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Abstract: Infrared and visible remote sensing image registration is significant for utilizing remote
sensing images to obtain scene information. However, it is difficult to establish a large number of
correct matches due to the difficulty in obtaining similarity metrics due to the presence of radiation
variation between heterogeneous sensors, which is caused by different imaging principles. In addition,
the existence of sparse textures in infrared images as well as in some scenes and the small number
of relevant trainable datasets also hinder the development of this field. Therefore, we combined
data-driven and knowledge-driven methods to propose a Radiation-variation Insensitive, Zero-shot
learning-based Registration (RIZER). First, RIZER, as a whole, adopts a detector-free coarse-to-fine
registration framework, and the data-driven methods use a Transformer based on zero-shot learning.
Next, the knowledge-driven methods are embodied in the coarse-level matches, where we adopt the
strategy of seeking reliability by introducing the HNSW algorithm and employing a priori knowledge
of local geometric soft constraints. Then, we simulate the matching strategy of the human eye
to transform the matching problem into a model-fitting problem and employ a multi-constrained
incremental matching approach. Finally, after fine-level coordinate fine tuning, we propose an outlier
culling algorithm that only requires very few iterations. Meanwhile, we propose a multi-scene
infrared and visible remote sensing image registration dataset. After testing, RIZER achieved a
correct matching rate of 99.55% with an RMSE of 1.36 and had an advantage in the number of correct
matches, as well as a good generalization ability for other multimodal images, achieving the best
results when compared to some traditional and state-of-the-art multimodal registration algorithms.

Keywords: coarse-to-fine image registration; remote sensing; infrared; zero-shot learning

1. Introduction

Image registration refers to using different sensors, different times, or different loca-
tions to acquire two or more images with overlapping areas, unified to the same coordinate
system so that the image homonymous points in the spatial location can be used to achieve
optimal alignment [1]. Remote sensing technology is an emerging technology based on
aerial photography that combines real-time sensing telemetry of the Earth’s surface with
resource management surveillance, and remote sensing image registration is the basis for
utilizing remote sensing image information [2]. The registration of infrared and visible
remote sensing images is an essential type of multi-sensor image registration. Infrared
detectors detect the radiation information of objects in the scene [3], visible light detec-
tors detect the reflection information of the objects, and the organic combination of the
two can enhance the complementarity of scene information and reduce the uncertainty of
understanding the scene. Therefore, it has received much attention in application areas
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such as military intelligence acquisition [4], autonomous navigation [5], terminal guid-
ance [6], target tracking [7], image fusion [8], change detection [9], and environmental
monitoring [10].

At present, there are still more challenges in infrared and visible heterodyne remote
sensing image registration, which can be summarized as follows:

1. The small number of features in the sparse texture region of multi-source remote
sensing images leads to the problem of difficult matching. Visible images can better
reflect the texture information in the scene with a clear hierarchy, while infrared
images have less texture, similar structure repetitions, and fuzzy edges, which makes
it difficult to distinguish the details in these images.

2. Heterogenous remote sensing images are difficult to acquire and screen, and the
training of network models requires a large number of samples. Although there is a
large amount of remote sensing image data available, datasets comprising real camera
parameters, control points, or homography matrices as labels are scarce.

3. There are image grayscale distortions and image aberrations of different degrees,
natures, and irregularity due to nonlinear spectral radiation variations during the
acquisition of remote sensing images by different sensors. This radiation variation is
a bottleneck problem limiting the development of multi-source remote sensing image
matching techniques, and the seasonal and temporal phase differences also lead to
large feature variations. As a result, the similarity between the corresponding locations
of remote sensing images from different sources is weak, and it is difficult to effectively
establish a large number of correct matches with the existing similarity metrics.

To address the problem of sparse texture, we propose a detector-free semi-dense regis-
tration algorithm. To address the problem of having few datasets available for supervised
training on heterogeneous remote sensing imagery, we adopted the zero-shot learning
method and propose a test dataset for manual labeling. For the problem of weak feature
similarity due to radiation variation, we adopted the strategy of increasing reliability and
transforming the matching problem into a model fitting problem to reduce the matching
difficulty. Our main contributions are as follows:

1. RIZER, as a whole, employs a detector-free, end-to-end, coarse-to-fine registration
framework, making the matching no longer dependent on texture and corner points.
The innovative Transformer [11] architecture based on zero-shot learning in the field
of infrared and visible remote sensing image registration improves the effectiveness
of the pre-trained model, which makes the data-driven methods no longer limited by
domain-specific datasets.

2. Knowledge-driven methods were adopted for the coarse-level matches, and the graph
model-based K-nearest neighbor algorithm—Hierarchical Navigable Small World
(HNSW) [12,13]—is introduced in the field of image registration for deep learning to
efficiently and accurately obtain a wide range of correspondences. We also introduce
the a priori knowledge between the matchpoints for local geometric soft constraints to
build control point sets, which improves the interpretability and reliability of feature
vector utilization and is not affected by radiation variation.

3. Simulating the strategy of first focusing on highly similar features before predicting
the overall variation when the human eye is registered, the registration problem is
transformed into a problem of fitting a transformation model through high-confidence
control points, and multi-constrained incremental matching is used to filter between
predicted matchpoints and establish a one-to-one matching relationship to achieve
the overall insensitivity to radiation variations.

4. After fine-level coordinate fine-tuning, a simple but effective outlier rejection method
that only requires extremely few iterations further improves the final matching re-
sults. A manually labeled test dataset of infrared and visible remote sensing images
containing city, coast, mountain, desert, and aerial remote sensing images is proposed.
Compared with classical and state-of-the-art registration algorithms, RIZER achieved
competitive results. At the same time, it has an excellent generalization ability for
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other multimodal remote-sensing images. Four ablation experiments were designed
to demonstrate the effectiveness of the improved module.

2. Related Work

It is generally accepted that the registration algorithms for multimodal images are
developed based on traditional images. Feature-based methods consist of four stages:
feature detection, feature description, feature matching, and homography estimation [14].
Before the advent of deep learning, many handcrafted descriptor-based methods [15–17]
were widely used for various registration tasks. The Scale-Invariant Feature Transform
(SIFT) [18] algorithm is best known as a landmark work in the field of image registration, but
it is strongly affected by nonlinear radiometric differences and is difficult to use directly for
multimodal image registration. For multimodal remote sensing image registration [19–21],
the PSO-SIFT [22] algorithm introduces a new definition of gradient based on SIFT, which
improves the robustness of the descriptors to grayscale differences. Radiation-variation
Insensitive Feature Transform (RIFT) [23] effectively resists nonlinear radial differences
by utilizing phase congruency for feature point detection and a maximum index map for
description. While most of these multimodal matching algorithms have relatively excellent
resistance to nonlinear radiation differences, the handcrafted descriptors may not perform
well when dealing with more complex matching tasks due to their design limitations based
on existing knowledge.

