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Abstract: The exact, non perturbative, response theory developed within the field of non-equilibrium
molecular dynamics, also known as TTCF (transient time correlation function), applies to quite
general dynamical systems. Its key element is called the dissipation function because it represents the
power dissipated by external fields acting on the particle system of interest, whose coupling with the
environment is given by deterministic thermostats. This theory has been initially developed for time-
independent external perturbations, and then it has been extended to time-dependent perturbations.
It has also been applied to dynamical systems of different nature, and to oscillator models undergoing
phase transitions, which cannot be treated with, e.g., linear response theory. The present work
includes time-dependent stochastic perturbations in the theory using the Karhunen–Loève theorem.
This leads to three different investigations of a given process. In the first, a single realization of
the stochastic coefficients is fixed, and averages are taken only over the initial conditions, as in a
deterministic process. In the second, the initial condition is fixed, and averages are taken with respect
to the distribution of stochastic coefficients. In the last investigation, one averages over both initial
conditions and stochastic coefficients. We conclude by illustrating the applicability of the resulting
exact response theory with simple examples.

Keywords: dynamical systems; probability distributions; observables

1. Introduction

Linear response theory successfully describes the behavior of macroscopic systems that
are close to thermodynamic equilibrium, obtaining the corresponding transport coefficients
by solely using the equilibrium correlation functions of the microscopic fluctuating currents,
computed with the equilibrium dynamics, cf. Refs. [1–3]. While the range of applicability of
the linear theory covers most phenomena occurring on the scale of our daily life, extending
well beyond that scale, contemporary science and technology concern scales that are much
smaller or that involve extremely large driving forces, which often exceed the linear regime.
Indeed, anomalous phenomena, for which the linear transport coefficients do not exist
or vanish, are common at the nanometric scale. Strong drivings, such as high voltages,
produce large currents that alter the physical properties of the system at hand, leading
to non-linear effects. Under external drivings, microscopic motions may be impaired to
the point of producing localization or, in any case, drastic changes of states, like phase
transitions. In many of these situations, dynamical correlations persist in time and give rise
to behaviors that are not fully understood.

Within the field of non-equilibrium molecular dynamics [4], particularly following the
discovery of the fluctuation relation, response theory has been generalized so that small
systems as well as large drivings can be treated. A general exact (non-perturbative) response
theory, also known as TTCF (transient time correlation function), has been derived [4],
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which has proven very effective. In particular, recently it has allowed treating hard non-
equilibrium problems, at low drivings [5,6], drastically improving the signal-to-noise ratio,
and providing a superior method with respect to direct averaging for such calculations.
Moreover, this theory has allowed the derivation of a host of relations concerning non-
equilibrium systems; cf. e.g., Ref. [7]. The key ingredient of this exact response theory is
known as the dissipation function, first explicitly defined by Evans and Searles as the energy
dissipation rate that verifies the fluctuation relation [8,9]. Through this, the quantities
singularly used (until then) in specific instances of non-equilibrium molecular dynamic
studies have been unified into a single general concept, which can be used in the analysis
of any dynamical system. The original result, denoted as the dissipation theorem in
Ref. [10], concerned systems subjected to time-independent perturbations, such as an
external constant field. Periodic perturbations were then considered by Petravic and
Evans, in Refs. [11,12], for time-periodic planar shear flow, and by Todd, in Ref. [13], for
time-periodic planar elongational flow.

Inspired by the original works, and profiting from the general applicability of the dissi-
pation function previously evidenced within the framework of the fluctuation relation [14],
an extension to the general dynamical systems perturbed by time-dependent vector fields,
expressed by the Fourier series, was developed in Ref. [15]. This was conducted on an
enlarged phase space, in which the equations of motion are autonomous. Apart from
the generality that allows the use of the TTCF outside the realm of molecular dynamics,
anywhere dynamical systems are used, our approach preserves the time reversibility of the
unperturbed dynamics, which is a fundamental ingredient in many statistical mechanics cal-
culations, including the Onsager reciprocal relations and the fluctuation relations [2,16,17].
Moreover, expressing a signal in terms of the Fourier mode makes the contributions to
the responses of various harmonics of the forcing directly computable, and provides im-
portant information on both the forcing and response in terms of power spectra, as often
required in statistical physics [4,18–27]. Now, physics applications often deal with periodic
functions whose periods exceed any relevant time scale, as in standard approaches to the
fluctuation–dissipation relation [1,2,28]. However, the Fourier series formalism naturally
lends itself to the analysis of non-periodic time-dependent driving, letting the period of
periodic signals grow without bounds. In that case, the Fourier series turns, under rela-
tively mild conditions, into a Fourier transform, which is mathematically suited to treat
non-periodic signals [29–31].

In the present paper, we take that approach one step forward, allowing stochastic time-
dependent perturbations [32,33], which can be represented as Karhunen–Loève expansions
[34,35]. In Section 2, we recall the Karhunen–Loève theorem, from which we obtain the
particular representation of the stochastic perturbation of our dynamical systems. Section 3
briefly illustrates the linear response theory, highlighting the role of the initial perturbation,
and then we also illustrate the time-independent exact response formalism. Section 4 starts
from the equations of motion of the deterministic system of interest, to which we add the
time-dependent stochastic perturbation discussed in Section 2. The first step is to make
our system autonomous by enlarging the phase space, to accommodate a (Hamiltonian)
harmonic oscillator, which embeds in itself the time dependence of the vector field. Then,
we redefine the quantities of interest in the enlarged phase space and we distinguish three
cases: (a) the case in which a single realization of the stochastic process is fixed [36], which
yields a deterministic process in which only the initial conditions are random; (b) the
stochastic case in which the initial condition is fixed and one should only average over
the realizations of the stochastic coefficients of the Karhunen–Loève expansion; (c) the
stochastic case in which averages are taken over both the initial conditions in the phase
space and the stochastic coefficients of the process. Finally, we compute the generalized
exact response formula for any observable of our system. Section 5 illustrates the theory
using simple examples, such as the perturbed harmonic oscillator, and we compare the
linear and the exact response results. Section 6 presents this explicit calculation for forcing
with stochastic amplitude and a single Fourier component. It reports expressions for a
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non-equilibrium simple system: one particle in a viscous medium, perturbed by stochastic
forcing with infinitely many frequencies and a non-vanishing mean. The various terms of
the response theory are analytically expressed as functions of the stochastic coefficients.
Generally, quantitative results now necessitate a numerical treatment. In Section 7, we
summarize our work, discuss our results, and note how even the standard linear response
theory may benefit from the extended phase space approach. Indeed, that allows one to
properly treat the initial condition of the time-dependent perturbation, if one only considers
finite evolution times, as required in many modern investigations of fluctuating observables.
Appendix A computes some integrals used in the main text.

2. The Karhunen–Loève Theorem

The Karhunen–Loève theorem allows a stochastic process to be represented as an
infinite linear combination of orthogonal functions, analogous to a Fourier series, with
stochastic rather than deterministic coefficients. If {Xt}t∈[a,b] is a centered stochastic pro-
cess satisfying certain continuity conditions, one can decompose it as a sum of pairwise
orthogonal functions multiplied by random coefficients that are pairwise uncorrelated and,
hence, orthogonal in probability space. More precisely, the following holds [34]:

Theorem 1 (Karhunen–Loève). Let Xt, t ∈ [a, b] be a square-integrable stochastic process with a
zero mean, defined on a probability space (Θ, F, P), with a continuous covariance function KX(s, t).
By letting ek be an orthonormal basis on L2([a, b]) formed by the eigenfunctions of TKX with
respective eigenvalues λk, Xt admits the following representation:

Xt =
∞

∑
k=1

Zkek(t), (1)

where the convergence is in L2, uniform in t and

Zk =
∫ b

a
Xtek(t)dt. (2)

Furthermore, the random variables Zk have a zero mean, are uncorrelated, and have variance λk:

⟨Zk⟩ = 0, ∀k ∈ N and ⟨ZiZj⟩ = δijλj, ∀i, j ∈ N. (3)

As an example, consider the particular case of a Wiener process, wt with t ∈ [0, T], and
covariance function Kw(t, s) = min(s, t). To find the corresponding eigenvalues and
eigenvectors, we need to solve the following integral equation:

