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Abstract: SAGIN is formed by the fusion of ground networks and aircraft networks. It breaks through
the limitation of communication, which cannot cover the whole world, bringing new opportunities
for network communication in remote areas. However, many heterogeneous devices in SAGIN pose
significant challenges in terms of end-to-end resource management, and the limited regional hetero-
geneous resources also threaten the QoS for users. In this regard, this paper proposes a hierarchical
resource management structure for SAGIN, named SAGIN-MEC, based on a SDN, NFV, and MEC,
aiming to facilitate the systematic management of heterogeneous network resources. Furthermore, to
minimize the operator deployment costs while ensuring the QoS, this paper formulates a resource
scheduling optimization model tailored to SAGIN scenarios to minimize energy consumption. Addi-
tionally, we propose a deployment algorithm, named DRL-G, which is based on heuristics and DRL,
aiming to allocate heterogeneous network resources within SAGIN effectively. Experimental results
showed that SAGIN-MEC can reduce the end-to-end delay by 6–15 ms compared to the terrestrial
edge network, and compared to other algorithms, the DRL-G algorithm can improve the service
request reception rate by up to 20%. In terms of energy consumption, it reduces the average energy
consumption by 4.4% compared to the PG algorithm.

Keywords: space–air–ground integrated network; DRL; resource allocation; NFV

1. Introduction

The Space–Air–Ground Integrated Network (SAGIN) enables ubiquitous and seamless
connectivity through the introduction of network devices such as Low Earth Orbit (LEO)
satellites and High-Altitude Platforms (HAPs). SAGIN expands the coverage area of the
existing network and is, therefore, capable of handling tasks that cannot be performed using
terrestrial networks alone, and it has become an important direction in the development of
the Internet in the future [1,2]. SAGIN, through the interaction of heterogeneous devices,
can provide new solutions for processes in industry/agriculture that are not suitable
for direct manual operation. For example, satellites can be used in the interaction of
heterogeneous equipment in SAGIN to remotely send machine operation instructions
which can realize the remote monitoring and operation of pesticide spraying, mechanical
operation, terminal cargo transportation, etc. This can not only save much of the labor cost,
but also promote the intelligentization of production.

However, SAGIN still faces two significant challenges. The first is the management of
heterogeneous network resources. SAGIN includes satellite networks, aircraft networks,
and ground networks, and these heterogeneous devices can cause complex end-to-end
resource allocation due to differences in the configurations, standards, and performance.
The second is the problem of regional network resource constraints. Although many
studies have considered the application of Mobile Edge Computing (MEC) on satellites
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and HAPs to reduce the computational pressure on terrestrial networks [3], the problem
of the unbalanced allocation of regional computing resources still needs to be solved. For
example, more service base stations are often deployed in economically developed regions,
which tend to possess excess resources. In contrast, remote regions usually face the problem
of resource shortages and need help even to achieve the expected delivery of user services.

Therefore, a reasonable resource management and scheduling structure is needed to
access heterogeneous devices in SAGIN, which ensures accurate and fast access to resource
information, different Qualities of Service (QoSs), and the efficient deployment of tasks. In
addition, proper resource scheduling algorithms are needed to allocate different resources
for various services, reducing the amount of computing nodes that are turned on and
the deployment cost while scheduling inactive resources in other nearby areas on time to
satisfy the network demand and ensure that the latency is within a tolerable range.

Network Function Virtualization (NFV) and Software-Defined Networking (SDN)
provide the technical basis for managing SAGIN heterogeneous device resources. The
introduction of the SDN and NFV releases SAGIN from the constraints of proprietary
hardware, enabling efficient access to different devices and dynamic sharing of network
infrastructure and resources between heterogeneous networks. The SDN separates the
control and data planes, enabling the ability to defining and controlling the network in
a software-programmable structure [4]. The SDN has been proposed to enable flexible
resource management and resource allocation in Earth observation missions [5]. NFV
enables the data plane virtualization and hardware implementation of communication
devices in software [6–8]. In the SDN/NFV structure, a Service Function Chain (SFC)
composed of multiple Virtual Network Functions (VNFs) can guide user traffic according
to precise policies and efficiently utilize limited computing, storage, bandwidth, and other
network resources. In SAGIN, the VNFs must be matched with heterogeneous resources,
and the deployment strategies are further designed and optimized by resource scheduling
algorithms to reduce the operator costs while ensuring tolerable communication latency.

Researchers have performed much work on these two issues and have produced many
excellent results. However, the currently proposed resource management structures need
to thoroughly consider SAGIN’s complex network structure and multiple heterogeneous
devices. Moreover, after the introduction of the SDN and NFV, SFC orchestration studies
have focused on the load of the ground and air nodes, and there is no study on the
energy consumption and delay of heterogeneous devices. However, the resources of the
air devices are limited, and the air devices also introduce different degrees of delay when
communicating with the ground devices, so it is necessary to study them further.