In recent years, with the booming development of deep learning [24], its deep feature
extraction and expression ability can make up for the defects of shallow feature instabil-
ity and improve the robustness of the registration algorithm. Deep learning applied to
feature-based registration methods is generally based on embedded modules, i.e., neural
networks are used instead of traditional methods at a certain stage [25–27]. DescNet [28]
performs a multilevel convolutional pooling operation on the input image block to ob-
tain the deep features of the image block and finally outputs a 128-dimensional vector
as a feature descriptor. ReDFeat [29] re-couples the independent constraints of detection
and description of multi-constrained feature learning with a mutual weighting strategy
and thus does not directly suppress the probability of detecting an ambiguous feature.
SuperGlue [30] constructs a Graph Neural Network (GNN) for jointly finding correspon-
dences and rejecting non-matchable points by treating the feature matching problem as
solving a differentiable optimal transport problem. Modular networks cannot avoid the
problem of error accumulation in traditional multi-stage registration, the feature detection
methods used rely on edges, and corner points still have limitations, making it difficult to
extract enough points of interest to obtain good descriptors for challenging edge blurring
or texture-repetitive scenarios, leading to poor matching results.

With the application of the Transformer [11] model in the field of image processing,
its chunking of the image, and extraction of the global features, a larger feeling field is
realized. In order to solve the problems of modular networks, detector-free registration
methods have been developed based on Transformer. It does not rely on feature point
extraction and can directly perform end-to-end feature matching between image pairs. The
most famous detector-free method is LoFTR [31], which constructs dense matching at the
coarse-level and refines it at the fine-level to achieve sub-pixel matching. AspanFormer [32]
adjusts the fine-level span of attention in an adaptive manner based on hierarchical atten-
tion. MatchFormer [33] interleaves self-attention for feature extraction and cross-attention
for feature matching, improving the robustness of matching. For remote sensing image
registration [34,35], SRTPN [36] adds a scale regression module and a rotation estimation
module before the LoFTR module [31] to recover the geometric transformations. MIVI [37]
employs a four-stage matching architecture based on LoFTR [31] for infrared and visible
image registration, enabling the model to capture fine local feature details and remote de-
pendencies. The cost of achieving global attention for the Transformer model [11] requires
tens of thousands (or even more) of data samples to train a better model. At the same time,
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it consumes a large amount of computational resources, requiring the use of large-scale
Graphics Processing Unit (GPU) clusters for training.

To address the problem of difficult network training, transfer learning using pre-
trained network models has been shown to be very effective [38]. M2DT-Net [39] employs
a fine-tuned, end-to-end network model to eliminate differences between two multimodal
remote sensing images. For zero-shot learning, DFM [40] uses a pre-trained ResNet archi-
tecture [41] as a feature extractor and does not require any additional training to improve
matching. However, the subsequent matching is established within the small receptive
field of the initial matching. For some difficult matching situations, such as the registration
of heterogeneous remote sensing images, matching points may be concentrated in only a
few partial areas. To the best of our knowledge, there has been no systematic study of the
effectiveness of utilizing the pre-trained model of the Transformer module [11] as a feature
extractor in the field of heterologous remote sensing image registration, nor has there
been a study to demonstrate this limitations. If this approach can fully utilize the global
attention and semantic abstraction ability of the Transformer model, then the pre-trained
alignment model using the visible scene can also achieve satisfactory performance in the
task of heterogenous remote sensing image registration.

3. Methodology
3.1. Workflow of the Proposed Method

As shown in Figure 1, we propose an end-to-end algorithm for infrared and visible
remote sensing image registration named RIZER. The algorithm is divided into three main
stages. The first stage utilizes a pre-trained ResNet [41] combined with Transformer [11]
for feature extraction. In the second stage, coarse-level matching broad correspondences
are obtained using the Dual HNSW algorithm. Then, the local geometric soft constraints
are utilized to filter the set of control points, after which model fitting is performed. Finally,
an incremental matching method with multiple constraints is used. In the third stage, after
combining the coarse-level matchpoint locations with the fine-level map, Transformer is
then used for fine-level feature fusion, coordinating fine-tuning by calculating the expecta-
tion between the matchpoints, and finally, efficient outlier rejection is performed to obtain
the final matching results. Among them, the second stage and the outlier rejection part in
the third stage are our main focus, which will be described in detail below. Here, we briefly
describe how the feature maps are generated in the first stage.
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The infrared and visible remote sensing images are fed into the feature extraction
network, and the standard convolutional structure of Feature Pyramid Networks (FPNs) is
used to extract multilevel features from the two images. The initial features extracted by
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the CNN have translational invariance. Thus, they can recognize similar patterns occurring
at different locations in the image, and the FPN achieves multiscale feature fusion. The
extracted 1/8-resolution feature maps are used to generate global context-dependent feature
descriptors, and downsampling reduces the input length of the subsequent Transformer
module. Then, 1/2-resolution feature maps are used to fine-tune the coordinates of the coarse
matchpoints, which ensures that the final matchpoints have higher localization accuracy.

The 1/8-resolution feature maps are subjected to sine–cosine positional encoding,
which makes the output features location-dependent and improves the feature represen-
tation of the model for sparse texture and repetitive regions. After that, the features are
fed into the Transformer module for feature enhancement, which is repeated several times.
The Transformer module consists of multiple alternating self-attention and cross-attention
layers, where the self-attention layer allows each point to focus on all other points around
it within an image to capture the correlation between them, while the cross-attention
layer allows each point to focus on all the points in another image. By utilizing the excel-
lent property of Transformer’s global attention, the features of each point are fused with
the contextual information of other related points, obtaining a richer representation, and
coarse-level feature maps FA

c and FB
c are obtained.

Here, for the feature extraction network, we used the outdoor weights trained by the
LoFTR [31] model. Due to the small labeled dataset of infrared and visible remote sensing
images, we tried not to train the scene in a targeted way, but directly utilize the feature
vectors obtained from the pre-trained weights for subsequent processing, i.e., zero-shot
learning. The results show that such a strategy is efficient and feasible, and the feature
maps are shown in the Results Section.