∫ b

a
Kw(s, t)e(s)ds =

∫ T

0
min(s, t)e(s)ds =

∫ t

0
se(s)ds + t

∫ T

t
e(s)ds = λe(t) , 0 ≤ t ≤ T (4)

Differentiating once with respect to t yields:∫ T

t
e(s)ds = λe′(t) (5)

A second differentiation produces:

−e(t) = λe′′(t). (6)

whose general solution takes the form:

e(t) = A sin
(

t√
λ

)
+ B cos

(
t√
λ

)
, (7)
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where A and B are determined by the boundary conditions. Setting t = 0 in the integral
equation gives e(0) = 0, which implies B = 0; setting t = T in Equation (5) yields e′(T) = 0,
where:

λk =

(
T

(k − 1
2 )π

)2

, k ≥ 1. (8)

The corresponding eigenfunctions are, thus, given by the following:

ek(t) = A sin
[
(k − 1

2
)π

t
T

]
, k ≥ 1 (9)

and A is finally determined by the normalization condition:

∫ T

0
e2

k(t)dt = 1 which leads to A =

√
2
T

(10)

Finally, we obtain the following representation of the Wiener process:

wt =

√
2T
π

∞

∑
k=1

Zk

sin
[
(k − 1

2 )π
t
T

]
(k − 1

2 )
(11)

where {Zk}∞
k=1 is a sequence of independent Gaussian random variables, each having a

zero mean and unit variance. This representation is valid for t ∈ [0, T] for any T > 0 and,
as stated in the theorem, convergence is in the L2 norm and uniform in t.

3. Response Theory

Linear response theory is suitable to describe the evolution of observables of sys-
tems subjected to small perturbations, while the exact response applies regardless of the
magnitude of the perturbation. To set our notation, let us recall the main aspects of the time-
dependent linear theory [1]. Given a Hamiltonian dynamical system, with Hamiltonian
H0, consider a Hamiltonian perturbation Hp(Γ, t) = −F (t)A(Γ), whose small intensity is
F , and A has the dimensions of energy. The new perturbed Hamiltonian is given by the
following:

H(Γ, t) = H0(Γ) + Hp(Γ, t) = H0(Γ)−F (t)A(Γ) (12)

and the equations of motion take the following form:

dqj

dt
=

∂H0

∂pj
−F (t)

∂A
∂pj

≡ ∂H0

∂pj
−F (t)kq

j , with kq
j =

∂A
∂pj

(13)

dpj

dt
= −∂H0

∂qj
+F (t)

∂A
∂qj

≡ −∂H0

∂qj
−F (t)kp

j , with kp
j = −∂A

∂qj
(14)

By denoting G as the corresponding vector field, we have the following:

G(Γ, t) =


∂H0
∂p1
...

− ∂H0
∂qN

−F (t)

 kq
1
...

kp
N

 = G0(Γ) + Gext(Γ, t) (15)

and the Liouville operator

−iL = −
(

G · ∇Γ + divΓG
)
= −

(
G0 · ∇Γ + divΓG0

)
−
(

Gext · ∇Γ + divΓGext

)
= −i

(
L0 + Lext

)
.

(16)
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allows us to write the continuity equation for the probability distribution in the phase space
as follows:

∂t f = −iL f = −i
(
L0 + Lext(t)

)
f (17)

where

iL0 f = { f , H0} =
N

∑
j=1

(
∂H0

∂pj

∂

∂qj
− ∂H0

∂qj

∂

∂pj

)
f (18)

and

iLext f = −F (t){ f , A} = −F (t)
N

∑
j=1

(
kq

j
∂

∂qj
+ kp

j
∂

∂pj

)
f (19)

whose solution can be expressed as follows:

ft(Γ) = e−itL0 f0(Γ)− i
∫ t

0
dt′e−i(t−t′)L0Lext(t′) ft′(Γ) (20)

As well-known, this is an exact, but not useful, expression. However, the fact that Lext
is proportional to the small intensity of the perturbation F , justifies the following linear
approximation of ft:

ft(Γ) = feq(Γ)− i
∫ t

0
dt′e−i(t−t′)L0Lext(t′) feq(Γ) + H.O. (21)

where H.O. stands for negligible higher-order terms in F . More than the probabilities,
though, we are interested in the evolution of observables, which are identified with their
evolving ensemble averages. We denote one observable by O : M → R, and its ensemble
average at time t by the following:

⟨O⟩t ≡
∫
M

O(Γ) ft(Γ)dΓ (22)

In the linear regime, we can then write:

⟨O⟩t − ⟨O⟩0 =
∫ t

0
dt′R(t − t′)F (t′) (23)

where
R(t) = β

∫
M

dΓ f0(Γ)Ȧ(Γ)eitL0O(Γ) = β
〈

Ȧ(O ◦ St
0)
〉

0
(24)

is called the response function and subscript 0 in St
0 indicates the unperturbed evolution.

This is a very important result: The response to a small perturbation is determined by
the equilibrium dynamics and by the time correlation function of the perturbation and
the observable of interest, computed with respect to the known equilibrium ensemble.
For thermodynamic systems, this description is fully satisfactory, because the observables
of interest in such systems only negligibly fluctuate, and the observed signal concerning
each single object practically equals the ensemble-averaged signal. This is not guaranteed
more when non-thermodynamic systems—or large time-dependent perturbations—are
considered. Therefore, an extension of the linear response theory to small systems or large
perturbations is required to address these two issues.

The (time-independent) exact response theory initially developed in Ref. [10] may be
adapted to describe a generic dynamical system, St : M → M, on a phase space M, where
the time t may be continuous or discrete [37]. Let us focus on the case in which StΓ, with
Γ ∈ M represents the solution at time t of the differential equation:

Γ̇ = G(Γ) with initial condition Γ ∈ M (25)
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For any such system, the phase space variation rate, Λ : M → R, is the divergence in M of
the vector field:

Λ = ∇Γ · G (26)

We denote its time integral along the phase space trajectory segment delimited by the points
reached at time s and time t by the following:

Λs,t(Γ) =
∫ t

s
Λ(SrΓ)dr (27)

which gives the variation factor of the phase space volume element from SsΓ to StΓ.
Assume M is endowed with a probability measure dµ(Γ) = f0(Γ)dΓ, of density f0,

which evolves as prescribed by the Liouville equation:

∂ f
∂t

(Γ) = −G(Γ) · ∇Γ f (Γ)− f (Γ)∇Γ · G(Γ) (28)

We denote by ft the probability density at time t, obtained as the solution of Equation (28)
with the initial condition, f0. This can be rewritten in terms of the dissipation function [38]:

Ω ft(Γ) = −G(Γ) · ∇Γ ln ft(Γ)− Λ(Γ) (29)

as
∂ ft

∂t
(Γ) = Ω ft(Γ) ft(Γ) (30)

Starting at a point Γ ∈ M, the corresponding integral of Ω f0 along the trajectory segment
delimited by SsΓ and StΓ is given by the following:

Ω f0
s,t(Γ) =

∫ t

s
Ω f0(SsΓ)ds = ln

f0(SsΓ)
f0(StΓ)

−
∫ t

s
Λ(SsΓ)ds, (31)

and the solution of the Liouville equation can be equivalently expressed as follows:

fs+t(StΓ) = exp {−Λ0,t(Γ)} fs(Γ), (32)

and as follows:
fs+t(Γ) = exp {Ω fs

−t,0(Γ)} fs(Γ) (33)

Note that the dynamics are assumed to be invertible, which does not mean that it has to be
time-reversal invariant; it suffices that each point in a trajectory has a unique pre-image
under the dynamics. The ensemble average of an observable O at time t,

⟨O⟩t =
∫

O(Γ) ft(Γ)dΓ (34)

can eventually be expressed as follows:

⟨O⟩t = ⟨O⟩0 +
∫ t

0

〈
Ω f0 (O ◦ Ss)

〉
0
ds (35)

Interestingly, Equation (35) only requires the unperturbed initial distribution f0, a striking
analogy to the linear response formulae (23) and (24), although it is an exact—not an
approximate/perturbative—response formula. The difference lies in the fact that, unlike
the linear response formulae, here, dynamic Ss is the perturbed one. See, e.g., Refs. [4,10,38]
for detailed derivations.

