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Abstract: In recent years, there has been a growing interest in flood susceptibility modeling. In this
study, we conducted a bibliometric analysis followed by a meta-data analysis to capture the nature
and evolution of literature, intellectual structure networks, emerging themes, and knowledge gaps in
flood susceptibility modeling. Relevant publications were retrieved from the Web of Science database
to identify the leading authors, influential journals, and trending articles. The results of the meta-data
analysis indicated that hybrid models were the most frequently used prediction models. Results of
bibliometric analysis show that GIS, machine learning, statistical models, and the analytical hierarchy
process were the central focuses of this research area. The analysis also revealed that slope, elevation,
and distance from the river are the most commonly used factors in flood susceptibility modeling. The
present study discussed the importance of the resolution of input data, the size and representation of
the training sample, other lessons learned, and future research directions in this field.
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1. Introduction

Floods are considered among the most hazardous weather-related natural disasters [1],
as they often severely damage natural and man-made resources [2,3]. According to statis-
tical records from the United Nations Office for Disaster Risk Reduction (UNISDR), over
157,000 people have died between 1995 and 2015 due to several flood events, accounting
for 11% of the total global disaster casualties [4]. In recent years, the occurrence rates
and intensities of floods have aggravated due to climate change, as well as the increasing
anthropogenic disturbance of the natural ecosystem [5,6].

The classification of floods is multifaceted, encompassing diverse dimensions that
contribute to a comprehensive understanding of these natural phenomena [6]. Floods can
be classified based on the source (pluvial, fluvial, coastal, groundwater), the geography
of the receiving area (urban areas, river catchments, estuaries, coastal areas), the cause
(excess rainfall, coastal storm events, earthquakes), and crucially, the speed of onset [7].
The speed of onset distinguishes flash floods, characterized by a rapid onset, from floods
with a slower onset [8]. These characteristics impose greater challenges for predicting
flash floods [8]. Therefore, accurate mapping of areas prone to flash floods is crucial for
preventing loss of life and property [9]. The precise prediction of areas prone to flash floods
helps not only in preparing these areas against the destructive effects of flash floods but
also in harvesting floodwater, where storm floods can be diverted for human, agricultural,
and livestock use [10].

Flash flood susceptibility modeling plays a critical role in creating flood-resilient
communities. It involves predicting the likelihood of future flash flood events occurring
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in specific areas [11]. By identifying areas with high, moderate, or low susceptibility to
flash floods, it becomes possible to implement appropriate measures to prepare for and
mitigate the devastating impacts of such events [12,13]. There are various approaches
to flood susceptibility modeling, including physically based models and soft computing
techniques. Physically based models simulate the movement of water through a system
using mathematical equations that account for factors such as terrain, soil properties,
and precipitation [14–17]. Hydrodynamic models are often constrained by computational
limitations when it comes to large-scale applications, particularly in urban settings where a
detailed depiction of intricate topographic features is necessary [14,18,19]. Soft computing
techniques, also known as computational intelligence methods, are widely used in flood
susceptibility modeling. These techniques include statistical models, machine learning
algorithms, and other knowledge-based, data-driven approaches [20,21]. Soft computing-
based techniques are now emerging as an alternative in flood susceptibility modeling and
mapping, particularly in areas where flow data records are scarce. Several of these models
were developed and tested in various climate and geomorphological conditions. Popular
statistical methods include the frequency method [8,20] and the weight of evidence [20,22].
Among the different knowledge-based methods, the analytical hierarchy process is the most
widely tested and applied [23,24]. Some popular machine learning models that are used
for flash flood susceptibility modeling include artificial neural networks [25,26], random
forests [27,28], and support vector machines. Recently, researchers have implemented an
algorithm for a hybrid model by combining several machine-learning techniques with
statistical or knowledge-based models. Ensemble machine learning techniques, such
as random subspace [29,30], bagging [31], and naive Bayes [32], have gained immense
popularity for achieving optimal flood-mapping performance.

Scholarly literature on flash flood susceptibility modeling using soft computing tech-
niques has expanded substantially in recent years owing to the advancement of data
acquisition techniques and the availability of a multi-model coupling approach. Therefore,
it is essential to review the nature and evolution of this literature to capture conceptual and
intellectual structure networks, key concepts, trends, and knowledge gaps in this field of
research. Several review articles on flash floods are available in the literature [33–36], all
of which focus on different aspects of flash floods. For example, Liu et al. [36] reviewed
the early flash flood warning systems used in China and compared them with those used
in Europe, America, and Japan. Zanchetta and Coulibaly [35] provide insights into the
atmospheric conditions that preceded flash flood events. Hapuarachchi et al. [33] reviewed
the advancements in remote sensing methods and their application in flash flood forecast-
ing. Saleh et al. [34] reviewed geographic information system (GIS) integration with an
empirical model for flash flood susceptibility. To the best of our knowledge, no bibliometric
and meta-data analysis has investigated the origin, progression, axiomatic characteristics,
and research direction of flash flood susceptibility modeling.

Different types of literature reviews are available, such as systematic literature reviews,
meta-analyses, and bibliometric analyses. A meta-data analysis is a statistical technique
that combines the results of multiple previous research studies to derive conclusions about
that body of research [37]. Bibliometric analysis is a method that statistically analyses
the scientific manuscript and its citations to draw conclusions regarding the prolificacy of
authors, countries, institutions, and journals [38]. Furthermore, it helps identify research
frontiers and future research gaps. Scholars from various fields, such as supply chain
management [39], tsunami research [40], and social entrepreneurship, have used this
method. In the field of water resources, Islam et al. [38] conducted a bibliometric analysis
to review the optimum low-impact development for stormwater management practices.
Dordi et al. [41] conducted a bibliometric analysis to examine the evolution of flood risk
management and governance studies. Several other bibliometric studies on wastewater
quality, stormwater management, and integrated water resource management are available
in the literature [42,43].
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This study aims to conduct a bibliometric analysis and meta-data analysis of flash
flood susceptibility modeling. The following research questions were addressed:

RQ1. Which are the influential countries, key authors, and impactful and trending
articles in the area of flash flood susceptibility modeling?

RQ2. How have flash flood susceptibility modeling studies evolved, and what are
their key emerging research themes?

RQ3. Which algorithm/model was most commonly used, and what was its relative
performance in flash flood susceptibility modeling?

RQ4. Which are the most important conditioning factors in flash flood susceptibility modeling?
This analysis will also help outline the lessons learned and the future scope of this

research field.