3.2. Dual HNSW

In order to achieve overall differentiability, current detector-free algorithms [31–33]
commonly use the inner product between vectors to obtain the similarity matrix and then
search for the maximum value to establish a match, e.g., the dual-softmax method used
by LoFTR [31] to find the two-way maximum of the match probability. Although this
strategy achieves differentiability in similarity measurement, it is too strict and does not
fully utilize the relationship between the feature vectors, especially for infrared and visible
multimodal images, which can filter out some of the correct matches or even establish in-
correct matches. In this study, we adopted the strategy of increasing reliability, i.e., initially
establishing one-to-many fuzzy correspondences and then establishing reliable matches
through screening. Since we utilize pretrained weights, our subsequent matching strategy
does not rely on differentiability. Therefore, we introduce a graph model-based K-nearest
neighbor algorithm, HNSW [12], in the field of deep learning-based image registration.
HNSW is an efficient approximate nearest neighbor search algorithm, which is not yet very
widely used in the field of image registration. It accelerates the nearest-neighbor search
process by constructing a hierarchical graph index structure and jumping between and
within layers, which can significantly reduce the amount of distance computations that
need to be performed.

The query index and template index are established, respectively, corresponding to the
input template vector FA

c and the query vector FB
c for the search of K-nearest neighbors, to

obtain the K-nearest neighbor set DA
k of each coarse-level point, as shown in Equation (1), as

well as DB
k , k = 1, 2, 3, where dk(i) stands for the K-nearest neighbor distance to the ith point

in the template image, the default distance metric of HNSW is the square of P-paradigm,
and (x̂j, ŷj) is the corresponding point in the query image. Filtering is performed using
the nearest neighbor and next nearest neighbor through the proportional approach in the
SIFT [18] algorithm. A match is established if Equation (2) is satisfied, and here, ratio is
set to 0.8. Unsatisfied or unused K-nearest neighbor relationships will be fully utilized in
subsequent processing.

DA
k (i) =

{(
x̂j, ŷj

)
, dk(i)

}
(1)

d1(i)/d2(i) ≺ ratio (2)
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The threshold-filtered template vectors and the mutual nearest neighbors of the query
vectors are used to establish preliminary matches, and the preliminary matched template
point set SA

1 and the query point set SB
1 are obtained. This threshold-filtered bidirectional

matching method can filter out most false matches and guarantee that the preliminary
matches have a high in-points rate. The specific diagram is shown in Figure 2.
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3.3. Local Geometric Soft Constraint

After the dual HNSW algorithm establishes the initial matching, some pseudo-corresp-
ondences may still exist due to the complexity of the heterogeneous remote sensing images,
which will have a great impact on the fitting of the subsequent transformation model
and even lead to the failure of the matching. We introduce the a priori information of
geometric consistency [42] between matchpoints to establish constraints and then carry
out another pseudo-correspondence rejection. Meanwhile, compared with the heat map
approach, the introduction of a priori knowledge can improve the interpretability of the
deep learning method, and the results it obtains are not irregular, but they all satisfy the
geometric consistency, which makes the obtained registration results more reliable. When
the image does not contain severe affine or projective transformations, the spatial structure
between correct matchpoints is similar. Based on this feature, the mismatched matchpoints
can be eliminated by calculating the Euclidean distance and direction angle between their
neighboring matchpoints.

The difficulty in matching between heterologous remote sensing images in infrared
and visible is mainly caused by different imaging mechanisms, considerable nonlinear
spectral radiation variations, and obvious differences in the grayscale gradient, whereas
geometric structural attributes are less affected by radiation differences. Heterologous
remote sensing images captured by satellites usually do not have a large perspective
deflection in a small area, and the viewing angle of satellite remote sensing images is
relatively high. The ground can be regarded as an approximate plane, and the depth of
the scene is relatively small, which makes the remote sensing images a two-dimensional
planar projection, which satisfies the condition of spatial structure similarity.

The core idea of geometric consistency is that for all correct matchpoint pairs, the
distance ratios of any two matchpoint pairs should be equal or approximately equal, and
the distance ratios should also be approximately equal to the true scale ratios of the two
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images and the angles formed by any three matchpoint pairs should be approximately
equal. So, the distance ratios of all correct matchpoint pairs can form a class centered on
the true scale ratio. The matchpoint pairs that are farther away from the center of the class
are the false matches, and the angles between the matchpoint pairs should also satisfy the
corresponding constraints.

In this study, we build on the preliminary matching point sets SA
1 and SB

1 for culling in
order to improve the efficiency of the algorithm; for each matching point pair, any five-point
pairs among the remaining matching point pairs are selected to establish two corresponding
local random matrices, where RA is the local random matrix of the template image, as
shown in Equation (3), and RB is the local random matrix of the query image. Au,0 stands
for the coordinates (xu,0, yu,0) of the uth point as the center of the point; Au,v, v = 1, 2, · · · , 5,
stands for the coordinates (xu,v, yu,v) of the randomly selected points among the remaining
matchpoints. u = 1, 2, · · · , n, n represents the number of matchpoints established by the
preliminary matching.

RA =


A1,0 A1,1 A1,2 A1,3 A1,4 A1,5
A2,0 A2,1 A2,2 A2,3 A2,4 A2,5

...
...

...
...

...
...

An,0 An,1 An,2 An,3 An,4 An,5

 (3)

The Euclidean distance is used to calculate the distance Lu,v between Au,v and Au,0, as
shown in Equation (4), as well as to calculate L̂u,v through the matrix RB to form the length
matrices LA and LB.

Lu,v =

√
(xu,v − xu,0)

2 + (yu,v − yu,0)
2 (4)

θu,v =

arccos (xu,v−xu,0)×(xu,v+1−xu,0)+(yu,v−yu,0)×(yu,v+1−yu,0)
Lu,v×Lu,v+1

, v = 1, 2, 3, 4

arccos (xu,5−xu,0)×(xu,1−xu,0)+(yu,5−yu,0)×(yu,1−yu,0)
Lu,5×Lu,1

(5)

To further improve the computational efficiency, only the angle between the current
edge and the next edge is computed, while the fifth edge forms an angle with the first
edge, and the computation yields θu,v, as shown in Equation (5), which composes the angle
matrix θA, and θ̂u,v is computed by query image and composes the angle matrix θB. A
schematic diagram of the established double feature constraints of the length and the angle
is shown in Figure 3.
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After calculating the length matrices LA and LB and the angle matrices θA and θB, it
is necessary to judge whether the ratio between them satisfies the a priori information of
geometric consistency. In this study, we adopted the method of soft constraints, i.e., instead
of requiring each distance and pinch angle to be within the threshold range, we take their
overall error mean as a soft constraint, which reduces the number of judgments and avoids
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making the algorithm too strict while also reducing the influence of a small number of
outlier points, and this excludes matchpoints that do not satisfy the soft constraints as
outlier points.