For properly chosen f0, Ω f0 represents the dissipative flux, like Ȧ = {A, H} = {A, H0}
which appears in Equation (24). In particular, non-equilibrium molecular dynamics models
require f0 to be the equilibrium distribution of the unperturbed dynamics (drivings set
to 0) subjected to the same constraints of the perturbed dynamics. For instance, if the



Entropy 2024, 26, 12 7 of 23

perturbed dynamics preserves the kinetic energy thanks to isokinetic thermostats, the
unperturbed dynamics must also preserve the kinetic energy, and f0 must be invariant
under the resulting (generally non-Hamiltonian) dynamics. In this case, analogous to
the linear formula (23), Equation (35) concerns the correlation function of the evolving
observable of interest with the dissipative flux and such a correlation function is an average,
computed with respect to the initial distribution f0. The difference is that the dynamics
followed by the observable are the exact perturbed dynamics and not the approximate
equilibrium dynamics. However, the formalism can now be used more generally, without
the need for f0 to be the equilibrium distribution, or for the system of interest to be a
particle system.

4. Exact Response of Stochastic Processes

In this section, we first adapt the exact response theory illustrated above to a generic
abstract dynamical system perturbed by a stochastic, time-dependent, vector field, extend-
ing the approach for deterministic time-dependent perturbations developed in Ref. [15].
Then, we distinguish three cases: (a) The deterministic case in which a single realization
of the perturbation is fixed (as in e.g., the Green–Kubo linear theory); thus, observables
are only averaged with respect to the initial conditions of phase space trajectories; (b) The
stochastic case in which the initial condition in the phase space is fixed. The realizations of
the perturbation vary; hence, observables are averaged over the distribution of such realiza-
tions; (c) The stochastic case in which the phase space initial conditions and perturbation
realizations vary, and observables are averaged over both.

4.1. Wiener Process Perturbation

Given a dynamical system Γ̇ = G(Γ) on a phase space M, consider the following
stochastic equation:

Γ̇ = Ĝ(Γ, t) = G(Γ) +F ŵ(t) , for t ∈ [0, T] (36)

where F is a constant that gives the strength of the perturbation, T > 0 can be much larger
than the scale of observation, as in [1], and w(t) is a Wiener process of the same dimension,
as M. This can be represented by the Karhunen–Loève expansion, as follows: [34]:

ŵ(t) =
∞

∑
n=1

√
2T
π

Zn

(n − 1/2)
sin
(
(n − 1/2)π

T
t
)
=

∞

∑
n=−∞

αneiβnt (37)

where the details of the process are determined by the vectors Zn = (Z1n, ..., ZNn), or
equivalently, αn = (α1n, . . . , αNn), with:

αkn =


1
2i

√
2T
π

Zkn

cn
if n > 0

1
2i

√
2T
π

Z−kn

cn
if n < 0

cn =


n −

1
2

if n > 0,

n +
1
2

if n < 0

and βn =
cnπ

T
(38)

We recall that this expression holds for all perturbations in L2[0, T], for any T > 0, so it is a
very general result. As this is a zero mean process, it does not include a net force acting
on the system. However, such a force, constituting a systematic action where the Wiener
process fluctuates, can be included as a deterministic term in G.

Rather than directly computing the evolution of probability densities, we follow
Ref. [15] in order to obtain a more flexible tool, and to preserve the notion of time reversal
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invariance. Therefore, we first eliminate the time dependence of the perturbation, and
introduce two new variables (θ and ϕ) that evolve as follows:{

θ̇ = ϕ

ϕ̇ = −θ
(39)

These new variables live on an ellipse, whose axes depend on the initial independently
chosen conditions, θ0 and ϕ0. Then, we can write the following:

F ŵ(t) = F
∞

∑
n=−∞

αneiβnt =
∞

∑
n=−∞

αnwn(θ, ϕ) = w(θ, ϕ) (40)

where the deterministic parts of the perturbation are given by the functions wn(θ, ϕ), and
the stochastic parts by the coefficients αn. When F is given, we can write the following:

wn(θ, ϕ) = F 1−βn
(

θ(t)− iϕ(t)
)βn

with n ∈ Z , and θ(t)− iϕ(t) = F exp(it) (41)

Alternatively, the initial condition determines F through the equality θ(t) − iϕ(t) =
F exp(it). The difference between the two situations depends on the initial distribution of
the points (θ, ϕ), which we are now free to choose as the problem of interest requires.

In both cases, the explicit time dependence of the perturbation w is turned into an
implicit dependence, mediated by θ and ϕ. The new dynamical system is as follows:

˙̃Γ = G̃(Γ, θ, ϕ) =

( G(Γ) + w(θ, ϕ)
ϕ
−θ

)
(42)

which is an autonomous system of differential equations, whose phases Γ̃ = (Γ, θ, ϕ) live in
the new phase space

M̃ = MΓ ×Mθϕ (43)

where MΓ coincides with the original phase space of the unperturbed dynamics, M, while
Mθϕ ⊂ R2 is the space of the points (θ, ϕ), which depends on the problem at hand, and
may be bounded or not. In particular, a given initial condition confines (θ, ϕ) to a circle
of the given radius, F , for a harmonic oscillator in one dimension, whose energy is fixed
by the initial conditions. The corresponding new phase space variation rate equals the
old one:

Λ̃ = Λ̃(Γ, θ, ϕ) = Λ(Γ) (44)

because the new coordinates describe a Hamiltonian system. Introducing a new proba-
bility density, f̃0 = f̃0(Γ, θ, ϕ), a new dissipation function, Ω̃ f0 = Ω̃ f0(Γ, θ, ϕ), can also be
obtained, applying the general rule (29) to the quantities with a tilde. The density f̃0 can
be given in various guises. However, the distribution of θ and ϕ is not affected by the
phase space coordinates Γ, and should not affect the distribution of Γ; therefore, it can be
factorized as follows:

f̃0(Γ, θ, ϕ) = f0(Γ)g0(θ, ϕ) (45)

In the case that the realization of the perturbation is fixed, and its initial value is given by
w0 = w(θ0, ϕ0), one could obtain the following:

f̃0(Γ, θ, ϕ) = f0(Γ)δ(θ − θ0)δ(ϕ − ϕ0) (46)

where f0 is invariant under the unperturbed dynamics, as in the usual molecular dynamic
applications of the exact response formula, and δ is the Dirac delta function. On the other
hand, finite accuracy in setting the initial value of w may be described by replacing the
δ-function with a smooth non-negative and normalized function, centered on θ0 and ϕ0,
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which vanishes in a suitably narrow or wide interval around 0. Physically, this is more
meaningful; mathematically, it is useful since it preserves the differentiability of f̃0. In this
case, we would write the following:

f̃0(Γ, θ, ϕ) = f0(Γ) g0(θ − θ0) g0(ϕ − ϕ0) (47)

where the relation to θ0 and ϕ0 is stressed. If, on the other hand, the magnitude of the
perturbation is fixed, one may take Mθϕ = SF , the circle of radius F . Then, because this
circle is traversed with uniform speed by the point (θ(t), ϕ(t)) and the origin of times is
arbitrary, a natural form of the phase space distribution is as follows:

f̃0(Γ, θ, ϕ) =
1

2πF f0(Γ) (48)

Let us rewrite the equations of motion as follows:

˙̃Γ(Γ, θ, ϕ) =



Γ̇1
Γ̇2
...