2. Materials and Methods

Figure 1 shows the overall methodology adopted in this study, which comprises
three main steps: (1) data extraction, (2) bibliometric analysis, and (3) meta-data analysis.
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2.1. Data Extraction

Articles were retrieved from the Web of Science database. We performed a Boolean
search for articles on flash flood susceptibility modeling using the following combination
of keywords:

(“flash flood”) AND (“susceptibility”) AND (“modelling” OR “mapping” OR “Zoning” OR “Zonation”).

The document types were limited to journal articles, and only articles written in
English were included. The initial query yielded 70 articles. Furthermore, we screened the
article title, abstract, and keywords and removed articles not related to flash flood or flood
susceptibility modeling using soft computing techniques. This resulted in 64 articles for
bibliometric and meta-data analysis. A list of all 64 articles can be found in Appendix A,
Table A1.

The search criteria employed were applied to the title, abstract, and keywords of
the papers. This approach was chosen to ensure a comprehensive retrieval of relevant
articles while focusing on the core aspects of flood susceptibility modeling. The authors
acknowledge the possibility that some articles may not explicitly include these terms in
their title, abstract, or keywords. However, the selected search strategy was designed to
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strike a balance between specificity and sensitivity in capturing relevant literature within
the scope of our study.

2.2. Bibliometric Analysis

A comprehensive bibliometric analysis was performed using two software packages:
HistCite (version 12.3) [44] and VosViewer (version 1.6.18) [45]. Both tools have their advan-
tages and disadvantages. HistCite was used for bibliographic analysis, considering that it
offers extensive citation analysis, while VosViewer was used for visualization, considering
it has built-in graphics and algorithms.

2.3. Meta-Data Analysis

Essential information such as the type of prediction models, flood conditioning factors,
implementation scale, and data against which the models are calibrated and validated was
extracted and compiled in an Excel™ (spreadsheet 2016) spreadsheet. The top five predic-
tors of flood conditioning factors were recorded. Information on the metric performance
of various models was also extracted (Table A1). The total number of studies considered
exceeded the number of articles reviewed due to the inclusion of studies that employed
more than one model. Studies that used hybrid models were further classified into four
categories: ML-ML, ML-O, ML-S, ML-M, and S-S. ML-ML refers to studies that include a
hybrid model using ensemble machine learning approaches; ML-O refers to studies that
form a hybrid model using machine learning and metaheuristic optimization algorithms;
ML-S refers to studies that form a hybrid model using machine learning and statistical
models; ML-M refers to studies that form hybrid models using machine learning and the
multicriteria approach; and S-S refers to studies that combine two statistical models.

Different articles used different metrics, such as the probability of detection (POD) [46],
false alarm ratio (FAR) [47], and area under the curve (AUC) [48], to evaluate the perfor-
mance of various applied models. These metrics were evaluated at a pixel scale. However,
among all the reported metrics, the area under the curve (AUC) was the most used. Hence,
AUC was chosen as the metric to evaluate the performance of various categories of hybrid
models. The value of AUC ranges from 0 to 1, where values close to 1 or 0 indicate the best
and poorest model performance, respectively. The formulas used to determine POD, FAR,
and AUC are as follows:

POD =
TP

TP + FN
(1)

FAR =
FP

FP + TN
(2)

AUC =
(∑ TP + ∑ TN)

(P + N)
(3)

where true positive (TP) and true negative (TN) are the numbers of correctly classified
locations, FP and FN are the numbers of pixels erroneously classified by the model, and
P and N are the total numbers of flooded and non-flooded locations, respectively. The
importance of flash flood processes and the resolution of generated flash flood susceptibility
maps vary with scale [49]. However, the classification of the study area into various spatial
scales is often subjective. In this study, the extracted data on the various spatial scales were
categorized into local, regional, and national scales as defined by De Moel et al. [50]. The
local scale refers to a small study area of less than 100 km2. Regional scale refers to a study
area of less than 100,000 km2. National scale refers to a study area larger than 100,000 km2.
Information about the spatial scale for the reviewed studies was extracted and is presented
in Table A1.

3. Results: Bibliometric
3.1. Trend of Publication and Citations

Figure 2 illustrates the trends in the number of publications and citations per year,
starting in 2016. It is important to note that while general research on flood susceptibility
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has a more extended history, this timeframe specifically pertains to recent studies within
the context of flood susceptibility modeling using soft computing approaches. It was
observed that the number of published articles on flash flood susceptibility modeling was
very low until 2018 and showed a positive trend from 2019 onwards. Furthermore, a spike
in citations was observed in the year 2020. Since no review articles were included in the
analysis, the authors attributed this increase in citations to the rise in the number of articles
(n = 18) published in 2020. Moreover, we observed a decrease in the number of citations
for 2021 and 2022, which could be attributed to the time taken to accumulate citations for
recently published articles. Overall, the observed fluctuations in the number of publications
reflect the dynamics of scholarly activities in the field of flash flood susceptibility modeling
using soft computing approaches during the chosen timeframe.
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3.2. Major Contributing Articles

The first part of the research question is to identify the major contributing articles. To
observe the major articles, the top 10 articles based on total global citations (TGCS) are
listed in Table 1. TGCS refers to the overall citations that the article receives from the entire
Web of Science database. The total citations reported in this study are as per the Web of
Science database collected as of October 2022. As per the TGCS, Khosravi et al. [51] ranked
first with total citations of 321, Zhao et al. [52] ranked second with 153 citations, and Bui
et al. [53] ranked third with 150 citations. Therefore, we can conclude that these three
articles are the major contributing articles in flash flood susceptibility modeling. Among
the recently published articles, Bui et al. [53] and Hosseini et al. [54] are the most trending
articles, with a total citation of 150 and 124, respectively.

Table 1. Trending articles in flash flood modeling.

Sr. No. Articles TGCS

1 [51] 321
2 [52] 153
3 [53] 150
4 [55] 125
5 [54] 124
6 [56] 123
7 [57] 118
8 [8] 115
9 [58] 111
10 [59] 105

Note: TGCS: total global citations.
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3.3. Contributing Authors and Their Nature of Collaboration

The second part of the first research question focuses on finding key authors and
author co-citation networks based on highly cited articles. Table 2 presents the key authors
in terms of the total number of global citations and publications. Based on the number
of TGCS, Dieu Tien Bui was the most prominent author, contributing to 17 publications
with 1172 citations. The second-most prominent author was Costache Romulus, who had
16 publications and 784 citations. The third-most prominent author was Binh Thai Pham,
who had 10 publications and 725 citations. This data is as per the Web of Science database
collected as of October 2022.

Table 2. Key authors in terms of the number of citations and publications.

