
Liu et al. Cybersecurity (2023) 6:52
https://doi.org/10.1186/s42400-023-00184-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Full‑round impossible differential attack
on shadow block cipher
Yuting Liu1,2, Yongqiang Li1,2*, Huiqin Chen1,2 and Mingsheng Wang1,2 

Abstract 

Lightweight block ciphers are the essential encryption algorithm for devices with limited resources. Its goal
is to ensure the security of data transmission through resource-constrained devices. Impossible differential crypta-
nalysis is one of the most effective cryptanalysis on block ciphers, and assessing the ability of resisting this attack
is a basic design criterion. Shadow is a lightweight block cipher proposed by Guo et al. (IEEE Internet Things J
8(16):13014–13023, 2021). It utilizes a combination of ARX operations and generalized Feistel structure to overcome
the weakness of the traditional Feistel structure that only diffuses half in one round. In this paper, we focus on the dif-
ferential property of Shadow and its security against impossible differential cryptanalysis. First, we use the SAT
method to automatically search for a full-round impossible differential distinguisher of Shadow-32. Then, based
on the experimental results, we prove that Shadow has a differential property with probability 1 based on the propa-
gation of the state. Further, we can obtain an impossible differential distinguisher for an arbitrary number of rounds
of Shadow. Finally, we perform a full key recovery attack on the full-round Shadow-32 and Shadow-64. Both experi-
mentally and theoretically, our results indicate that Shadow is critically flawed, and regardless of the security strength
of the internal components and the number of rounds applied, the overall cipher remains vulnerable to impossible
differential cryptanalysis.

Keywords  Lightweight block cipher, Shadow, Impossible differential cryptanalysis, SAT

Introduction
Along the accelerated development of information tech-
nology, the Internet of Things (IoT) technologies such
as RFID and wireless sensors are increasingly applied in
daily life, and they are often integrated into devices with
limited storage and computing resources. However, tra-
ditional block ciphers are not suitable for these devices,
as their high software and hardware implementation
requirements cannot guarantee the security of data trans-
mission. Thus, there is a demand for lightweight block

ciphers that can provide high performance and security
in resource-constrained environments.

Driven by protecting private data from resource-
constrained devices, lightweight block ciphers aim to
achieve low resource utilization, low power consump-
tion, high computational efficiency, and maintain the
security of block ciphers. In line with this objective,
many well-designed lightweight block ciphers have
been proposed, such as SEA (Standaert et al. 2006),
HIGHT (Hong et al. 2006), PRESENT (Bogdanov
et al. 2007), LBlock (Wu and Zhang 2011), SIMON
and SPECK (Beaulieu et al. 2015), Midori (Banik et al.
2015) and Shadow (Guo et al. 2021) et al. Moreover,
security evaluation for lightweight block ciphers is
essential, and a new proposed lightweight block cipher
needs to be assessed for its security against traditional
cryptanalysis attacks, i.e. differential cryptanalysis
(Biham and Shamir 1991), linear cryptanalysis (Matsui

*Correspondence:
Yongqiang Li
liyongqiang@iie.ac.cn
1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00184-7&domain=pdf

Page 2 of 15Liu et al. Cybersecurity (2023) 6:52

1994), impossible differential cryptanalysis, and other
cryptanalysis.

Impossible differential cryptanalysis was first pro-
posed by Knudsen (1998) and Biham et al. (1999)
respectively. It is one of the most effective cryptanalysis
on block ciphers, and assessing the ability of resisting
this cryptanalysis is a basic design criterion. Its basic
idea is to exclude wrong keys that lead to zero-proba-
bility difference and then recover the correct key by
exhausting the candidate keys. In general, impossible
differential cryptanalysis contains two phases, i.e., the
search for impossible differential distinguisher phase
and the key recovery phase. The key to the impossible
differential analysis is to search for the longest-round
impossible differential distinguisher.

Research on the automated search method has been
an important issue for the last 20 years. The first criti-
cal tool for automated search is the Mixed Integer Lin-
ear Programming (MILP), which was first employed by
Mouha et al. (2012) to find the minimum number of
active S-boxes for word-oriented block ciphers. Later,
Sun et al. (2014) extended the method from word-
oriented to bit-oriented, and assessed the ability of
bit-oriented block ciphers to resist the (related-key) dif-
ferential attack. Since then, the MILP has been widely
used for the cryptanalysis of block ciphers. Cui et al.
(2016) and Sasaki and Todo (2017) applied the MILP to
impossible differential automatic search, respectively.
In 2017, Abdelkhalek et al. (2017) applied the MILP
to block ciphers with 8-bit S-boxes. In recent years,
the MILP has remained a popular tool for automated
search for differential distinguishers (Zhu et al. 2019;
Kumar and Yadav 2022; Kaur et al. 2023).

Another important tool for automated search is to
rely on the Boolean Satisfiability Problem or satisfiabil-
ity modulo theories (SAT/SMT). In 2012, Mouha et al.
(2012) first used the SAT/SMT method to automati-
cally seek optimal differential characteristics of Salsa20.
Later in 2015, Kölbl et al. (2015) employed the SAT/
SMT method to automatically search for optimal dif-
ferential and linear characteristics of SIMON. In 2017,
Sun et al. (2017) automatically search for bit-based
integral distinguishers of ARX block ciphers based on
the SAT/SMT method. In 2020, Hu et al. (2020) moved
away from focusing on the propagation of the differ-
ence and proposed an SAT/SMT-aided search method
for impossible differential that used the propagation of
the state. Later in 2021, Sun et al. (2021) focused on the
acceleration of using the SAT/SMT methods to seek
differential and linear characteristics. In 2023, Sun and
Wang (2023) developed SAT/SMT models to search for
differential and linear characteristics of block ciphers
with large S-boxes.

Shadow, a lightweight block cipher, is proposed by Guo
et al. (2021) to protect private data transmission through
IoT nodes. Shadow utilizes a combination of ARX opera-
tions and a generalized Feistel structure, which resolves
the issue of the current lightweight block ciphers based
on ARX operations that only diffuse half in one round.
The security of Shadow was first evaluated by the design-
ers. They performed impossible differential cryptanalysis
and biclique cryptanalysis on Shadow, where the impos-
sible differential attack mainly utilizes a 4-round impos-
sible differential distinguisher to perform a 7-round key
recovery attack and the biclique attack constructs an
8-round biclique structure. Consequently, the designers
of Shadow asserted that Shadow exhibits a high level of
resistance against cryptanalysis. In this paper, we show
that Shadow can not resist impossible differential crypta-
nalysis, and we identify significant security weaknesses in
the current design of Shadow.

Our contributions In this paper, we focus on the dif-
ferential property of Shadow and its security against
impossible differential cryptanalysis. For the first time,
we perform an impossible differential attack on the full-
round Shadow-32 and Shadow-64. Our results indicate
that Shadow is critically flawed, and regardless of the
security strength of the internal components and the
number of rounds applied, the overall cipher remains
vulnerable to impossible differential cryptanalysis. The
specific results are displayed in Table 1. Our contribu-
tions can be concluded as follows.

•	 We use the SAT method to find a full-round impos-
sible differential distinguisher of Shadow-32.

•	 We prove that Shadow has a differential property
with probability 1 based on the propagation of state
proposed by Hu et al. (2020), and then present an
impossible differential distinguisher for an arbitrary
number of rounds.