Γ̇N
θ̇
ϕ̇


=



G1(Γ) + ∑∞
n=−∞ αn1wn(θ, ϕ)

G2(Γ) + ∑∞
n=−∞ αn2wn(θ, ϕ)

...
GN(Γ) + ∑∞

n=−∞ αnNwn(θ, ϕ)

ϕ

−θ


(49)

where (Γ1, ..., ΓN) = Γ ∈ M, and (G1, ..., GN) = G. Given the initial distribution, the new
dissipation function is derived as follows:

Ω̃ f̃0
(Γ, θ, ϕ) = −Λ̃(Γ, θ, ϕ)− d

dt
ln f̃0(Γ, θ, ϕ)

= −Λ(Γ)− 1
f0(Γ)g0(θ, ϕ)

[
g0(θ, ϕ)

(
G(Γ) + w(θ, ϕ)

)
· ∇Γ f0(Γ) +

+ f0(Γ)
(

ϕ
∂g0

∂θ
(θ, ϕ)− θ

∂g0

∂ϕ
(θ, ϕ)

)]

= −Λ(Γ)−
1

f0(Γ)

N

∑
k=1

[
Gk(Γ) +

∞

∑
n=−∞

αnkwn(θ, ϕ)

]
∂ f0

∂Γk
(Γ) (50)

−
1

g0(θ, ϕ)

(
ϕ

∂g0

∂θ
(θ, ϕ)− θ

∂g0

∂ϕ
(θ, ϕ)

)

= Ω f0(Γ)−
1

f0(Γ)

∞

∑
n=−∞

wn(θ, ϕ)
N

∑
k=1

αnk
∂ f0

∂Γk
(Γ)−

1
g0(θ, ϕ)

(
ϕ

∂g0

∂θ
(θ, ϕ)− θ

∂g0

∂ϕ
(θ, ϕ)

)

Concerning the observables Õ defined on M̃, we only need those that do not depend
on θ and ϕ, i.e., such that Õ(Γ, θ, ϕ) = O(Γ), where O is one observable defined on M.
Nevertheless, the correlation of Ω̃ f̃0

with the time evolution of one such observable must
be written as follows:〈

Ω̃ f̃0

(
Õ ◦ S̃s

)〉
f̃0

=
∫
M×Mθϕ

Ω̃ f̃0
(Γ, θ, ϕ)Õ

(
S̃s(Γ, θ, ϕ)

)
f0(Γ)g0(θ, ϕ)dΓdθdϕ (51)

=
∫
Mθϕ

dθdϕ g0(θ, ϕ)
∫
M

dΓ Ω̃ f̃0
(Γ, θ, ϕ)Õ

(
S̃s Γ̃

)
f0(Γ) (52)
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because Õ does not depend on the last two components of Γ̃ and can be replaced by O;
however, the time evolution of Γ̃ and, hence, of the phases Γ ∈ M, depends on Γ, θ, and ϕ.

In the case where the time-dependent perturbation is fixed at time 0, i.e., the distribu-
tion g0 is a delta function centered on the required initial values of θ and ϕ, the dependence
of S̃s Γ̃ on such initial conditions can be absorbed in the deterministic part of the dynamics,
and the different contributions to the above expressions take the following form. The third
addend of Ω̃ f̃0

does not depend on Γ, and Õ(S̃s Γ̃) = O(SsΓ); therefore, it yields:

−
∫
Mθϕ

dθdϕ g0(θ, ϕ)
1

g0(θ, ϕ)

(
ϕ

∂g0

∂θ
(θ, ϕ)− θ

∂g0

∂ϕ
(θ, ϕ)

) ∫
M

dΓ Õ
(

S̃s Γ̃
)

f0(Γ) (53)

= −
〈
O ◦ SsΓ

〉
0

∫
Mθϕ

dθdϕ

(
ϕ

∂g0

∂θ
(θ, ϕ)− θ

∂g0

∂ϕ
(θ, ϕ)

)
(54)

Because variables θ and ϕ are only introduced as auxiliary quantities and have no effect on
the evolution in M and the evolution of observables, their distribution g0 can be chosen
quite freely. Moreover, their roles are fully interchangeable, so we can take distributions
such as g0(θ, ϕ) = g0(ϕ, θ), which make the integral in expression (54) vanish.

The first addend in the expression of Ω̃ f̃0
yields:

∫
Mθϕ

dθdϕ g0(θ, ϕ)
∫
M

dΓ Ω f0(Γ)O(SsΓ) f0(Γ) (55)

=
∫
M

dΓ Ω f0(Γ)O(SsΓ) f0(Γ) =
〈

Ω f0(O ◦ SsΓ)
〉

0
(56)

because g0 is normalized. The remaining term, concerning the time-dependent perturbation,
finally yields:

−
∫
Mθϕ

dθdϕ g0(θ, ϕ)
∫
M

dΓ
1

f0(Γ)

∞

∑
n=−∞

wn(θ, ϕ)
N

∑
k=1

αnk
∂ f0

∂Γk
(Γ)O(SsΓ) f0(Γ) (57)

−
∞

∑
n=−∞

N

∑
k=1

αnk

∫
Mθϕ

dθdϕ wn(θ, ϕ)g0(θ, ϕ)
∫
M

dΓ
∂ f0

∂Γk
(Γ)O(SsΓ) (58)

At this point, it remains to decide how to deal with the different realizations of the pertur-
bation, namely how to treat the stochastic vectors αn.

4.2. Single Perturbation Realization

Here, we treat our system as deterministic, subjected to the time-dependent perturba-
tion that corresponds to a single realization of the stochastic perturbation. Let us label by
(j) this realization. In this case, we can write:

˙̃Γ
(j)

= G̃(j)(Γ, θ, ϕ) = G(Γ) +
∞

∑
n=−∞

α
(j)
n wn(θ, ϕ) (59)

where the expansion coefficients, denoted by α
(j)
n = (α

(j)
n1 , ...α(j)

nN), characterize the chosen
perturbation (j), and the initial condition and the magnitude of the perturbation are fixed
by θ and ϕ. The phase space expansion rate is given by

Λ̃(Γ, θ, ϕ) = ∇Γ̃ · G̃(j) = ∇Γ · G = Λ(Γ) (60)

where Λ denotes the unperturbed phase space volume variation rate. The new dissipation
function is expressed by
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Ω̃(j)
f̃0
(Γ, θ, ϕ) = (61)

Ω f0(Γ)−
1

f0(Γ)

∞

∑
n=−∞

wn(θ, ϕ)
N

∑
k=1

α
(j)
nk

∂ f0

∂Γk
(Γ)−

1
g0(θ, ϕ)

(
ϕ

∂g0

∂θ
(θ, ϕ)− θ

∂g0

∂ϕ
(θ, ϕ)

)
where g0 is the distribution of the initial condition (θ0, ϕ0) of the auxiliary variables. Choos-
ing g0 as in the previous section, the last addend of Ω̃(j)

f̃0
does not affect the response of

observables. Therefore, given an observable O (which depends on Γ only), and denoting by
S(j)s the evolution operator of the perturbed dynamics in M, we can write the following:

⟨O⟩ f̃t
= ⟨O⟩0 +

∫ t

0

〈(
O ◦ S(j)s

)
Ω̃(j)

f̃0

〉
0

ds (62)

= ⟨O⟩0 +
∫ t

0

〈(
O ◦ S(j)s

)
Ω f0

〉
0

ds (63)

−
∫ t

0
ds

∞

∑
n=−∞

N

∑
k=1

α
(j)
nk

∫
Mθϕ

dθdϕ wn(θ, ϕ)g0(θ, ϕ)
∫
M

dΓ
∂ f0

∂Γk
(Γ)O

(
S(j)s Γ

)
= ⟨O⟩0 +

∫ t

0

〈(
O ◦ S(j)s

)
Ω f0

〉
0

ds (64)

−F
∞

∑
n=−∞

N

∑
k=1

α
(j)
nk

∫
Mθϕ

dθdϕF−βn
(

θ − iϕ
)βn

g0(θ, ϕ)
∫ t

0
ds
∫
M

dΓ
∂ f0

∂Γk
(Γ)O

(
S(j)s Γ

)

where F−βn
(

θ − iϕ
)βn

does not depend on F , cf. Equation (41). Here, the integral concern-
ing the auxiliary variables give the mean of wn with respect to the initial distribution of
(θ, ϕ). If this is fixed, then this integral simply gives

wn(θ0, ϕ0) = FK(n±1/2)π/T
θ0ϕ0

(65)

with Kθ0ϕ0 being a constant that depends on the initial condition, raised to the power of
(n − 1/2)π/T if n > 0 and to the power of (n + 1/2)π/T if n < 0. But the situation is
analogous if the initial values of θ and ϕ are distributed with any other density g0. Naturally,
letting F vanish makes the stochastic contribution vanish as well, thus returning to the
response formula for time-independent perturbations. So far, we have considered the
coefficients α

(j)
nk as fixed, which makes the dynamics look deterministic, and only averages

over the initial conditions in the phase space.