Specifically, the mean value of the length ratio r is first calculated, as shown in
Equation (6), and then the length error ∆u,v is calculated, as shown in Equation (7). For
the angle, the ratio should be approximately equal to 1. The angle error εu,v is calculated
using Equation (8). Finally, the mean length error and the mean angle error are calculated for
each pair of matchpoints, and if they are not simultaneously within the allowable error range,
then the pair of pseudo-matches is eliminated, and the remaining pairs of matchpoints that
satisfy the conditions of Equation (9) are summarized as the control point pairs Ak(xk, yk)
and Bk(x̂k, ŷk), k = 1, 2, · · · , m, and m is the number of pairs of matchpoints of the control
point set, which constitute the control point set PA

1 , as well as PB
1 , where the threshold τ is

set to 0.1.

r =

[
n

∑
u=1

5

∑
v=1

(
Lu,v/L̂u,v

)]
/(n × 5) (6)

∆u,v =
∣∣(Lu,v/L̂u,v

)
/r − 1

∣∣ (7)

εu,v =
∣∣(θu,v/θ̂u,v

)
− 1
∣∣ (8)[(

5

∑
v=1

∆u,v

)
/5 < τ

]
∧
[(

5

∑
v=1

εu,v

)
/5 < τ

]
(9)

3.4. Least Squares Fitting Transform Model

In recent years, many approaches have tended to formulate the registration problem as
an optimization problem [43,44]. The prevailing principle is to optimize the transformation
model to obtain the best possible registration results, which can be measured by minimizing
an objective function that measures the registration’s accuracy. The method of fitting a
change model can avoid the direct use of complex feature vectors to align between the full
matchpoint sets and converting the matching problem into a model fitting problem greatly
reduces the difficulty of matching and avoids complete blind matching. At the same time,
it is also in line with the process used by the human eye for registration; first, it finds the
general rule of change among images through the significant matchpoint sets and then
makes corresponding predictions and judgments one by one.

Fitting the change model is commonly used to estimate the affine transform model
coefficients based on Random Sample Consensus (RANSAC) [45] and its improved algo-
rithms, but the coarse-level map also destroys the original geometrical structure of the
image based on the structure of the single-response matrix, which may lead to inaccu-
rate estimation of the single-response matrix if the structure is changed. And, based on
high-order nonlinear change models, such as the Thin-Plate Spline (TPS) [44] model, if the
complexity of the algorithm is too high, it will significantly increase the running time. In
addition, because the coarse-level map extracts semi-dense local feature points at certain
intervals in the image, which are uniformly distributed in the whole image with strong
regularity, the spatial transformation model is essentially a coordinate mapping function,
and because the coarse-level map has a low resolution, it can greatly reduce the nonlinear
variation between matchpoints, so the coordinates of matchpoints of the coarse-level map
can be approximated as a linear relationship.

For a pair of control points Ak(xk, yk) and Bk(x̂k, ŷk), a polynomial fit is used, as shown
in Equation (10). {

x̂k = axk + byk + cxkyk + d
ŷk = exk + f yk + gxkyk + h

(10)
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Which reduces to a least squares matrix in the form of:

(
x̂k ŷk

)
=
(
xk yk xkyk 1

)
a e
b f
c g
d h

 (11)

Substituting the control point sets into the above equation:
x̂1 ŷ1
x̂2 ŷ2
...

...
x̂m ŷm

 =


x1 y1 x1y1 1
x2 y2 x2y2 1
...

...
...

...
xm ym xmym 1




a e
b f
c g
d h

 i.e., PB
1 = PA

1 W (12)

Then, the transformed model matrix is solved:

W = PAT
1 PB

1

(
PAT

1 PA
1

)−1
(13)

3.5. Multi-Constraint Incremental Matching

Most of the matching algorithms use a single constraint for a one-size-fits-all judgment
of interior and exterior points, which is difficult to adapt to the complexity of registration
between remote sensing images from different sources. A single constraint will inevitably
produce a misjudgment, resulting in a large number of interior points being eliminated,
and the small number of matchpoints obtained does not guarantee a high interior point
rate. To avoid this situation, single-constraint algorithms will commonly use an iterative
elimination of outer points, which again leads to the inefficiency of the algorithm. In this
study, we adopted a multi-constraint incremental matching approach, which combines
multiple in-point prediction and out-point rejection methods to provide more potential
one-to-one matches while guaranteeing a high in-point rate with high algorithmic efficiency.

First, based on the transform model constraints, SA
2 and SB

2 remain after removing
the preliminary matches SA

1 and SB
1 . Using SA

2 and the solved transform model matrix W,
the prediction is performed in the query image with rounding as well as the elimination
of the obvious erroneous points outside the image to obtain S̃B

2 and the corresponding
S̃A

2 , to ensure that each point in S̃B
2 falls within SB

2 . After that, the mutual three-nearest-
neighbor constraints are performed using the three-nearest-neighbor matrices previously
obtained by the dual HNSW algorithm. It is too harsh to consider only the nearest-neighbor
relationships in the heterologous remote sensing images and tends to exclude a large
number of correct correspondences. Using mutual three-nearest-neighbor constraints can
efficiently obtain most of the correct correspondences, make full use of the data obtained
from the establishment of the dual index in the previous section, and judging point by point
so that only when the point (x̂j, ŷj) of S̃B

2 and the corresponding point (xi, yi) of S̃A
2 are

mutual three-nearest-neighbors to each other, are they saved as inner points, and we obtain
the mutual three-nearest-neighbor matchpoint sets PA

2 and PB
2 . The rest of the pairs of

points that cannot satisfy the conditions at the same time are saved into the matrices SA
3 and

SB
3 . Finally, double feature constraints are then applied to SA

3 and SB
3 using length and angle,

although the two point sets do not satisfy the nearest-neighbor constraints, it is possible
that the obtained feature vectors and the HNSW algorithm cannot find the correspondence
between them, and the spatial structural similarity between the matchpoints can be used
as an additional source of matching. The specific implementation is similar to the above,
but the first column of the random matrix consists of the points in SA

3 and SB
3 , the last five

columns are randomly selected pairs of points in the control point sets PA
1 and PB

1 , and
finally, the spatial structural similarity matchpoint sets PA

3 and PB
3 are obtained. Eventually,

the set of all coarse-level matchpoints obtained, PA
c and PB

c , consists of the control point
sets PA

1 and PB
1 , the mutual three-nearest-neighbor matchpoint sets PA

2 and PB
2 , and the
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spatial structural similarity matchpoint sets PA
3 and PB

3 , and is composed of three parts, as
shown in Equation (14).

