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Abstract 

Lightweight block ciphers are the essential encryption algorithm for devices with limited resources. Its goal 
is to ensure the security of data transmission through resource-constrained devices. Impossible differential crypta-
nalysis is one of the most effective cryptanalysis on block ciphers, and assessing the ability of resisting this attack 
is a basic design criterion. Shadow is a lightweight block cipher proposed by Guo et al. (IEEE Internet Things J 
8(16):13014–13023, 2021). It utilizes a combination of ARX operations and generalized Feistel structure to overcome 
the weakness of the traditional Feistel structure that only diffuses half in one round. In this paper, we focus on the dif-
ferential property of Shadow and its security against impossible differential cryptanalysis. First, we use the SAT 
method to automatically search for a full-round impossible differential distinguisher of Shadow-32. Then, based 
on the experimental results, we prove that Shadow has a differential property with probability 1 based on the propa-
gation of the state. Further, we can obtain an impossible differential distinguisher for an arbitrary number of rounds 
of Shadow. Finally, we perform a full key recovery attack on the full-round Shadow-32 and Shadow-64. Both experi-
mentally and theoretically, our results indicate that Shadow is critically flawed, and regardless of the security strength 
of the internal components and the number of rounds applied, the overall cipher remains vulnerable to impossible 
differential cryptanalysis.
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Introduction
Along the accelerated development of information tech-
nology, the Internet of Things (IoT) technologies such 
as RFID and wireless sensors are increasingly applied in 
daily life, and they are often integrated into devices with 
limited storage and computing resources. However, tra-
ditional block ciphers are not suitable for these devices, 
as their high software and hardware implementation 
requirements cannot guarantee the security of data trans-
mission. Thus, there is a demand for lightweight block 

ciphers that can provide high performance and security 
in resource-constrained environments.

Driven by protecting private data from resource-
constrained devices, lightweight block ciphers aim to 
achieve low resource utilization, low power consump-
tion, high computational efficiency, and maintain the 
security of block ciphers. In line with this objective, 
many well-designed lightweight block ciphers have 
been proposed, such as SEA (Standaert et  al. 2006), 
HIGHT (Hong et  al. 2006), PRESENT (Bogdanov 
et  al. 2007), LBlock (Wu and Zhang 2011), SIMON 
and SPECK (Beaulieu et al. 2015), Midori (Banik et al. 
2015) and Shadow (Guo et  al. 2021) et  al. Moreover, 
security evaluation for lightweight block ciphers is 
essential, and a new proposed lightweight block cipher 
needs to be assessed for its security against traditional 
cryptanalysis attacks, i.e. differential cryptanalysis 
(Biham and Shamir 1991), linear cryptanalysis (Matsui 
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1994), impossible differential cryptanalysis, and other 
cryptanalysis.

Impossible differential cryptanalysis was first pro-
posed by Knudsen (1998) and Biham et  al. (1999) 
respectively. It is one of the most effective cryptanalysis 
on block ciphers, and assessing the ability of resisting 
this cryptanalysis is a basic design criterion. Its basic 
idea is to exclude wrong keys that lead to zero-proba-
bility difference and then recover the correct key by 
exhausting the candidate keys. In general, impossible 
differential cryptanalysis contains two phases, i.e., the 
search for impossible differential distinguisher phase 
and the key recovery phase. The key to the impossible 
differential analysis is to search for the longest-round 
impossible differential distinguisher.

Research on the automated search method has been 
an important issue for the last 20 years. The first criti-
cal tool for automated search is the Mixed Integer Lin-
ear Programming (MILP), which was first employed by 
Mouha et  al. (2012) to find the minimum number of 
active S-boxes for word-oriented block ciphers. Later, 
Sun et  al. (2014) extended the method from word-
oriented to bit-oriented, and assessed the ability of 
bit-oriented block ciphers to resist the (related-key) dif-
ferential attack. Since then, the MILP has been widely 
used for the cryptanalysis of block ciphers. Cui et  al. 
(2016) and Sasaki and Todo (2017) applied the MILP to 
impossible differential automatic search, respectively. 
In 2017, Abdelkhalek et  al. (2017) applied the MILP 
to block ciphers with 8-bit S-boxes. In recent years, 
the MILP has remained a popular tool for automated 
search for differential distinguishers (Zhu et  al. 2019; 
Kumar and Yadav 2022; Kaur et al. 2023).

Another important tool for automated search is to 
rely on the Boolean Satisfiability Problem or satisfiabil-
ity modulo theories (SAT/SMT). In 2012, Mouha et al. 
(2012) first used the SAT/SMT method to automati-
cally seek optimal differential characteristics of Salsa20. 
Later in 2015, Kölbl et  al. (2015) employed the SAT/
SMT method to automatically search for optimal dif-
ferential and linear characteristics of SIMON. In 2017, 
Sun et  al. (2017) automatically search for bit-based 
integral distinguishers of ARX block ciphers based on 
the SAT/SMT method. In 2020, Hu et al. (2020) moved 
away from focusing on the propagation of the differ-
ence and proposed an SAT/SMT-aided search method 
for impossible differential that used the propagation of 
the state. Later in 2021, Sun et al. (2021) focused on the 
acceleration of using the SAT/SMT methods to seek 
differential and linear characteristics. In 2023, Sun and 
Wang (2023) developed SAT/SMT models to search for 
differential and linear characteristics of block ciphers 
with large S-boxes.

Shadow, a lightweight block cipher, is proposed by Guo 
et al. (2021) to protect private data transmission through 
IoT nodes. Shadow utilizes a combination of ARX opera-
tions and a generalized Feistel structure, which resolves 
the issue of the current lightweight block ciphers based 
on ARX operations that only diffuse half in one round. 
The security of Shadow was first evaluated by the design-
ers. They performed impossible differential cryptanalysis 
and biclique cryptanalysis on Shadow, where the impos-
sible differential attack mainly utilizes a 4-round impos-
sible differential distinguisher to perform a 7-round key 
recovery attack and the biclique attack constructs an 
8-round biclique structure. Consequently, the designers 
of Shadow asserted that Shadow exhibits a high level of 
resistance against cryptanalysis. In this paper, we show 
that Shadow can not resist impossible differential crypta-
nalysis, and we identify significant security weaknesses in 
the current design of Shadow.