4.3. Stochastic Coefficients with Fixed Initial Condition

Let us now average over the distribution of the stochastic coefficients, considering the
first and second cumulants of the fluctuations generated by the stochastic perturbation,
in relation to the response due to the deterministic term G. The higher-order cumulants
vanish since the stochastic coefficients are Gaussian random variables. Keeping the initial
condition (Γ, θ, ϕ) ∈ M̂ fixed, we denote by ⟨ · ⟩(st) the averages made with respect to all
realizations of the stochastic perturbation. Consider the equation of motion (42) and its
first cumulant: 〈

˙̃Γ
〉(st)

= G̃ +
∞

∑
n=−∞

⟨αn⟩(st)wn = G̃ (66)
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As anticipated, the first cumulant equals the cumulant of the deterministic part of the
equation of motion. Moreover, integrating in time, we obtain the following:

〈
Γ̃(t)− Γ̃(0)

〉(st)
=
∫ t

0
ds
〈

˙̃Γ(s)
〉(st)

=
∫ t

0
ds G̃(Γ(s)) =

 Γ(t)
θ(t)
θ(t)

−

 Γ0
θ0
θ0

 (67)

For the second cumulant, let us consider, for instance, the component Γl of Γ. We find the
following: 〈

Γ̇2
l

〉(st)
−
〈
Γ̇l
〉(st)2

=
〈

Γ̇2
l

〉(st)
− G2

l (68)

Then, let us compute the following:

〈
Γ̇l(t)Γ̇l(t′)

〉(st)
=

〈[
Gl(Γ(t)) +

∞

∑
n=−∞

αnlwn(θ(t), ϕ(t))

][
Gl(Γ(t′)) +

∞

∑
n=−∞

αnlwn(θ(t′), ϕ(t′))

]〉(st)

=
〈

Gl(Γ(t))Gl(Γ(t′))
〉(st)

+ Gl(Γ(t))
∞

∑
n=−∞

⟨αnl⟩(st)wn(θ(t′), ϕ(t′))

+ Gl(Γ(t′))
∞

∑
n=−∞

⟨αnl⟩(st)wn(θ(t), ϕ(t)) (69)

+
∞

∑
n=−∞

∞

∑
k=−∞

⟨αnlαkl⟩(st)wn
(
θ(t), ϕ(t)

)
wk
(
θ(t′), ϕ(t′)

)
= Gl

(
Γ(t)

)
Gl
(
Γ(t′)

)
+

∞

∑
n=−∞

〈
α2

nl

〉(st)
wn
(
θ(t), ϕ(t)

)
wn
(
θ(t′), ϕ(t′)

)
(70)

Indeed, recalling the fact that the random coefficients Zk are delta-correlated, we have

〈
αklαn−k,l

〉(st)
=


1

4i2
T

π2

〈
ZklZn−k,l

〉(st)

ckcn−k
= −

T
(2π)2

δk,n−k

ckcn−k
if k, n > 0

1
4i2

2T
π2

〈
Z−klZ−n+k,l

〉(st)

ckcn−k
= −

T
(2π)2

δ−k,−n+k

ckcn−k
if k, n < 0

(71)

so, δk,n−k = 1 and δ−k,−n+k = 1 if and only if n = 2k. Consequently,〈
α2

kl

〉(st)
= − T

(2π)2
1
c2

k
. (72)

Now, setting t = t′, we obtain the following:〈
Γ̇l(t)2

〉(st)
= Gl(Γ(t))2 +

∞

∑
n=−∞

〈
α2

nl

〉(st)
wn
(
θ(t), ϕ(t)

)2 (73)

and, as a result, the second cumulant takes the following simple form:

〈
Γ̇2

l (t)
〉(st)

−
〈
Γ̇l(t)

〉(st)2
= Gl

(
Γ(t)

)2
+

∞

∑
k=−∞

〈
α2

kl

〉(st)
wk
(
θ(t), ϕ(t)

)2 − Gl
(
Γ(t)

)2 (74)

=
∞

∑
k=−∞

〈
α2

k

〉(st)
wk
(
θ(t), ϕ(t)

)2 (75)

Integrating in time expression (70), we obtain
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〈∫ t

0
ds Γ̇l(s)

∫ t′

0
ds′ Γ̇l(s′)

〉(st)

=
〈(

Γl(t)− Γl(0)
)(

Γl(t′)− Γl(0)
)〉(st)

(76)

=
∫ t

0
ds
∫ t′

0
ds′
[

Gl(Γ(s))Gl(Γ(s′)) +
∞

∑
k=−∞

〈
α2

kl

〉(st)
wk
(
θ(s), ϕ(s)

)
wk
(
θ(s′), ϕ(s′)

)]

and note that Equations (40) and (41) imply:

d
ds

wn
(
θ(s), ϕ(s)

)
= iβnwn

(
θ(s), ϕ(s)

)
(77)

so that we can write∫ t

0
wn
(
θ(s), ϕ(s)

)
ds =

1
iβn

[
wn
(
θ(t), ϕ(t)

)
− wn

(
θ0, ϕ0

)]
(78)

Then, we obtain the following:

〈(
Γl(t)− Γl(0)

)(
Γl(t′)− Γl(0)

)〉(st)
=

∫ t

0
ds
∫ t′

0
ds′Gl

(
Γ(s)

)
Gl
(
Γ(s′)

)
+

∞

∑
k=−∞

〈
α2

kl
〉(st)

(iβk)2

[
wk
(
θ(t), ϕ(t)

)
− wk

(
θ0, ϕ0

)]
(79)

×
[
wk
(
θ(t′), ϕ(t′)

)
− wk

(
θ0, ϕ0

)]
Consequently, observing that〈(

Γl(t)− Γ(0)
)(

Γl(t′)− Γl(0)
)〉(st) − ⟨Γl(t)− Γl(0)⟩(st)〈Γl(t′)− Γl(0)

〉(st) (80)

=
〈
Γl(t)Γl(t′)

〉(st) − ⟨Γl(t)⟩(st)〈Γl(t′)
〉(st) (81)

the autocorrelation function is expressed by the following:〈
Γl(t)Γl(t′)

〉(st) − ⟨Γl(t)⟩(st)〈Γl(t′)
〉(st)

=

∞

∑
k=−∞

〈
α2

kl
〉(st)

(iβk)2

[
wk
(
θ(t), ϕ(t)

)
− wk

(
θ0, ϕ0

)][
wk
(
θ(t′), ϕ(t′)

)
− wk

(
θ0, ϕ0

)]
+
∫ t

0
ds
∫ t′

0
ds′
[

Gl(Γ(s))Gl(Γ(s′))− Gl(Γ(s))Gl(Γ(s′))
]

=
∞

∑
k=−∞

〈
α2

kl
〉(st)

(iβk)2

[
wk
(
θ(t), ϕ(t)

)
− wk

(
θ0, ϕ0

)][
wk
(
θ(t′), ϕ(t′)

)
− wk

(
θ0, ϕ0

)]
(82)

and t = t′ yields:

〈
Γ(t)2

〉(st)
− ⟨Γ(t)⟩(st)2

=
∞

∑
k=−∞

〈
α2

kl
〉(st)

(iβk)2

[
wk
(
θ(t), ϕ(t)

)
− wk

(
θ0, ϕ0

)]2
(83)

For the dissipation function, the first cumulant is trivial since the stochastic coefficients
have a zero mean: 〈

Ω̃ f0

〉(st)
=
〈

Ω f0

〉(st)
(84)
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For the second cumulant, we have the following:〈(
Ω̃ f0 −

〈
Ω̃ f0

〉(st))2
〉(st)

=
〈

Ω̃2
f0

〉(st)
−
〈

Ω̃ f0

〉(st)2

(85)

=

〈(
Ω f0 w

∂ ln f0

∂Γ

)(
Ω f0 w

∂ ln f0

∂Γ

)〉(st)
−
〈

Ω f0

〉(st)2

(86)

=
〈

Ω2
f0

〉(st)
−
〈

Ω f0

〉2
+

∞

∑
k=−∞

〈
α2

k

〉(st)
w2

k

(∂ ln f0

∂Γ

)2
(87)

thanks to the statistical properties of stochastic coefficients.