PA
c = PA

1 ∪ PA
2 ∪ PA

3 (14)

3.6. Fine-Level Matching

After establishing the coarse-level matches and finding the approximate correspon-
dences in the local area, fine-level matching is needed to fine-tune the coordinate positions.
Here, LoFTR’s [31] coordinate refinement adjustment strategy and pre-training weights
are used. For each coarse-level match, its position is mapped in the fine-level map, and
then a pair of local windows of size 5 × 5 are cropped out, which is then inputted into the
Transformer [11] module to perform N f times the feature fusion to obtain the fine-level
feature maps FA

f and FB
f . After that, the center vector of the template local window is similar

to all the vectors of the query local window to obtain the heat map, and by calculating the
expectation of the probability distribution, the final position with sub-pixel accuracy can be
obtained in the query window.

However, the LoFTR [31] algorithm does not incorporate the outlier rejection method.
Although the overall correct matching rate of the algorithm is high, a small number of
false matches will have a large impact on the subsequent homography estimation and
various scenarios. Iteratively Re-weighted Least-Squares (IRSL) [46] and RANSAC [45]
are commonly used in the traditional methods for false matchpoint rejection, and both are
robust estimation methods based on the iterative strategy, which needs to be optimized
through the process of repeated optimization to suppress outlier points. Traditionally,
iterative outlier removal conducted across all matched points generally requires hundreds
or thousands of iterations, leading to low computational efficiency. Additionally, it struggles
with robustness and attaining high correct matching rates when encountering numerous
outliers. In this paper, we present a simple yet effective improvement to the RANSAC
algorithm, building upon the multi-stage matching approach described previously. We
invoke OpenCV’s findHomography function using RANSAC with default parameters.
Instead of sampling across all matches, we leverage the high confidence set of control
points with refined coordinates to estimate the homography matrix H. Subsequently,
the template point (xi, yi) is mapped to obtain the ideal corresponding point, which is
categorized as an interior point if it is kept within the distance of threshold T = 2 from the
query point (x̂i, ŷi), as shown in Equation (15). Therefore, the proposed algorithm enables
efficient outlier removal with an extremely low iteration count. Simultaneously, it resolves
robustness issues due to the high correct matching rate attained by the control point set,
ultimately obtaining the fine-level matching point sets PA

f and PB
f .

∥H · (xi, yi)− (x̂i, ŷi)∥2 ≤ T (15)

4. Experiments
4.1. Datasets

To test the performance of the algorithm in sparsely textured regions, such as moun-
tains and coasts, and similarly structured repetitive regions, such as deserts and cities, we
created our own small-scale test dataset containing 40 pairs of images acquired by the
Sentinel 2 satellite. In order to test the robustness of the algorithm against temporal phase
differences, we acquired infrared and visible remote sensing images at different times with
an image resolution of 512 × 512. Detailed information is shown in Table 1 and Figure 4a–d.
The visible images were fused with the 2–4 bands of Sentinel 2, with a band range of
490 nm–665 nm and a spatial resolution of 10 m. The infrared images were fused with the
11–12 bands of Sentinel 2, with a band range of 1610 nm–2190 nm and a spatial resolution
of 20 m. The images were resampled to 10 m. In order to simulate the initially acquired
remote sensing images as much as possible, we adopted a 4-point parameterization [47]
with a coordinate shift range of [−150, 150], which can realize a certain degree of non-rigid
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transformation, and each pair of images was manually labeled with ten pairs of sampling
points to fit the homography matrix labels.

Table 1. Details of the Sentinel 2 dataset.

Category VIS Date NIR Date Position

Desert 28 November 2015 28 December 2015 Bayingolin, Xinjiang, China
Coast 8 January 2016 7 February 2016 Shantou, Guangzhou, China
City 25 December 2015 7 August 2015 Beijing, China

Mountain 19 January 2016 18 April 2016 Garz, Sichuan, China
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Figure 4. Infrared and visible remote sensing image dataset. (a) Desert, (b) coast, (c) city, (d) mountain,
and (e) aerial images.

We conducted further tests on a publicly available aerial remote sensing dataset [48],
which was selected as a data source for high-resolution aerial images captured by Utah
AGRC in the spring of 2012, which consist of orthorectified projections containing visible
and near-infrared channels with a spatial resolution of 12.5 cm, and an adopted image
resolution of 512 × 512. A total of 50 pairs of images were randomly selected for testing. In
order to test the robustness of the algorithm to rotation and scale variations, we randomly
generated the transformations with translation factor dx, dy ∈ [−0.5, 0.5], rotation angle
α ∈ [−30◦,−25◦] ∩ [25◦, 30◦], and scale factor s ∈ [0.5, 1] for the infrared images, as shown
in Figure 4e, and the corresponding labels of the homography matrices were generated.

In order to further validate the performance of the pre-trained model and the general-
ization ability of RIZER, the open-source multimodal remote sensing dataset was tested [49].
The details of the test dataset are shown in Table 2 and Figure 5, and the modalities of the test
data include visible light, SAR, luminous remote sensing images, grid maps, and depth maps.
Visible-Visible indicates the combination of two visible light images. Visible -SAR refers to
visible light and SAR image pair. Day-Night denotes day and night image pair. Map-Visible
represents map and visible light image pair. Visible-LiDAR shows the combination of visible
light image and LiDAR data.
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Table 2. Multimodal dataset details.

Category Template Image Sensor Query Image Sensor Size Image Characteristic

Visible–Visible Google Earth Google Earth 600 × 600 Different times
Visible–SAR ZY-3 PAN optical CF-3 SL SAR 1000 × 1000 Different bands
Day–Night Optical SNPP/VIIS 1000 × 1000 Day–night

Map–Visible Open Street Map Google Earth 512 × 512 Different models
Visible–LiDAR WorldView-2 optical LiDAR depth 512 × 512 Different models
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Figure 5. Multimodal remote sensing image dataset. (a) Visible–Visible; (b) Visible–SAR; (c) Day–Night;
(d) Map–Visible; and (e) Visible–LiDAR.

4.2. Baseline and Metrics

Using three datasets, we compared the designed algorithm with five excellent algo-
rithms, including some classical and the latest algorithms. The classic algorithms include
SIFT [18] and the multimodal matching algorithm RIFT [23]. The latest algorithms include
LoFTR [31], which consists of two coarse matching strategies, the dual-softmax method
adopted by the original text, called LoFTR-DS, and the optimal transport method adopted
by SuperGlue [30], called LoFTR-OT, and we tested them against the outdoor data trained
with each of the two algorithms. In addition, we compared our algorithm to the latest
ReDFeat [29] multimodal algorithm, which uses the corresponding VIS-NIR weights, and
the multimodal module uses the best result among the weights. The test results in this
study were obtained using a computer with a 4-core, 8-thread Intel i3-12100F@3.3/4.3 GHz
CPU and an 8GB RTX4060 GPU.