Therefore, to address the problem of heterogeneous resource management and schedul-
ing in SAGIN scenarios, we propose a SAGIN resource management structure that intro-
duces the SDN, NFV, and MEC to improve the utilization efficiency of the heterogeneous
resources. In addition, we researched the resource scheduling and QoS optimization prob-
lem under this structure and designed a scheduling algorithm that takes into account both
energy consumption and latency.

The primary contributions of this article are as follows:

1. We propose a SAGIN-MEC structure based on SDN/NFV and MEC. It has a multi-
level distributed SDN control structure to achieve the harmonious scheduling of
heterogeneous resources;

2. An optimization model is developed by comprehensively considering resource schedul-
ing in SAGIN scenarios. The model is designed to reduce the system’s energy con-
sumption while meeting the constraints of the latency and network resources;

3. A hybrid algorithm DRL-G based on Deep Reinforcement Learning (DRL) and a
greedy algorithm are proposed to optimize the SFC resource scheduling under SAGIN,
reducing the energy consumption and cost while ensuring the efficient use of network
resources and tolerable latency.
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The other parts of this article are organized as follows: Section 2 introduces the related
work of the SAGIN structure and SFC orchestration; Section 3 introduces the structure
and topology of SAGIN; Section 4 sets up the mathematical model; Section 5 proposes the
optimization algorithm; Section 6 carries out the experimental verification and analysis,
and Section 7 finally summarizes this article.

2. Related Work
2.1. Network Structure

The development process of SAGIN can not avoid the challenges of network structure.
In order to achieve the convergence of the heterogeneous devices, researchers have carried
out some studies on structure design.

Early studies of SAGIN structure did not consider the change in satellites from merely
providing forwarding functions to supporting information storage and processing, nor
did they completely consider the application of SDN and NFV technologies in converged
networks. For example, KOTA et al. proposed the concept and definition of an early satel-
lite terrestrial converged network containing only satellite and terrestrial communication
networks [9]. However, they proved the possibility of satellite and terrestrial networks
communicating with each other only at the physical layer, failing to solve the resource
management and allocation problems in the heterogeneous networks. WANG et al. in-
troduced MEC into satellite networks and proposed a bilateral computation offloading of
satellite terrestrial networks in the structure [10], which gives full play to the advantage
of comprehensive satellite coverage and solves the problem of limited ground network
services. The structure does not have a specific resource management model, although it
proposes to unify the resources of satellite ground networks for management.

The SDN, NFV, and MEC technologies have recently received increasing attention
from SAGIN researchers. For example, Li et al. proposed a SAGIN network structure
consisting of LEO satellites and civil aircraft. However, the structure ignores the manage-
ment role of Medium Earth Orbit (MEO) satellites in SAGIN. GIAMBENE et al. proposed
a satellite access terrestrial network structure designed for eMBB scenarios [11], where
the satellite backhaul network is connected to the 5G core network through a terrestrial
gateway to realize satellite and 5G convergence, and user terminals can communicate with
satellites either directly or via terrestrial satellite relay (satellite terminals only), but the
auxiliary functions of the aircraft network have not been considered. Cao et al. proposed
the SAGIN structure in the Internet of Vehicles scenario, but the centralized management
of the whole network needs to be considered [12]. Although researchers have extensively
studied SAGIN through the latest technological means and achieved specific results, they
have yet to consider the complex structure of the converged network and the large number
of heterogeneous devices comprehensively. In response to the above problems, this paper
proposes a SAGIN network structure that uses SDN controllers for hierarchical manage-
ment. This structure can efficiently manage heterogeneous devices in converged networks
and achieve efficient and flexible collaborative work among heterogeneous networks.

2.2. DRL

Deep Reinforcement Learning (DRL) is a method that combines deep learning with
reinforcement learning. Deep learning is used for perceiving and representing things, while
reinforcement learning focuses on learning strategies for problem solving. DRL builds
predictive models of the environment and rewards through neural networks and trains
this model through interaction with the environment to select the best action to maximize
the expected reward. In recent years, with the rapid development of DRL technology,
many researchers have begun to use DRL to solve resource optimization problems. Gi-
annopoulos et al. proposed a resource allocation algorithm based on Deep Q-Learning
to actively adjust the power of network transmitters to improve total throughput alloca-
tion [13]. Lyu et al. proposed a multi-agent deep learning algorithm for task offloading
to reduce task latency [14]. Trakadas et al. proposed embedding technologies such as
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Federated Learning and Supervised Learning into the algorithm framework to meet the
needs of decentralized edge computing and local privacy protection [15]. Due to the high
computational cost of traditional heuristic algorithms and the inability to generalize their
solutions, DRL algorithms are more promising in generating solutions in large-scale net-
works. These studies on DRL provide a solid theoretical foundation for the algorithms
studied in this paper.