Our contributions In this paper, we focus on the dif-
ferential property of Shadow and its security against 
impossible differential cryptanalysis. For the first time, 
we perform an impossible differential attack on the full-
round Shadow-32 and Shadow-64. Our results indicate 
that Shadow is critically flawed, and regardless of the 
security strength of the internal components and the 
number of rounds applied, the overall cipher remains 
vulnerable to impossible differential cryptanalysis. The 
specific results are displayed in Table  1. Our contribu-
tions can be concluded as follows.

•	 We use the SAT method to find a full-round impos-
sible differential distinguisher of Shadow-32.

•	 We prove that Shadow has a differential property 
with probability 1 based on the propagation of state 
proposed by Hu et  al. (2020), and then present an 
impossible differential distinguisher for an arbitrary 
number of rounds.

•	 We perform full key recovery on full-round 
Shadow-32 with 230 data complexity, 248 16-round 
encryption time complexity and 243 32-bit block 
memory complexity.

•	 We perform full key recovery on full-round 
Shadow-64 with 261 data complexity, 296 32-round 
encryption time complexity and 290 64-bit block 
memory complexity.

Table 1  Analytical results of Shadow-32/64

Cipher Attacked 
rounds (full 
round)

Data 
complexity

Time 
complexity

Memory 
complexity

Shadow-32 16 2
30

2
48

2
43

Shadow-64 32 2
61

2
96

2
90
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Organization The subsequent sections of this paper are 
arranged as follows. Section “Preliminaries” describes the 
background knowledge used in this paper. Section “Auto-
matic search for impossible differential distinguisher” 
shows how to automatically search for impossible differ-
ential distinguishers using the SAT method. Section “A 
proof of impossible differential distinguishers for an arbi-
trary number of rounds” proves the differential property 
with probability 1 of Shadow-32/64 based on the propa-
gation of state. Full key recovery attack on the full-round 
Shadow-32 and Shadow-64 are mounted in section “Key 
recovery attack on full-round Shadow-32/64”. Finally, 
section “Summary” summarizes the paper.

Preliminaries
Notation
In this subsection, we first present the following nota-
tions that are utilized throughout the paper.

•	 Li−1
0  : The input state for the first branch on the left of 

ith round;
•	 Li−1

1  : The input state for the second branch on the left 
of ith round;

•	 Ri−1
0  : The input state for the first branch on the right 

of ith round;
•	 Ri−1

1  : The input state for the second branch on the 
right of ith round;

•	 △Li−1
0 :The input difference for the first branch on the 

left of ith round;
•	 △Li−1

1  : The input difference for the second branch on 
the left of ith round;

•	 △Ri−1
0  : The input difference for the first branch on 

the right of ith round;
•	 △Ri−1

1  : The input difference for the second branch on 
the right of ith round;

•	 xi−1 : The input state of ith round;
•	 x̂i−1 : The another input state of ith round;
•	 △xi−1 : The input difference of ith round;
•	 F2 : The binary field;
•	 keyi : The ith round subkey;
•	 RN: full round;
•	 r: iterative rounds;
•	 m: block size of the cipher;
•	 &: bitwise AND;
•	 ⊕ : XOR;
•	 ≪ n : rotation to the left by n bits;

Description of Shadow
Shadow utilizes a combination of ARX operations and 
a generalized Feistel structure, which includes two ver-
sions: Shadow-32 and Shadow-64. The block sizes of 

Shadow-32 and Shadow-64 are 32 and 64 bits, respec-
tively, with key sizes of 64 and 128 bits and round num-
bers of 16 and 32, respectively.

Encryption algorithm
Shadow comprises three main operations: AND, Rota-
tion, and XOR. Let (Li−1

0 , Li−1
1 ,Ri−1

0 ,Ri−1
1 ) be the input 

state of the ith round function, (Li0, L
i
1,R

i
0, R

i
1) be the cor-

responding output state, and keyij(0 ≤ j ≤ 3) is selected 
from round subkey keyi . The round function of Shadow is 
depicted in Fig. 1.

From Fig. 1, the round function of Shadow calls f four 
times, where f is

and this operation reduces logic hardware and software 
consumption.

For the RN-round encryption process of Shadow, the 
plaintext P = (L00, L

0
1,R

0
0,R

0
1) is divided into four equal-

sized blocks. First, the first branch on the left L00 calls 
the f function and then performs the XOR operation 
with the second branch on the left L01 and the subkey 
key10 to get P0, i.e. P0 = f (L00)⊕ L01 ⊕ key10 . Similarly, the 
first branch on the right R0

0 performs the same opera-
tion with the second branch on the right R0

1 to get P1, 
i.e. P1 = f (R0

0)⊕ R0
1 ⊕ key11 . The half-round output 

(P0, L00,P1,R
0
0) is obtained by swapping the left and right 

branches separately. Next, the P0 calls the f function and 
then performs the XOR operation with the L00 and the 
subkey key12 to get the L11 , i.e. L11 = f (P0)⊕ L00 ⊕ key12 . 

f (x) = ((x≪1)&(x≪7))⊕ (x≪1),

Fig. 1  The ith round function of Shadow
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Similarly, the P1 performs the same operation with the R0
0 

to get the R1
1 , i.e. R1

1 = f (P1)⊕ R0
0 ⊕ key13 . After the data 

exchange, the first round output is (P1, L11,P0,R
1
1) . Repeat 

the above operation for RN rounds to generate the 
ciphertext C = (LRN0 , LRN1 ,RRN

0 ,RRN
1 ) . Notice that there 

is no data exchange in the last round. The corresponding 
encryption algorithm is exhibited in Algorithm  1. Since 
Shadow uses a generalized Feistel structure, the decryp-
tion algorithm only needs to use the round subkey in 
reverse order compared to the encryption algorithm.

Key schedule
Depending on the block size of Shadow, there are two 
kinds of round subkey generators, i.e. Generator1 and 
Generator2. For Shadow-32, the 64-bit primary key K 
is described as k0||k1||k2|| . . . ||k62||k63 and enters the 
Generator1. The Generator1 contains three operations, 
i.e. AddRoundConstant, NX Module, and Permutation. 
Firstly, the AddRoundConstant operation is performed on 
the 5-bit key k3||k4||k5||k6||k7 , followed by the NX Module 
on the 8-bit key k56||k57||k58 || . . . ||k62||k63 , and finally the 
Permutation on the 64-bit key. Subsequently, the subkey 
K ′ of the first round is obtained, where the front 32-bits of 
K ′ are partitioned into four equal-sized segments for the 
round key XOR operation. The K ′ is then input to Gen-
erator1 to generate the subkeys for each round until the 
encryption is completed. The specific operation proce-
dure of Generator1 is depicted in Fig. 2.

