enhancement
In addressing the challenges of underwater imaging, particularly the non-uniform illumination and
degraded contrast, a three-fold approach was adopted: Histogram Stretching, Color Balancing, and
Contrast Limited Adaptive Histogram Equalization (CLAHE).

3.1.1 Histogram Stretching
To alleviate the issues of light absorption and scattering, histogram stretching was implemented on
individual RGB channels of the image. The histogram of each channel was linearly transformed such
that the minimum and maximum intensity values present were mapped to 0 and 255, respectively. For
this process, pixels with zero intensity were ignored to ensure that only meaningful intensities were
used to determine the stretching limits. This technique amplifies the color contrast, allowing for a
clearer differentiation of features within the underwater environment.

3.1.2 Color Balancing
After stretching, the images often displayed a color cast, particularly due to the preferential absorption
and scattering of specific wavelengths underwater. To tackle this, the mean of each channel (R, G, B)
was computed and compared with the global mean (for all channels). Each channel was then adjusted
to match the global mean, ensuring that the final image was free from color bias. This adjustment
balanced the color distribution and minimized the inherent blue or green dominance common in
underwater images.

3.1.3 Contrast Limited Adaptive Histogram Equalization (CLAHE)
While histogram stretching enhanced the global contrast, it sometimes left local regions of the image
under-enhanced. To address this, CLAHE was employed to improve local contrasts. Unlike traditional
histogram equalization, CLAHE operates on smaller, overlapping regions of the image, ensuring that
the histogram of each tile is equalized independently. This method prevents over-amplification of
contrasts and reduces noise. For this application, tiles of size 8 x 8 were used, and a clip limit of 1.0
ensured that the equalization did not produce overly contrasted images. To facilitate the processing of
multiple images, an automation routine was implemented, allowing the enhancement of entire folders
of images sequentially.

3.2 Seawater Border Detection for Enhanced 3D Reconstruction
For precise seabed 3D reconstruction using NeRF, it is imperative to distinguish between the seabed
landforms and the overlaying seawater, which manifests as a progressively dominant blue shade in
images. Consequently, NeRF may mistakenly reconstruct the seawater as an integral component of the
seabed model. To counteract this effect, a methodology was developed to detect the border between the
seabed landforms and the seawater.

3.2.1 Hue-based Image Segmentation
The color bounds for the seawater were dynamically calculated based on the image’s height and the
previously computed mean hue value. The lower bound was defined by halving the mean value, while
the upper bound was set at a predefined maximum hue value, specifically tailored for blue tones typical
of seawater.

3.2.2 Region of Interest (ROI) Definition
To avoid erroneous detections and enhance computational efficiency, only the top half of the image,
where the seawater’s presence is most evident, was considered as the Region of Interest (ROI).

3.2.3 Seawater Masking
Within the defined ROI, a mask was created to isolate the pixels that fell within the seawater color
bounds. Contour detection was applied to this mask to identify and filter out smaller noise areas,
ensuring only significant blue regions were kept. To further refine the detection, only contours that met
a minimum area threshold and touched the top edge of the ROI were preserved.

3.2.4 Post-processing and Smoothing
Post the primary segmentation, contours were merged, and morphological operations were applied to
smooth and close gaps in the detected regions. A closing operation using a rectangular kernel efficiently
filled small holes and connected nearby contours. The resultant mask was then applied to the original
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image, blackening the detected seawater regions.

3.2.5 Batch Image Processing
An automation pipeline was designed to process multiple images. Each image from the source was
loaded, the mean hue value was calculated, and subsequent seawater border detection was carried out.
By identifying and segmenting out the seawater regions, the images were made more suitable for
seabed 3D reconstruction with NeRF, ensuring that the resulting model depicted the seabed landforms
with increased fidelity.

4. Results
4.1 Underwater Image Color Enhancement Qualitative Evaluation
Visual Enhancement: A series of image pairs, each juxtaposing the original with the enhanced
counterpart, showcased the transformation engendered by the proposed techniques. It was discernible
that the pervasive blue-green tint in the original images was remarkably alleviated in the enhanced
versions, paving the way for a more natural color representation. As shown in Figure 1.

Figure 1. Original vs. Enhanced diagram (Photo/Picture credit: Original)

Figure 2. 3D reconstruction based on original / enhanced images (Photo/Picture credit: Original)
Beyond color rectification, a notable enhancement in the visibility of submerged features was

observed. Details, previously obfuscated due to unfavorable lighting conditions, were now discernible,
indicating the effectiveness of the methodology in mitigating scattering effects and improving image
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clarity. As shown in Figure 2. Histogram Analysis: In the evaluation of the image enhancement
methodology, the histograms of both the original and enhanced images were analysed. The histograms
for each BGR channel of the original image exhibited a pronounced drop, with the green and red
channels falling to zero at an intensity of 200 and the blue channel even earlier at 150. This indicates an
absence of higher intensities, confirming the visual observation of subdued brightness and potential
loss of details in the brighter regions, a common trait in underwater imagery due to selective color
absorption. In contrast, the histograms of the enhanced images present a more continuous distribution,
stretching further along the intensity spectrum. This behavior signifies the successful restoration of the
suppressed pixel intensities, resulting from the applied enhancement techniques. As shown in Figure 3.