2.3. Resource Scheduling

The current problem for resource scheduling and QoS optimization aspects in SAGIN
has proved to be an NP-hard problem [16], and most of the existing solutions use Exact
Solution Algorithms and Heuristic Algorithms to solve it.

There are many excellent results in existing research on SFC scheduling. For example,
Zhou et al. conducted simulation experiments in small-scale scenarios using Matlab
SCIP [17], but this approach could be more effective in large-scale environments. Li et al.
proposed a VNF remapping and scheduling algorithm based on Tabu Search to improve
the request acceptance rate of SFC [18]. However, the only experiments were conducted in
small simulation scenarios.

Although there are many studies on SFC orchestration in other scenarios and excellent
results have been achieved, there needs to be more studies on resource scheduling and
QoS optimization in SAGIN. Zhang et al. proposed a joint learning-based algorithm to
deploy SFC in SAGIN [19]. Li et al. proposed a heuristic SFC deployment algorithm with
an inter-domain path calculation method based on surgical inter-domain path computation,
aiming to reduce the load on the compute nodes [20]. Gao et al. proposed a Location-
Aware Resource Allocation (LARA) algorithm based on Greedy and IBM CPLEX 12.10 to
reduce the average utilization of compute resources in satellite and terrestrial networks [21].
Han et al. proposed a DRL-based SFC deployment algorithm to reduce end-to-end latency
in large-scale LEO networks [22]. Qin et al. formulated the SFC embedding problem
as a congestion game and proposed three algorithms suitable for different scenarios to
meet users’ latency requirements [23]. He et al. proposed a load-aware SFC orchestration
algorithm to improve service capacity and load balancing. However, these studies should
have considered the energy consumption and delay of the infrastructure in SAGIN [24].
Due to the complex structure and variable topology of the SAGIN, its problems in SFC
are more complex and need more profound research. In order to meet the challenges of
complex and changing environments in SAGIN, this paper is dedicated to minimizing the
service energy consumption while satisfying the strict constraints on network resources
and delays imposed by VNF in SFC. To this end, we employ a DRL-based algorithm to
quickly obtain a solution set of potentially optimal deployment scenarios. Subsequently,
through further filtering by heuristic algorithms, we can find the optimal deployment
scheme precisely.

3. Network Structure

Regarding SAGIN structure, the current research has not fully considered the appli-
cation of edge computing technology in converged networks. Those also have not well
solved the problems of device heterogeneity, node effectiveness, and resource limitation in
converged networks.

According to the difficulty of heterogeneous resource management in SAGIN, a SAGIN
structure based on the SDN/NFV is proposed in this article, and its logic is shown in
Figure 1. We put the abstract and application processing functions of physical devices
on the MEC host so that the devices can be accessed according to procedures, free from
hardware constraints. Therefore, the network structure proposed by us no longer divides
the heterogeneous network into different layers, but into five layers: application layer,
centralized control layer, control layer, data layer, and infrastructure layer.

The application layer contains the applications needed for the Industrial Internet
of Things (IIoT) and Internet of Agriculture (IoA), such as machine operation, energy
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extraction, and pesticide spraying, and provides the corresponding functions for the request
of the centralized controller.

The centralized control layer is responsible for the collection of resource conditions; it
develops management policies based on network resources and provides functions such
as node mobility management, converged network topology reconstruction, network task
scheduling, and heterogeneous resource management. This layer collects data from the
control layer on the one hand and directs the control layer to perform its work on the other.

Centralized control Plane

Resource registration 
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Management 
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Logical unified resource pool

Space physical 
resources

Air physical 
resources

Ground physical 
resources

Control Plane

Data Plane

Space physical 
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Figure 1. Logical structure of SAGIN based on the SDN/NFV for IoA/IIoT.

The control layer receives data from the data layer and feeds it back to the centralized
control layer, allocating node resources and controlling data forwarding according to the
policies of the centralized control layer. In order to solve the difficulties in the management
of a large number of MEC servers and network nodes, the effective identification of new
access network edge nodes is realized and the effectiveness of nodes is ensured. We divide
SAGIN into three layers for control, namely the satellite network layer, the aircraft network
layer, and the ground network layer. At the same time, to better manage SAGIN, a global
SDN controller (SDNC) should be set to control all layers to complete tasks in a unified
and coordinated manner. Meanwhile, primarily SDNCs and sub-SDNCs should be set at
each layer. In the satellite network, the primary controllers are placed on Geostationary
Earth Orbit (GEO) satellites, and sub-SDNCs are placed on the Medium Earth Orbit (MEO)
satellites. In the aircraft network, one or a few High-Altitude Platforms (HAPs) are selected
as the primary SDNCs, and the remaining HAPs are sub-control nodes. In the terrestrial
network, servers are placed in the backbone network as primary SDNCs and edge servers
are placed as sub-SDNCs.