•	 We perform full key recovery on full-round
Shadow-32 with 230 data complexity, 248 16-round
encryption time complexity and 243 32-bit block
memory complexity.

•	 We perform full key recovery on full-round
Shadow-64 with 261 data complexity, 296 32-round
encryption time complexity and 290 64-bit block
memory complexity.

Table 1  Analytical results of Shadow-32/64

Cipher Attacked
rounds (full
round)

Data
complexity

Time
complexity

Memory
complexity

Shadow-32 16 2
30

2
48

2
43

Shadow-64 32 2
61

2
96

2
90

Page 3 of 15Liu et al. Cybersecurity (2023) 6:52 	

Organization The subsequent sections of this paper are
arranged as follows. Section “Preliminaries” describes the
background knowledge used in this paper. Section “Auto-
matic search for impossible differential distinguisher”
shows how to automatically search for impossible differ-
ential distinguishers using the SAT method. Section “A
proof of impossible differential distinguishers for an arbi-
trary number of rounds” proves the differential property
with probability 1 of Shadow-32/64 based on the propa-
gation of state. Full key recovery attack on the full-round
Shadow-32 and Shadow-64 are mounted in section “Key
recovery attack on full-round Shadow-32/64”. Finally,
section “Summary” summarizes the paper.

Preliminaries
Notation
In this subsection, we first present the following nota-
tions that are utilized throughout the paper.

•	 Li−1
0  : The input state for the first branch on the left of

ith round;
•	 Li−1

1  : The input state for the second branch on the left
of ith round;

•	 Ri−1
0  : The input state for the first branch on the right

of ith round;
•	 Ri−1

1  : The input state for the second branch on the
right of ith round;

•	 △Li−1
0 :The input difference for the first branch on the

left of ith round;
•	 △Li−1

1  : The input difference for the second branch on
the left of ith round;

•	 △Ri−1
0  : The input difference for the first branch on

the right of ith round;
•	 △Ri−1

1  : The input difference for the second branch on
the right of ith round;

•	 xi−1 : The input state of ith round;
•	 x̂i−1 : The another input state of ith round;
•	 △xi−1 : The input difference of ith round;
•	 F2 : The binary field;
•	 keyi : The ith round subkey;
•	 RN: full round;
•	 r: iterative rounds;
•	 m: block size of the cipher;
•	 &: bitwise AND;
•	 ⊕ : XOR;
•	 ≪ n : rotation to the left by n bits;

Description of Shadow
Shadow utilizes a combination of ARX operations and
a generalized Feistel structure, which includes two ver-
sions: Shadow-32 and Shadow-64. The block sizes of

Shadow-32 and Shadow-64 are 32 and 64 bits, respec-
tively, with key sizes of 64 and 128 bits and round num-
bers of 16 and 32, respectively.

Encryption algorithm
Shadow comprises three main operations: AND, Rota-
tion, and XOR. Let (Li−1

0 , Li−1
1 ,Ri−1

0 ,Ri−1
1) be the input

state of the ith round function, (Li0, L
i
1,R

i
0, R

i
1) be the cor-

responding output state, and keyij(0 ≤ j ≤ 3) is selected
from round subkey keyi . The round function of Shadow is
depicted in Fig. 1.

From Fig. 1, the round function of Shadow calls f four
times, where f is

and this operation reduces logic hardware and software
consumption.

For the RN-round encryption process of Shadow, the
plaintext P = (L00, L

0
1,R

0
0,R

0
1) is divided into four equal-

sized blocks. First, the first branch on the left L00 calls
the f function and then performs the XOR operation
with the second branch on the left L01 and the subkey
key10 to get P0, i.e. P0 = f (L00)⊕ L01 ⊕ key10 . Similarly, the
first branch on the right R0

0 performs the same opera-
tion with the second branch on the right R0

1 to get P1,
i.e. P1 = f (R0

0)⊕ R0
1 ⊕ key11 . The half-round output

(P0, L00,P1,R
0
0) is obtained by swapping the left and right

branches separately. Next, the P0 calls the f function and
then performs the XOR operation with the L00 and the
subkey key12 to get the L11 , i.e. L11 = f (P0)⊕ L00 ⊕ key12 .

f (x) = ((x≪1)&(x≪7))⊕ (x≪1),

Fig. 1  The ith round function of Shadow

Page 4 of 15Liu et al. Cybersecurity (2023) 6:52

Similarly, the P1 performs the same operation with the R0
0

to get the R1
1 , i.e. R1

1 = f (P1)⊕ R0
0 ⊕ key13 . After the data

exchange, the first round output is (P1, L11,P0,R
1
1) . Repeat

the above operation for RN rounds to generate the
ciphertext C = (LRN0 , LRN1 ,RRN

0 ,RRN
1) . Notice that there

is no data exchange in the last round. The corresponding
encryption algorithm is exhibited in Algorithm 1. Since
Shadow uses a generalized Feistel structure, the decryp-
tion algorithm only needs to use the round subkey in
reverse order compared to the encryption algorithm.

Key schedule
Depending on the block size of Shadow, there are two
kinds of round subkey generators, i.e. Generator1 and
Generator2. For Shadow-32, the 64-bit primary key K
is described as k0||k1||k2|| . . . ||k62||k63 and enters the
Generator1. The Generator1 contains three operations,
i.e. AddRoundConstant, NX Module, and Permutation.
Firstly, the AddRoundConstant operation is performed on
the 5-bit key k3||k4||k5||k6||k7 , followed by the NX Module
on the 8-bit key k56||k57||k58 || . . . ||k62||k63 , and finally the
Permutation on the 64-bit key. Subsequently, the subkey
K ′ of the first round is obtained, where the front 32-bits of
K ′ are partitioned into four equal-sized segments for the
round key XOR operation. The K ′ is then input to Gen-
erator1 to generate the subkeys for each round until the
encryption is completed. The specific operation proce-
dure of Generator1 is depicted in Fig. 2.

AddRoundConstant The round constant r is first
expanded into its binary representation c0||c1||c2||c3||c4 ,
after which the 5-bit key k3||k4||k5||k6||k7 is XORed with
the 5-bit value c0||c1||c2||c3||c4.

NX Module The only non-linear operation in Gen-
erator1 is the NX Module. For Shadow-32, the 8-bit key
k56||k57|| . . . ||k62||k63 executes NX Module. The NX
Module operates based on the following principle:

Permutation After the AddRoundConstant and NX
Module operations are executed in Generator1, the Per-
mutation is implemented for the 64-bit key. As shown
in Table 2, pi denotes the position index before the Per-
mutation, while p′i denotes the position index after the
Permutation.

For Shadow-64, the 128-bit primary key K is described
as k0||k1||k2|| . . . ||k126||k127 and enters the Genera-
tor2. The Generator2 also contains three operations, i.e.
AddRoundConstant, NX Module, and Permutation. In
Generator2, the round constant r is first expanded into
its binary representation c0||c1||c2||c3|| c4||c5 , which is
XORed with the 6-bit key k2||k3||k4||k5|| k6||k7 . Sub-
sequently, the NX Module is applied to the 24-bit key

k ′56 = k56&(k56 ⊕ k62)
k ′57 = k57&(k57 ⊕ k63)
k ′58 = k58&(k58 ⊕ k56 ⊕ k62)
k ′59 = k59&(k59 ⊕ k57 ⊕ k63)
k ′60 = k60&(k60 ⊕ k58 ⊕ k56 ⊕ k62)
k ′61 = k61&(k61 ⊕ k59 ⊕ k57 ⊕ k63)
k ′62 = k62&(k62 ⊕ k60 ⊕ k58 ⊕ k56 ⊕ k62)
k ′63 = k63&(k63 ⊕ k61 ⊕ k59 ⊕ k57 ⊕ k63).

