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In the last decade, public and industrial research funding has moved quantum
computing from the early promises of Shor’s algorithm through experiments to
the era of noisy intermediate scale quantum devices (NISQ) for solving real-world
problems. It is likely that quantummethods can efficiently solve certain (NP-) hard
optimization problems where classical approaches fail. In our perspective, we
examine the field of quantum optimization, that is, solving optimization problems
using quantum computers. We provide an entry point to quantum optimization for
researchers from each topic, optimization or quantum computing, by
demonstrating advances and obstacles with a suitable use case. We give an
overview on problem formulation, available algorithms, and benchmarking.
Although we show a proof-of-concept rather than a full benchmark between
classical and quantum methods, this gives an idea of the current quality and
capabilities of quantum computers for optimization problems. All observations are
incorporated in a discussion on some recent quantum optimization
breakthroughs, current status, and future directions.
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1 Introduction

In November 1994, Peter Shor presented his pioneering algorithm at the IEEE
Symposium on Foundations of Computer Science in Santa Fe, NM (Shor, 1994).
Without a doubt, Shor’s algorithm threatened the underpinnings of public key
cryptography, putting quantum computing on the proverbial map and forcing people
outside the academic community to pay attention (Witt, 2022). Decades later, it remains the
standard-bearer of quantum algorithms. Almost as important, Shor’s algorithm has
currently led to investments of billions of (US) dollars worldwide into quantum
computing technologies1. This drastic increase of funding has seen a spike in quantum
computing research at public and private research institutes, R&D departments in the
commercial sector, as well as the founding of new startups (Brooks, 2019; Gibney, 2019;
MacQuarrie et al., 2020). As of 15 Dec 2022, 10,416 quantum physics articles have been
published on the arXiv preprint server where nearly half these papers involve quantum
computing. In tandem with the volume of publications, quantum computers have evolved
from experiments to an era of noisy intermediate scale quantum (NISQ) devices (Preskill,
2018; Callison and Chancellor, 2022) where they play an increasingly popular role in real-
world problems (Bova et al., 2021).
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One exciting application area is optimization. In business, time
is money. Everything can be reduced to an optimization problem.
Every company decision is weighed against resources, financial cost,
and opportunity cost. The longer it takes to make a decision, the
greater the cost. Optimization problems exist across every industry
(Yarkoni et al., 2022). They are difficult to solve due to incomplete or
uncertain data, difficulties in stating the problem or examining the
value of proposed solutions, or because they are NP-hard problems.
Stemming from the P-versus-NP-problem (Fortnow, 2013), the time
required to solve NP-hard problems is suspected to grow
exponentially with the size of the problem. The problems are
hard because of the large and exponentially growing solution
space (combinatorial explosion). As a result, automotive
companies such as BMW (BMW Group, 2018) and Volkswagen
(Yarkoni et al., 2019; Yarkoni et al., 2021) are already (Zaman et al.,
2021) exploring the possibility of quantum-based optimization for
manufacturing. Additionally, quantum methods have been applied
to portfolio optimization (Orús et al., 2019; Egger et al., 2020;
Yalovetzky et al., 2021), logistics (Bentley et al., 2022), supply
chain management (Weinberg et al., 2022), and energy economy
(Mastroianni et al., 2022).

The aim of this perspective is to critically examine the status
and future of quantum computing for optimization, which we
define as quantum optimization, including some possible
weaknesses. We intend to complement the Royal Society’s
recent special edition on quantum annealing (Chakrabarti
et al., 2023) and Applied Quantum Computing’s excellent
review which provides accessible explanations for the
technicalities of quantum computing and their practical uses
(Cumming and Thomas, 2022). We also recommend Ref (Guenin
et al., 2014) as an introduction to optimization. The outline of
this paper is as follows. We identify suitable optimization
problems that can benefit from quantum methods (Section 2).
Then we address the challenges in formulating problems for
quantum computers and algorithms (Section 3) before surveying
the available algorithms (Section 4). In Section 5, we assess the
current quantum computing hardware and determine possible
weaknesses using a demonstration benchmark. Finally we
present our perspective on quantum optimization, focusing on
its present and future status.