Author Numbers of Publications TGCS

Dieu Tien Bui 17 1172
Costache Romulus 16 784

Binh Thai Pham 10 725
Phuong Thao Thi Ngo 9 565

Quoc Bao Pham 7 327
Tien Dat Pham 6 461

Alireza Arabameri 6 132
Pham Viet Hao 5 344

Nhat-Duc Hoang 4 271
Mohammadtaghi Avand 4 201

Note: TGCS: total global citations.

Figure 3 shows the authors’ co-citation network. The map was generated using a
minimum threshold of 30 citations, of which 16 authors met the threshold. The author’s
co-citation map is comprised of 16 nodes, where each node represents a different author,
and the size of each node represents the co-citation strength; the greater the co-citation
strength, the more prominent the node size. Furthermore, the link between a node’s
size indicates the extent of the collaboration. As indicated by the size and location of
the nodes, Bui DT, Pham BT, Costache, Khosravi, and Tehrany are the most influential
authors in this field of research. Also, it can be observed that the authors belong to different
departments, such as geology, agricultural and natural research, soil conservation and
watershed management, geomatics, economics, and civil engineering. This indicates that
flash flood modeling draws on a wide range of knowledge and methodologies. Geologists
may offer insights into the geological features and processes that contribute to flash flooding,
while agricultural and natural research experts may possess knowledge of how land use
and vegetation affect flood susceptibility. Meanwhile, civil engineers may contribute their
expertise in infrastructure and urban planning to help mitigate flood risk, etc. Overall,
this interdisciplinary collaboration among authors suggests that flash flood susceptibility
modeling is a complex and multifaceted problem that requires contributions from experts
in various fields.

3.4. Countries’ Contributions and Collaboration

The third part of the first research question explored countries’ contributions and
collaboration patterns in this research field. Table 3 summarizes the top 10 countries ranked
based on the total number of publications, global citations, and local citations. The results
showed that Vietnam contributed the most to the total number of publications, followed by
Iran, Romania, China, and India. Vietnam again ranked first according to TGCS, followed
by Iran and India in the second and third positions, respectively. Here, the number of
citations (TGCS) is associated with the total number of publications for each country in the
“Number of Publications” column. Overall, the results indicate the dominance of Asian,
Middle Eastern, and Western countries in the highly cited literature in this research field.
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Table 3. Top ten countries based on the number of publications and citations.

Rank by Recs Rank by TGCS

Sr. No. Country Number of
Publications Sr. No. Country Citation

Number

1 Vietnam 30 1 Vietnam 1890
2 Iran 20 2 Iran 1207
3 Romania 17 3 India 819
4 China 16 4 Romania 806
5 India 12 5 Norway 658
6 Norway 9 6 China 579
7 Japan 7 7 Japan 466
8 South Korea 7 8 USA 314
9 Austria 5 9 England 284
10 Egypt 5 10 South Korea 249

Notes: Recs: total number of publications; TGCS: total global citations.

Figure 4 shows the country collaboration network based on the top papers (in terms
of citations) on flood susceptibility modeling. The map was generated using a minimum
threshold of five documents from a country; 13 countries met this criterion. As seen in
the figure, Vietnam and Iran collaborated with 12 countries, representing the maximum
collaboration among countries, with a total link strength of 28 and 19, respectively. This
could be the reason why Vietnam had the most cited articles. China collaborated with ten
countries for a total link strength of eight. India and Norway collaborated with nine coun-
tries. These findings indicate the importance of international collaboration in producing
highly cited articles, agreeing with the results of other authors, who reported a positive
correlation between highly cited articles and international collaboration [60].
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3.5. Emerging Theme

The second research question focused on key emerging themes and their evolution.
The authors’ keywords were used to evaluate emerging research themes. A keyword is
considered the most common emerging keyword if it appears at least ten times in all titles
and abstracts. Of the total keywords, 16 met this threshold. Among these 16, keywords
such as flood, floods, flash flood, flash floods, flash-floods, vulnerability, hazard, flood
hazard, flood mapping, flood risk, flood risk management, flood susceptibility, and risk
assessment were eliminated, resulting in 8 keywords, as shown in Table 4. Among these,
“Frequency ratio” and “GIS” are the most recurrent keywords, with 27 and 25 occurrences,
respectively. Figure 5 shows these eight keywords, where each node represents a keyword,
and the size of each node represents the number of occurrences of keywords.

Table 4. Top keyword based on the number of occurrences.

Keyword Occurrence

Frequency Ratio 27
GIS 25

Logistic Regression 24
Weight of Evidence 20
Statistical Models 14

Support Vector Machine 12
Analytical Hierarchical Process 10

Machine Learning 10
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4. Results: Meta-Analysis
4.1. Frequency and Comparative Performance of Algorithms for Flash Flood

It was found that various techniques, ranging from standard machine learning or
multicriteria to advanced and hybrid models, were applied for flash flood susceptibility
mapping (refer to Table A1).

Figure 6 shows the frequency of applied algorithms for flash flood modeling. It was
observed that most studies implemented hybrid algorithms by combining several machine
learning techniques with statistical models, knowledge-based models, or metaheuristic
optimization algorithms. Of the 64 articles, 38 articles used hybrid models. This was
followed by articles that used standalone machine learning or statistical or knowledge-
based models such as neural networks, frequency ratios, analytical hierarchy processes,
support vector machines, etc. Figure 6 also shows the number of articles that compare
different algorithms and those where a particular algorithm was found to be better than
the others. Overall, the hybrid models performed better than the standalone and standard
models, except for the study by Youssef et al. [59], where the standalone frequency ratio
model performed better than the ensemble frequency ratio and logistic regression. As
shown in Figure 6, all the standard standalone models performed poorly in the comparative
studies, considering all the articles comparing standalone models and hybrid models.
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Figure 6. Frequency of use and comparative performance of algorithms for flash flood susceptibil-
ity modeling (NN: Neural Network, FR: Frequency Ratio, AHP: Analytical Hierarchical Process,
SVM: Support Vector Machine, ADT: Alternating Decision Trees, LR: Logistic Regression,
WOE: Weight of Evidence, NBT: Naïve Bayes Trees, LMT: Logistic Model Trees, REPT: Reduced Error
Pruning Trees, RF: Random Forest, RS: Random Subspace, SI: Statistical Index).