4.4. Averaging Over Initial Conditions and Stochastic Coefficients

Given a single realization of the stochastic perturbation, the response formula for an
observable O takes the following form:

⟨O⟩t = ⟨O⟩0 +
∫ t

0

〈
(O ◦ S(j)s )Ω f0

〉
0

ds (88)

If we further average over the realizations of the stochastic process, we use the following
notation:

⟨⟨O⟩t⟩
(st) (89)

and we can write:〈
⟨O⟩ f̃t

〉(st)
=

〈
⟨O⟩ f̃0

〉(st)
+
∫ t

0

〈〈
(O ◦ S(j)s )Ω̃ f0

〉
f̃0

〉(st)
ds

= ⟨O⟩ f̃0
+
∫ t

0

〈〈
(O ◦ S(j)s )

[
Ω f0 − w

∂ ln f0(Γ)
∂Γ

]〉(st)

f̃0

〉(st)

ds (90)

= ⟨O⟩t −
〈

+∞

∑
n=−∞

αn

∫ t

0
ds
〈
(O ◦ Ss)wn

∂ ln f0(Γ)
∂Γ

〉
f̃0

〉(st)

5. Stochastic Single Frequency Periodic Force

To illustrate the theory developed above, let us consider a simple example, which can
be treated analytically. More complex situations can be dealt with by performing numerical
integration. Let us consider a harmonic oscillator in one dimension, which is perturbed
with a time-dependent force. We will compare the linear and the exact response. Let

H0 = p2

2 + ω2q2

2 be the unperturbed Hamiltonian, and consider the following perturbation:

Hp = −w(t)q = −ϵZ sin (γt)q (91)

where ϵ is a pure number, and Z has the dimension of force, which could be deterministic
as a special case but is stochastic in general. Then, the perturbed energy is given by

H(q, p, t) = H0 + Hp =
p2 + ω2q2

2
− w(t)q (92)

and the equations of motion are expressed by the following:

G(q, p, t) =
(

q̇
ṗ

)
=

(
p

w(t)− ω2q

)
(93)
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We make the system autonomous, introducing two new variables, θ and ϕ, so that the
dynamics are given by the following:

G̃(Γ, θ, ϕ) =


q̇
ṗ
θ̇
ϕ̇

 =


p

w(θ, ϕ)− ω2q
ϕ

−γ2θ

 (94)

and the perturbation can be written as follows:

w(t) = w(θ(t), ϕ(t)) = −ϵZϕ(t) (95)

The motion is then given by

S̃t
ω


q
p
θ
ϕ

 =



C1 cos (ωt) +
C2

ω
sin (ωt) + ϵZ

(ω2−γ2)

[
θ0 sin (γt)−

ϕ0

γ
cos (γt)

]
−ωC1 sin (ωt) + C2 cos (ωt) +

ϵZ
(ω2 − γ2)

[
θ0γ cos (γt) + ϕ0 sin (γt)

]
θ0 cos (γt) +

ϕ0

γ
sin (γt)

−γθ0 sin (γt) + ϕ0 cos (γt)


(96)

where
C1 =

(
q0 + ϵZ

ϕ0

γ(ω2 − γ2)

)
, C2 =

(
p0 − ϵZ

γθ0

(ω2 − γ2)

)
(97)

Let us compare the linear and exact responses of our system to the perturbation. First,
suppose that f̃0 takes the following form:

f̃0(Γ, θ, ϕ) =
f0(Γ)

σ
=

1
σ

e−βH0

Z0
, (98)

where σ is the circumference of the variables θ and ϕ, whose radius depends on the initial

condition F =
√

θ2
0 + ϕ2

0. Then,

Λ̃(Γ, θ, ϕ) = ∇Γ̃ · G̃(Γ, θ, ϕ) =
∂

∂q
q̇ +

∂

∂p
ṗ +

∂

∂θ
θ̇ +

∂

∂ϕ
ϕ̇ = 0, (99)

Ω̃ f0(Γ, θ, ϕ) = −Λ̃(Γ, θ, ϕ)− G̃(Γ, θ, ϕ) · ∇Γ̃ ln f̃0(Γ, θ, ϕ)

= −
(

p, w(θ, ϕ)− ω2q, ϕ,−γ2θ
)
·


−βω2q
−βp

0
0


= βω2 pq + βw(θ, ϕ)p − βω2qp = βw(θ, ϕ)p

(100)

The exact response theory yields the following:

⟨O⟩(st)
f̃t

= ⟨O⟩(st)
f̃0

+
∫ t

0

〈
(O ◦ Ss

w) · Ω̃ f0
〉(st)

f̃0
ds, (101)

where Ss
w denotes the perturbed dynamics and the ensemble average is taken over the

augmented phase space. The linear response theory yields the following:

⟨O⟩(st)
ft

= ⟨O⟩(st)
f0

+ β
∫ t

0
F
〈
(O ◦ Ss

0) · Ȧ
〉(st)

f0
ds (102)
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where Ss
0 denotes the unperturbed dynamics.

Let us consider, for instance, O = q. To proceed, we need some preliminary results.

⟨q⟩(st)
f0

=
∫∫

dqdp
e−βH0

Z0
q =

∫ ∞
−∞ e−

βp2
2 dp

∫ ∞
−∞ qe−

βω2q2
2 dq∫∫

e−βH0 dqdp

=
1∫ ∞

−∞ e−
βω2q2

2 dq

−e−
βω2q2

2

βω2

∣∣∣∣∣
∞

−∞

=
1√

2π/βω2

−e−
βω2q2

2

βω2

∣∣∣∣∣
∞

−∞

= 0,

(103)

⟨p⟩(st)
f0

=
∫∫

dqdp
e−βH0

Z0
p =

∫ ∞
−∞ pe−

βp2
2 dp

∫ ∞
−∞ e−

βω2q2
2 dq∫∫

e−βH0 dqdp

=
1∫ ∞

−∞ e−
βp2

2 dp

−e−
βp2

2

β

∣∣∣∣∣
∞

−∞

=
1√

2π/β

−e−
βp2

2

β

∣∣∣∣∣
∞

−∞

= 0,

(104)

〈
p2
〉(st)

f0
=
∫∫

dqdp
e−βH0

Z0
p2 =

∫ ∞
−∞ p2e−

βp2
2 dp∫ ∞

−∞ e−
βp2

2 dp

=
− p

β e−
βp2

2

∣∣∣∞
−∞

+
∫ ∞
−∞

1
β e−

βp2
2√

2π/β
=

1
β

√
2π/β√

2π/β
= kbT,

(105)

〈
q2
〉(st)

f0
=
∫∫

dqdp
e−βH0

Z0
q2 =

∫ ∞
−∞ q2e−

βω2q2
2 dq∫ ∞

−∞ e−
βω2q2

2 dq

=
− q

βω2 e−
βω2q2

2

∣∣∣∞
−∞

+
∫ ∞
−∞

1
βω2 e−

βω2q2
2√

2π/βω2
=

1
βω2

√
2π/βω2√

2π/βω2
=

kbT
ω2 .