2 Finding suitable use cases

Compared to classical computers, quantum computers cope well
with large search spaces, complex problem structures and objective
functions. For example, quantum annealing is used to solve
optimization problems which can take many forms:
unconstrained versus constrained; using differential equations as
constraints; combinatorial and graph problems; supposedly simple
linear problems. (For an overview of real-world applications, see
(Hauke et al., 2020; Yarkoni et al., 2022).) Many publications in
quantum optimization focus on science and engineering such as the
use of quantum annealing in the drug discovery and development
process (Paul et al., 2010; Langione et al., 2019a; Evers et al., 2021).
Due to significant investment in R&D (Wouters et al., 2020; Evers
et al., 2021; Brown et al., 2022), there are strong incentives to try new
computational methods like Google DeepMind’s breakthrough

AlphaFold platform (Senior et al., 2020; AlQuraishi, 2021) for the
pharmaceutical industry. Quantum computing can overcome
AlphaFold’s shortcomings (Mulligan et al., 2019; Wong et al.,
2022) and dramatically change both landscape and revenue in
the next few decades (Bobier et al., 2021).

While there have been substantial efforts in applying
quantum methods to specific problems, less work has been
done on finding systematic approaches to determine which
problems are most promising (Chancellor et al., 2020). Use
cases for quantum optimization are generally NP-hard or
worse and difficult to approximate (with a constant factor).
However, some NP-hard problems are solvable or heuristics/
approximation algorithms provide acceptable results, e.g., the
knapsack problem. A good example of an NP-hard problem is the
Maximum Weighted Independent Set (MWIS) problem: Given a
topology graph, we want to find a set of vertices with maximum
weight such that no vertices of that set are connected by an edge
(Lovász, 1994; Pardalos and Xue, 1994). The problem cannot be
approximated to a constant factor unless P = NP (Arora and
Barak, 2009) and approximation to a polynomial factor is NP-
hard itself (Bazgan et al., 2005). MWIS has practical applications,
for example in DNA sequencing (Joseph et al., 1992) and
quantum computing (Ebadi et al., 2022). We use MWIS as our
example problem for the rest of this paper.

3 Modeling

Solving real-world problems typically requires reformulating
into a mathematical problem. Given a graph G = G (V, E) with
m vertices, weight ai for each vertex V and set of edges E, the classical
formulation of the MWIS problem is

max ∑
m

i�1
aixi

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E,
x ∈ {0, 1}m.

(1)

For the quantum computing algorithms that we discuss in
Section 4, the optimization problem must be in the form of a
quadratic unconstrained binary optimization problem (QUBO),
minx∈{0,1}mx⊤Qx. In quantum physics, the Hamiltonian is used to
calculate the system’s minimum energy state. QUBOs are related to
the Ising Hamiltonian describing the energy of a solid in a
ferromagnetic field using n spins si = ±1

H s1, . . . , sn( ) � −∑
i<j

Jijsisj −∑
n

i�1
hisi (2)

with interaction strength Jij between two adjacent spins i, j and spin-
external magnetic field interaction hi. Spins can be transformed to
binary variables2 via xi = (si + 1)/2. The general method for
transforming problems to QUBO involves:

1. Introducing slack variables (Boyd and Vandenberghe, 2004) to
transform inequality constraints to equality constraints.

2. Transforming equality constraints to quadratic penalty terms.
3. For integer and continuous variables, defining a discrete set of

possible values and applying a binary encoding of these values.
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3.1 Modelling constraints

While the procedure above works to transform any linear or
quadratic problem, it has its flaws. In MWIS for example, we
must introduce a binary slack variable ye and add penalty term
(xi + xj − ye − 1)2 to the objective function for every edge e ∈ E.
As each quadratic term in the QUBO’s objective function
requires a connection between the qubits corresponding to
the variables, the number of connections quickly exceeds
what is available in current NISQ devices. For problems with
integer and/or continuous variables the problem is exacerbated
due to binary encoding. More sophisticated techniques have
been presented by Glover et al. (Glover et al., 2019; Glover et al.,
2020) and Lucas (Lucas, 2014) including QUBO formulations
for Karp’s 21 NP-hard problems (Karp et al., 1972). Advanced
modeling has been applied to real-world problems (Halffmann
et al., 2022).