AddRoundConstant The round constant r is first 
expanded into its binary representation c0||c1||c2||c3||c4 , 
after which the 5-bit key k3||k4||k5||k6||k7 is XORed with 
the 5-bit value c0||c1||c2||c3||c4.

NX Module The only non-linear operation in Gen-
erator1 is the NX Module. For Shadow-32, the 8-bit key 
k56||k57|| . . . ||k62||k63 executes NX Module. The NX 
Module operates based on the following principle:

Permutation After the AddRoundConstant and NX 
Module operations are executed in Generator1, the Per-
mutation is implemented for the 64-bit key. As shown 
in Table 2, pi denotes the position index before the Per-
mutation, while p′i denotes the position index after the 
Permutation.

For Shadow-64, the 128-bit primary key K is described 
as k0||k1||k2|| . . . ||k126||k127 and enters the Genera-
tor2. The Generator2 also contains three operations, i.e. 
AddRoundConstant, NX Module, and Permutation. In 
Generator2, the round constant r is first expanded into 
its binary representation c0||c1||c2||c3|| c4||c5 , which is 
XORed with the 6-bit key k2||k3||k4||k5|| k6||k7 . Sub-
sequently, the NX Module is applied to the 24-bit key 

k ′56 = k56&(k56 ⊕ k62)
k ′57 = k57&(k57 ⊕ k63)
k ′58 = k58&(k58 ⊕ k56 ⊕ k62)
k ′59 = k59&(k59 ⊕ k57 ⊕ k63)
k ′60 = k60&(k60 ⊕ k58 ⊕ k56 ⊕ k62)
k ′61 = k61&(k61 ⊕ k59 ⊕ k57 ⊕ k63)
k ′62 = k62&(k62 ⊕ k60 ⊕ k58 ⊕ k56 ⊕ k62)
k ′63 = k63&(k63 ⊕ k61 ⊕ k59 ⊕ k57 ⊕ k63).

Fig. 2  The detailed operation procedure of Generator1
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k104||k105|| . . . ||k126||k127 , followed by the Permutation 
operation on the 128-bit key. Finally, the subkey K ′ of the 
first round is obtained, where the front 64-bits of K ′ are 
partitioned into four equal-sized segments for the round 
key XOR operation. The K ′ is then input to Generator2 to 
derive the round keys until the encryption is completed. 
Additionally, the principle of Generator2 is similar to that 
of Generator1, but with different numbers of bits. The 
detailed operation procedure of Permutation is depicted 
in Table 3 and the NX Module operates based on the fol-
lowing principle:























































k ′104 = k104&(k104 ⊕ k126)
k ′105 = k105&(k105 ⊕ k127)
k ′106 = k106&(k106 ⊕ k104 ⊕ k126)
k ′107 = k107&(k107 ⊕ k105 ⊕ k127)
k ′108 = k108&(k108 ⊕ k106 ⊕ k104 ⊕ k126)
k ′109 = k109&(k109 ⊕ k107 ⊕ k105 ⊕ k127)
k ′110 = k110&(k110 ⊕ k108 ⊕ k106 ⊕ k104 ⊕ k126)
...

k ′127 = k127&(k127 ⊕ k125 ⊕ k123 ⊕ . . .⊕ k105 ⊕ k127).

Table 2  Permutation of Shadow-32

pi p′ i pi p′ i pi p′ i pi p′ i

0 56 16 60 32 40 48 0

1 57 17 61 33 41 49 1

2 58 18 62 34 42 50 2

3 59 19 63 35 43 51 3

4 16 20 28 36 44 52 4

5 17 21 29 37 45 53 5

6 18 22 30 38 46 54 6

7 19 23 31 39 47 55 7

8 20 24 32 40 48 56 8

9 21 25 33 41 49 57 9

10 22 26 34 42 50 58 10

11 23 27 35 43 51 59 11

12 24 28 36 44 52 60 12

13 25 29 37 45 53 61 13

14 26 30 38 46 54 62 14

15 27 31 39 47 55 63 15

Table 3  Permutation of Shadow-64

pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i pi p′ i

0 104 16 108 32 112 48 116 64 120 80 124 96 0 112 16

1 105 17 109 33 113 49 117 65 121 81 125 97 1 113 17

2 106 18 110 34 114 50 118 66 122 82 126 98 2 114 18

3 107 19 111 35 115 51 119 67 123 83 127 99 3 115 19

4 32 20 48 36 48 52 60 68 80 84 92 100 4 116 20

5 33 21 49 37 49 53 61 69 81 85 93 101 5 117 21

6 34 22 50 38 50 54 62 70 82 86 94 102 6 118 22

7 35 23 51 39 51 55 63 71 83 87 95 103 7 119 23

8 36 24 52 40 52 56 64 72 84 88 96 104 8 120 24

9 37 25 53 41 53 57 65 73 85 89 97 105 9 121 25

10 38 26 54 42 54 58 66 74 86 90 98 106 10 122 26

11 39 27 55 43 55 59 67 75 87 91 99 107 11 123 27

12 40 28 56 44 56 60 68 76 88 92 100 108 12 124 28

13 41 29 57 45 57 61 69 77 89 93 101 109 13 125 29

14 42 30 58 46 58 62 70 78 90 94 102 110 14 126 30

15 43 31 59 47 59 63 71 79 91 95 103 111 15 127 29
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Impossible differential cryptanalysis
Impossible differential cryptanalysis is a variant of dif-
ferential cryptanalysis, which was proposed by Knudsen 
(1998) and Biham et  al. (1999) respectively. Impossible 
differential cryptanalysis, as opposed to classical dif-
ferential cryptanalysis which utilizes a high probability 
differential characteristic, utilizes a zero-probability dif-
ferential characteristic to recover keys. Its basic idea is 
to exclude wrong keys that lead to zero-probability dif-
ference and then recover the correct key by exhausting 
the candidate keys. Impossible differential cryptanalysis 
comprises two phases: the phase of searching for impos-
sible differential distinguishers, and the phase of key 
recovery. The key to the impossible differential analysis 
is to search for the longest-round impossible differential 
distinguisher, as a higher number of rounds indicates 
a weaker resistance against the impossible differential 
attacks. The traditional search impossible differential dis-
tinguisher is to describe the propagation of difference in 
block ciphers, but the propagation of difference through 
non-linear components is uncertain, making it impossi-
ble to consider the details of non-linear components and 
the key schedule.