Fig. 2  The detailed operation procedure of Generator1

Page 5 of 15Liu et al. Cybersecurity (2023) 6:52 	

k104||k105|| . . . ||k126||k127 , followed by the Permutation
operation on the 128-bit key. Finally, the subkey K ′ of the
first round is obtained, where the front 64-bits of K ′ are
partitioned into four equal-sized segments for the round
key XOR operation. The K ′ is then input to Generator2 to
derive the round keys until the encryption is completed.
Additionally, the principle of Generator2 is similar to that
of Generator1, but with different numbers of bits. The
detailed operation procedure of Permutation is depicted
in Table 3 and the NX Module operates based on the fol-
lowing principle:























































k ′104 = k104&(k104 ⊕ k126)
k ′105 = k105&(k105 ⊕ k127)
k ′106 = k106&(k106 ⊕ k104 ⊕ k126)
k ′107 = k107&(k107 ⊕ k105 ⊕ k127)
k ′108 = k108&(k108 ⊕ k106 ⊕ k104 ⊕ k126)
k ′109 = k109&(k109 ⊕ k107 ⊕ k105 ⊕ k127)
k ′110 = k110&(k110 ⊕ k108 ⊕ k106 ⊕ k104 ⊕ k126)
...

k ′127 = k127&(k127 ⊕ k125 ⊕ k123 ⊕ . . .⊕ k105 ⊕ k127).

Table 2  Permutation of Shadow-32

pi p′ i pi p′ i pi p′ i pi p′ i

0 56 16 60 32 40 48 0

1 57 17 61 33 41 49 1

2 58 18 62 34 42 50 2

3 59 19 63 35 43 51 3

4 16 20 28 36 44 52 4

5 17 21 29 37 45 53 5

6 18 22 30 38 46 54 6

7 19 23 31 39 47 55 7

8 20 24 32 40 48 56 8

9 21 25 33 41 49 57 9

10 22 26 34 42 50 58 10

11 23 27 35 43 51 59 11

12 24 28 36 44 52 60 12

13 25 29 37 45 53 61 13

14 26 30 38 46 54 62 14

15 27 31 39 47 55 63 15

Table 3  Permutation of Shadow-64

pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i

0 104 16 108 32 112 48 116 64 120 80 124 96 0 112 16

1 105 17 109 33 113 49 117 65 121 81 125 97 1 113 17

2 106 18 110 34 114 50 118 66 122 82 126 98 2 114 18

3 107 19 111 35 115 51 119 67 123 83 127 99 3 115 19

4 32 20 48 36 48 52 60 68 80 84 92 100 4 116 20

5 33 21 49 37 49 53 61 69 81 85 93 101 5 117 21

6 34 22 50 38 50 54 62 70 82 86 94 102 6 118 22

7 35 23 51 39 51 55 63 71 83 87 95 103 7 119 23

8 36 24 52 40 52 56 64 72 84 88 96 104 8 120 24

9 37 25 53 41 53 57 65 73 85 89 97 105 9 121 25

10 38 26 54 42 54 58 66 74 86 90 98 106 10 122 26

11 39 27 55 43 55 59 67 75 87 91 99 107 11 123 27

12 40 28 56 44 56 60 68 76 88 92 100 108 12 124 28

13 41 29 57 45 57 61 69 77 89 93 101 109 13 125 29

14 42 30 58 46 58 62 70 78 90 94 102 110 14 126 30

15 43 31 59 47 59 63 71 79 91 95 103 111 15 127 29

Page 6 of 15Liu et al. Cybersecurity (2023) 6:52

Impossible differential cryptanalysis
Impossible differential cryptanalysis is a variant of dif-
ferential cryptanalysis, which was proposed by Knudsen
(1998) and Biham et al. (1999) respectively. Impossible
differential cryptanalysis, as opposed to classical dif-
ferential cryptanalysis which utilizes a high probability
differential characteristic, utilizes a zero-probability dif-
ferential characteristic to recover keys. Its basic idea is
to exclude wrong keys that lead to zero-probability dif-
ference and then recover the correct key by exhausting
the candidate keys. Impossible differential cryptanalysis
comprises two phases: the phase of searching for impos-
sible differential distinguishers, and the phase of key
recovery. The key to the impossible differential analysis
is to search for the longest-round impossible differential
distinguisher, as a higher number of rounds indicates
a weaker resistance against the impossible differential
attacks. The traditional search impossible differential dis-
tinguisher is to describe the propagation of difference in
block ciphers, but the propagation of difference through
non-linear components is uncertain, making it impossi-
ble to consider the details of non-linear components and
the key schedule.

Definition 1  (Block Cipher) Let F2 be the binary field,
and Fm

2 and Ft
2 be m-dimensional and t-dimensional vec-

tor space over the finite field F2 , respectively. If the plain-
text P ∈ F

m
2  , the ciphertext C ∈ F

m
2  , and the master key

K ∈ F
t
2 , then the iterative block cipher Em

K with Fm
2 as the

plaintext space (ciphertext space) and Ft
2 as the key space is

Definition 2  (Impossible Differential Distinguisher) For
an iterative block cipher Em

K  , let α ∈ F
m
2 be the input dif-

ference and β ∈ F
m
2 be the r-round output difference, if

differential propagation probability Pr(α → β) = 0 , then
α � β is a r-round impossible differential distinguisher.

Since the input difference can be obtained by XOR
of two input states, Hu et al. (2020) characterize the
propagation of difference by describing the propa-
gation of two sets of initial states. That is, given two
input states (x00, x

0
1) , perform r-round encryption

and obtain two groups of state propagation traces,
i.e. (x00, x

1
0, x

2
0, . . . , x

r
0) and (x01, x

1
1, x

2
1, . . . , x

r
1) , then by

xi0 ⊕ xi1(0 ≤ i ≤ r) we can get the input difference and
the output difference for each round, i.e. differential
characteristic (△x0,△x1, . . . ,△xr) . Compared to the tra-
ditional impossible differential analysis, the impossible

Em
K : Fm

2 × F
t
2 �→ F

m
2 .

differential analysis based on the propagation of state
not only takes into account the details of non-linear
components but also allows to consider the impact of
the key schedule.

Definition 3  (Impossible Differential Distinguisher Based
on the Propagation of State) For an iterative block cipher Em

K  ,
if ∀(x0, x1) ∈ {(a0, a1) ∈ F

m

2
× F

m

2
|a0 ⊕ a1 = α} and α is the input

difference, ∀(y0, y1) ∈ {(b0, b1) ∈ F
m
2 × F

m
2 |b0 ⊕ b1 = β}

and β is the output difference, and Er
K
(x0)⊕ E

r
K
(x1) �= y0 ⊕ y1 ,

i.e. differential propagation probability Pr(α → β) = 0 ,
then α � β is a r-round impossible differential distin-
guisher based on the propagation of state.

The following is to use an obtained (r − 1)-round
impossible differential distinguisher to recover the
r-round key.