Figure 3. Original vs. Enhanced image histogram subjects (Photo/Picture credit: Original).

Figure 4. Experimental results (Photo/Picture credit: Original)

Border Detection (Seawater vs. Seabed): In the endeavour to enhance the accuracy of seabed 3D
reconstruction using InstantNGP, an essential step involves detecting and isolating the boundary
between the seawater and the seabed. The water, especially seawater, presents a significant challenge as
it tends to impose a blue tint on photographs due to its light scattering properties. When reconstructing
a 3D model, this tint can lead to erroneous inclusion of the water as an actual instance in the output
model. As shown in Figure 4. Contour Analysis: On applying the proposed border detection algorithm,
contour maps were generated delineating the regions of seawater from the seabed. The methodology
employed hue-based detection targeting the characteristic color of the seawater. The resultant contours
were smooth, indicating an acceptable border establishment between the seawater and seabed regions.
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Figure 5. Border detection examples (Photo/Picture credit: Original)

Following the enhanced detection, preliminary evaluations of 3D reconstructions using NeRF
were conducted. It was observed that by effectively mitigating the seawater influence in the input
images, the reconstructed 3D models exhibited significantly fewer water instances. As shown in Figure
5.

Figure 6. 3D reconstruction with seawater removed (Photo/Picture credit: Original).

One of the distinctive benefits of this pipeline is its inherent computational efficiency. Unlike deep
learning-based approaches, which often require extensive computational resources a training time, this
pipeline operates a lower level of image processing, thus necessitating fewer computational resources.
This makes the approach more accessible, especially in settings where high-end computational
capabilities are a constraint. Furthermore, a significant advantage of this pipeline is the absence of a
dependency on training datasets. Acquiring data, particularly for specific scenarios like near coast
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underwater environments, can be challenging. In contrast, the developed pipeline can be applied
directly to new underwater images without the need for prior training or dataset availability.

5. Challenges and Limitations
While the proposed methodology offers several advantages, there are also challenges and limitations
inherent to this approach.

5.1 Limited Generalization Capability
One of the primary challenges is the pipeline’s specificity to the 1–3-meter foreshore area. This focus
makes its application in broader underwater settings questionable. While the current process can handle
certain coastal environments efficiently, its performance may be compromised in diverse underwater
conditions.

5.2 Dynamic Seawater Boundary Detection
Accurately detecting and handling the variable nature of seawater across images remains a challenge.
The appearance and effects of seawater in imagery are contingent on the scene’s distance from the
camera due to light attenuation over distance. The method would benefit from a more dynamic
algorithm that understands the relationship between hue attenuation and distance, optimizing boundary
detection accordingly.

5.3 Geographical Limitations
The method’s design assumes a specific orientation of seawater – tapering from top to bottom within
the frame, owing to its focus on offshore seabed modeling. This orientation may not hold true for
various marine regions. Incorporating more adaptable techniques, potentially involving deep learning
networks, could assist in identifying the modeling seawater components across different marine
settings.

6. Conclusion
The research has developed a comprehensive framework tailored for the challenges posed by
underwater imaging, particularly in the nearshore regions. By emphasizing the importance of
pre-processing techniques, the pipeline has effectively mitigated issues related to light interference and
seawater presence, creating an idea input for the InstantNGP-based NeRF 3D reconstruction. As visual
assessments have affirmed, the outcome is a more accurate representation of the near-coast underwater
environment, providing invaluable tools for marine ecologists.

While the pipeline offers numerous advantages, including cost-effectiveness and computational
efficiency, its specificity to certain marine contexts underscores the need for adaptable methods in
broader scenarios.

7. FutureWork
7.1 Integration with Neural Networks for Enhanced Segmentation
The methodology’s core, while efficient, is ripe for augmentation with neural networks. By combining
with simple network architectures, the segmentation processes can be further optimized [12][13].
Notably, this could open avenues for extending the system’s capability to address more specific
challenges like measuring areas affected by coral bleaching. Such an enhancement, while retaining the
pipeline’s efficiency, should significantly bolster its generalization capabilities across varied marine
environments.

7.2 Deployment on MicroAutonomous Underwater Vehicles (AUVs)
A future direction worth exploring is the application of this pipeline on micro AUVs [14]. The potential
for real-time or near-real-time underwater environment reconstructions presents possibilities. By being
equipped with this tool, AUVs could automatically investigate near-coast regions, planning routes or
gathering crucial environmental information, thereby furthering our understanding and conservation
efforts for these vital ecosystems.
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