4.2. Performance of Various Hybrid Models

Given the superior performance of hybrid models over standard or standalone models,
this study further classified the hybrid models into different categories, as described in the
methodology section, to guide the selection of the most effective hybrid models. Figure 7
shows the mean AUC values that indicate the impact of the hybrid model selection on
the performance of flash flood prediction. The availability of advanced machine learning
approaches, such as extreme learning machines, multilayer perceptron neural networks,
and deep learning neural networks, has led to the wide application of coupled machine
learning techniques or, in some cases, the output of various machine learning models being
combined to form hybrid models (Figure 7). Additionally, several studies have attempted
to weigh flash flood predictors from a statistical point of view or based on expert judg-
ment. These weights are then used as inputs for machine learning to form a hybrid model.
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Among all hybrid models, ML-O was found to have the best performance (AUC = 0.96),
followed by ML-S (AUC = 0.94), ML-ML (AUC = 0.93), ML-M (AUC = 0.93), and
S-S (AUC = 0.89). However, it is crucial to emphasize that while mean AUC values
provide valuable performance benchmarks, the study recognizes the paramount impor-
tance of accounting for the standard error associated with these models. This underscores
the need for a nuanced consideration of context-specific factors when making informed
decisions about model selection. Furthermore, it is worth noting that the studies considered
in this analysis encompassed diverse geographical regions around the world (Table A1).
The quality and quantity of available data, as well as computational resources, varied
across these regions, further emphasizing the need for adaptable and context-aware flood
susceptibility modeling approaches.
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Figure 7. Performance evaluation of different hybrid models (ML-ML: Machine Learning–Machine
Learning, ML-O: Machine Learning–Optimization Technique, ML-S: Machine Learning–Statistical
Model, ML-M: Machine Learning–Multicriteria, S-S: Statistical–Statistical).

4.3. Important Flash Flood Conditioning Factors

Figure 8 shows the frequency of usage of the most important flash flood conditioning
factors for flash flood susceptibility modeling. The five most important conditioning factors
were considered for each of the 64 articles listed in Table A1. The slope was ranked 37 times
as the most important factor, followed by elevation (25 times), distance from a river (21 times),
land use and land cover (19 times), curvature (17 times), and lithology (14 times).
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Figure 8. Frequency of the most important flash flood conditioning factors (LULC: Land Use Land Cover;
TWI: Topographic Wetness Index; DFR: Distance From River; RD: Drainage Density; NDVI: Normalized
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Difference Vegetation Index; TPI: Topographic Position Index; TRI: Topographic Roughness Index;
CI: Convergence Index; CN: Curve Number; MFI: Modified Fourier Index; L-S: Length and Steepness
Factor; DR: Distance to Road; SPI: Stream Power Index).

5. Discussion
5.1. Bibliometric Analysis

Studies on flash flood susceptibility modeling using soft computing techniques have
increased substantially in recent years, thereby providing a research opportunity on the
developments in this field. Related articles were retrieved from the Web of Science database
to conduct this review. First, the publication trends of articles in terms of the volume of
documents and number of citations were generated. An increasing trend was observed in
terms of the number of published articles in 2019, which indicated that the topic remains
relevant to the emerging concept. One of the possible reasons for the increase in the number
of publications and citations in recent years is the increase in the frequency and intensity of
flash floods [61]. Therefore, in recent years, scientists worldwide have attempted to model
and map areas affected by flash floods to prepare against and mitigate the devastating
impact of such events in the future.

Next, citation analysis was conducted in terms of local and global citations to identify
the trending articles in this research field. It is worth noting that the top 10 most-cited
articles in this field primarily focused on flash floods occurring in mountainous catchments
or river catchments, denoting the importance of such locations in terms of flash flood
occurrences. In addition, most of these studies used remotely sensed imagery as the input
to flash flood models, indicating that remote sensing data have increased tremendously in
this field [9].

A collaboration analysis was conducted to determine the nature of the collaboration
between the authors and the countries. Additionally, a country network map was generated,
which showed that Vietnam led the chart in terms of the number of publications and
had the highest number of citations. Interestingly, it was found that countries with the
highest collaboration were associated with more citations (Table 4), which indicated the
importance of collaboration among countries from various regions when publishing highly
cited articles in a specific field. The study also evaluated emerging themes based on the
author’s keywords. Among the author’s keywords, GIS, statistical model, frequency model,
machine learning, and multicriteria analysis were the most commonly used keywords,
thereby laying out the key future research themes in this research area.

5.2. Meta-Data Analysis

Owing to the rapid advancement of innovative technologies, various hybrid models
have been developed and applied to flash flood modeling. These hybrid models were
found to perform better than standard models in most cases. Remote sensing data played a
vital role in the performance of flood susceptibility models, considering remote sensing
helps generate diverse flash flood predictors [62]. Remote sensing is a valuable source
of data that may complement and, in some cases, replace field surveys, particularly in
remote areas and ungauged basins [63]. The availability of remote sensing data could help
trace the areas affected by flash flood events. Utilizing various remote sensing data also
helps develop digital elevation models, land use and land cover, inundation extent, water
level, river width, topography, geology, and several other attributes that shed light on the
causes of flash flood events and enhance the prediction of future events. With forthcoming
satellite missions such as the Surface Water and Ocean Topography (SWOT) mission [64]
and high temporal and spatial resolution satellites such as Sentinel 2, PlanetScope, etc.,
remote sensing will play a significant role in enhancing our capability in understanding
and predicting flash floods.

On comparing the standard models, in many cases, the machine learning model exhib-
ited higher prediction accuracy than the expert-based methods. For example, Nachappa
et al. [2] found that the standalone random forest and support vector machine outperformed
the analytic hierarchy and analytic network processes. Machine learning methods, such
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as naive Bayes, are superior to knowledge-based learning methods, such as Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) and VIekriterijumsko Kompro-
misno Rangiranje (VIKOR) [65]. Among the machine learning models, Khosravi et al. [51]
compared the performance of logistic model trees, reduced error pruning trees, naive Bayes
trees, and alternating decision trees (ADT) and found that ADT performed better than the
other models. Similarly, Bui et al. [53] compared the performance of advanced machine
learning, such as deep learning neural networks (DLNN), multilayer perceptron neural
networks, and support vector machines, and found that DLNN outperformed the other
models. However, knowledge-based methods also provided excellent flash flood hazard
mapping results at many locations [23,62]. In addition, techniques such as frequency ratio,
the weight of evidence, and the statistical index reportedly had superior accuracy at many
locations [66]. The results show that there is no single best standalone model for flash flood
susceptibility. Therefore, researchers worldwide have considered two or more ensemble
methods to take advantage of the merits of each and form a hybrid model with better
prediction performance [51]. This is evident in Figure 6, which shows that the hybrid
models performed better than the standalone models.