•	 Find a (r − 1)-round impossible differential distin-
guisher α → β;

•	 Select plaintext pairs (P, P̂) with P ⊕ P̂ = α , then
perform r-round encryption and get the ciphertext
pairs (C , Ĉ);

•	 Guess possible values of the r-round key kr . For each
possible value of kr , decrypt ciphertext C and Ĉ one
round forward and obtain (D, D̂) . Judge if D⊕ D̂ = β
holds, if holds, then the guessed key is wrong;

•	 Repeat the above steps until the only correct key
remains.

Assuming that |K| bit keys can be obtained by the above
attack, each plaintext pair can eliminate 2−t of the key
information. To ensure that the correct key is uniquely
determined, the required plaintext pairs N must satisfy

When t is relatively large, it gives

The above equation shows that, when performing the
impossible differential attack, the data complexity is
almost independent of the amount of guessed key bits,
and the main effect is the key information that can be
eliminated for each plaintext pair.

SAT problem
The Boolean Satisfiability Problem (SAT) is a founda-
tional computational problem in the fields of computer
science and mathematical logic. It involves determining

(2|K | − 1)× (1− 2−t)N < 1,

N > 2t × ln 2× |K | ≈ 2t−0.53|K |.

Page 7 of 15Liu et al. Cybersecurity (2023) 6:52 	

whether a given boolean formula, composed of boolean
variables and logical operators such as AND, OR, and
NOT, can be assigned truth values that satisfy the for-
mula. STP is the publicly accessible solver for the SAT
problem. Its input is expected to be a file with the “.stp”
extension, adhering to the CVC language format.

When solving an SAT problem, the first step is to con-
struct a model using the CVC language and save it as a
file with the “.stp” extension. Subsequently, the STP solver
is invoked for this file. If the STP returns “Valid.”, it indi-
cates that the target problem has no solution. Otherwise,
it returns a solution of the target problem and “Invalid.”.
For more details about the STP solver and the CVC lan-
guage, please refer to https://​stp.​github.​io/.

The following are the CVC terms used in this paper:

1	 ASSERT(): The command statement.
2	 BITVECTOR(n): Declare variables as n bits.
3	 t1@t2@ . . .@tm : The connection operation.
4	 t1 &t2 &. . . &tm : The bitwise AND operation.
5	 BVXOR(t1, t2) : The bitwise XOR operation.

Automatic search for impossible differential
distinguisher
In this section, we use the SAT method to automatically
search for impossible differential distinguishers based on
the propagation of the state, and find a full-round impos-
sible differential distinguisher of Shadow-32.

Bit‑oriented SAT model based on the propagation
of the state
In this subsection, we will demonstrate the process of
constructing the SAT model for searching impossible dif-
ferential distinguishers based on the propagation of the
state.

According to Definition 3, the modeling process is
composed of two steps, the first step is to describe the
propagation of the two sets of states under r rounds of
iterations, and the second step is to obtain the input
difference and the r − round output difference by XOR-
ing the two sets of states and assign the given values.
For the first step, the core is to model the propaga-
tion of the state under basic operations. Since Shadow
utilizes ARX operations and is bit-oriented, we will
use the CVC language to generate statements for the
propagation of the state under the operations bit-ori-
ented COPY, bit-oriented AND, bit-oriented Rotation,
and bit-oriented XOR. For the second step, we will
use the CVC language to generate statements for the

computation of the difference and the constraints on
the difference.

Model 1  (COPY) Let F be a COPY function, where the
input state is x ∈ F

q
2 and the output y0, y1, . . . , yt−1 ∈ F

q
2

is caculated as (y0, y1, . . . , yt−1) = (x, x, . . . , x) . The bit
vector format is x = (x0, . . . , xq−1), y

i = (yi0, y
i
1, . . . , y

i
q−1),

where xj , yij ∈ F2 , 0 ≤ j ≤ q − 1 and 0 ≤ i ≤ t − 1 . Then,
the modeling of the propagation of the state under the
COPY operation is described in CVC format as

The COPY operation is usually omitted in practi-
cal modeling because the value of the state remains
unchanged after the COPY operation.

Model 2  (XOR) Let F be an XOR function, where
the two input states are x, y ∈ F

q
2 and the output

z ∈ F
q
2 is calculated as z = x ⊕ y . The bit vector

format is x = (x0, x1, . . . , xq−1), y = (y0, y1, . . . , yq−1) ,
and z = (z0, z1, . . . , zq−1) , where xj , yj , zj ∈ F2 and
0 ≤ j ≤ q − 1 . Then, the modeling of the propagation
of the state under the XOR operation is described in
CVC format as

Model 3  (AND) Let F be a AND function, where
the two input states are x, y ∈ F

q
2 and the output

z ∈ F
q
2 is calculated as z = x & y. The bit vector for-

mat is x = (x0, x1, . . . , xq−1), y = (y0, y1, . . . , yq−1) ,
and z = (z0, z1, . . . , zq−1) , where xj , yj , zj ∈ F2 and
0 ≤ j ≤ q − 1 . Then, the modeling of the propagation of
the state under the AND operation is described in CVC
format as

Model 4  (Rotation) Let F be a Rotation function, where
the input state is x ∈ F

q
2 and the output y ∈ F

q
2 is calcu-

lated as y = x ≪ n , where n is a constant. The bit vector
format is x = (x0, x1, . . . , xq−1) and y = (y0, y1, . . . , yq−1) ,
where xj , yj ∈ F2 and 0 ≤ j ≤ q − 1 . Then, the modeling























ASSERT (y00@ . . .@y0q−1 = x0@ . . .@xq−1);

ASSERT (y10@ . . .@y1q−1 = x0@ . . .@xq−1);

...

ASSERT (yt−1
0 @ . . .@yt−1

q−1 = x0@ . . .@xq−1);

ASSERT (z0@ . . .@zq−1 = BVXOR

(x0@ . . .@xq−1, y0@ . . .@yq−1));

ASSERT (z0@ . . .@zq−1 = (x0@ . . .@xq−1)

&(y0@ . . .@yq−1));

https://stp.github.io/

Page 8 of 15Liu et al. Cybersecurity (2023) 6:52

of the propagation of the state under the Rotation opera-
tion is described in CVC format as

Computation of difference Let (x0, x̂0) ∈ F
q
2 × F

q
2

be the two sets of initial states, and after r rounds of
propagation, the r-round states (xr , x̂r) is obtained. By
△x0 = x0 ⊕ x̂0 and △xr = xr ⊕ x̂r we can obtain the
input difference △x0 and the r − round output difference
△xr . The bit vector format is A = (A0,A1, . . . ,Aq−1) ,
where A = x0, x̂0, xr , x̂r ,△x0,△xr . Then, the computa-
tion of the input difference and the r − round output
difference can be described in CVC format as

Constraints on difference Let the input difference
△x0 = α and the r − round output difference △xr = β ,
where α,β ∈ F

q
2 are the given value. The bit vector for-

mat is α = (α0,α1, . . . ,αq−1) and β = (β0,β1, . . . ,βq−1) ,
where αj ,βj ∈ F2 and 0 ≤ j ≤ q − 1 . Then, the constraints
on the input difference and the output difference can be
described in CVC format as

The search algorithm for impossible differential
distinguisher of shadow
In this subsection, we will show how to automatically
seek impossible differential distinguishers. The auto-
mated search method consists of two phases: state-
ments generation phase and impossible differential
distinguishers search phase. For the statements genera-
tion phase, Algorithm 2 automatically generates state-
ments describing the input difference △x0 propagate
to the r − round output difference △xr with △x0 = α
and △xr = β , and saves these statements as a file. For
the impossible differential distinguishers search phase,
Algorithm 3 invokes the STP to solve the file gener-
ated by Algorithm 2 to determine whether there is an
impossible differential distinguisher by traversing sets
of input differences and output differences satisfying
certain conditions.