Definition 1  (Block Cipher) Let F2 be the binary field, 
and Fm

2  and Ft
2 be m-dimensional and t-dimensional vec-

tor space over the finite field F2 , respectively. If the plain-
text P ∈ F

m
2  , the ciphertext C ∈ F

m
2  , and the master key 

K ∈ F
t
2 , then the iterative block cipher Em

K  with Fm
2  as the 

plaintext space (ciphertext space) and Ft
2 as the key space is

Definition 2  (Impossible Differential Distinguisher) For 
an iterative block cipher Em

K  , let α ∈ F
m
2  be the input dif-

ference and β ∈ F
m
2  be the r-round output difference, if 

differential propagation probability Pr(α → β) = 0 , then 
α � β is a r-round impossible differential distinguisher.

Since the input difference can be obtained by XOR 
of two input states, Hu et  al. (2020) characterize the 
propagation of difference by describing the propa-
gation of two sets of initial states. That is, given two 
input states (x00, x

0
1) , perform r-round encryption 

and obtain two groups of state propagation traces, 
i.e. (x00, x

1
0, x

2
0, . . . , x

r
0) and (x01, x

1
1, x

2
1, . . . , x

r
1) , then by 

xi0 ⊕ xi1(0 ≤ i ≤ r) we can get the input difference and 
the output difference for each round, i.e. differential 
characteristic (△x0,△x1, . . . ,△xr) . Compared to the tra-
ditional impossible differential analysis, the impossible 

Em
K : Fm

2 × F
t
2 �→ F

m
2 .

differential analysis based on the propagation of state 
not only takes into account the details of non-linear 
components but also allows to consider the impact of 
the key schedule.

Definition 3  (Impossible Differential Distinguisher Based 
on the Propagation of State) For an iterative block cipher Em

K  , 
if ∀(x0, x1) ∈ {(a0, a1) ∈ F

m

2
× F

m

2
|a0 ⊕ a1 = α} and α is the input 

difference, ∀(y0, y1) ∈ {(b0, b1) ∈ F
m
2 × F

m
2 |b0 ⊕ b1 = β} 

and β is the output difference, and Er
K
(x0)⊕ E

r
K
(x1) �= y0 ⊕ y1 , 

i.e. differential propagation probability Pr(α → β) = 0 , 
then α � β is a r-round impossible differential distin-
guisher based on the propagation of state.

The following is to use an obtained (r − 1)-round 
impossible differential distinguisher to recover the 
r-round key.

•	 Find a (r − 1)-round impossible differential distin-
guisher α → β;

•	 Select plaintext pairs (P, P̂) with P ⊕ P̂ = α , then 
perform r-round encryption and get the ciphertext 
pairs (C , Ĉ);

•	 Guess possible values of the r-round key kr . For each 
possible value of kr , decrypt ciphertext C and Ĉ one 
round forward and obtain (D, D̂) . Judge if D⊕ D̂ = β 
holds, if holds, then the guessed key is wrong;

•	 Repeat the above steps until the only correct key 
remains.

Assuming that |K| bit keys can be obtained by the above 
attack, each plaintext pair can eliminate 2−t of the key 
information. To ensure that the correct key is uniquely 
determined, the required plaintext pairs N must satisfy

When t is relatively large, it gives

The above equation shows that, when performing the 
impossible differential attack, the data complexity is 
almost independent of the amount of guessed key bits, 
and the main effect is the key information that can be 
eliminated for each plaintext pair.

SAT problem
The Boolean Satisfiability Problem (SAT) is a founda-
tional computational problem in the fields of computer 
science and mathematical logic. It involves determining 

(2|K | − 1)× (1− 2−t)N < 1,

N > 2t × ln 2× |K | ≈ 2t−0.53|K |.
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whether a given boolean formula, composed of boolean 
variables and logical operators such as AND, OR, and 
NOT, can be assigned truth values that satisfy the for-
mula. STP is the publicly accessible solver for the SAT 
problem. Its input is expected to be a file with the “.stp” 
extension, adhering to the CVC language format.

When solving an SAT problem, the first step is to con-
struct a model using the CVC language and save it as a 
file with the “.stp” extension. Subsequently, the STP solver 
is invoked for this file. If the STP returns “Valid.”, it indi-
cates that the target problem has no solution. Otherwise, 
it returns a solution of the target problem and “Invalid.”. 
For more details about the STP solver and the CVC lan-
guage, please refer to https://​stp.​github.​io/.

The following are the CVC terms used in this paper: 

1	 ASSERT(): The command statement.
2	 BITVECTOR(n): Declare variables as n bits.
3	 t1@t2@ . . .@tm : The connection operation.
4	 t1 &t2 &. . . &tm : The bitwise AND operation.
5	 BVXOR(t1, t2) : The bitwise XOR operation.

Automatic search for impossible differential 
distinguisher
In this section, we use the SAT method to automatically 
search for impossible differential distinguishers based on 
the propagation of the state, and find a full-round impos-
sible differential distinguisher of Shadow-32.

Bit‑oriented SAT model based on the propagation 
of the state
In this subsection, we will demonstrate the process of 
constructing the SAT model for searching impossible dif-
ferential distinguishers based on the propagation of the 
state.

According to Definition  3, the modeling process is 
composed of two steps, the first step is to describe the 
propagation of the two sets of states under r rounds of 
iterations, and the second step is to obtain the input 
difference and the r − round output difference by XOR-
ing the two sets of states and assign the given values. 
For the first step, the core is to model the propaga-
tion of the state under basic operations. Since Shadow 
utilizes ARX operations and is bit-oriented, we will 
use the CVC language to generate statements for the 
propagation of the state under the operations bit-ori-
ented COPY, bit-oriented AND, bit-oriented Rotation, 
and bit-oriented XOR. For the second step, we will 
use the CVC language to generate statements for the 

computation of the difference and the constraints on 
the difference.

Model 1  (COPY) Let F be a COPY function, where the 
input state is x ∈ F

q
2 and the output y0, y1, . . . , yt−1 ∈ F

q
2 

is caculated as (y0, y1, . . . , yt−1) = (x, x, . . . , x) . The bit 
vector format is x = (x0, . . . , xq−1), y

i = (yi0, y
i
1, . . . , y

i
q−1), 

where xj , yij ∈ F2 , 0 ≤ j ≤ q − 1 and 0 ≤ i ≤ t − 1 . Then, 
the modeling of the propagation of the state under the 
COPY operation is described in CVC format as 

The COPY operation is usually omitted in practi-
cal modeling because the value of the state remains 
unchanged after the COPY operation.