The data layer integrates space-based, air-based, and ground-based computing re-
sources into a unified resource pool through the NFV. Then, it forwards data to each
substrate node according to the command of the control layer.
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The infrastructure layer provides necessary resources for the upper layer, such as
computing resources, storage resources, and bandwidth resources. The main facilities
are GEO satellites, MEO satellites, LEO satellites, HAPs, UAPs, core servers, and edge
servers, whose topologies are shown in Figure 2. Both ground base stations and MEO
satellites can communicate directly with LEO satellites and GEO satellites. MEO satellites
can communicate with other MEO satellites. In contrast, LEO satellites cannot communicate
directly with GEO satellites or communicate with each other, and GEO satellites cannot
communicate with other similar satellites.

The altitude of each orbit is shown in Table 1. LEO and GEO are 700 to 1500 km
and 35,790 km away from the Earth’s surface, respectively, while MEO is between 2000
and 20,000 km away from the Earth’s surface, generally about 10,000 km away. Satellites
transmit signals through radio waves, and the propagation speed is approximately the
speed of light. The delay of data transmission by MEO satellites to the Earth’s surface
is about 56 ms, and that by GEO satellites to the Earth’s surface is about 120 ms. As the
delay is too long to meet user needs, MEC is not considered to be deployed on MEO and
GEO satellites.

Figure 2. SAGIN topology.

Table 1. Distance of satellite from Earth’s surface.

Satellites Orbit Height/km

GEO satellites 35,790
MEO satellites 2000~20,000 (10,000)
LEO satellites 700~1500

In view of the limited resources in SAGIN, an efficient dynamic resource management
method is needed to deal with the unbalanced allocation of resources in converged networks
to ensure stability of services. The dynamic resource management method under the SAGIN
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structure based on the SDN and NFV is to combine VNFs into SFC orderly in the form
of logical links so as to guide traffic through according to specific policies. As shown in
Figure 3, there are two service requests, SFC-1 and SFC-2, where the traffic of SFC-1 passes
through the VNFs carried by the non-ground node. Currently, the satellite nodes and the
aircraft nodes have three functions. Firstly, the traffic can flow through the node without
laying ground optical cables. In addition, it can balance the traffic load. For example, when
some routes on the local network are congested, tasks are unloaded to the non-ground
network. Furthermore, it shortens the delay by reducing the number of end-to-end hops.

Figure 3. Example of SFC placement in SAGIN scenario.

Relative to terrestrial edge cloud networks, SAGIN-MEC utilizes SDN/NFV to achieve
unified resource scheduling across different heterogeneous networks, which can improve
the request acceptance rate and reduce the end-to-end latency of SFCs, and the specific
results are presented in detail in the experiments and analyses in Section 4.

4. Mathematical Model

In this section, we describe the VNF placement problem and related constraints in
SAGIN scenarios in detail.

SFC:
We assume that the set of VNFs is V = {v1, v2, ..., vn}, which consists of n different

VNFs. Network Service s = {v1, v2, ..., vm} is composed of m VNFs, where v ∈ V.
Network systems:
Firstly, we need to define a network system topology graph G = (H, L), assuming that

there are n host servers (containing ground, aircraft, and satellite servers). The hosts can
be represented as H = {h1, h2, ..., hn}, the set of available computing resources owned by
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these hosts is R, and the set of links between the hosts is defined as L, bi, and lsi denotes the
bandwidth and delay of link i, respectively.

Placement strategy:
The VNFs of the service chain need to be placed as optimally as possible in the host

servers, and we use xvh to indicate whether VNF v is placed in host h:

xvh =

{
1 VNF v in host h
0 otherwise

yh represents whether host h is occupied or not:

yh =

{
1 existence VNF in host h
0 otherwise

The usage of link i is denoted as

zi =

{
1 data packet passes through link i
0 otherwise

Energy consumption:
Energy consumption is divided into two parts during VNF placement: one is required

for the hosts to process tasks, and the other is the energy consumption for link data
transmission. The energy consumption of hosts is related to the number of resources it uses.
We assume that Wmin

h is the minimum energy required by host h, and Wcpu
h is the energy

needed for each cpu of h; then, the total energy consumption of hosts can be expressed as

energy_cpu = ∑
h∈H

(Wcpu
h ·∑

v∈s
rrv · xvh + Wmin

h · yh), (1)

where rrv represents the computing resources requested by VNF v.
The energy consumption of the links can be expressed as

energy_link = ∑
i∈L

Wbw
i ·∑

v∈s
bs

v · xvh, (2)

where Wbw
i is the energy consumed per bandwidth unit flowing through link i. Then, the

total energy consumed to provide service s can be expressed as

F1 = energy_cpu + energy_link. (3)

After all of the VNFs about the s are placed in the host servers, the resources occupied
by each host can be expressed as Equation (4).

cpu_occupy = ∑
v∈s

rrv · xvh ∀h ∈ H, r ∈ R. (4)