A better formulation for the MWIS is

max ∑
m

i�1
aixi − p ∑

(i,j)∈E
xixj

s.t. x ∈ {0, 1}m
(3)

where we add no additional variables3 and have less connectivity.
The challenging task of choosing the right scalar penalty factor p
relies on domain knowledge and experience. We can also obtain
decent estimates from the constraints (e.g. setting p: = maxiai ·
maxideg(i) + 1, where deg(i) is the number of edges vertex i is
connected with). High penalty factors cause the original objective
function to lose its significance, making it hard to distinguish
between optimal and feasible solutions, particularly on NISQ
devices. Feasible solutions are disregarded when penalties are too
small. To our knowledge, no formal techniques exist although
simple machine learning approaches could improve the
formulation quality.

3.2 Modelling variables

Binary encoding (Lucas, 2014) is widely used for higher-than-
binary model variables. The number of possible values a variable can
attain is reduced toM which then can be encoded using � log(M)� +
1 qubits. It is resource intensive, thus we highlight two alternative
approaches.

Domain-wall is a (Palacios-Berraquero et al., 2019) recently
proposed method for encoding discrete variables (Chancellor,
2019), dramatically improving both gate-model variational
algorithms (Plewa et al., 2021) and annealers (Abel et al.,
2021; Chen et al., 2021). In this method, arbitrary two-
variable interactions between discrete variables of size m can
be represented in an encoding which requires m − 1 qubits per
variable, one less than the more traditional one-hot encoding
method. Importantly, arbitrary pairwise interactions between
discrete variables can be mapped to quadratic interactions
between qubits. It is suitable for devices with limited
connectivity (Chancellor, 2019) and uses the minimum
number of qubits where such a guarantee is possible (Berwald
et al., 2023). It has been explored for networking applications has
(Chen et al., 2022).

A recent work (Bermejo and Orus, 2022) deviates from the
standard QUBO approach by considering continuous variables
without binary encoding. The qubit state can be given as a
position on or in the Bloch sphere for pure and mixed states
respectively, so they make use of the 3D coordinates given by
two angles and the radius. They can encode two (three)
continuous variables into each pure- (mixed-)state qubit.

4 Algorithms

Here we present two popular methods for solving optimization
problems: Variational quantum algorithms and quantum annealing.
Further methods exist like Grover adaptive search (Gilliam et al.,
2021) and hybrid algorithms (Ajagekar et al., 2020; Callison and
Chancellor, 2022) but these are beyond the scope of our work. For an
exhaustive list of quantum algorithms, we recommend the Quantum
Algorithm Zoo (Jordan, 2021).

4.1 Variational quantum algorithms

Variational quantum algorithms (VQAs) provide a general
framework for solving many problems such as big data analysis
and simulations for quantum chemistry and materials science
(Kandala et al., 2017; Kokail et al., 2019). Their adaptive nature
is due to the variational process: the optimization procedure varies
the algorithm on-the-fly, similar to machine learning (Cerezo et al.,
2021). The problem is encoded into a parametrized cost function
that defines a hypersurface. The quantum circuit navigates this
surface to estimate the global minima which correspond to
solutions of the problem. The result is passed back to the
classical computer to adjust the VQA parameters. Then this is
returned to the quantum computer to repeat the process.

VQAs require an ansatz whose form dictates what the
variational parameters are and how they can be trained to
minimize the cost function. The ansatz structure depends on the
problem at hand. One major bottleneck is the barren plateau
phenomenon, where changes in the classical parameters have
little effect on the optimality of the variational state. The
presence of barren plateaus is tied to the expressivity of the
variational ansatz (Holmes et al., 2022). Highly expressive
ansatzes tend to cause the algorithms to become effectively lost
in a vast space of highly sub-optimal solutions. This leads to a
tradeoff: if the ansatz is not expressive enough, it may not be able to
effectively solve the problem; if too expressive, then the algorithm
cannot be efficiently trained (Cerezo et al., 2021; Callison and
Chancellor, 2022).

There are two major VQAs:

1. The computationally universal quantum approximate
optimization algorithm (QAOA) (Lloyd, 2018; Hadfield et al.,
2019; Morales et al., 2020; Zhou et al., 2020), originally
introduced to solve combinatorial optimization problems
(Farhi et al., 2014a; Farhi et al., 2014b).

2. Variational quantum eigensolvers (VQEs) (Cerezo et al., 2021;
Tilly et al., 2022) are the best-known application of VQAs and
were originally used to find the ground state energy of molecules
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(Aspuru-Guzik et al., 2005; Wecker et al., 2015; McClean et al.,
2016).