Model 2  (XOR) Let F be an XOR function, where 
the two input states are x, y ∈ F

q
2 and the output 

z ∈ F
q
2 is calculated as z = x ⊕ y . The bit vector  

format is x = (x0, x1, . . . , xq−1), y = (y0, y1, . . . , yq−1) , 
and z = (z0, z1, . . . , zq−1) , where xj , yj , zj ∈ F2 and 
0 ≤ j ≤ q − 1 . Then, the modeling of the propagation 
of the state under the XOR operation is described in 
CVC format as

Model 3  (AND) Let F be a AND function, where 
the two input states are x, y ∈ F

q
2 and the output 

z ∈ F
q
2 is calculated as z = x & y. The bit vector for-

mat is x = (x0, x1, . . . , xq−1), y = (y0, y1, . . . , yq−1) , 
and z = (z0, z1, . . . , zq−1) , where xj , yj , zj ∈ F2 and 
0 ≤ j ≤ q − 1 . Then, the modeling of the propagation of 
the state under the AND operation is described in CVC 
format as

Model 4  (Rotation) Let F be a Rotation function, where 
the input state is x ∈ F

q
2 and the output y ∈ F

q
2 is calcu-

lated as y = x ≪ n , where n is a constant. The bit vector 
format is x = (x0, x1, . . . , xq−1) and y = (y0, y1, . . . , yq−1) , 
where xj , yj ∈ F2 and 0 ≤ j ≤ q − 1 . Then, the modeling 























ASSERT (y00@ . . .@y0q−1 = x0@ . . .@xq−1);

ASSERT (y10@ . . .@y1q−1 = x0@ . . .@xq−1);

...

ASSERT (yt−1
0 @ . . .@yt−1

q−1 = x0@ . . .@xq−1);

ASSERT (z0@ . . .@zq−1 = BVXOR

(x0@ . . .@xq−1, y0@ . . .@yq−1));

ASSERT (z0@ . . .@zq−1 = (x0@ . . .@xq−1)

&(y0@ . . .@yq−1));

https://stp.github.io/
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of the propagation of the state under the Rotation opera-
tion is described in CVC format as

Computation of difference Let (x0, x̂0) ∈ F
q
2 × F

q
2 

be the two sets of initial states, and after r rounds of 
propagation, the r-round states (xr , x̂r) is obtained. By 
△x0 = x0 ⊕ x̂0 and △xr = xr ⊕ x̂r we can obtain the 
input difference △x0 and the r − round output difference 
△xr . The bit vector format is A = (A0,A1, . . . ,Aq−1) , 
where A = x0, x̂0, xr , x̂r ,△x0,△xr . Then, the computa-
tion of the input difference and the r − round output 
difference can be described in CVC format as

Constraints on difference Let the input difference 
△x0 = α and the r − round output difference △xr = β , 
where α,β ∈ F

q
2 are the given value. The bit vector for-

mat is α = (α0,α1, . . . ,αq−1) and β = (β0,β1, . . . ,βq−1) , 
where αj ,βj ∈ F2 and 0 ≤ j ≤ q − 1 . Then, the constraints 
on the input difference and the output difference can be 
described in CVC format as

The search algorithm for impossible differential 
distinguisher of shadow
In this subsection, we will show how to automatically 
seek impossible differential distinguishers. The auto-
mated search method consists of two phases: state-
ments generation phase and impossible differential 
distinguishers search phase. For the statements genera-
tion phase, Algorithm  2 automatically generates state-
ments describing the input difference △x0 propagate 
to the r − round output difference △xr with △x0 = α 
and △xr = β , and saves these statements as a file. For 
the impossible differential distinguishers search phase, 
Algorithm  3 invokes the STP to solve the file gener-
ated by Algorithm  2 to determine whether there is an 
impossible differential distinguisher by traversing sets 
of input differences and output differences satisfying 
certain conditions.

ASSERT (y0@ . . .@yq−1 = (xn@xn+1@ . . .@xq−1

@x0@ . . .@xn−1));

ASSERT (△x00@ . . .@△x0q−1

= BVXOR(x00@ . . .@x0q−1, x̂
0
0@ . . .@x̂0q−1));

ASSERT (△xr0@ . . .@△xrq−1

= BVXOR(xr0@ . . .@xrq−1, x̂
r
0@ . . .@x̂rq−1));

ASSERT (△x00@ . . .@△x0q−1 = α0@ . . .@αq−1);

ASSERT (△xr0@ . . .@△xrq−1 = β0@ . . .@βq−1);
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For Shadow, Algorithm  3 gives the overall frame-
work for searching impossible differential distinguish-
ers, i.e., the Main function; Algorithm  2 models the 
propagation of a given input difference to a given out-
put difference, i.e., the Generate function. The inputs to 
Algorithm 3 are the input difference set Id and the out-
put difference set Od, where Id = {α ∈ F

m
2 |wt(α) = 1} 

and Od = {β ∈ F
m
2 |wt(β) = 1} , i.e., Id and Od are the 

sets of all input and output difference of weight 1. For 
each α ∈ Id and β ∈ Od , Algorithm  3 first invokes 
Algorithm 2 to generate the file describing the propaga-
tion of α to β , then invokes the STP to solve the file, if 
it returns “Valid.”, then (α,β) is an impossible difference 
distinguisher and terminates the algorithm, otherwise, 
continues to traverse the Id and Od.

We present some specific explanations about Algo-
rithm 2 as follows.

•	 Line 1–3. Here x = (x0, . . . , xr) and x̂ = (x̂0, . . . , 
x̂r) , where xi, x̂i ∈ F

m
2  . Declare the state variables xij 

and x̂ij as 1 bit, where 0 ≤ i ≤ r and 0 ≤ j ≤ m− 1 . 
Declare the intermediate variables and the differ-
ence variables as 1 bit.

•	 Line 4–7. Using the provided propagation rules for 
each operation, model the propagation of x0 to xr and 
x̂0 to x̂r by incorporating intermediate variables.

•	 Line 8–9. Based on the modeling for the computa-
tion of difference and the constraints on difference, 
generate the corresponding statements.