For qualitative evaluation, we used the matchpoint connectivity diagram and registra-
tion checkerboard diagram. For quantitative evaluation, we used four indicators: Number
of Correct Matches (NCM) [49], Success Rate (SR), Root Mean Square Error (RMSE) [50],
and Running Time (RT). The formula for NCM is the same as Equation (15), and H repre-
sents the ground truth homography matrix. The threshold T = 3

√
2, when it is satisfied,

is summarized as NCM and is represented as a green line in the matchpoint connectivity
diagram; when it is unsatisfied, it is a wrong match and is represented as a red line. SR rep-
resents the percentage of the number of correct matches to the number of all matchpoints.
RMSE represents the positioning accuracy of the correct matches and is computed using
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Equation (16). (xi, yi) and (x̂i, ŷi) are the correct matches in the template image and query
image, respectively. RT represents the total running time of the algorithm.

RMSE =
1

NCM

NCM

∑
i

∥H · (xi, yi)− (x̂i, ŷi)∥2 (16)

The larger the NCM and SR values are, the better the registration and the smaller the RMSE
and RT values are, the better.

4.3. Registration Experiment for Infrared and Visible Remote Sensing Images

We used Principal Component Analysis (PCA) to downscale the high-dimensional
features obtained from the coarse-level map and the downscaled results were visualized
as RGB images, zooming in to view the detailed information to make an intuitive visual
comparison of the two high-dimensional features. As shown in Figure 6, for the desert
region with similar structural repetitions and the coastal region with sparse textures, the
features extracted using the coarse-level map after zero-shot learning correspond to the
same regions well. For example, the desert region can be roughly visualized into three
parts: the lower left region, the diagonal region, and the upper right region, while the
coastal region can clearly distinguish the land from the sea, and for the local similarity
details, the visualization of the features in different colors indicates that the corresponding
features are unique. The visualization results for the feature map show that the use of
zero-shot learning has a certain degree of feasibility, the pre-training weights can extract
enough distinguishable features, and, more importantly, we can see how to subsequently
make full use of these features to establish registration (which is our main improvement).
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We compared the performance of RIZER with that of five algorithms using the infrared
and visible remote sensing image dataset above. Some qualitative matchpoint connectivity
diagrams can be found in the Supplementary Materials Figure S1. Figure 7 shows the
quantitative metrics of the algorithms in each scene. Figure 7a shows that RIZER had a
slightly lower NCM than the ReDFeat algorithm in the coastal scene, while it achieved the
highest number of matchpoint pairs in the rest of the scenarios, which is indistinguishable
from our incremental matching strategy that is able to fully exploit the potential one-to-one
matches. Between different scenes, for the desert and city scenes with more textures and
repetitions, the number of matchpoint pairs of each algorithm was generally higher than
that of the coastal and mountainous scenes with sparse textures, while the aerial images,
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due to the presence of pure black regions, have the highest number of matchpoints between
the two scenarios, which is in line with our baseline expectations. RIZER outperformed
the other five algorithms in all scenarios in the SR and RMSE metrics, demonstrating the
effectiveness of our multi-constraint strategy, the accuracy of the model fitting, and the
necessity of the outlier rejection algorithm. The higher correct matching rate of coarse-level
matching can indirectly improve the accuracy of the fine-tuned coordinates by reducing
the self-attention and cross-attention between the matchpoints with the wrong matches in
the fine-level stage. Figure 7d shows that the RT of RIZER was slightly higher compared
to the LoFTR algorithm before improvement, mainly because the improved coarse-level
matching part of the local consistency soft constraint is slightly cumbersome, while the
ReDFeat algorithm has a great advantage in real time.
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Figure 7. Indicator evaluation of the results of different algorithms for the registration of infrared and
visible remote sensing images. (a) NCM; (b) SR; (c) RMSE; and (d) RT.

Table 3 shows the mean indicator values of the algorithms in each scene. It can
be concluded that, for the infrared and visible remote sensing image registration in this
scenario, RIZER improved the NCM by 25.9% compared to the pre-improvement LoFTR
algorithm at the expense of 16.4% of the RT and achieved an SR of 99.5% with an RMSE of
1.36 pixels, which is comparable to the results of the state-of-the-art multimodal registration
algorithms. Figure 8 shows the splicing effect of the tessellated map and the local zoomed-
in image after the registration. This shows that the homography matrix fitted by RIZER
had almost no difference compared with the real transformation and achieved an excellent
registration effect.
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Table 3. Mean indicator values of the results of different algorithms for the registration of infrared
and visible remote sensing images.

Algorithm NCM (Pair) SR (%) RMSE (Pixel) RT (s)

SIFT 29.61 39.34 3.32 0.23
RIFT 341.83 88.25 2.17 4.67

LoFTR-DS 1103.71 89.00 1.97 2.13
LoFTR-OT 1148.92 82.29 2.17 2.16
ReDFeat 585.06 95.49 1.92 0.40
RIZER 1389.44 99.55 1.36 2.48
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Figure 8. Registration checkerboard diagram of infrared and visible remote sensing images.
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4.4. Registration Experiment for Multimodal Remote Sensing Images

We compared the performance of RIZER with that of the five algorithms using the
multimodal remote sensing image dataset. RIZER still had a strong generalization ability
in multimodal scenes. Some qualitative matchpoint connectivity diagrams can be found
in the Supplementary Materials Figure S2. Figure 9 shows the quantitative metrics of the
algorithms for each scene. Figure 9a shows that the NCM of RIZER was slightly lower
than that of the RIFT algorithm in the map–optical scene, while it achieved the highest
number of matchpoint pairs in all the remaining scenes. Figure 9b shows that RIZER had a
lower SR in the map–optical scene and Optical–LiDAR scene, while in the remaining three
scenes, it achieved the highest correct matching rate compared to the other five algorithms,
indicating that it is better suited for infrared and visible remote sensing image registration.
Figure 9c shows the RMSE, which yields similar conclusions to that with the SR, with
multimodal matching not achieving a superior performance, although it was competitive.
Figure 9d shows that RIZER had a running time of about 2.7 s on 600 × 600 resolution
images and about 3.3 s on 1000 × 1000 resolution images, while the RIFT algorithm had
the disadvantage of a longer running time.

Table 4 shows the mean indicator values of the algorithms in each scene. It can
be concluded that RIZER has some generalization ability in multimodal scenes and still
achieved competitive results compared to the state-of-the-art multimodal registration
algorithms. RIZER still had a very large advantage in the NCM and RMSE metrics but
compared with the infrared and visible remote sensing image scenes, the correct matchpoint
rate decreased by 5.6%, and the RMSE increased by 63.2%, so it is more suitable to be used
in infrared and visible remote sensing image scenes. Figure 10 shows the splicing effect of
the tessellated map after the alignment and the local zoomed-in image, which shows that
the overall difference between the homography matrices fitted by RIZER was relatively
small, but there were small splicing seams in some local places, such as the right side
of the upper local map of Optical–Optical and the right side of the lower local map of
Optical–LiDAR.
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Figure 9. Indicator results of different algorithms for the registration of multimodal remote sensing
images. (a) NCM; (b) SR; (c) RMSE; and (d) RT.