Although hybrid models have several advantages, optimizing the model parameters
is a challenge that can often lead to overlearning of the model, particularly in machine
learning [56]. Therefore, coupling the machine learning approach with metaheuristic
optimization algorithms could help achieve better prediction performance compared to
other hybrid models [30]. This is because optimization algorithms first search for the
best input parameters and optimize the layers’ weights [56]. This is evident in Figure 7,
which shows that the hybrid model that combines the machine learning approach with the
heuristic optimization technique exhibited better overall performance, with AUC values
of 0.96. However, it is worth noting that the performance of all hybrid models, barring
S-S, is greater than 0.93 (in terms of AUC). However, as the performance of the models
may be influenced by the sample size, basin characteristics, climate type, and number
of training and testing datasets, more comparative studies of hybrid models in the same
research area should be conducted to make explicit judgments about their performance.
As seen from Table A1, the majority of the reviewed studies have considered a regional
scale equivalent to a province, catchment, or big city. Five papers [52,67–70] have carried
out flash flood modeling at national scales. Even though few of the reviewed studies do
not encompass an entire nation, they were categorized as national-scale studies because
the area of investigation was more than 100,000 km2. Interestingly, only one study [8] was
carried out on a local scale. With the availability of high computation power and remote
sensing data at various temporal and spatial scales, more future studies are expected to
investigate flash flood susceptibility modeling at both national and local scales.

This study also evaluated the frequency of use of the most important flash flood con-
ditioning factors, which include those directly or indirectly associated with the occurrence
of flash floods [71]. As satellite and remotely sensed information increase, various factors
related to soil type, topography, vegetation, and climate are used to optimize the prediction
of flash flood locations [61]. From the analysis, the top six most important conditioning
factors were slope, elevation, distance to a river, LULC and curvature, and topographic
wetness index. The slope is a measure of the degree of steepness of a location and is directly
related to surface runoff, thereby influencing flash flooding. Areas with milder slopes are
prone to flash floods, as these areas are the first to flood during flash flood events [72]. Sim-
ilarly, lower-elevation areas are susceptible to flash floods as flood water flows from higher
to lower elevations [73]. LULC is another crucial factor influencing infiltration and surface
runoff generation and is directly related to flash floods. The increase in the magnitude and
frequency of flash floods is often related to changes in land use and land cover [74]. The
major changes in LULC that affect flash floods are deforestation, intensive agriculture, and
the conversion of natural landscapes into impervious man-made structures. Curvature,
which indicates the rate of change in the slope gradient in a particular direction, is another
influential factor in flash floods [75]. Positive and negative curvatures indicate that the
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slope gradient is convex and concave in the upward direction, respectively, whereas a zero
value indicates a flat curvature. Usually, areas with a flat curvature are highly susceptible
to flash floods [76]. The topographic wetness index indicates the topographic control over
the hydrology of an area. Based on this index, one can estimate where the flood water
would accumulate while considering the elevation differences [73]. Given that TWI shows
the wetness of an area, areas with higher TWI are likely to have saturated soil, leading to
a higher potential for flash flood occurrence [77].

6. Limitations of This Study

This study considered the top ten articles, countries, and authors for ranking. In
addition, a higher threshold was set to generate network maps of authors and countries
and evaluate the emerging themes in this research field. These thresholds were selected
to be able to present a clear and readable visualization of collaborations and emerging
themes. However, as the remaining articles were not considered, the nature of collaboration
between authors and the countries with fewer publications and citations was not shown.
Moreover, this study conducted a meta-data analysis to answer only a few major questions.
Future studies could tailor more meta-data analysis to answer other relevant research
questions, such as the impact of implementation scale, topography, climatic conditions, and
basin characteristics on the performance of the model.

Also, the present study only considers articles that used soft computing techniques
for Flood susceptibility mapping. A common limitation identified across multiple studies
is the dependency on data-driven algorithms in soft computing models. While these
algorithms showcase notable predictive capabilities, they may fall short of fully capturing
the underlying physical processes governing flash floods [78]. As a result, the susceptibility
models developed based on these approaches might encounter inaccuracies, particularly in
areas characterized by complex or unique terrain features. In such cases, physically based
models governed by physical laws and equations may be better suited [14]. However, it
is worth noting that physically based models can also have their limitations, such as high
computational requirements and the need for detailed and accurate input data. Therefore,
future studies should compare the strengths and weaknesses of these models and determine
which would be best suited for different scenarios.

7. Conclusions

In recent years, the frequency of flash floods has increased. In response, scholarly
articles in this field have grown exponentially. In this study, we conducted a bibliometric
analysis and meta-data analysis of flash flood susceptibility modeling. Furthermore, we
summarised the state of the art of development in this field to help researchers, geohazard
scientists, and decision-makers working in this field. The key conclusions drawn from this
review are as follows:

(a) The publication trend graph indicated that the publication of articles in this research
field started in 2016 and has increased since 2019.

(b) Citation analysis indicated that papers titled “A comparative assessment of decision
tree algorithms for flash flood susceptibility modeling at Haraz watershed, northern
Iran” had the highest number of citations as per the Web of Science database collected
as of October 2022.

(c) The author’s keyword analysis showed that GIS, machine learning, statistical models,
and analytical hierarchy processes were the central focuses of this research area.

(d) The hybrid models performed better than the standalone models. Models combining
metaheuristic optimization algorithms and machine-learning approaches performed
better than other hybrid models.

Based on the above findings, the following recommendations can be adopted for
future studies:

(a) Factors affecting flash floods may differ depending on climatic conditions and basin
characteristics. Therefore, future studies should review the most important factors by
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characterizing the study areas concerning climate conditions and basin characteristics.
More comparative studies of hybrid models in the same research area should be
conducted to judge their performance explicitly.

(b) While choosing better models and conditioning factors is essential for improving
prediction performance, other aspects, such as the size and representation of train-
ing samples, are equally important for assessing the performance of flash flood
susceptibility models.

(c) The impact of input dataset resolution on the model’s performance has not been
extensively explored. Therefore, future studies should explore the impact of the
resolution of the input data on the outcome of flash flood susceptibility maps.

(d) A critical reflection of the transferability of flash flood susceptibility models is neces-
sary. Hence, future studies should explore the validity of transferring the developed
flash flood susceptibility model and evaluate its performance using new data from
another region. However, before transferring the model to a new region, it is essential
to carefully evaluate its similarities and differences. It is also recommended to use a
robust statistical method to validate the model’s performance on new data from other
regions to ensure reliability and accuracy.