ASSERT (y0@ . . .@yq−1 = (xn@xn+1@ . . .@xq−1

@x0@ . . .@xn−1));

ASSERT (△x00@ . . .@△x0q−1

= BVXOR(x00@ . . .@x0q−1, x̂
0
0@ . . .@x̂0q−1));

ASSERT (△xr0@ . . .@△xrq−1

= BVXOR(xr0@ . . .@xrq−1, x̂
r
0@ . . .@x̂rq−1));

ASSERT (△x00@ . . .@△x0q−1 = α0@ . . .@αq−1);

ASSERT (△xr0@ . . .@△xrq−1 = β0@ . . .@βq−1);

Page 9 of 15Liu et al. Cybersecurity (2023) 6:52 	

For Shadow, Algorithm 3 gives the overall frame-
work for searching impossible differential distinguish-
ers, i.e., the Main function; Algorithm 2 models the
propagation of a given input difference to a given out-
put difference, i.e., the Generate function. The inputs to
Algorithm 3 are the input difference set Id and the out-
put difference set Od, where Id = {α ∈ F

m
2 |wt(α) = 1}

and Od = {β ∈ F
m
2 |wt(β) = 1} , i.e., Id and Od are the

sets of all input and output difference of weight 1. For
each α ∈ Id and β ∈ Od , Algorithm 3 first invokes
Algorithm 2 to generate the file describing the propaga-
tion of α to β , then invokes the STP to solve the file, if
it returns “Valid.”, then (α,β) is an impossible difference
distinguisher and terminates the algorithm, otherwise,
continues to traverse the Id and Od.

We present some specific explanations about Algo-
rithm 2 as follows.

•	 Line 1–3. Here x = (x0, . . . , xr) and x̂ = (x̂0, . . . ,
x̂r) , where xi, x̂i ∈ F

m
2  . Declare the state variables xij

and x̂ij as 1 bit, where 0 ≤ i ≤ r and 0 ≤ j ≤ m− 1 .
Declare the intermediate variables and the differ-
ence variables as 1 bit.

•	 Line 4–7. Using the provided propagation rules for
each operation, model the propagation of x0 to xr and
x̂0 to x̂r by incorporating intermediate variables.

•	 Line 8–9. Based on the modeling for the computa-
tion of difference and the constraints on difference,
generate the corresponding statements.

•	 Line 10–11. The statement “QUERY(FALSE);” and
the statement “COUNTEREXAMPLE;” need to be
added at the ending of the file because these two
statements are essential in solving an SAT problem
using STP. By adding the two statements, if the STP
returns “Valid.”, it means the SAT problem has no
solution, otherwise, it returns a solution and “Inva-
lid.”.

Experimental results In practice, we implemented Algo-
rithms 3 and 2 using Python 3.8. and Cryptominisat.
Finally, it took us approximately 41 hours to find a full-
round impossible differential distinguisher of Shadow-32,
i.e. (0x80000000) � (0x40000000) . The impossible dif-
ferential distinguisher from the 1th to the 16th round
and the time consumption is shown in Table 4. All the
experiments are implemented on this platform: Intel(R)
Xeon(R) CPU E5-2650 v4 @2.20GHz×48, 503.8G RAM,
64-bit Ubuntu 20.04.6 LTS with 4 threads. Conveniently,
all the source codes are accessible at https://​github.​com/​
VanyaW/​mypro​ject.

From the experimental results, we find that Shadow
may have an impossible differential distinguisher for an
arbitrary number of rounds, which will be proved theo-
retically in the next section. Since the method would be
limited by the block size and the number of rounds, we
have not conducted experiments on Shadow-64 under
the limited time and resources, but the next section
proves theoretically the existence of an impossible differ-
ential distinguisher for an arbitrary number of rounds of
Shadow-64.

A proof of impossible differential distinguishers
for an arbitrary number of rounds
In this section, we will prove that Shadow has a differen-
tial property with probability 1 based on the propagation
of state, then we can get an impossible differential distin-
guisher for an arbitrary number of rounds of Shadow.

Theorem 1  For r-round Shadow, if for any input state
(L00, L

0
1,R

0
0,R

0
1) ∈ Fm

2 and (L̂00, L̂
0
1, R̂

0
0, R̂

0
1) ∈ Fm

2 with the
input difference (△L00,△L01,△R0

0,△R0
1) , after encrypting r

rounds for the two sets of states, the corresponding output
difference is (△Lr0,△Lr1,△Rr

0,△Rr
1) , then we have

△Lr0 ⊕△Rr
0 =

{

△L00 ⊕△R0
0 r = 2n(n ∈ N

∗),

△L10 ⊕△R1
0 r = 2n+ 1(n ∈ N

∗).

Table 4  The impossible differential distinguisher of Shadow-32
from the 1th to the 16th round and the time consumption

Rounds The input difference The output difference Time (s)

1 0x80000000 0x80000000 0.054

2 0x80000000 0x80000000 0.081

3 0x80000000 0x80000000 0.217

4 0x80000000 0x40000000 1.009

5 0x80000000 0x80000000 1.134

6 0x80000000 0x40000000 6.556

7 0x80000000 0x80000000 8.988

8 0x80000000 0x40000000 52.288

9 0x80000000 0x80000000 73.417

10 0x80000000 0x40000000 362.931

11 0x80000000 0x80000000 579.507

12 0x80000000 0x40000000 2836.981

13 0x80000000 0x80000000 4084.869

14 0x80000000 0x40000000 22812.789

15 0x80000000 0x80000000 28649.212

16 0x80000000 0x40000000 150813.247

https://github.com/VanyaW/myproject
https://github.com/VanyaW/myproject

Page 10 of 15Liu et al. Cybersecurity (2023) 6:52

Proof  To analyze the overall structure of Shadow more
intuitively, we simplify to Fig. 3, which depicts any two
consecutive rounds in the RN-round Shadow encryption
process. The red line of Fig. 3 represents a differential
relationship as shown in Eq. (3), and the green line of
Fig. 3 represents another differential relationship as
shown in Eq. (4). Let the two input state for the (i − 1) th
round be

Then we have the (i − 1) th round input difference

Correspondingly, the output difference of the (i − 1) th
round is

and the output difference of the ith round is

From the red line of Fig. 3, we have

and

Then combine (1) and (2), we get

Similarly, another input state holds

Thus, the difference △Li0 satisfies

Enlightenedly, from the green line of Fig. 3, we find

Similarly, another input state holds

(Li−2
0 , Li−2

1 ,Ri−2
0 ,Ri−2

1),

(L̂i−2
0 , L̂i−2

1 , R̂i−2
0 , R̂i−2

1).

(△Li−2
0 ,△Li−2

1 ,△Ri−2
0 ,△Ri−2

1)

= (Li−2
0 ⊕ L̂i−2

0 , Li−2
1 ⊕ L̂i−2

1 ,

Ri−2
0 ⊕ R̂i−2

0 ,Ri−2
1 ⊕ R̂i−2

1).