Table 4. Mean indicator values of the results of different algorithms for the registration of multimodal
remote sensing images.

Algorithm NCM (Pair) SR (%) RMSE (Pixel) RT (s)

SIFT 1.60 4.04 4.18 0.60
RIFT 372.00 94.24 2.43 8.19

LoFTR-DS 577.20 61.86 3.16 2.39
LoFTR-OT 696.60 52.10 3.32 2.55
ReDFeat 253.60 83.44 2.73 0.52
RIZER 1213.20 93.92 2.22 2.86
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4.5. Ablation Study

To validate the effectiveness of each proposed module, we conducted ablation ex-
periments on the framework. Ablation experiments are a common technique in machine
learning research that involve removing or substituting components of a model while
keeping other factors unchanged. This allows assessing the individual contribution of
each module to the overall performance. The four ablation experiments were designed
as follows:

1. In order to verify the efficiency and accuracy of the HNSW algorithm [12] for find-
ing the approximate nearest neighbors, we replaced it with the FLANN [51] algo-
rithm and also used mutual matching for optimization; the rest of the algorithm
remained unchanged.

2. In order to verify the validity of our proposed local geometric soft constraints module
and the theory that a priori information about geometric structures has radiation
variation invariance and is applicable to heterologous remote sensing image registra-
tion, we replaced it with the GMS algorithm [52] and likewise optimized the GMS
algorithm by applying it to both the outlier removal of initial matches and incremental
matching under multiple constraints.

3. In order to verify the validity of the least-squares fitting transform model that we used,
and the proposed theory that coarse-level maps lead to an inaccurate estimation of
the homography matrix and strong linear laws between matchpoints, we replaced the
least squares fitting transformation model with the homography fitting transformation
model, with its context remaining unchanged. We did not optimize the homography
fitting algorithm and still adopted the RANSAC algorithm.

4. In order to verify the effectiveness as well as the efficiency of our proposed tar-
geted outlier removal algorithm, we substituted the proposed approach with GC-
RANSAC [53]. In addition, no optimization was performed on GC-RANSAC; instead,
outliers were eliminated from all the matching points. Additionally, we devised
an ablation study on the number of iterations to confirm that RIZER is capable of
attaining optimal performance with an extremely low iteration count.

In order to fully demonstrate our incremental matching process and to better analyze
the impact of the ablation experiments on each stage as well as on the final results, we
recorded the necessary metrics for each stage, including the control point set PA

1 , the mutual
three-nearest-neighbor matchpoint set PA

2 , the spatial structural similarity matchpoint set
PA

3 , the coarse-level matchpoint set PA
c , the fine-level matchpoint set PA

f , and NCM, SR,
RMSE, and RT. We randomly selected 50 pairs of images for testing from both the infrared
and visible light test datasets, and the mean values of the quantitative evaluation indexes
of the test results are shown in Table 5.

Table 5. Mean indicator values of ablation experiments.

Metric EXP 1 EXP 2 EXP 3 EXP 4 RIZER

PA
1 (pair) ↑ 242.84 367.36 424.36 422.02 422.06

PA
2 (pair) ↑ 447.52 995.2 647.98 1068.74 1069.22

PA
3 (pair) ↑ 939.73 714.36 605.58 434.42 455.38

PA
c (pair) ↑ 1630.09 2076.92 1677.92 1925.18 1946.66

PA
f (pair) ↑ 1290.75 1373.96 891.32 1346.98 1500.58

NCM(pair) ↑ 1287.32 1363.68 889.66 1333.46 1496.72
SR(%) ↑ 99.14% 98.31% 99.56% 98.56% 99.78%

RMSE(pixel) ↓ 1.22 1.33 1.21 1.09 1.17
RT(s) ↓ 2.63 2.41 2.50 2.48 2.46

5. Disscussion

From Table 5, we can conclude that HNSW can find higher quality nearest neighbors by
replacing the HNSW algorithm with the FLANN algorithm for the ablation experiment 1.
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The hierarchical graph structure of the HNSW algorithm can approach the target nodes layer
by layer to avoid finding only local optima. In contrast, the clustered kd-tree structure of
FLANN is prone to falling into local optimal solutions. HNSW also utilizes the iterative
adjustment process of inertial optimization to improve the accuracy of the indexing results
further, so the HNSW algorithm is able to more fully utilize the complex feature vectors to
obtain more accurate approximate K-nearest neighbor results. It is shown in Table 5 that
the number of control points set PA

1 obtained was higher, and it also had a direct impact
on the subsequent mutual three-nearest-neighbor matchpoint set PA

2 . It can be seen that,
by comparing the number of spatial structural similarities matchpoint set PA

3 , the result for
ablation experiment 1 was more than that of RIZER, which indirectly reflects the touting of
the incremental matching with the consistency of our local set structure, and even if feature
vectors were not fully utilized above, it can be compensated for heavily at the end of the
process, and ensure the optimal values of SR and RMSE. Moreover, the HNSW algorithm
uses a graph-based incremental construction algorithm to approximate the target layer by
layer, avoiding traversing all the data. In contrast, the FLANN algorithm adopts batch
processing, which needs to traverse all the datasets to find the K-nearest neighbor during
searching. Thus, whether it is the construction speed or the searching speed, the HNSW
algorithm is faster. It reduced the overall running time by 0.17 s.

For ablation experiment 2, we replaced the outlier rejection algorithm with GMS. The
core principle of GMS is that true correspondences often have more similar neighbors than
false correspondences. From ablation experiment 2, it can be seen that GMS also has a
certain invariance to radiation distortion but may remove some correct matches and some
incorrect matches will also be included. This is reflected by the PA

1 being lower, PA
3 being

higher, and PA
c being slightly higher compared to RIZER, and thus, the obtained PA

f is
lower. The SR and RMSE performances were inferior to our local geometric consistency
soft constraints, but the RT of the GMS algorithm was 0.05 s faster than RIZER. For ablation
experiment 3, which used homography matrix fitting instead of least-squares fitting, the
NC was reduced by 40.5%, as seen in Table 5, which directly verifies the regularity of the
coarse-level graph and the effect on the homography. The use of homography matrix fitting
drastically reduces the model’s fitting accuracy, which manifests itself as a drastic reduction
in the number of predicted correctly matched pairs of points, but due to the multiple
constraints, it has a smaller impact on the overall SR and RMSE, further validating the
value of multi-constrained incremental matching. If a homography matrix fitting algorithm
with better performance is adopted or a more suitable fitting model is found, it may achieve
a performance close to or exceeding that of RIZER.