The available computing resources of the host servers are represented as

cpu_available = yh · arh ∀h ∈ H, r ∈ R, (5)

where arh denotes the available computing resources of host h.
During storage, the computing resources occupied by service s cannot exceed the

available resources of the host. The specific equation is shown as follows:

F2 : cpu_occupy ≤ cpu_available. (6)

Bandwidth:
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Similarly, the deployment of VNFs also needs to meet the bandwidth constraints of
the link. The bandwidth occupied by SFC s can be expressed as

bw_occupy = ∑
v∈s

bs
v · xvh. (7)

The bandwidth owned by link i is expressed as

bw_available = zi · bi ∀i ∈ L. (8)

The bandwidth occupied by SFC s must not exceed the available bandwidth of each
link during the placement. Therefore, the constraint is expressed as

F3 : bw_occupy ≤ bw_available. (9)

End-to-end latency:
End-to-end delay is divided into two parts: one is the time required by the host to

process the VNF, and the other is the time required by the packet during transmission. The
delay in processing VNF is expressed as

delay_cpu = ∑
h∈H

∑
v∈s

dcpu
v · xvh ∀h ∈ H, (10)

where dcpu
v represents the delay of VNF v processing by the host.

We let ds
i represent the time required by link i to transmit SFCs data packets. The delay

of this process is expressed as

delay_link = ∑
i∈L

∑
v∈s

ds
i · zi ∀h ∈ H. (11)

The end-to-end delay of s must meet its maximum allowable time, T, which can be
expressed as

F4 : delay_cpu + delay_link ≤ T. (12)

Deployment constraints:
VNF in SFC s can only be placed in one host at a time during the placement:

F5 : ∑
h∈H

xvh = 1 ∀v ∈ s. (13)

Summary of objectives:
Considering energy consumption, computing resources, bandwidth, and service delay

comprehensively, we defined an optimization model as follows:

min(F1) s.t. F2, F3, F4, F5. (14)

5. Algorithm Design

The resource allocation problem in the SAGIN scenario is essentially a multi-objective
optimization problem (MaOP), which proves to be an NP-hard problem. This scenario
results in a much more complex environment than a ground network alone due to the
highly dynamic nature of satellites and vehicles.

To solve this problem, we propose DRL-G, which is a hybrid algorithm combining
deep reinforcement learning and the heuristic algorithm. At present, the effect of deep
reinforcement learning in solving combinatorial optimization problems is as good as that
of high-performance heuristic algorithms [25]. However, due to the fact that the deep
reinforcement learning algorithm cannot fully explore all actions, we use the heuristic
algorithm to conduct a local search based on its results so as to obtain better results than
the original algorithm. The specific algorithm flow is shown in Figure 4. After receiving
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the service request, DRL-G first predicts the placement scheme through the sequence-to-
sequence model within the allowed response time and then finds the best strategy through
the greedy algorithm.

SFC Requests Forecast Model Placement Solution

Greedy AlgorithmCompliance 
Constraint?Fail

Success

NO

YES

Figure 4. Workflow of proposed DRL-G.

5.1. Predictive Models

The prediction model is used to predict server and link occupancy when the SFC
request arrives, and it is the core part of the whole method. It consists of four parts, namely
the input, the encoder, the decoder, and the output layer, and its structure is shown in
Figure 5.

Figure 5. SFC deployment prediction model based on sequence−to−sequence model.

The input layer processes and normalizes the computational and bandwidth resource
data required to extract the SFC into a 2 × n feature matrix x = [c, bw], where n is the chain
length of the longest SFC, c is the computational resource normalized data, and bw is the
bandwidth resource normalized data. The normalized formula is as follows:

ci =
Ci −min(Ci)

max(Ci)−min(Ci)
, (15)

bwi =
BWi −min(BWi)

max(BWi)−min(BWi)
, (16)

where C and B are the amount of computing and bandwidth resources required by VNF,
respectively.

The core of the neural network model employs encoders and decoders for sequence-
to-sequence models. Its most important feature is that the length of the input and output
sequences is variable, which makes it ideal for use in situations where the SFC chain length
is uncertain.
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The encoder and the decoder consist of several Long Short-Term Memory Networks
(LSTMs). LSTM is a special kind of Recurrent Neural Network (RNN). Each LSTM input
consists of the previous LSTM output, cell states ht−1, ct−1, and current input xt, where xt
is the data of the tth row of feature matrix x. The formulae for the output of the LSTMs, h,
and the cell state, ct, are as follows:

ct = σ(θ f · [ht−1, xt] + b f ) · ct−1 + σ(θi · [ht−1, xt] + bi) · tanh(θc · [ht−1, xt] + bc), (17)

ht = σ(θo · [ht−1, xt] + bo) · tanh(ct), (18)

ft = σ(θ f · [ht−1, xt] + b f ), (19)

where θ f , θi, θc, θo, b f , bi, bc, and bo are the parameters on which the neural network needs
to be trained.