(e) Future studies should also compare the output of the flash flood susceptibility model
obtained using computing-based techniques with the physically based model output
to identify the strengths and weaknesses of each approach and determine which is
better suited for different applications and scenarios.
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Appendix A

Table A1. Referred articles for systematic review (Logistic Model Trees: LMT, Reduced Error Pruning Trees: REPT, Naïve Bayes Trees: NBT, Alternating Decision
Trees: ADT, Analytical Hierarchical Process: AHP, Feed-Forward Neural Networks: BP, Genetic Algorithm: GA, Multilayer Perceptron: MLP, Bayesian Belief
Network: BN, Shuffled Frog-Leaping Algorithm: SFLA, Artificial Neural Network: ANN, Support Vector Machine: SVM, Random Forest: RF, Random Subspace:
RS, Dagging Ensemble Model: DAE, Index of Entropy: IOE, Fuzzy Unordered Rules Induction Algorithm: FURIA, Firefly algorithm: FA, Levenberg–Marquardt
Backpropagation: LM, Classification Tree: CT, FR: Frequency Ratio, LR: Logistic Regression, Functional Tree: FT, Bagging-Functional Tree: BFT, Dagging-Functional
Tree: DFT, Rotational Forest-Functional Tree: RFT, Reduced Error Pruning trees: REPT, Extreme Learning Machine: ELM, Particle Swarm Optimization: PSO,
Quantum Particle Swarm Optimization: QPSO, Credal Decision Tree: CDTree, Statistical index: SI, Boosted Regression Tree: BRT, Naive Bayes Tree: NBT, Boosted
Generalized Linear Model: GLMBoost, Bayesian Generalized Linear Model: BayesGLM, Lazy K-Star: KS, k-Nearest Neighbor: kNN, Convolutional Neural Network:
CNN, Fuzzy Membership Value: FMV, Evidential Belief Function: EBF, Random Subspace: RS, MultiBoosting: MJ, Real AdaBoost RAb, Kernel Logistic Regression:
KLR, Quadratic Discriminant Analysis: QDA, Weights of Evidence: WOE, Firefly Particle Swarm Optimization: HFPS, Random Subspace Tree: RSTree, Shannon’s
Entropy: SE, Weighing Factor: Wf, Multivariate Adaptive Regression Splines: MARS, Particle Swarm Optimization: PSO, Recurrent Neural Networks: RNN,
AdaBoostM1 Based Credal Decision Tree: ABM-CDT, Bagging Based Credal Decision Tree: Bag-CDT, Dagging based Credal Decision Tree: Dag-CDT, MultiBoostAB
based Credal Decision Tree: MBAB-CDT, Single Credal Decision Tree:CDT, Deep Belief Network with Back Propagation Algorithm Optimized by the Genetic
Algorithm: DBPGA, Adaptive Neuro-Fuzzy Inference System: ANFIS).

References Model Used (Best
Model in Bold) Study Area Top 5 Predictors Reported (in No

Order) Implementation Scale Resolution of the
Map Generated

Performance of
Models

(Based on AUC)

Data against Which the
Model Are Validated

[51] LMT, REPT,
NBT, ADT Iran

Ground slope, altitude, Topographic
Wetness Index (TWI), river density,

distance from river.
Regional (4014 km2) -

ADT-0.976
NBT-0.974
LMT-0971

REPT-0.811

Past field survey data

[52] RF, ANN, SVM China
Elevation, longitude, drainage density,

soil moisture, average annual daily
maximum Precipitation

National (4,280,000 km2) 11.1 × 11.1 km RF: 0.838 Historical flooding record

[53] DLNN, MLP-NN,
SVM Vietnam Elevation, slope, curvature,

soil type, lithology Regional (1465.07 km2) - DLNN-0.960 Past field survey data

[55] SE, SI, Wf Iran Distance from River, Rainfall, Geology
Land use, NDVI Regional (4015 km2). 20 × 20 m

SE-0.914
SI-0.987

Wf-0.976

Documentary source and
field data

[65] NBT, NB, SAW,
TOPSIS, VIKOR China Elevation, distance from river, NDVI,

soil type, Slope Regional (4053.16 km2). -

NBT-0.984
NB-0.979
SAW-0.97

TOPSIS-0.968
VIKOR-0.965

Past field survey data
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Table A1. Cont.

References Model Used (Best
Model in Bold) Study Area Top 5 Predictors Reported (in No

Order) Implementation Scale Resolution of the
Map Generated

Performance of
Models

(Based on AUC)

Data against Which the
Model Are Validated

[54] GLMBoost,
BayesGLM, RF Iran

Elevation, drainage density (Dd), distance
from stream (Dfs), normalized difference

vegetation index (NDVIland use
Regional (11,290 km2) 30 × 30 m - Inundation map generated

from Sentinel 2 images

[56]
PSO-ELM,

MLP-ANN, SVM,
Decision Tree

Vietnam Elevation, slope, aspect,
curvature, Toposhade, Regional (1510.4 km2) 20 × 20 m

PSO-ELM- 0.954
MLP-ANN-0.938

SVM-0.93
Decision Tree-0.912

Past field survey data

[7] PSO-MARS, BNN,
SVM, CT Vietnam Elevation, slope, toposhade, aspect,

topographic wetness index Regional (1510.4 km2) 10 × 10 m PSO-MARS: 0.96 Historical record

[57]

FURIA-GA-Bagging;
FURIA-GA-
LogitBoost;

FURIA-GA-AdaBoost

Vietnam Elevation, slope, topographic wetness
index (TWI), toposhade, lithology cover Regional (1510 km2) -

FURIA-GA-
bagging: 0.9540

FURIA-GA-
LogitBoost: 0.8330

FURIA-GA-
AdaBoost: 0.9520

Field Survey

[79]

RF-ADTree
SVM-Polynomial,

SVM-RVF, LR,
AD-Tree, NBMU

Iran Distance to river, geomorphology,
Landsuse, HG, Geology, Slope Regional (489.49 km2) -

RF-ADTree-0.906
SVM-Polynomial-

0.879
SVM-RVF-0.867

LR-0.75
AD-Tree-0.861
NBMU-0.811

Field Survey, Past data

[71]

DBPGA, LR, LMT,
ADT, NBT,

ANFIS-BAT,
ANFIS-CA,

ANFIS-IWO,
ANFIS-ICA,
ANFIS-FA

Iran No ranking Regional (4014 km2) -

DBPGA: 0.989
ANFIS-BAT: 0.944
ANFIS-CA: 0.921

ANFIS-IWO: 0.939
ANFIS-ICA: 0.947
ANFIS-FA: 0.917

Historical record

[8] FR, SI China No ranking Local (7.98 km2) - - Documentary source and
field data

[58] ANN, SVM, RF, RS,
Dagging Bangladesh Slope, topographic roughness index

(TRI), elevation, LULC, distance to road Regional (2284 km2) 30 × 30 m

Dagging-0.873
SVM-0.86
ANN-0.83

RF-0.91

Historical data sources,
fieldwork, perception of local
residents, and Google Earth
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Table A1. Cont.