For ablation study 4, it can be observed that our proposed targeted outlier removal
algorithm achieved certain advantages over GC-RANSAC in terms of NCM and SR, with a
0.02 s faster RT, although with a slightly lower RMSE. Despite the average correct matching
rate of 92.05% attained by RIZER without outlier removal, there exists some cases with
an SR below 50%, posing a major challenge for RANSAC and its variants. Additionally,
GC-RANSAC mainly tackles situations with numerous outliers, yet still produced an
SR of 38.83% in the experiments, thus reducing the overall SR. We also evaluated the
PROSAC algorithm [54], which is more heavily impacted by the presence of outliers, and
obtained an SR of merely 96.99%. In contrast, our control point set registered an SR of
99.00%. Fitting homographies based on this facilitates convergence within fewer iterations
whilst avoiding interference from copious outliers. As depicted in Table 6, we specified
the maximum number of RANSAC iterations when using the control points to examine
the proposed outlier removal technique. As expected, RANSAC ceased iterating upon
convergence to the optimal result or reaching the ceiling on iterations. It can be discerned
that given lesser iterations, RIZER exhibits slight errors in estimating homographies, prin-
cipally with relatively lower NCM and SR values. However, within at most 10 iterations
after convergence, RIZER attained the optimal registration accuracy. Thus, superior out-
lier removal efficiency was achieved. There are two possible optimization strategies for
GC-RANSAC. One is to add GMS before it to initially eliminate outliers from all
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matching points, which would improve the SR but decrease NCM. The other is to also use
GC-RANSAC for homography matrix fitting based on the refined set of control points, and
directly guide the elimination of other matching points. This may achieve performance
equal to or slightly better than that of RIZER.

Table 6. Outlier removal iteration count test.

Max Iteration Count 1 3 5 10 None

NCM (pair) ↑ 1149.70 1367.96 1418.52 1482.18 1496.72
SR (%) ↑ 98.95 99.26 99.74 99.77 99.78

6. Conclusions

This paper proposed a new registration method named RIZER that can be applied to
infrared and visible remote sensing images. Aimed at remote sensing scenes with sparse
texture and the problem of less texture and fuzzy edges inherent in infrared images, we
abandoned the use of multi-stage registration algorithms relying on feature-point detectors
and instead innovatively adopted a detector-free, semi-dense, end-to-end matching algo-
rithm which fundamentally solved the problem of the previous algorithms’ dependence
on corner points and edge points. To address the problem of the difficulty in obtain-
ing heterogeneous remote sensing images with ground truth homography matrices for
supervised domain-specific training, we adopted a pre-trained CNN combined with a
Transformer structure to realize a data-driven approach of zero-shot learning, which pro-
vides a new paradigm in this field and establishes a test set of infrared and visible remote
sensing images by combining generation with manual labeling. Then, a radiation-variation-
invariant matching algorithm was proposed to address the problem of weak similarity of
the corresponding positions due to the presence of radiation variations in heterologous
sensors, which makes it difficult to establish effective matching. The graph model K-nearest
neighbor algorithm of HNSW was pioneered in the field of image registration and used
to establish mutual matching. The use of local geometric soft constraints independent of
radiation variation was introduced. After that, the strategy of simulating the human eye for
matching greatly reduced the difficulty of establishing matching for heterogeneous source
images. Specifically, control point sets were established to simulate the salient regions
easily found by the human eye after sweeping. The matching problem was transformed
into a model fitting problem and the human eye was simulated to estimate the overall
transformation pattern. An incremental matching method with multiple constraints was
used, which could establish a numerical advantage in the matchpoints while guaranteeing
a high accuracy rate. Finally, we proposed a targeted outlier rejection method, which
enables the overall matching effect to realize further improvement with almost no increase
in running time.

Compared with the LoFTR algorithm, RIZER improved the NCM by 25.9% at the
expense of 16.4% of the RT. The RC reached 99.5% with an RMSE of 1.36 pixels, which
is better than the state-of-the-art multimodal registration algorithms. RIZER also had
good generalization ability in multimodal remote sensing scenarios. We experimentally
demonstrated the feasibility of zero-shot learning for the Transformer module, the regularity
between coarse-level matchpoints, and the geometric structure with radiation variation
invariance. We also designed four ablation experiments to demonstrate the effectiveness of
each module and analyzed the reasons in depth.

Of course, RIZER still has some limitations, mainly because it is overly dependent on
the selection of control points. Hence, it is difficult to effectively obtain control points for
some extreme cases, such as overlapping areas that are too small and rotation angles and
scaling that are too large, which would result in a failure of the matching. Coarse-level
matching is less effective for the registration of some low-resolution images. However,
with the improvement of sensor pixels, RIZER will be more applicable, and most of the
heterogeneous remote sensing registration scenarios have small parallax. More importantly,
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the registration difficulties caused by radiation variation can be effectively solved by RIZER.
The next step of our research will be to improve the Transformer module to improve the
rotation and scaling performance and the radiation-variation-invariant module to further
improve the registration effect for the above extreme scenarios by designing a loss function
for training.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16020214/s1. Figure S1. Matchpoint connectivity diagram
using different algorithms for infrared and visible remote sensing images. (a) SIFT; (b) RIFT;
(c) LoFTR-DS; (d) LoFTR-OT; (e) ReDFeat; and (f) RIZER. RIZER has significant advantages in
terms of the number of correct matches. Overall, the matching points are evenly distributed across
the entire overlapping region. RIZER adapts better to sparse texture regions and overcomes changes
in natural scenes over time. RIZER also handles scale and rotation transformations well to some
degree. Figure S2. Matchpoint connectivity diagram using different algorithms for multimodal
remote sensing images. (a) SIFT; (b) RIFT; (c) LoFTR-DS; (d) LoFTR-OT; (e) ReDFeat; and (f) RIZER.
RIZER achieved competitive matching performance across various scenes, but compared to matching
between infrared and visible images, there are still some erroneous matches present. The datasets
used in this paper are available in the following domain resources. Infrared and visible remote sens-
ing image dataset: https://github.com/JasonLi-UCAS/NIR-VIS-RS.git (accessed on 4 January 2024);
Utah AGRC aerial remote sensing dataset: https://downloads.greyc.fr/vedai/; Multimodal remote
sensing image dataset: https://github.com/lan-cz/RISG-image-matching/tree/main/test.
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