•	 Line 10–11. The statement “QUERY(FALSE);” and 
the statement “COUNTEREXAMPLE;” need to be 
added at the ending of the file because these two 
statements are essential in solving an SAT problem 
using STP. By adding the two statements, if the STP 
returns “Valid.”, it means the SAT problem has no 
solution, otherwise, it returns a solution and “Inva-
lid.”.

Experimental results In practice, we implemented Algo-
rithms  3 and  2 using Python 3.8. and Cryptominisat. 
Finally, it took us approximately 41 hours to find a full-
round impossible differential distinguisher of Shadow-32, 
i.e. (0x80000000) � (0x40000000) . The impossible dif-
ferential distinguisher from the 1th to the 16th round 
and the time consumption is shown in Table  4. All the 
experiments are implemented on this platform: Intel(R) 
Xeon(R) CPU E5-2650 v4 @2.20GHz×48, 503.8G RAM, 
64-bit Ubuntu 20.04.6 LTS with 4 threads. Conveniently, 
all the source codes are accessible at https://​github.​com/​
VanyaW/​mypro​ject.

From the experimental results, we find that Shadow 
may have an impossible differential distinguisher for an 
arbitrary number of rounds, which will be proved theo-
retically in the next section. Since the method would be 
limited by the block size and the number of rounds, we 
have not conducted experiments on Shadow-64 under 
the limited time and resources, but the next section 
proves theoretically the existence of an impossible differ-
ential distinguisher for an arbitrary number of rounds of 
Shadow-64.

A proof of impossible differential distinguishers 
for an arbitrary number of rounds
In this section, we will prove that Shadow has a differen-
tial property with probability 1 based on the propagation 
of state, then we can get an impossible differential distin-
guisher for an arbitrary number of rounds of Shadow.

Theorem  1  For r-round Shadow, if for any input state 
(L00, L

0
1,R

0
0,R

0
1) ∈ Fm

2  and (L̂00, L̂
0
1, R̂

0
0, R̂

0
1) ∈ Fm

2  with the 
input difference (△L00,△L01,△R0

0,△R0
1) , after encrypting r 

rounds for the two sets of states, the corresponding output 
difference is (△Lr0,△Lr1,△Rr

0,△Rr
1) , then we have

△Lr0 ⊕△Rr
0 =

{

△L00 ⊕△R0
0 r = 2n(n ∈ N

∗),

△L10 ⊕△R1
0 r = 2n+ 1(n ∈ N

∗).

Table 4  The impossible differential distinguisher of Shadow-32 
from the 1th to the 16th round and the time consumption

Rounds The input difference The output difference Time (s)

1 0x80000000 0x80000000 0.054

2 0x80000000 0x80000000 0.081

3 0x80000000 0x80000000 0.217

4 0x80000000 0x40000000 1.009

5 0x80000000 0x80000000 1.134

6 0x80000000 0x40000000 6.556

7 0x80000000 0x80000000 8.988

8 0x80000000 0x40000000 52.288

9 0x80000000 0x80000000 73.417

10 0x80000000 0x40000000 362.931

11 0x80000000 0x80000000 579.507

12 0x80000000 0x40000000 2836.981

13 0x80000000 0x80000000 4084.869

14 0x80000000 0x40000000 22812.789

15 0x80000000 0x80000000 28649.212

16 0x80000000 0x40000000 150813.247

https://github.com/VanyaW/myproject
https://github.com/VanyaW/myproject
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Proof  To analyze the overall structure of Shadow more 
intuitively, we simplify to Fig. 3, which depicts any two 
consecutive rounds in the RN-round Shadow encryption 
process. The red line of Fig. 3 represents a differential 
relationship as shown in Eq. (3), and the green line of 
Fig. 3 represents another differential relationship as 
shown in Eq. (4). Let the two input state for the (i − 1) th 
round be

Then we have the (i − 1) th round input difference

Correspondingly, the output difference of the (i − 1) th 
round is

and the output difference of the ith round is

From the red line of Fig. 3, we have

and

Then combine (1) and (2), we get

Similarly, another input state holds

Thus, the difference △Li0 satisfies

Enlightenedly, from the green line of Fig. 3, we find

Similarly, another input state holds

(Li−2
0 , Li−2

1 ,Ri−2
0 ,Ri−2

1 ),

(L̂i−2
0 , L̂i−2

1 , R̂i−2
0 , R̂i−2

1 ).

(△Li−2
0 ,△Li−2

1 ,△Ri−2
0 ,△Ri−2

1 )

= (Li−2
0 ⊕ L̂i−2

0 , Li−2
1 ⊕ L̂i−2

1 ,

Ri−2
0 ⊕ R̂i−2

0 ,Ri−2
1 ⊕ R̂i−2

1 ).

(△Li−1
0 ,△Li−1

1 ,△Ri−1
0 ,△Ri−1

1 )

= (Li−1
0 ⊕ L̂i−1

0 , Li−1
1 ⊕ L̂i−1

1 ,

Ri−1
0 ⊕ R̂i−1

0 ,Ri−1
1 ⊕ R̂i−1

1 ),

(△Li0,△Li1,△Ri
0,△Ri

1)

= (Li0 ⊕ L̂i0, L
i
1 ⊕ L̂i1,R

i
0 ⊕ R̂i

0,R
i
1 ⊕ R̂i

1).

(1)Li0 = Ri−1
1 ⊕ F(Ri−1

0 )⊕ keyi1,

(2)F(Ri−1
0 ) = Li−1

1 ⊕ Li−2
0 ⊕ keyi−1

2 .

Li0 = Ri−1
1 ⊕ Li−1

1 ⊕ Li−2
0 ⊕ keyi−1

2 ⊕ keyi1.

L̂i0 = R̂i−1
1 ⊕ L̂i−1

1 ⊕ L̂i−2
0 ⊕ keyi−1

2 ⊕ keyi1.

(3)△Li0 = Li0 ⊕ L̂i0 = △Ri−1
1 ⊕△Li−1

1 ⊕△Li−2
0 .

Ri
0 = Li−1

1 ⊕ F(Li−1
0 )⊕ keyi0,

F(Li−1
0 ) = Ri−1

1 ⊕ Ri−2
0 ⊕ keyi−1

3 ,

Ri
0 = Li−1

1 ⊕ Ri−1
1 ⊕ Ri−2

0 ⊕ keyi−1
3 ⊕ keyi0.

Thus, the difference △Ri
0 satisfies

Finally, let (3) xor (4), we obtain

As the number of rounds i is arbitrary and i ≥ 2 , if i is 
even, then

if i is odd, then

and complete the proof. 