Further developments have, for example resulted in more
sophisticated versions of QAOA (Egger et al., 2021) and more
efficient use of quantum hardware for VQE (Amaro et al., 2022).

4.2 Quantum annealing and D-Wave

Quantum annealing (Kadowaki and Nishimori, 1998; Hauke
et al., 2020; Yarkoni et al., 2022) is a form of quantum computing
based on continuous time evolution. Typically it operates outside the

regime of adiabatic quantum computing which gives theoretical
guarantees of performance (Farhi et al., 2000; Albash and Lidar,
2018). The Hamiltonian takes the general form.

H t( ) � H0 t( ) +Hp t( ) � 1 − t

T
( )H0 + t

T
Hp. (4)

Initially (t = 0), quantum annealing begins in a prepared state of
Hamiltonian H0 with uniform probability (Figure 1). During the
system evolution (0 < t < T), probabilities are gradually driven
toward the global minimum (near-optimal solution) by final time T
and the system is in the eigenstate of problem’s Hamiltonian Hp.

Quantum annealing can be done on D-Wave computers.
Evolution is governed by the transverse field Ising Hamiltonian,

FIGURE 1
Quantum annealing process, including time evolution from H (0) = H0 to H(T) = Hp.
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H t( ) � A t( )∑
n

σxn
︸��︷︷��︸

H0

+B t( )∑
n,m

hnσ
z
n + Jnmσ

z
nσ

z
m( )

︸��������︷︷��������︸
Hp

(5)

with Pauli-x and -z matrices σx,z, symmetric interaction strength
Jnm = Jmn of qubits n and m, and on-site energy hn.

5 Hardware and benchmarking

There are numerous quantum computer manufacturing
companies ranging from small startups to large well-established
companies (MacQuarrie et al., 2020). We show examples of
collaborations in Figure 2. A leading platform for solving
optimization problems is D-Wave Systems which are based on a
superconducting flux-qubit design (Bunyk et al., 2014). Other
platforms such as IBM Q use superconducting electronics
(transmons). For brevity, we focus on the most mature platforms
with over 100 qubits: D-Wave and IBM.While D-Wave only applies
quantum annealing (Section 4.2), IBM’s gate-based universal
quantum computer allows various algorithms. D-Wave has been
selling quantum computers since 2011 (Nimbe et al., 2021) and has
become an important player in the quantum computer industry
(Gerbert and Ruess, 2018). Both D-Wave and IBM’s methods
involve time-evolving quantum systems (Crosson and Lidar,
2021), and the companies themselves have ambitious plans to
shape the future of quantum computing4.

To compare quantum and classical methods, we perform a
demonstration benchmark for the MWIS problem. We consider

randomly generated graphs with different numbers of vertices (size
k) and randomly selected vertex weights between 1 and 2k + 1. We
briefly discuss the results here (see Supplementary Material for more
details). We compare D-Wave Quantum Annealer’s results to
Gurobi 10.0 (Gurobi Optimization and LLC, 2022) on classical
hardware (Figure 3). Gurobi outperforms D-Wave, but the
results up to size 25 are promising because D-Wave’s QPU
embedding time is a similar order of magnitude to a state-of-the-
art classical commercial solver. Increasing the number of vertices
decreases solution quality and probability for D-Wave. Additionally,
the embedding time dominates the total time required to solve the
problem. (German Draft Budgetary Plan, 2020).

Instances up to size 25 have also been tested on IBM viaQAOA.
Using QASM with Qiskit’s statevector simulator, IBM Qiskit can
calculate optimal solutions up to size 10 but fails for size 25 and
above. Using real quantum hardware (Falcon r6 QPU with
27 qubits), only a graph of size five occasionally gave the correct
solution. We discuss the IBM results in the Supplementary Material.
Note that Gurobi can certify the solution correctness by using (for
example) duality. Gurobi confirmed optimality for all results.
D-Wave and IBM do not certify their results.

To summarize, these results suggest that currently the classical
approach is more efficient and that there is no practical quantum
advantage for small numbers of graph vertices. Hence we may ask
whether this is the best benchmarking strategy. Better and fairer
strategies exist (Katzgraber et al., 2014), especially for D-Wave, and
for analyzing how results will scale (Weinberg et al., 2020). However
this is beyond the scope of this work where our benchmark is
intended as a proof-of-concept. Only with more thorough
benchmarking can we accurately assess the capabilities and
speed-ups of quantum computers (Rønnow et al., 2014).