(△Li−1
0 ,△Li−1

1 ,△Ri−1
0 ,△Ri−1

1)

= (Li−1
0 ⊕ L̂i−1

0 , Li−1
1 ⊕ L̂i−1

1 ,

Ri−1
0 ⊕ R̂i−1

0 ,Ri−1
1 ⊕ R̂i−1

1),

(△Li0,△Li1,△Ri
0,△Ri

1)

= (Li0 ⊕ L̂i0, L
i
1 ⊕ L̂i1,R

i
0 ⊕ R̂i

0,R
i
1 ⊕ R̂i

1).

(1)Li0 = Ri−1
1 ⊕ F(Ri−1

0)⊕ keyi1,

(2)F(Ri−1
0) = Li−1

1 ⊕ Li−2
0 ⊕ keyi−1

2 .

Li0 = Ri−1
1 ⊕ Li−1

1 ⊕ Li−2
0 ⊕ keyi−1

2 ⊕ keyi1.

L̂i0 = R̂i−1
1 ⊕ L̂i−1

1 ⊕ L̂i−2
0 ⊕ keyi−1

2 ⊕ keyi1.

(3)△Li0 = Li0 ⊕ L̂i0 = △Ri−1
1 ⊕△Li−1

1 ⊕△Li−2
0 .

Ri
0 = Li−1

1 ⊕ F(Li−1
0)⊕ keyi0,

F(Li−1
0) = Ri−1

1 ⊕ Ri−2
0 ⊕ keyi−1

3 ,

Ri
0 = Li−1

1 ⊕ Ri−1
1 ⊕ Ri−2

0 ⊕ keyi−1
3 ⊕ keyi0.

Thus, the difference △Ri
0 satisfies

Finally, let (3) xor (4), we obtain

As the number of rounds i is arbitrary and i ≥ 2 , if i is
even, then

if i is odd, then

and complete the proof.

Based on Theorem 1 and Definition 3, we can obtain
Corollary 1.

R̂i
0 = L̂i−1

1 ⊕ R̂i−1
1 ⊕ R̂i−2

0 ⊕ keyi−1
3 ⊕ keyi0.

(4)△Ri
0 = Ri

0 ⊕ R̂i
0 = △Li−1

1 ⊕△Ri−1
1 ⊕△Ri−2

0 .

△Li0 ⊕△Ri
0 = △Li−2

0 ⊕△Ri−2
0 .

△Li0 ⊕△Ri
0 = △Li−2

0 ⊕△Ri−2
0 = . . . = △L00 ⊕△R0

0,

△Li0 ⊕△Ri
0 = △Li−2

0 ⊕△Ri−2
0 = . . . = △L10 ⊕△R1

0,

�

Fig. 3  Any two consecutive rounds of Shadow

Page 11 of 15Liu et al. Cybersecurity (2023) 6:52 	

Corollary 1  For an arbitrary r-round Shadow,
the input difference is (△L00,△L01,△R0

0,△R0
1) , corre-

spondingly, the output difference is (△Lr0,△Lr1,△Rr
0,

△Rr
1) . if △L00 ⊕△R0

0 �= △Lr0 ⊕△Rr
0 (r = 2n) or

△L10 ⊕△R1
0 �= △Lr0 ⊕△Rr

0 (r = 2n+ 1) , then
(△L00,△L01,△R0

0,△R0
1) � (△Lr0,△Lr1,△Rr

0,△Rr
1) is an

impossible differential distinguisher of Shadow.

Key recovery attack on full‑round Shadow‑32/64
In this section, we will use a concrete arbitrary N-round
impossible differential distinguisher to perform key
recovery for (N + 1)-round Shadow-32 and (N + 1)-
round Shadow-64 respectively.

Key recovery attack on full‑round Shadow‑32

Theorem 2  (N-round Impossible Differential Dis-
tinguisher of Shadow-32) In the single-key model,
Shadow-32 exists an arbitrary N-round impossible differ-
ential distinguisher, i.e.

where the Nth round includes data exchange.

Proof  Firstly, we have △L00 = 10000000,
△R0

0 = 00000000,△LN0 = 01000000,△RN
0 = 00000000 .

(1)	 When N = 2n(n > 0) , according to Theorem 1 and
Corollary 1, since △L00 ⊕△R0

0 �= △LN0 ⊕△RN
0 , thus

finding the contradiction.
(2)	 When N = 2n+ 1(n > 0) , after the propa-

gation of difference for the first round, the
output difference (△L10,△L11,△R1

0,△R1
1) is

(00000000, ∗0 ∗ 01 ∗ ∗∗, 0 ∗ 00001∗, 00000000) ,
according to Theorem 1 and Corollary 1, since
△L10 ⊕△R1

0 �= △LN0 ⊕△RN
0 , thus finding the con-

tradiction.

Next based on the N-round impossible differential dis-
tinguisher, encrypt one round backward to perform key
recovery for (N + 1)-round Shadow-32. The propagation
of difference during the key recovery process is depicted in
Fig. 4. The specific key recovery process is as follows.

•	 Step 1 Let the difference of plaintext be

(10000000, 00000000, 00000000, 00000000)

� (01000000, 00000000, 00000000, 00000000),

�

 Define the following plaintext structure

 where αi(1 ≤ i ≤ 32) is a constant. The plaintext
can form 2 plaintext pairs. Select 2n plaintext struc-
tures, and there are 2n+1 plaintext pairs (x0, x̂0) . After
N + 1 rounds of encryption, obtain the correspond-
ing ciphertext pairs (xN+1, x̂N+1).

•	 Step 2 Select the ciphertext pairs that satisfy the follow-
ing form:

 where ∗ ∈ F2 . Since the ciphertexts that sat-
isfy the above form are 27 , the probability is
27 × 2−32 = 2−25. After screening, the ciphertext
pair remains 2n+1 × 2−25 = 2n−24.

•	 Step 3 Guess 16-bit key in the (N + 1) th round,
i.e. keyN+1

2 and keyN+1
0  . Then decrypt each cipher-

text pair from Step 2 one round forward, and
get (△LN0 ,△LN1) . Judge if △LN0 = 01000000 and
△LN1 = 00000000 hold, if hold, then the guessed key
is wrong and is excluded. Repeat the above steps until
the only correct key remains.

Complexity analysis After step 3, the error value of the
key is approximately (216 − 1)× (1− 2−1)2

n−24 . When
n = 28 , (216 − 1)× (1− 2−1)2

n−24
< 1 , therefore the

wrong keys can all be excluded. Boura et al. (2014) pre-
sented that the data complexity is 2n+△in+1 , where the
△in is the number of active bits for the difference of
plaintext. So the data complexity is 228+1+1 = 230 . Step
3 requires 2n−24 × 216 × 2 = 221 one round of encryp-
tion, in addition, the remaining 48 bits of the master key
need to be searched exhaustively, so the time complexity

△x0 = (△L00,△L01,△R0
0,△R0

1)

△L00 = (10000000)

△L01 = (00000000)

△R0
0 = (00000000)

△R0
1 = (00000000).

x0 = (L00, L
0
1,R

0
0,R

0
1)

L00 = (α1α2α3α4α5α6α7α8)

L01 = (α9α10α11α12α13α14α15α16)

R0
0 = (α17α18α19α20α21α22α23α24)

R0
1 = (α25α26α27α28α29α30α31α32),

△xN+1 = (△LN+1
0 ,△LN+1

1 ,△RN+1
0 ,△RN+1

1)

△LN+1
0 = (∗0 ∗ 00001)

△LN+1
1 = (∗ ∗ 0 ∗ 01 ∗ ∗)

△RN+1
0 = (00000000)

△RN+1
1 = (00000000),

Page 12 of 15Liu et al. Cybersecurity (2023) 6:52

required to recover full key is 221/(N + 1)+ 248 ≈ 248
(N+1)-round encryption. Since step 2 requires storing
2n−24 = 24 ciphertext pairs and 216 candidate keys, and
an exhaustive search of 48 bits requires the storage of 248 ,
the memory complexity required to recover full key is
(24 + 216 + 248)/32 ≈ 243 32-bit block.