(106)

Then, the linear response for a single realization of the perturbation, i.e., for a given value
Z, yields the following:

⟨q⟩(st)
t = ⟨q⟩(st)

0 + β
∫ t

0
F
〈
(q ◦ Ss

0) · Ȧ
〉(st)

0 ds

=
FZ
2ω

(
sin [(ω − γ)t]

(ω − γ)
−

sin [(ω + γ)t]
(ω + γ)

) (107)

On the other hand, the exact response is expressed by the following:
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⟨q⟩(st)
f̃t

= ⟨q⟩(st)
f̃0

+
∫ t

0

〈
(q ◦ Ss

w) · Ω̃ f0
〉(st)

f̃0
ds =

∫ t

0

〈
(q ◦ Ss

w) ·
p

kbT
w(θ, ϕ)

〉(st)

f̃0

ds

=
∫ t

0
ds
∫

dθdϕdqdp w(θ, ϕ)
1
σ

e−H0/(kbT)

Z0

p
kbT

[(
q +FZ

ϕ

γ(ω2 − γ2)

)
cos (ωs)

+
1
ω

(
p −FZ

γθ

(ω2 − γ2)

)
sin (ωs) +

FZ
(ω2 − γ2)

(
θ sin (γs)− ϕ

γ
cos (γs)

)]
=
∫ t

0
ds
∫

dθdϕdqdp
w(θ, ϕ)

kbT
1
σ

e−H0/(kbT)

Z0

p2

ω
sin (ωs)

= −
FZ
σγ

∫ t

0
ds

sin (ωs)
ω

∫∫
dθdϕ(−γθ sin (γs) + ϕ cos (γs)) = 0

(108)

because the integral in θ and ϕ vanishes (see Appendix A for details). Therefore, the linear
and exact responses differ under the chosen conditions. If, on the other hand, the initial
condition of the auxiliary variables is fixed to a single point with θ0 = 1 and ϕ0 = 0, we
have F = 1, and

f̃0(Γ, θ, ϕ) = δ(θ0 − 1)δ(ϕ0) f0(Γ) = δ(θ0 − 1)δ(ϕ0)
e−βH0

Z0
(109)

The exact response is then expressed by the following:

⟨q⟩(st)
f̃t

= ⟨q⟩(st)
f̃0

+
∫ t

0

〈
(q ◦ Ss

w) · Ω̃ f0

〉(st)

f̃0
ds =

∫ t

0

〈
(q ◦ Ss

w) ·
p

kbT
w(θ, ϕ)

〉(st)

f̃0

ds

=
∫ t

0
ds
∫

dθdϕdqdp w(θ, ϕ)δ(θ − 1)δ(ϕ)
e−H0/(kbT)

Z0

p
kbT

[(
q + Z

ϕ

γ(ω2 − γ2)

)
cos (ωs)

+
1
ω

(
p − Z

γθ

(ω2 − γ2)

)
sin (ωs) +

Z
(ω2 − γ2)

(
θ sin (γs)− ϕ

γ
cos (γs)

)]
=
∫ t

0
ds
∫

dθdϕdqdp
w(θ, ϕ)

kbT
δ(θ − 1)δ(ϕ)

e−H0/(kbT)

Z0

p2

ω
sin (ωs)

= −
Z
γ

∫ t

0
ds

sin (ωs)
ω

∫∫
dθdϕ δ(θ − 1)δ(ϕ)(−γθ sin (γs) + ϕ cos (γs))

= Z
∫ t

0
ds

sin (ωs)
ω

sin (γs) =
Z

2ω

( sin [(ω − γ)t]
(ω − γ)

−
sin [(ω + γ)t]

(ω + γ)

)

(110)

where the integral on the curve in dθ and dϕ gives the length of the curve that is σ. This
is the same as the linear response with (θ0, ϕ0) uniformly distributed in the unit circle. If
we take O = p as an observable, we obtain something similar. For the linear response, we
have the following:
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⟨p⟩(st)
t = ⟨p⟩(st)

0 + β
∫ t

0
F (s)

〈
(p ◦ Ss

0) · Ȧ
〉(st)

0 ds

= FZ
∫ t

0
ds sin (γs)

∫∫
dqdp

e−H0/(kbT)

Z0

p
kbT

[
− ωq sin (ωs) + p cos (ωs)

]
= FZ

∫ t

0
ds sin (γs)

∫∫
dqdp

e−H0/(kbT)

Z0

p2

kbT
cos (ωs)

= FZ
∫ t

0
ds sin (γs) cos (ωs) =

ϵZ
2

∫ t

0

[
sin [(γ − ω)s] + sin [(γ + ω)s]

]
ds

=
FZ

2

(
−

cos [(γ − ω)t]
(γ − ω)

−
cos [(γ + ω)t]

(γ + ω)
+ 2
)

(111)

and for the exact response, we have the following:

⟨p⟩(st)
f̃t

= ⟨p⟩(st)
f̃0

+
∫ t

0

〈
(p ◦ Ss

w) · Ω̃ f0
〉(st)

f̃0
ds =

∫ t

0

〈
(p ◦ Ss

w) ·
p

kbT
w(θ, ϕ)

〉(st)

f̃0

ds

=
∫ t

0
ds
∫

dθdϕdqdp w(θ, ϕ)
1
σ

e−H0/(kbT)

Z0

p
kbT

[
− ω

(
q +FZ

ϕ

γ(ω2 − γ2)

)
sin (ωs)

+
(

p −FZ
γθ

(ω2 − γ2)

)
cos (ωs) +

FZ
(ω2 − γ2)

(
θγ cos (γs) + ϕ sin (γs)

)]
=
∫ t

0
ds
∫

dθdϕdqdp
w(θ, ϕ)

kbT
1
σ

e−H0/(kbT)

Z0

p2

ω
cos (ωs)

= −
FZ
σγ

∫ t

0
ds

cos (ωs)
ω

∫∫
dθdϕ(−γθ sin (γs) + ϕ cos (γs)) = 0

(112)

Again, the same response is obtained only for the fixed initial condition (θ0 = 1, ϕ0 = 0).
This is not strange; it happens when the exact response amounts to a first order perturbation,
which is the case in special situations [39]. However, in general, this condition is not verified.
For instance, we consider the observable O = qp, and the linear theory yields the following:

⟨qp⟩(st)
ft

= ⟨qp⟩(st)
f0

+ β
∫ t

0
F (s)

〈
(q ◦ Ss

0)(p ◦ Ss
0) · Ȧ

〉(st)
f0

ds

= FZ
∫ t

0
ds sin (γs)

∫∫
dqdp

e−H0/(kbT)

Z0

p
kbT

[(
q cos (ωs) +

p
ω

sin (ωs)
)

×
(
− ωq sin (ωs) + p cos (ωs)

)]
= 0

(113)

because integrating the terms pq2, qp2, p3, over dqdp yields zero. For the exact response,
we have the following:

⟨qp⟩ f̃t
= ⟨qp⟩ f̃0

+
∫ t

0
ds⟨w(θ, ϕ)

p
kbT

(SS
w ◦ q)(Ss

w ◦ p)⟩ f̃0

=
∫ t

0
ds
〈

w(θ, ϕ)
p

kbT

{[
C1 cos (ωt) +

C2

ω
sin (ωt) +

ϵZ
(ω2 − γ2)

(
θ0 sin (γt)+

−ϕ0

γ
cos (γt)

)][
− ωC1 sin (ωt) + C2 cos (ωt) +

ϵZ
(ω2 − γ2)

(
θ0γ cos (γt) + ϕ0 sin (γt)

)]}〉
f̃0

(114)

Taking into account all the terms that cancel under integration over dqdp, and those that
cancel by integrating over dθdϕ, what remains are elliptic integrals over dθdϕ, which can
be solved numerically, and integrals over t of sine and cosine terms. The result does not
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vanish, as can be seen by inspection. In this example, even fixing the initial conditions as
(θ0 = 1, ϕ0 = 0) and using the Dirac delta distribution, we obtain a non-vanishing result:

⟨qp⟩(st)
f̃t

=

−
FZ
γ

∫ t

0
ds

− 2FZγ

ω(ω2 − γ2)
sin (ωs) cos (ωs)

∫∫
dθdϕδ(θ − 1)δ(ϕ)

(
− γθ sin (γs) + ϕ cos (γs)

)
−
FZ
γ

∫ t

0
ds

FZγ

ω(ω2 − γ2)
cos (γs)

∫∫
dθdϕ δ(θ − 1)δ(ϕ)

(
− γθ sin (γs) + ϕ cos (γs)

)
= −

2F 2Z2

ω(ω2 − γ2)

[
(γ − 2 ω) sin(γ t + 2 ω t)

4 γ2 − 16 ω2 − (γ + 2 ω) sin(γ t − 2 ω t)
4 γ2 − 16 ω2 +

sin2 γt
4γ

]
(115)

In this case, the linear response yields zero because the exact response is second order in the
perturbation magnitude F . When that is sufficiently small, the terms of order O(F 2) can
be neglected, but not in general. Furthermore, forced oscillators may undergo resonance
phenomena, greatly amplifying the amplitude of their oscillations even if they are driven
by very weak forces. This is captured by the denominators of expression (115), which are
missing in the linear response. Near the resonances, the linear response is bound to fail,
even with small driving forces, and the exact formula is necessary.