6 Discussion and outlook

In this work, we surveyed quantum methods for solving
optimization problems. Our demonstration benchmarking
compared quantum and classical methods for solving the MWIS
problem. Now we discuss several key points and our perspectives on
quantum optimization.

Finding a good problem formulation has a key impact on the
solution quality. Historically, optimization practitioners have
preferred constrained linear representations of problems.
Quantum computing presents a different paradigm where the
fundamental objects for optimization are quadratic expressions.
Here we should minimize the number of qubits and connections.
Mapping the Hamiltonian onto quantum hardware architecture is
challenging but can be significantly improved via applying
specialized graph optimization algorithms and machine learning
methods. We stress that the transformation to QUBO is not
inevitable. For example, Grover’s adaptive search (Bulger et al.,
2003; Gilliam et al., 2021) can take any function at the cost of deeper
circuits. While this is promising, practical advantage (compared to
say, quantum annealers) is not definitive.

Practical application of quantum computing requires further
progress in hardware. Measuring hardware quality and that of
formulations and algorithms likewise is a research task on its
own. Here, we need better evaluation and benchmarking

FIGURE 2
Quantum computing commercial landscape (selected
companies only). Academic institutions and government
organizations not shown. Details taken from press releases and
publicly disclosed interactions with end users.
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methods, particularly for practical use cases where contested
assertions like quantum supremacy5 do not play a role. For
example, Tang proposed that we should “dequantize” quantum
machine learning algorithms to check whether any quantum
speedup exists (Tang, 2022).

Quantum computing R&D is a highly interdisciplinary process.
Some parts of the research community believe that quantum hardware
must be built first before we develop algorithms for applications.
However to leverage the expertise of all participants, we should
approach the entire quantum computing stack simultaneously,
allowing cross-pollination of ideas across the stack (van Meter and
Horsman, 2013; Fu et al., 2016). Engineers can build appropriate
quantum devices when they know the problem statement and how
best to solve it, whereas theorists can design algorithms or software once
they understand the hardware capabilities and limitations.

Similarly, quantum optimization algorithms will benefit from classical
approaches. Quantum algorithms often borrow ideas from classical
methods (cf. quantum annealing and classical simulated annealing
(Kirkpatrick et al., 1983; Bertsimas and Tsitsiklis, 1993)). However, few
established optimization techniques other than, say branch-and-bound
(Montanaro, 2020), have been adapted for quantum computation.We are
confident that combining with classical methods can improve the
performance of quantum optimization algorithms. For example,
decomposition techniques implemented in mixed-integer solvers can
split the problem in two and assign each part to classical and quantum
hardware (Zhao et al., 2022).

Not every hard problem will benefit from quantum
algorithms. For many hard problems, classical solvers are so
efficient that quantum methods do not provide appreciable

speed-ups, e.g., for the knapsack problem and our MWIS
example. For example it is naive to assume that quantum
optimization can speed up problems in P, e.g., linear
continuous problems. An exception may be that particular
subroutines could be improved with quantum algorithms.
Hence despite the excitement over quantum speed-up,
quantum computing itself is not a revolution but more like a
new numerical toolbox that uses different processing units. It is
likely that many future high performance computers (or
computer centers) will contain a stack of CPUs, GPUs and
QPUs similar to the JUNIQ program at the Jülich
Supercomputing Centre (JUNIQ, 2019). Such a platform could
involve one control unit that uses the CPUs, GPUs, and QPUs
interchangeably for each part of the computation. We believe this
is where quantum computing has the most potential for impact.

Quantum computing and optimization are forecast to be
competitive in under a decade (Langione et al., 2019b). Now is
the time to start planning for the future and hence maximize
quantum computing’s commercial impact (Gerbert and Ruess,
2018). The best way to turn potential obstacles into opportunities
is through collaboration between quantum theorists, computer
scientists, engineers, end-users, and beyond. Then we can truly
benefit from quantum optimization.
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FIGURE 3
Benchmarking results for MWIS problem. For Gurobi, we show the optimal objective function value and total running time in seconds. For D-Wave,
we show the embedding time and QPU access time required to solve the problem (both in seconds), plus the best solution found and its frequency in
1,000 shots. See data table in Supplementary Information.
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