Based on Theorem 1 and Definition 3, we can obtain 
Corollary 1.

R̂i
0 = L̂i−1

1 ⊕ R̂i−1
1 ⊕ R̂i−2

0 ⊕ keyi−1
3 ⊕ keyi0.

(4)△Ri
0 = Ri

0 ⊕ R̂i
0 = △Li−1

1 ⊕△Ri−1
1 ⊕△Ri−2

0 .

△Li0 ⊕△Ri
0 = △Li−2

0 ⊕△Ri−2
0 .

△Li0 ⊕△Ri
0 = △Li−2

0 ⊕△Ri−2
0 = . . . = △L00 ⊕△R0

0,

△Li0 ⊕△Ri
0 = △Li−2

0 ⊕△Ri−2
0 = . . . = △L10 ⊕△R1

0,

�

Fig. 3  Any two consecutive rounds of Shadow
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Corollary 1  For an arbitrary r-round Shadow, 
the input difference is (△L00,△L01,△R0

0,△R0
1) , corre-

spondingly, the output difference is (△Lr0,△Lr1,△Rr
0, 

△Rr
1) . if △L00 ⊕△R0

0 �= △Lr0 ⊕△Rr
0 (r = 2n) or 

△L10 ⊕△R1
0 �= △Lr0 ⊕△Rr

0 (r = 2n+ 1) , then 
(△L00,△L01,△R0

0,△R0
1) � (△Lr0,△Lr1,△Rr

0,△Rr
1) is an 

impossible differential distinguisher of Shadow.

Key recovery attack on full‑round Shadow‑32/64
In this section, we will use a concrete arbitrary N-round 
impossible differential distinguisher to perform key 
recovery for (N + 1)-round Shadow-32 and (N + 1)-
round Shadow-64 respectively.

Key recovery attack on full‑round Shadow‑32

Theorem  2  (N-round Impossible Differential Dis-
tinguisher of Shadow-32) In the single-key model, 
Shadow-32 exists an arbitrary N-round impossible differ-
ential distinguisher, i.e.

where the Nth round includes data exchange.

Proof  Firstly, we have △L00 = 10000000, 
△R0

0 = 00000000,△LN0 = 01000000,△RN
0 = 00000000 . 

(1)	 When N = 2n(n > 0) , according to Theorem 1 and 
Corollary 1, since △L00 ⊕△R0

0 �= △LN0 ⊕△RN
0 , thus 

finding the contradiction.
(2)	 When N = 2n+ 1(n > 0) , after the propa-

gation of difference for the first round, the 
output difference (△L10,△L11,△R1

0,△R1
1) is 

(00000000, ∗0 ∗ 01 ∗ ∗∗, 0 ∗ 00001∗, 00000000) , 
according to Theorem  1 and Corollary  1, since 
△L10 ⊕△R1

0 �= △LN0 ⊕△RN
0 , thus finding the con-

tradiction.

Next based on the N-round impossible differential dis-
tinguisher, encrypt one round backward to perform key 
recovery for (N + 1)-round Shadow-32. The propagation 
of difference during the key recovery process is depicted in 
Fig. 4. The specific key recovery process is as follows.

•	 Step 1 Let the difference of plaintext be 

(10000000, 00000000, 00000000, 00000000)

� (01000000, 00000000, 00000000, 00000000),

�

 Define the following plaintext structure 

 where αi(1 ≤ i ≤ 32) is a constant. The plaintext 
can form 2 plaintext pairs. Select 2n plaintext struc-
tures, and there are 2n+1 plaintext pairs (x0, x̂0) . After 
N + 1 rounds of encryption, obtain the correspond-
ing ciphertext pairs (xN+1, x̂N+1).

•	 Step 2 Select the ciphertext pairs that satisfy the follow-
ing form: 

 where ∗ ∈ F2 . Since the ciphertexts that sat-
isfy the above form are 27 , the probability is 
27 × 2−32 = 2−25. After screening, the ciphertext 
pair remains 2n+1 × 2−25 = 2n−24.

•	 Step 3 Guess 16-bit key in the (N + 1) th round, 
i.e. keyN+1

2  and keyN+1
0  . Then decrypt each cipher-

text pair from Step 2 one round forward, and 
get (△LN0 ,△LN1 ) . Judge if △LN0 = 01000000 and 
△LN1 = 00000000 hold, if hold, then the guessed key 
is wrong and is excluded. Repeat the above steps until 
the only correct key remains.

Complexity analysis After step 3, the error value of the 
key is approximately (216 − 1)× (1− 2−1)2

n−24 . When 
n = 28 , (216 − 1)× (1− 2−1)2

n−24
< 1 , therefore the 

wrong keys can all be excluded. Boura et al. (2014) pre-
sented that the data complexity is 2n+△in+1 , where the 
△in is the number of active bits for the difference of 
plaintext. So the data complexity is 228+1+1 = 230 . Step 
3 requires 2n−24 × 216 × 2 = 221 one round of encryp-
tion, in addition, the remaining 48 bits of the master key 
need to be searched exhaustively, so the time complexity 

△x0 = (△L00,△L01,△R0
0,△R0

1)

△L00 = (10000000)

△L01 = (00000000)

△R0
0 = (00000000)

△R0
1 = (00000000).

x0 = (L00, L
0
1,R

0
0,R

0
1)

L00 = (α1α2α3α4α5α6α7α8)

L01 = (α9α10α11α12α13α14α15α16)

R0
0 = (α17α18α19α20α21α22α23α24)

R0
1 = (α25α26α27α28α29α30α31α32),

△xN+1 = (△LN+1
0 ,△LN+1

1 ,△RN+1
0 ,△RN+1

1 )

△LN+1
0 = (∗0 ∗ 00001)

△LN+1
1 = (∗ ∗ 0 ∗ 01 ∗ ∗)

△RN+1
0 = (00000000)

△RN+1
1 = (00000000),
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required to recover full key is 221/(N + 1)+ 248 ≈ 248 
(N+1)-round encryption. Since step 2 requires storing 
2n−24 = 24 ciphertext pairs and 216 candidate keys, and 
an exhaustive search of 48 bits requires the storage of 248 , 
the memory complexity required to recover full key is 
(24 + 216 + 248)/32 ≈ 243 32-bit block.