The output layer is a sampling function that changes continuous actions into discrete
actions. This is achieved by predicting the occupied servers by sampling according to the
output probabilities in the decoder. The higher the probability, the greater the chance that a
server will be drawn.

5.2. The Trained Algorithm

We adopt the policy gradient to train the prediction model, and the training algorithm
is shown in Algorithm 1.

Algorithm 1 Train Agent Network

Input: action network π(a|s, w), critic network v̂(s, wv)
1: Random policy parameter w and critic parameter wv
2: for epoch = 1, 2... do
3: reset d` ← 0
4: sj ∼ SampleInput(S) f or j ∈ {1, ..., B}
5: pj ∼ SampleSolution(πw(·|s)) f or j ∈ {1, ..., B}
6: bj ← bwv(sj) f or j ∈ {1, ..., B}
7: compute cost f unction : L(pj) f or j ∈ {1, ..., B}
8: gw = 1/B ·∑B

j=1(L(pj)− b(sj)) · 5wlogπw(pj|sj)

9: L(wv) = 1/B ·∑B
j=1 ||bwv(sj)− L(pj|sj)||2

10: w← Adam(w, gw)
11: w← Adam(wv,L(wv))
12: end for
13: return w and wv

The algorithm model is divided into three parts: agent, environment, and state. The
agent includes the sequence-to-sequence model and value evaluator. The environment is
the network system constructed in this article, and the state includes SFC and the resource
situation of each host and link. After receiving the SFC, the agent selects the VNF placement
policy according to the current state. Then, the environment places the VNF according to
the specific location and generates a new state, and gives back the corresponding reward
value to the agent so as to guide the agent to constantly explore a better placement policy.
The specific algorithm model is shown in Figure 6.

We suppose that the VNF placement problem in SAGIN has n states, and its state
space is S = {s1, s2, ..., sn}. The size of the state space is closely related to the number of
underlying network resources and the type of VNF. When n compute nodes are considered,
the set of compute resources of these compute nodes is Rc = {r1, r2, ..., rn}. Meanwhile,
the bandwidth resources connecting these compute nodes are Rb = {b1, b2, ..., bn}. If there
are m VNF types, then m ·∑n

i=0 ri · bi states are formed. The action space is related to the
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number of computing nodes, assuming that the underlying network has n computing
nodes. Then, the agent has n actions, and its action space is A = {a1, a2, ..., an}. The agent
interacts with the environment t times to obtain the trajectory and deployment scenario
can be represented as: τ = {(s1, a1), (s2, a2), ..., (st, at)}, p = {a1, a2, ..., tt}.

Figure 6. RL training process of prediction model.

After the configuration according to deployment scenario p, the environment evaluates
whether the network resource constraints, delay constraints, and energy consumption
magnitude are met and offers a feedback value. Subsequently, the neural network updates
the policy based on this feedback value.

We need to find strategy π(a|s) that enables optimal placement of the SFC. Therefore,
this strategy cannot be used directly; we set policy function πθ(a|s), and its relationship
with π(a|s) is shown below.

π(a|s) ≈ πθ(a|s) = P(a|s, θ). (20)

πθ(a|s) approximate to strategy π(a|s) using a function with θ to present the probabil-
ity of performing action a in state s. Then, the optimal strategy is constantly approximated
by updating θ.

Therefore, according to the guidelines of this function, we need to set an objective
function so that policy function πθ(a|s) can optimize θ. When θ is determined, we can
express the energy consumption of SFC as Equation (15).

Jπ
E (θ|s) = ∑

τ

E(τ)Pθ(τ) = E
p∼π(·|S)

[E(τ)], (21)

where E(τ) is the energy consumption of the network system at trajectory τ. The agent
needs to infer an approximately optimal solution from all possible combination schemes by
expectation, so we define the expected energy consumption expectation as

Jπ
E (θ) = E

s∼π(·|S)
[Jπ

E (θ|s)]. (22)

Similarly, the expectations that do not conform to the constraints are expressed
as follows:

Jπ
F (θ) = E

s∼π(·|S)
[Jπ

F (θ|s)] (23)

To sum up, the goal can be expressed as

minJπ
E (θ) s.t. Jπ

F (θ) ≤ 0. (24)

However, optimization problems with constraints are difficult to solve, so we assign
penalty value Ci(s|a) to the cases that do not conform to the constraints; the expectation is
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Jπ
C(θ), and the final objective function is defined as the sum of energy consumption and

penalty values that do not conform to restrictions:

R̄(θ) = min(Jπ
E (θ) + Jπ

C(θ)). (25)

To reduce the value of the objective function, the method of gradient descent is adopted
to optimize the function, and the gradient is obtained:

5R̄(τ) = ∑
τ

R(τ) · 5Pθ(τ)

= ∑
τ

R(τ) · Pθ(τ)
5Pθ(τ)

Pθ(τ)

= ∑
τ

R(τ) · 5logPθ(τ)