References Model Used (Best
Model in Bold) Study Area Top 5 Predictors Reported (in No

Order) Implementation Scale Resolution of the
Map Generated

Performance of
Models

(Based on AUC)

Data against Which the
Model Are Validated

[59] FR; FR+LR Saudi Arabia Slope, Elevation, Curvature, Geology,
Land use Regional (219 km2) 5 × 5 m FR-0.896

FR-LR: 0.913 Field survey

[80] ADT, FT, KLR,
MLP, QDA Iran Elevation, slope, distance from rivers,

land use, lithology Regional (1605 km2) - - Historical flood map

[81] kNN–AHP, KS–AHP,
KS, KNN Romania Slope angle, profile curvature, curve

number, lithology, modified Fournier index Regional (2600 km2) 30 × 30 m kNN–AHP: 0.901
KS–AHP: 0.886

Remote sensing images and
field survey

[82]
DNN-GWO,
DNN-GOA,
DNN-SSO,

Vietnam NDVI, distance to river, aspect,
slope, NDBI - 30 × 30 m

DNN-GWO: 0.96
DNN-GOA: 0.96
DNN-SSO: 0.97

Sentinel-1A images in
combination with

field surveys

[83]
ABM-CDT, Bag-CDT,

Dag-CDT,
MBAB-CDT CDT

Iran Distance from rivers, elevation, slope,
soil, lithology. Regional (1605 km2) 12.5 × 12.5 m

ABM-CDT: 0.957
Dag-CDT: 0.947

MBAB-CDT: 0.933
Bag-CDT: 0.932

Historical record

[84] LR-FR, LR-WoE,
SVM-FR, SVM-WoE Romania Slope angle, land use, lithology, plan

curvature, and profile curvature Regional (2600 km2) 30 × 30 m

LR-FR: 0.888
LR-WOE: 0.885
SVM-FR: 0.887

SVM-WOE: 0.883

Orthorectified aerial
imagery and field survey

[73] MLP-FR, MLP-WOE,
RF-FR, RF-WOE Romania Slope angle, LULC, distance from river,

rainfall, stream power index Regional (2509 km2) -

MLP-FR: 0.940
MLP-WOE: 0.946

RF-FR: 0.999
RF-WOE: 0.968

CART-WOE: 0.938
CART-FR: 0.937

Historical record

[74]
FA-LM-ANN;

LM-ANN;
FA-ANN–SVM; CT

Vietnam No ranking Regional (1510.4 km2) -
FA-LM-ANN: 0.985

LM-ANN: 0.957
FA-ANN: 0.972

Sentinel-1A SAR imagery

[85] AHP, IAE, ADT-IOE,
ADT-AHP Romania Slope angle, topographic position index,

plan curvature, land use, convergence index Regional (363 km2) - ADT-IOE: 0.972
ADT-AHP: 0.926 Google Earth aerial imagery

[86] BRT, ERT, PRF,
RF, RRF Iran Altitude, slope, aspect, Plan curvature,

profile curvature Regional (2056.75 km2) -

BRT: 0.75
ERT: 0.82
PRF: 0.79
RF: 0.78

RRF: 0.80

Field survey and
local authority
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[87]
SI, LR-SI, CART-SI,

MLP-SI, RF-SI,
SVM-SI

Romania

Slope relief, L-S Factor, Topographic
Wetness Index (TWI), profile curvature
and Topographic Position Index (TPI),

land use

Regional (340 km2) 30 × 30 m

LR-SI: 0.915
CART-SI: 0.929
MLP-SI: 0.942
RF-SI: 0.903

SVM-SI: 0.894

Aerial imagery and
field measurements

[22]
LMT, RF, ADT, WoE,
LMT-WoE. RF-WoE,

ADT-WoE
Romania Slope, profile curvature, curve number,

lithology, modified Fournier index Regional (2600 km2) 30 × 30 m
LMT-WoE: 0.906
RF-WoE: 0.893

ADT-WoE: 0.917

Aerial Imagery and
field survey

[88] RS, MJ, RAb Iran
Elevation, stream distance, precipitation,

land use/land cover (LU/LC), normalized
difference vegetation index (NDVI)

Regional (11,290 km2) -
RS: 0.931
MJ: 0.901

RAb: 0.889

Historical record and
field survey

[89] FT, BFT, DFT, RFT Iran Elevation, Drainage density, distance to
stream, rainfall, NDVI Regional (11,290 km2) -

BFT-0.86
DFT-0.85
RFT-0.84

Historical record

[90] NB-CF, NB-EBF,
MLP-CF, MLP-EBF Romania Slope angle, convergence index,

hydrological soil groups, lithology, land use Regional (2600 km2) -

NB-CF: 0.929
NB-EBF: 0.884
MLP-CF: 0.932

MLP-EBF: 0.912

Orthophotomaps and
field survey

[32] LMT, KLR, RBFC,
NBM Vietnam - - -

LMT: 0.988; KLR:
0.985; RBFC: 0.984;

NBM: 0.983

Aerial photographs, satellite
images, and field surveys

[20] FR, WoE Romania No ranking Regional (340 km2) - - Orthophotomaps

[70] AHP China - National - - -

[26] CNN, RNN Iran Slope degree, altitude, plan curvature,
proximity to rivers, lithology Regional (12,000 km2) 30 × 30 m - Google Earth images and

historical data

[91] AHP Iraq No ranking Regional (2098 km2) 30 × 30 m - -

[92]
ANFIS-CF,

ANFIS-WOE,
ANFIS-AHP

Romania Slope, distance from river, LULC,
lithology, elevation Regional (4456 km2) -

ANFIS-CF: 0.947
ANFIS-WOE: 0.932
ANFIS-AHP: 0.930

Historical record

[25] DNN-AHP, DNN-FR Romania Land use, profile curvature, hydrological
soil group, lithology, slope angle Regional (2600 km2) 30 × 30 m DNN-AHP: 0.979

DNN-FR: 0.957
Google Earth images and

field survey data

[30] HFPS-RSTree, SVM,
RF. C4.5 Dt, LMT Vietnam Elevation, slope, aspect, plan curvature,

and profile curvature Regional (1435 km2) 30 × 30 m HFPS-RSTree: 0.967 Sentinel-1 C band images
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[66] FR, MLP, MLP-FR Romania

Slope, elevation above channel (EaC),
distance from rivers (DfR), plan

curvature (PLC), Topographic Wetness
Index (TWI)