In summary, for Shadow-32, the round number is 16 
and N is 15. A full-round impossible differential attack 
on Shadow-32 requires 230 data complexity, 248 16-round 
encryption time complexity and 243 32-bit block memory 
complexity.

Key recovery attack on full‑round Shadow‑64

Theorem  3  (N-round Impossible Differential Dis-
tinguisher of Shadow-64) In the single-key model, 
Shadow-64 exists an arbitrary N-round impossible differ-
ential distinguisher, i.e.

(1000000000000000, 0000000000000000,

0000000000000000, 0000000000000000)

� (0100000000000000, 0000000000000000,

0000000000000000, 0000000000000000),

where the Nth round includes data exchange.

Proof  The process of proving Theorem 3 is similar to that 
of Theorem 2. Firstly, we have △L00 = 1000000000000000, 
△R0

0 = 0000000000000000,△LN0 = 0100000000000000, 
△RN

0 = 0000000000000000 . 

(1)	 When N = 2n(n > 0) , according to Theorem 1 and 
Corollary 1, since △L00 ⊕△R0

0 �= △LN0 ⊕△RN
0 , thus 

finding the contradiction.
(2)	 When N = 2n+ 1(n > 0) , after the first difference 

propagation, the output difference (△L10,△L11,△R1
0, 

△R1
1) is (0000000000000000, 10 ∗ 0000 ∗ ∗000 ∗ ∗∗

0, 000000000 ∗ 0000 ∗ ∗, 0000000000000000)   , 
according to Theorem  1 and Corollary  1, since 
△L10 ⊕△R1

0 �= △LN0 ⊕△RN
0 , thus finding the con-

tradiction.

Next based on the N-round impossible differential dis-
tinguisher, encrypt one round backward to perform key 
recovery for (N + 1)-round Shadow-64. The propagation 

�

Fig. 4  (N + 1)-round impossible differential cryptanalysis on Shadow-32
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of difference during key recovery is shown in Fig. 5. The 
specific key recovery process is as follows.

•	 Step 1 Let the difference of plaintext be 

 Define the following plaintext structure 

 where αi(1 ≤ i ≤ 64) is a constant. The plaintext 
can form 2 plaintext pairs. Select 2n plaintext struc-
tures, and there are 2n+1 plaintext pairs. After N + 1 
rounds of encryption, obtain the corresponding 
ciphertext pairs (xN+1, x̂N+1).

•	 Step 2 Select the ciphertext pairs that satisfy the fol-
lowing form: 

△x0 = (△L00,△L01,△R0
0,△R0

1)

△L00 = (1000000000000000)

△L01 = (0000000000000000)

△R0
0 = (0000000000000000)

△R0
1 = (0000000000000000).

x0 = (L00, L
0
1,R

0
0,R

0
1)

L00 = (α1α2 . . . α15α16)

L01 = (α17α18 . . . α31α32)

R0
0 = (α33α34 . . . α47α48)

R0
1 = (α49α50 . . . α63α64),

 where ∗ ∈ F2 . Since the ciphertexts that sat-
isfy the above form are 29 , the probability is 
29 × 2−64 = 2−55. After screening, the ciphertext 
pair is 2n+1 × 2−55 = 2n−54.

•	 Step 3 Guess 32-bit key in the (N + 1) th round, 
i.e. keyN+1

2  and keyN+1
0  . Then decrypt each cipher-

text pair from Step 2 one round forward, and get 
(△LN0 ,△LN1 ) . Judge if △LN0 = 0100000000000000 
and △LN1 = 0000000000000000 hold, if hold, then 
the guessed key is wrong and is excluded. Repeat the 
above steps until the only correct key remains.

Complexity analysis After step 3, the error value of the 
key is approximate (232 − 1)× (1− 2−1)2

n−54 . When 
n = 59 , (232 − 1)× (1− 2−1)2

n−54
< 1 , therefore the 

wrong keys can all be excluded. Boura et al. (2014) pre-
sented that the data complexity is 2n+△in+1 , where the △in 
is the number of active bits for the difference of plaintext. 
So the data complexity is 259+1+1 = 261 . Step 3 requires 

△x
N+1 = (△L

N+1
0

,△L
N+1
1

,△R
N+1
0

,△R
N+1
1

)

△L
N+1
0

= (∗000000000 ∗ 0000∗)

△L
N+1
1

= (010 ∗ 0000 ∗ ∗000 ∗ ∗∗)

△R
N+1
0

= (0000000000000000)

△R
N+1
1

= (0000000000000000),

Fig. 5  (N + 1)-round impossible differential cryptanalysis on Shadow-64
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2n−54 × 232 × 2 = 238 one round of encryption, in addi-
tion, the remaining 96 bits of the master key need to be 
searched exhaustively, so the time complexity required 
to recover the full key is 238/(N + 1)+ 296 ≈ 296 
(N + 1)-round encryption. Since step 2 requires to store 
2n−54 = 25 ciphertext pairs and 232 candidate keys, and 
an exhaustive search of 96 bits requires the storage of 296 , 
the memory complexity required to recover the full key is 
(25 + 232 + 296)/64 ≈ 290 64-bit block.

For Shadow-64, the round number is 32 and N is 31. A 
full-round impossible differential attack requires 261 data 
complexity, 296 32-round encryption time complexity and 
290 64-bit block memory complexity. It is worth noting 
that simply increasing the number of iterative rounds of 
Shadow cannot resist the impossible differential attack.

Summary
In this paper, we focus on the differential property of 
Shadow and its security against the impossible differen-
tial attack. First, we use the SAT method to automatically 
search for a full-round impossible differential distin-
guisher of Shadow-32. Then, based on the experimental 
results, we prove that Shadow has a differential property 
with probability 1 based on the propagation of state. Fur-
ther, we present an arbitrary number of rounds of impos-
sible differential distinguisher for Shadow. Finally, we 
use a concrete arbitrary N-round impossible differential 
distinguisher to perform key recovery for (N + 1)-round 
Shadow-32 and Shadow-64. For Shadow-32, a 16-round 
full key recovery attack requires 230 data complexity, 
248 16-round encryption time complexity and 243 32-bit 
block memory complexity. For Shadow-64, a 32-round 
full key recovery attack requires 261 data complexity, 
296 32-round encryption time complexity and 290 64-bit 
block memory complexity.

Both experimentally and theoretically, our results indi-
cate that Shadow is critically flawed, and regardless of 
the security strength of the internal components and the 
number of rounds applied, the overall cipher remains 
vulnerable to the impossible differential attack.
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