= Eτ∼Pθ(τ) ∑
τ

R(τ) · 5logPθ(τ)

= E(a)∼πa(·|s) ∑
τ

R(a|s) · 5logπθ(a|s),

(26)

where R(τ) = E(τ) + ∑
i

λi · Ci(s|a). However, this expected value cannot be calculated

directly, so it is necessary to approximate the gradient by sampling. The expected value of
sampling N τ can be expressed as

E(a)∼πa(·|s) ∑
τ

R(a|s) · 5logπθ(a|s) ≈

1
N

N

∑
n=1

R(an|sn) · 5logπθ(an|sn).
(27)

Some actions may never be sampled during the actual learning process, and it reduces
the probability of a better deployment. We suppose the actions that state s can perform are
a, b, and c, but only actions b or c are sampled. If these actions reduce the penalty value,
we can know that the probability of each action being selected should rise according to
R̄(τ). But in this process, the best action a is not sampled, which leads to a decrease in its
probability of being chosen. This is obviously problematic; we want the punishment to be
able to judge the relative goodness of the action, so we need to introduce a baseline that
depends on the state, and auxiliary network bθv(s) is needed to predict the penalty value
based on the state. The gradient after its introduction is

5R̄(τ) ≈ 1
N

N

∑
n=1

[R(an|sn)− bθv(sn)] · 5logπθ(an|sn). (28)

5.3. Greedy Deployment

However, only using the above algorithm has two disadvantages: one is that random
gradient descent is easy to fall into the saddle points; the other is that all cases cannot
be sampled in the training process, and it is impossible to judge which method is the
best solution.

For this purpose, we trained multiple models to avoid the situation where a single
model could not escape the saddle point. In training, the probability of a single model
falling into saddle points is relatively high, but training multiple models can reduce this
probability to a certain extent. Even if all models fall into the saddle points, the saddle
points approaching the optimal solution can be obtained eventually.

In addition, to alleviate the second problem raised, the prediction model is sampled
n times after passing through the softmax layer, and the best action is greedily selected
from it, instead of sampling the action once according to the action probability. The greedy
algorithm’s flow is shown in Algorithm 2.
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Algorithm 2 Greedy Choice Placement

Input: Number o f models N; Number o f samplings M;
Output: Optimalscheme P

1: temp, tempm ← E(1)
2: for i = 1, 2, ..., N do
3: for j = 1, 2, ..., M do
4: if temp < E(i) then
5: temp← jth Sampling penalty of the ith model E(j)
6: end if
7: if tempm < temp then
8: tempm ← temp
9: end if

10: end for
11: end for
12: renturn the placement P

6. Experiment and Analysis
6.1. Experimental Setting

In the simulation experiment, the topology of the ground network uses the real NTT
global network topology from the Topology Zoo [26]. There are 47 hosts in the network
which links North America, Asia, Europe, and Australia, but there are 15 isolated hosts in
the Middle East, Africa, and some small islands.

Referring to the network topology in the experiment of Li et al. [27], we simulated a
satellite network composed of 58 satellites whose physical properties are shown in Table 2.
Firstly, there is an orbit in the top layer with an angle of 0° from the equator, there are 3 GEO
satellites in total. In addition, the mesosphere has 2 orbits with an angle of 45° from the
equator, each with 5 MEO satellites. Furthermore, there are 5 orbits in the lowest layer, and
the angle between the orbits and the equator is 90°; there are 9 satellites in each orbit, and 3
LEO satellites are randomly selected to be introduced into the MEC. The communication
delay between satellites is shown in Table 3.

Table 2. Running period, number and orbital inclination of different satellites.

Satellites Running Period (°/h) Orbital Inclination
(°)

GEO 15 1 × 3 0
MEO 60 2 × 5 45
LEO 210 5 × 9 90

Table 3. Satellite-to-satellite and satellite-to-ground latency.

GEO MEO LEO SGs

GEO - 86 ms - -
MEO 86 ms 66 ms 50 ms -
LEO - 50 ms - 3 ms
SGs - - 3 ms -

UAVs are characterized by versatility and high mobility and can provide communication
services by installing a communication transceiver as an aerial communication platform [28,29].
On the other hand, UAVs can also be used as aerial hosts to realize various applications from
cargo delivery to surveillance [30,31]. In this experiment, UAVs are used to assist ground
networks and satellite networks in achieving full coverage of the network [32].

The resource situation of the servers is shown in Table 4. A host in the ground network
is selected as the cloud server. Compared with other edge hosts, it has more computing
and bandwidth resources.
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Table 4. Edge computing Server Resource Settings.

Number CPU BW

MEC 47 [4, 6] [400, 500]
LEO-MEC 3 2 [200, 300]

6.2. Comparative Experimental Results and Analysis

We design two experiments to verify the advantages of using SAGIN-MEC versus
terrestrial edge cloud networks and the advantages of DRL-G versus other algorithms.