Regional (5264 km2) 25 × 25 m MLP-FR: 0.986 Satellite imagery and from
the RUSLE

[27] RF, BRT,
XGBoost, CART Romania Slope, LS factor, TWI, Pasture, HGS Regional (340 km2) -

RF model:
0.956,

BRT: 0.899
XGBoost: 0.892,

CART: 0.868

Google Earth aerial imagery

[93] AHP-FR Pakistan Distance from the river, drainage density,
slope, elevation, and rainfall. Regional (14,850 km2) 12.5 × 12.5 m AHP-FR: 0.81 Historical record

[94]

DLNN-FR,
DLNN-WOE,

ADT-FR, ADT-WOE,
WOE, FR),

DLNN, ADT

Romania
Slope, profile curvature, land use,
Topographic Position Index (TPI),
Topographic Wetness Index (TWI)

Regional (340 km2) -

DLNN-FR: 0.942
DLNN-WOE: 0.96

ADT-FR: 0.919
ADT-WOE: 0.94

Google Earth images

[95] AHP Egypt Elevation, slope, lithology, topographic
wetness index, distance from the stream Regional (2900 km2) - NA -

[96] SVR-GOA,
SVR-PSO, SVR India No ranking Regional (364.9 km2) -

SVR-GOA: 0.951
SVR-PSO: 0.948

SVR: 0.911
Historical record

[75] GA-BN-NN; MLP-BP;
GA-MLP; SFLA-MLP Iran

Elevation, slope angle, the topographic
wetness index (TWI), distance to river,

drainage density
Regional (4014 km2) 30 × 30 m

GA-BN-NN-0.966
MLP-BP-0.908
GA-MLP-0.888

SFLA-MLP-0.941

Aerial photograph, Field
survey, and report

[67] CF. LR, CF-LR China

6 h precipitation (H6_100) within a
100-year return period, 24 h precipitation

(H24_100) within a 100-year return
period, annual rainfall, population

density, and economic density.

National (120,000 km2) 30 × 30 m CF-LR: 0.86 Historical record

[68] ANN, DLNN, PSO India Aspect, elevation, slope, plan curvature,
profile curvature Regional (465 km2) -

ANN: 0.914
DLNN: 0.920

PSO: 0.942

Historical records, satellite
images, and aerial

photographs,

[97] BRT, CART, NBT UAE No ranking Regional (11,871 km2) - NA
Google Earth application

and local reports of
newspapers
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[98] QPSO-CDTree; Vietnam Slope, elevation, curvature, topographic
wetness index, LULC Regional (629 km2) 30 × 30 m QPSO-CDTree: 0.949 Past record inventory

database

[99] Geomorphic
approach Pakistan Geomorphic ranking Regional (391 km2) - - Historical record

[31]

REPT,
Decorate-REPT,

AdaBoostM1-REPT,
Bagging-REPT, and

MultiBoostAB-REPT

Vietnam No ranking Regional (4662.5 km2) -

Decorate-REPT: 0.988
AdaBoostM1-
REPT: 0.983

Bagging-REPT: 0.960
MultiBoostAB-

REPT: 0.939

Field survey

[100] GIS Matrix Method Bosnia and
Herzegovina No ranking Regional (6289.19 km2) - NA Field survey

[77]
DLNN-AHP,

NB-AHP, MLP-AHP,
FAHP

Romania Slope, LULC, convergence index,
hydrological soil group, TPI Regional (363 km2) -

DLNN-AHP: 0.971
NB-AHP: 0.945

MLP-AHP: 0.888
FAHP: 0.836

Aerial imagery from
Google Earth

[101]

SVM, CART, CNN,
SVM-FMV,
CART-FMV,
CNN-FMV

China
Altitude, topographic wetness index

(TWI), maximum three-day precipitation
(M3DP), land cover, soil texture

Regional (90,016 km2) 1 km × 1 km
SVM-FMV: 0.915
CART-FMV: 0.915
CNN-FMV: 0.935

Historical record

[102] AHP Bangladesh slope, rainfall, land use land cover,
drainage density, digital elevation model Regional (8590 km2) - NA Historical record

[103] RF, LightGBM,
CatBoost Egypt TRI, TWI, DEM, slope, distance to river Regional (138 km2) -

RF: 0.99
LightGBM: 0.98
CatBoost: 0.97

Field surveys and records of
historical flood events

[104] FR, FR-AHP Malaysia No ranking - - FR: 0.90
FR-AHP: 0.90

Field visit and
Google Earth Pro

[105] LR, LR-SVM-MLP,
SVM, MLP Pakistan Distance from river, TWI, curvature,

SPI, slope - 30 × 30 m

LR: 0.978
SVM: 0.968
MLP: 0.985

LR-SVM-MLP: 0.99

[106] SI-LR, SI-KNN, SI-RF,
SI-XGB Malaysia Elevation, distance from river, lithology,

river density, rainfall - -

SI-LR: 0.977
SI-KNN: 0.98
SI-RF: 0.995

SI-XGB: 0.997

Historical record
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[107] CNN, LR, KNN Pakistan Slope, distance to river, TWI, elevation,
distance to road Regional (1586 km2) 12.5 × 12.5 m

CNN: 0.98
LR: 0.97

KNN: 0.95
Historical report

[108] - Egypt Hydro morphometric parameters Regional (61,000 km2) - - -

[109]
FR, FR-SVR,

FR-SVR-GWO,
FR-SVR-WOA

Iran No ranking Regional (17,953 km2) -

FR: 0.86
FR-SVR: 0.83

FR-SVR-GWO: 0.88
FR-SVR-WOA: 0.87

Field survey and
historical report

[69] SVM, LR, Ensemble Multi-
country No ranking National (50,640,400 km2) 11.1 × 11.1 km

SVM: 0.932
LR: 0.933

Ensmeble: 0.934

International Disaster
Database (EM-DAT) and the

Global Active Archive of
Large Flood Events.

[110] AHP, FR, AHP-FR Turkey No ranking Regional (13,108 km2) -
AHP: 0.965
FR: 0.989

AHP-FR: 0.992

News sources and
satellite images

[111] SE-RF, SE-ANN Greece Lithology, LULC, slope, elevation, TWI Regional (1200 km2) 25 × 25 m SE-RF: 0.87
SE:ANN: 0.773 Field survey and past record

[11] AHP, F-AHP, ANP,
F-ANP, Adaboost Iran Runoff, distance from stream, slope,

LULC, geology Regional (11,888 km2) -

AHP: 0.779
F-AHP: 0.750
ANP: 0.850

F-ANP: 0.843
Adaboost: 0.864

Field survey and
historical report
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