6. Viscous Medium and General Stochastic Forcing

As the unperturbed dynamics, consider the one-dimensional motion of a single particle
in a viscous fluid of constant viscosity γ:

ẋ = v ; v̇ = −γv (116)

It is irrelevant that this is not a Hamiltonian system, as the theory illustrated above applies
to general dynamical systems. As the distribution of the initial conditions, let us take, for
simplicity,

f0(x, v) =
1

2π
exp

(
−

x2 + v2

2

)
(117)

which is not invariant for the unperturbed dynamics and implies the following:

Ω f0(x, v) = γ + xv − γv2 (118)

As f0 is not invariant under the unperturbed dynamics that, in turn, are not Hamiltonian,
the dissipation function does not need to represent the dissipated power. However, the
mathematics can still be performed.

Let us perturb the dynamics with stochastic forcing of mean F > 0:

ẋ = v ; v̇ = −γv + F +
∞

∑
n=−∞

αnwn(θ, ϕ) ; θ̇ = ϕ ; ϕ̇ = −θ (119)

so that the mean of each expansion coefficient vanishes. If the initial distribution of the
phases (θ, ϕ) is uniform in the unit circle, g0(θ, ϕ) = 1/2π, the initial distribution on the
enlarged phase space takes the following form:

f̃0(x, v, θ, ϕ) =
1

4π2 exp

(
−

x2 + v2

2

)
(120)

which implies
∂g0

∂θ
= 0 =

∂g0

∂ϕ
(121)
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In this example, the original phase space has two dimensions, Γ = (x, v), and the pertur-
bation only appears in the equation for v. Therefore, we have αn = (αnx, αnv) = (0, αnv).
Moreover, wn only depends on θ, because in the unit circle, we have ϕ = ϕ(θ). We can then
write

Ω̃ f̃0
(x, v, θ, ϕ) = γ + xv − γv2 + Fv +

∞

∑
n=−∞

v αnv Wn(θ) (122)

where Wn(θ) represents wn(θ, ϕ) in the unit circle. Consequently, the average at time t of
an observable O takes the following form:

〈
O
〉

f̃t
= ⟨O⟩ f0

+
1

4π2

∫ t

0
ds
∫
R2

dx dv
∫ 2π

0
dθ × (123)

× exp

(
−

x2 + v2

2

)
O(Ss(x, v))

[
γ + xv − γv2 + Fv +

∞

∑
n=−∞

v αnv Wn(θ)

]

=
〈
O
〉

ft
+
∫ t

0
ds
∫
R2

dx dv
4π2 v e−

x2+v2
2

∫ 2π

0
dθ O(Ss(x, v))

[
F +

∞

∑
n=−∞

αnv Wn(θ)

]

which can be computed once the distribution of the vectors αn is given, considering that
the evolution Ss(x, v) also depends on θ, while αn and (x, v) do not. The performance of
this formula, compared to direct averaging, must be assessed numerically, and is expected
to be superior to direct averaging, as in the time-independent deterministic case, because
the convergence issues one expects are analogous.

7. Concluding Remarks

In this paper, we provided a generalization to stochastic processes of the exact response
theory developed for deterministic molecular dynamics models, also known as TTCF in
the field of molecular dynamics, where it mostly concerns time-independent perturbations,
apart from a few seminal papers on periodic perturbations. This was conducted, starting
from the previously developed time-dependent response theory of Ref. [15], expressing the
stochastic perturbation as a Karhunen–Loève expansion, and then adding two auxiliary
variables that make the corresponding time-dependent system of ordinary differential
equations autonomous. As in Ref. [15], which is based on the Fourier expansion of the
perturbing field, information on spectral properties of the forcing and response are directly
available. The main ingredient of the exact response theory, the dissipation function, has
then been derived in the enlarged phase space. This allows us to treat processes whose
initial conditions are variously distributed, adding flexibility to the general response theory,
which considers fixed initial perturbations. For instance, we can now compute different
kinds of averages, which describe different experimental situations, i.e., time averages over
single realizations of stochastic processes, ensemble averages over the initial conditions in
the enlarged phase space, and combinations of the two.

We illustrated the theory by applying it to a one-dimensional harmonic oscillator,
perturbed by a sinusoidal force, whose amplitude can be either deterministic or stochastic.
This is enough to compare the exact response with the linear response. Although in
special situations, the two responses may coincide to a certain degree, defining the range
of applicability of the linear theory, they differ in general, even in such simple situations.
The exact formula results are necessary, not only in the presence of large perturbations,
as obvious, but also for small perturbations, in the presence of resonance phenomena.
Furthermore, we have shown that different results are obtained for different distributions
of the initial perturbation, something that is not obvious within the standard linear response
theory. Indeed, enlarging the phase space to make the system autonomous allows us to
choose the distribution of the initial condition of the perturbation, referring to different
kinds of experiments, where the initial perturbation can either be deterministically fixed,
as commonly assumed, or distributed in various ways.
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As a second simple example, we considered one particle moving in a one-dimensional
viscous medium, under the action of stochastic driving with a non-vanishing mean, so
that a non-equilibrium stationary state may eventually be reached. Note that, even in
this case of perturbations, which exert a net action on the system, we needed to explicitly
develop the theory for zero mean perturbations only. Indeed, the possible net perturbation
may be included in the autonomous part of the dynamics, for which the exact theory was
developed in the past; the results are applicable to generic dynamical systems, extending
beyond the field of molecular dynamics where it was born.

The above is in addition to the fact that many theoretical results can be derived from
the exact response formula before they can be numerically computed in simulations, e.g.,
see [7,40,41]. Moreover, the linear response cannot treat phase transitions [42], and various
studies show an impressively better performance of the TTCF formula compared to other
averaging methods for time-independent perturbations [5,6]. We expect this to be the
case with our approach when dealing with time-dependent (deterministic or stochastic)
perturbations. This will constitute the basis of future works.
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Appendix A

For the integral ∫∫
dθdϕ(−γθ sin (γs) + ϕ cos (γs)) (A1)

one should adopt the polar coordinates{
θ = a cos (ψ)
ϕ = b sin (ψ)

with ψ ∈ [0, 2π] (A2)

which yield:∫∫
dθdϕ(−γθ sin (γs) + ϕ cos (γs)) =∫ 2π

0
dψ
[
− γa cos (ψ) sin (γs) + b sin (ψ) cos (γs)

]√
b2 + (a2 − b2) sin2 (ψ) =

−γa sin (γs)
∫ 2π

0
dψ cos (ψ)

√
b2 + (a2 − b2) sin2 (ψ)

+b cos (γs)
∫ 2π

0
dψ sin (ψ)

√
b2 + (a2 − b2) sin2 (ψ) (A3)



Entropy 2024, 26, 12 22 of 23

For the first integral, we have the following:∫ 2π

0
dψ cos (ψ)

√
b2 + (a2 − b2) sin2 (ψ) =

b2 ln
(√

(a2 − b2) sin2(ψ) + b2 +
√

a2 − b2 sin(ψ)
)

2
√

a2 − b2

∣∣∣∣∣
2π

0

(A4)

+
sin(ψ)

√
(a2 − b2) sin2(ψ) + b2

2

∣∣∣∣∣
2π

0

= 0

For the second we have the following:∫ 2π

0
dψ sin (ψ)

√
b2 + (a2 − b2) sin2 (ψ) =

−
a2 ln

(√
(b2 − a2) cos2(ψ) + a2 +

√
b2 − a2 cos(ψ)

)
2
√

b2 − a2
(A5)

−cos(ψ)
√
(b2 − a2) cos2(ψ) + a2

2

∣∣∣∣∣
2π

0

= 0

We finally obtain: ∫∫
dθdϕ(−γaθ sin (γs) + ϕ cos (γs)) = 0 (A6)
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