SAGIN’s use of satellites and aircraft for cable-free communication, as opposed to a
ground-based network alone, provides a significant resource advantage that significantly
improves the success rate of SFC deployments. Therefore, 15 isolated hosts in the ground
network are eliminated, and the remaining 32 ground hosts are used for the experiment.

In total, 1000 SFCs are deployed in SAGIN-MEC and terrestrial edge cloud networks,
respectively, and the comparison of their request acceptance rates is shown in Figure 7.
After the chain length exceeds 8, the acceptance rate using only the ground network begins
to decrease, while SAGIN-MEC is able to maintain the original acceptance level. In the
case of successful deployment of SFC, the comparison of the average delay between them
is shown in Figure 8. Therefore, the delay using SAGIN-MEC is always lower than that
using only ground networks, with a difference of 6–15 ms. For this result, the reason is that
the link that has the lowest latency can be automatically selected among terrestrial and
non-terrestrial networks in SAGIN. At an altitude of 895 km, the coverage diameter of LEO
is 3000 km. In this case, the delays of one-way and two-way communications to the ground
are 3 ms and 6 ms, respectively, and the communication distance of the ground network is
1800 km at 6 ms. In SAGIN, DRL-G can choose the best solution for each situation.

Figure 7. The request acceptance ratio in SAGIN and terrestrial network.

Compared with terrestrial edge cloud networks, SAGIN-MEC can significantly reduce
the network service delay and improve the request acceptance rate by taking advan-
tage of the low-latency characteristic of LEO satellites when transmitting data packets at
medium distances.

In SAGIN, compared with First-Fit (FF) [33], Greedy algorithm guided by First-Fit
(F-G) and Policy Gradient algorithm (PG) [34], it can prove the effectiveness of the hybrid
algorithm DRL-G. Among them, FF is the classical baseline algorithm and PG is the widely
adopted deep reinforcement learning algorithm.
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Figure 8. Average delay in SAGIN and terrestrial network.

With 1000 SFCs deployed using different algorithms, the request acceptance rate is
shown in Figure 9. In the case of short chain length, DRL-G and PG are superior to the
heuristic algorithm (FF and F-G). In the case of long-chain length and resource shortage,
PG is slightly worse than the heuristic algorithm, while DRL-G is significantly better than
other algorithms, which can improve the acceptance rate by up to 20% compared to the
F_G algorithm. The comparison results of energy consumption of different algorithms are
shown in Figure 10. The average energy consumption of DRL-G is less than that of PG.
However, the average energy consumption required by DRL-G is 6.6% higher than that of
FF and F-G algorithms. When generating deployment policies, the DRL-G algorithm first
ensures that the strict constraints on network resources imposed by VNF are met, and then
works to reduce service energy consumption, while the FF and F-G algorithms optimize
both resources and energy consumption. During the deployment process, DRL-G may
sacrifice a certain amount of energy consumption to improve the deployment success rate.

Figure 9. Comparison of average delay of different algorithms.
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In order to further analyze the advantages of DRL-G in this environment and the
reasons for the above results, we use different algorithms to deploy 100 SFCs and make a
comparative analysis of the results. The number of SFCs exceeding the maximum delay
limit is shown in Figure 11. In the deployment results of DRL-G, the number of SFCs
exceeding the maximum allowable delay is less than ten, which is far lower than that of
other algorithms, indicating that the proposed hybrid algorithm has a stable delay and can
better meet the delay requirements of SFCs. Figure 12 shows the number of SFCs that do
not meet resource constraints after deploying requests by different algorithms. Compared
with other algorithms, DRL-G can better meet environmental resource constraints. For
this, the reason is that other algorithms tend to use fewer hosts to save energy, but this
approach easily fails to meet the resources required by the service, resulting in a decrease
in the success rate of deployment. Although DRL-G increases the cost of deploying SFC, it
can greatly improve the request acceptance ratio.

Figure 10. Comparison of energy consumption of different algorithms.

Figure 11. The number of SFCs exceeded the delay constraint with the different algorithms.
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Figure 12. The number of SFCs exceeding energy constraints with different algorithms.

7. Conclusions

Overall, this article proposes SAGIN-MEC, a SAGIN structure for heterogeneous
device management and resource allocation optimization in IIOT and IOA scenarios. The
structure uses the SDN and NFV technology for distributed control of the whole network. It
also introduces MECs in satellite, aircraft, and ground hosts near the destination to perform
computing tasks so as to reduce service delay. Based on this structure, we design a hybrid
algorithm DRL-G based on deep reinforcement learning and the heuristic algorithm to
solve the resource allocation problem in SAGIN. Several simulation experiments show
that service delay in SAGIN-MEC can be reduced by 6–15 ms, and DRL-G significantly
improves the success rate and delay. The next phase will focus on computing resource
scheduling in SAGIN.
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LEO Low Earth Orbit
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