In summary, for Shadow-32, the round number is 16
and N is 15. A full-round impossible differential attack
on Shadow-32 requires 230 data complexity, 248 16-round
encryption time complexity and 243 32-bit block memory
complexity.

Key recovery attack on full‑round Shadow‑64

Theorem 3  (N-round Impossible Differential Dis-
tinguisher of Shadow-64) In the single-key model,
Shadow-64 exists an arbitrary N-round impossible differ-
ential distinguisher, i.e.

(1000000000000000, 0000000000000000,

0000000000000000, 0000000000000000)

� (0100000000000000, 0000000000000000,

0000000000000000, 0000000000000000),

where the Nth round includes data exchange.

Proof  The process of proving Theorem 3 is similar to that
of Theorem 2. Firstly, we have △L00 = 1000000000000000,
△R0

0 = 0000000000000000,△LN0 = 0100000000000000,
△RN

0 = 0000000000000000 .

(1)	 When N = 2n(n > 0) , according to Theorem 1 and
Corollary 1, since △L00 ⊕△R0

0 �= △LN0 ⊕△RN
0 , thus

finding the contradiction.
(2)	 When N = 2n+ 1(n > 0) , after the first difference

propagation, the output difference (△L10,△L11,△R1
0,

△R1
1) is (0000000000000000, 10 ∗ 0000 ∗ ∗000 ∗ ∗∗

0, 000000000 ∗ 0000 ∗ ∗, 0000000000000000)   ,
according to Theorem 1 and Corollary 1, since
△L10 ⊕△R1

0 �= △LN0 ⊕△RN
0 , thus finding the con-

tradiction.

Next based on the N-round impossible differential dis-
tinguisher, encrypt one round backward to perform key
recovery for (N + 1)-round Shadow-64. The propagation

�

Fig. 4  (N + 1)-round impossible differential cryptanalysis on Shadow-32

Page 13 of 15Liu et al. Cybersecurity (2023) 6:52 	

of difference during key recovery is shown in Fig. 5. The
specific key recovery process is as follows.

•	 Step 1 Let the difference of plaintext be

 Define the following plaintext structure

 where αi(1 ≤ i ≤ 64) is a constant. The plaintext
can form 2 plaintext pairs. Select 2n plaintext struc-
tures, and there are 2n+1 plaintext pairs. After N + 1
rounds of encryption, obtain the corresponding
ciphertext pairs (xN+1, x̂N+1).

•	 Step 2 Select the ciphertext pairs that satisfy the fol-
lowing form:

△x0 = (△L00,△L01,△R0
0,△R0

1)

△L00 = (1000000000000000)

△L01 = (0000000000000000)

△R0
0 = (0000000000000000)

△R0
1 = (0000000000000000).

x0 = (L00, L
0
1,R

0
0,R

0
1)

L00 = (α1α2 . . . α15α16)

L01 = (α17α18 . . . α31α32)

R0
0 = (α33α34 . . . α47α48)

R0
1 = (α49α50 . . . α63α64),

 where ∗ ∈ F2 . Since the ciphertexts that sat-
isfy the above form are 29 , the probability is
29 × 2−64 = 2−55. After screening, the ciphertext
pair is 2n+1 × 2−55 = 2n−54.

•	 Step 3 Guess 32-bit key in the (N + 1) th round,
i.e. keyN+1

2 and keyN+1
0  . Then decrypt each cipher-

text pair from Step 2 one round forward, and get
(△LN0 ,△LN1) . Judge if △LN0 = 0100000000000000
and △LN1 = 0000000000000000 hold, if hold, then
the guessed key is wrong and is excluded. Repeat the
above steps until the only correct key remains.

Complexity analysis After step 3, the error value of the
key is approximate (232 − 1)× (1− 2−1)2

n−54 . When
n = 59 , (232 − 1)× (1− 2−1)2

n−54
< 1 , therefore the

wrong keys can all be excluded. Boura et al. (2014) pre-
sented that the data complexity is 2n+△in+1 , where the △in
is the number of active bits for the difference of plaintext.
So the data complexity is 259+1+1 = 261 . Step 3 requires

△x
N+1 = (△L

N+1
0

,△L
N+1
1

,△R
N+1
0

,△R
N+1
1

)

△L
N+1
0

= (∗000000000 ∗ 0000∗)

△L
N+1
1

= (010 ∗ 0000 ∗ ∗000 ∗ ∗∗)

△R
N+1
0

= (0000000000000000)

△R
N+1
1

= (0000000000000000),

Fig. 5  (N + 1)-round impossible differential cryptanalysis on Shadow-64

Page 14 of 15Liu et al. Cybersecurity (2023) 6:52

2n−54 × 232 × 2 = 238 one round of encryption, in addi-
tion, the remaining 96 bits of the master key need to be
searched exhaustively, so the time complexity required
to recover the full key is 238/(N + 1)+ 296 ≈ 296
(N + 1)-round encryption. Since step 2 requires to store
2n−54 = 25 ciphertext pairs and 232 candidate keys, and
an exhaustive search of 96 bits requires the storage of 296 ,
the memory complexity required to recover the full key is
(25 + 232 + 296)/64 ≈ 290 64-bit block.

For Shadow-64, the round number is 32 and N is 31. A
full-round impossible differential attack requires 261 data
complexity, 296 32-round encryption time complexity and
290 64-bit block memory complexity. It is worth noting
that simply increasing the number of iterative rounds of
Shadow cannot resist the impossible differential attack.

Summary
In this paper, we focus on the differential property of
Shadow and its security against the impossible differen-
tial attack. First, we use the SAT method to automatically
search for a full-round impossible differential distin-
guisher of Shadow-32. Then, based on the experimental
results, we prove that Shadow has a differential property
with probability 1 based on the propagation of state. Fur-
ther, we present an arbitrary number of rounds of impos-
sible differential distinguisher for Shadow. Finally, we
use a concrete arbitrary N-round impossible differential
distinguisher to perform key recovery for (N + 1)-round
Shadow-32 and Shadow-64. For Shadow-32, a 16-round
full key recovery attack requires 230 data complexity,
248 16-round encryption time complexity and 243 32-bit
block memory complexity. For Shadow-64, a 32-round
full key recovery attack requires 261 data complexity,
296 32-round encryption time complexity and 290 64-bit
block memory complexity.

Both experimentally and theoretically, our results indi-
cate that Shadow is critically flawed, and regardless of
the security strength of the internal components and the
number of rounds applied, the overall cipher remains
vulnerable to the impossible differential attack.

Acknowledgements
I would like to express my sincere gratitude to my colleagues for their invalu-
able support, advice, and insightful discussions during the preparation of this
thesis. I also wish to extend my appreciation to the anonymous reviewers for
their constructive comments and feedback.

Author contributions
All the authors have equal contributions to this paper.

Funding
This work was supported by the National Natural Science Foundation of
China (No. 12371525).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no known competing fnancial interests
or personal relationships that could have appeared to infuence the work
reported in this paper.

Received: 6 April 2023 Accepted: 22 August 2023

References
Abdelkhalek A, Sasaki Y, Todo Y, Tolba M, Youssef AM (2017) MILP modeling for

(large) s-boxes to optimize probability of differential characteristics. IACR
Trans Symmetr Cryptol 99–129

Banik S, Bogdanov A, Isobe T, Shibutani K, Hiwatari H, Akishita T, Regazzoni
F (2015) Midori: a block cipher for low energy. In: Proceedings of the
advances in cryptology—ASIACRYPT 2015: 21st international conference
on the theory and application of cryptology and information secu-
rity, Auckland, New Zealand, November 29–December 3, 2015, Part II.
Springer, vol 21, pp 411–436

Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B, Wingers L (2015) The
SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
annual design automation conference, pp 1–6

Biham E, Shamir A (1991) Differential cryptanalysis of des-like cryptosystems. J
Cryptol 4:3–72

Biham E, Biryukov A, Shamir A (1999) Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Proceedings of the advances in
cryptology-EUROCRYPT’99: international conference on the theory and
application of cryptographic techniques Prague, Czech Republic, May
2–6, 1999. Springer, vol 18, pp 12–23

Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Robshaw MJ,
Seurin Y, Vikkelsoe C (2007) Present: an ultra-lightweight block cipher. In:
Proceedings of the cryptographic hardware and embedded systems-
CHES 2007: 9th international workshop, Vienna, Austria, September
10–13, 2007. Springer, vol 9, pp 450–466

Boura C, Naya-Plasencia M, Suder V (2014) Scrutinizing and improving impos-
sible differential attacks: applications to CLEFIA, Camellia, LBlock and
Simon (full version). Ph.D. thesis, IACR cryptology ePrint archive

Cui T, Chen S, Jia K, Fu K, Wang M (2016) New automatic search tool for impos-
sible differentials and zero-correlation linear approximations. Cryptology
ePrint archive

Guo Y, Li L, Liu B (2021) Shadow: a lightweight block cipher for IoT nodes. IEEE
Internet Things J 8(16):13014–13023

Hong D, Sung J, Hong S, Lim J, Lee S, Koo BS, Lee C, Chang D, Lee J, Jeong K
et al (2006) Hight: a new block cipher suitable for low-resource device. In:
Proceedings of the Cryptographic hardware and embedded systems-
CHES 2006: 8th international workshop, Yokohama, Japan, October
10–13, 2006. Springer, vol 8, pp 46–59

Hu X, Li Y, Jiao L, Tian S, Wang M (2020) Mind the propagation of states: new
automatic search tool for impossible differentials and impossible poly-
topic transitions. In: Proceedings of the advances in cryptology—ASIA-
CRYPT 2020: 26th international conference on the theory and application
of cryptology and information security, Daejeon, South Korea, December
7–11, 2020, Part I 26. Springer, pp 415–445

Kaur M, Yadav T, Kumar M, Dey D (2023) Full-round differential attack on ULC
and LICID block ciphers designed for IoT. Cryptology ePrint archive

Knudsen L (1998) Deal-a 128-bit block cipher. Complexity 258(2):216
Kölbl S, Leander G, Tiessen T (2015) Observations on the SIMON block cipher

family. In: Proceedings of the advances in cryptology—CRYPTO 2015:
35th annual cryptology conference, Santa Barbara, CA, USA, August
16–20, 2015, Part I. Springer, vol 35, pp 161–185

Kumar M, Yadav T (2022) MILP based differential attack on round reduced
warp. In: Proceedings of the security, privacy, and applied cryptography
engineering: 11th international conference, SPACE 2021, Kolkata, India,
December 10–13, 2021. Springer, pp 42–59

Matsui M (1994) Linear cryptanalysis method for DES cipher. In: Proceedings of
the advances in cryptology-EUROCRYPT’93: workshop on the theory and

Page 15 of 15Liu et al. Cybersecurity (2023) 6:52 	

application of cryptographic techniques Lofthus, Norway, May 23–27,
1993. Springer, vol 12, pp 386–397

Mouha N, Wang Q, Gu D, Preneel B (2012) Differential and linear cryptanalysis
using mixed-integer linear programming. In: Information security and
cryptology: 7th international conference, Inscrypt 2011, Beijing, China,
November 30–December 3, 2011. Revised selected papers 7. Springer,
pp 57–76

Sasaki Y, Todo Y (2017) New impossible differential search tool from design and
cryptanalysis aspects: Revealing structural properties of several ciphers.
In: Advances in Cryptology–EUROCRYPT 2017: 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30–May 4, 2017, Proceedings, Part III 36, pp. 185–215.
Springer

Standaert FX, Piret G, Gershenfeld N, Quisquater JJ (2006) SEA: a scalable
encryption algorithm for small embedded applications. In: Proceed-
ings of the smart card research and advanced applications: 7th IFIP WG
8.8/11.2 international conference, CARDIS 2006, Tarragona, Spain, April
19–21, 2006. Springer, vol 7, pp 222–236

Sun S, Hu L, Wang P, Qiao K, Ma X, Song L (2014) Automatic security evaluation
and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES (l) and other bit-oriented block ciphers. In: Proceed-
ings of the advances in cryptology—ASIACRYPT 2014: 20th international
conference on the theory and application of cryptology and information
security, Kaoshiung, Taiwan, ROC, December 7–11, 2014, Part I. Springer,
vol 20, pp 158–178

Sun L, Wang M (2023) SoK: modeling for large s-boxes oriented to differen-
tial probabilities and linear correlations. IACR Trans Symmetric Cryptol
111–151

Sun L, Wang W, Wang M (2017) Automatic search of bit-based division prop-
erty for ARX ciphers and word-based division property. In: Proceedings
of the advances in cryptology—ASIACRYPT 2017: 23rd international
conference on the theory and applications of cryptology and information
security, Hong Kong, China, December 3–7, 2017, Part I. Springer, vol 23,
pp 128–157

Sun L, Wang W, Wang M (2021) Accelerating the search of differential and
linear characteristics with the sat method. IACR Trans Symmetric Cryptol
269–315

Wu W, Zhang L (2011) LBlock: a lightweight block cipher. In: Proceedings
of the applied cryptography and network security: 9th international
conference, ACNS 2011, Nerja, Spain, June 7–10, 2011. Springer, vol 9, pp
327–344

Zhu B, Dong X, Yu H (2019) MILP-based differential attack on round-reduced
gift. In: Proceedings of the topics in cryptology—CT-RSA 2019: the
cryptographers’ track at the RSA conference 2019, San Francisco, CA, USA,
March 4–8, 2019. Springer, pp 372–390

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Full-round impossible differential attack on shadow block cipher
	Abstract
	Introduction
	Preliminaries
	Notation
	Description of Shadow
	Encryption algorithm
	Key schedule

	Impossible differential cryptanalysis
	SAT problem

	Automatic search for impossible differential distinguisher
	Bit-oriented SAT model based on the propagation of the state
	The search algorithm for impossible differential distinguisher of shadow

	A proof of impossible differential distinguishers for an arbitrary number of rounds
	Key recovery attack on full-round Shadow-3264
	Key recovery attack on full-round Shadow-32
	Key recovery attack on full-round Shadow-64

	Summary
	Acknowledgements
	References

