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Abstract

Drug-Drug Interaction (DDI) refers to the combined effects that occur when a patient takes multiple medications
simultaneously or within the same period. This interaction can either enhance the therapeutic effects of the drugs or
inhibit their efficacy, and in severe cases, it can even lead to adverse drug reactions (ADRs). Thus, it is crucial to
identify potential DDIs, as this information is significant for both biological research and clinical medicine. However,
most existing works only consider the information of individual drugs or focus on the local correlation between a few
medical entities, thus overlooking the global performance of the entire human medical system and the potential synergistic
effects of multi-scale information. Consequently, these limitations hinder the predictive ability of models. In this paper, we
propose an innovative multi-scale feature fusion model called ALG-DDI, which can comprehensively incorporate attribute
information, local biological information, and global semantic information. To achieve this, we first employ the Attribute
Masking method to obtain the embedding vector of the molecular graph. Next, ALG-DDI leverages heterogeneous graphs
to capture the local biological information between drugs and several highly related biological entities. The global semantic
information is also learned from the medicine-oriented large knowledge graphs. Finally, we employ a transformer encoder
to fuse the multi-scale drug representations and feed the resulting drug pair vector into a fully connected neural network
for prediction. Experimental evaluations on datasets of varying sizes and different classification tasks demonstrate that
ALG-DDI outperforms other state-of-the-art models.
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Introduction

Drug-Drug Interaction (DDI) refers to the complex effects that

occur when a patient takes multiple medications simultaneously

or within the same period. These interactions can either

enhance the therapeutic effects of drugs or inhibit their efficacy,

and in severe cases, they may lead to Adverse Drug Reactions

(ADRs). Unintended DDIs are responsible for approximately

3-26% of drug-related hospital admissions [1]. In a 2020 follow-

up survey conducted by Laville et al. [2], patients with chronic

kidney disease, predominantly aged 69 years old, were found to

commonly use five to ten drugs. During the two-year survey,

they found that 14.4% of patients had adverse drug reactions,

and 32% of them could actually be prevented. These findings

underscore the significant implications of drug interactions in

practical medical practice and the growing urgency to identify

potential DDIs. However, diagnosing DDIs through traditional

wet lab experiments for a large number of drug pairs, both in

vitro and in vivo, is a time-consuming and costly endeavor.

This led to the rising popularity of using computer-based
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methods, especially machine learning, for DDI prediction.

These methods can be roughly classified into three categories:

(1) similarity-based methods; (2) graph-based methods; (3)

matrix factorization-based methods.

In similarity-based methods, researchers often rely on the

drug similarity assumption, where it is believed that if drugs A

and B interact to produce a specific biological effect, then drugs

similar to drug A (or drug B) are likely to interact with drug

B (or drug A) to produce the same effect [3]. Ryu [4] derived

a Structural Similarity Profile (SSP) for an individual drug by

comparing its ECFPS fingerprint with those of all other drugs,

connecting the SSPs of two drugs was then employed as input

for a deep neural network to make predictions. Zhang et al. [5]

build an ensemble of prediction methods based on 14 kinds

of drug–drug similarities from chemical, biological, phenotypic

and topological data. Qian et al. [6] utilized feature similarity

and feature selection methods to construct a gradient boosting

classifier, speeding up the prediction process and achieving

robust predictive performance. Gottlieb et al. [7] computed

seven types of similarity and combined the two best similarities

for each drug pair to generate drug features. Cheng et al. [8]

extracted features from Simplified Molecular-Input Line Entry

System (SMILES) data and the side effect similarity of drug

pairs, applying Support Vector Machines (SVM) to predict

DDIs. Rohani et al. [9] calculated the similarity of multiple

drugs and Gaussian interaction curves for drug pairs and then

selected the most informative and less redundant similarities

as features, using the feature vectors of drug pairs as input for

neural network predictions.

In recent years, researchers have increasingly focused

on graph data. Compared to non-graph-based methods,

researchers can leverage the topological information within the

graph to enhance node representations, leading to improved

performance. Generally, three types of graphs can serve as

input: molecular graphs of drugs, representing networks formed

by atoms and their connections; DDI networks, derived from

known DDI information to infer new DDIs; and networks

between drugs and other medical entities. Cami et al. [10]

used standard multivariate methods to combine multiple

predictor variables for DDI prediction. They constructed

a DDI network and extracted several covariates from the

network to build logistic regression and linear mixed models.

Zitnik et al. [11] developed a graph convolution network

encompassing drugs, targets, and side effects, treating DDI

prediction as a multi-relational link prediction task. Karim

et al. [12] integrated multi-source datasets into a knowledge

graph, utilizing knowledge graph embedding methods and

convolutional LSTM networks for DDI prediction. Feng et

al. [13] employed Graph Convolution Networks (GCN) to

extract drug features from the DDI network. Subsequently,

they used a Deep Neural Network (DNN) as a predictor to

obtain probabilities of interactions between drugs. Wang et

al. [14] divided the DDI network into two parts: promoting

DDI network and inhibiting DDI network, where the edges

denoted the promoting or inhibiting effects between drugs.

Subsequently, they independently extracted drug features from

these two networks and combined them for prediction.

The DDI prediction task can be represented as a

matrix completion task, which aims to predict unobserved

interactions [15]. Typical matrix factorization methods

include non-negative matrix factorization, singular value

decomposition and so on. Besides, some methods develop

novel matrix factorization models based on manifold learning

algorithms, artificial neural networks and so on. Yu et al. [16]

developed a novel method named DDINMF, based on semi-

non-negative matrix factorization. Zhang et al. [5] proposed

a manifold-regularized matrix factorization approach for DDI

prediction. Zhu et al. [17] devised a dependency network to

simulate the relationships between drugs and introduced a

probabilistic dependency matrix three-factorization method,

known as Property-supervised learning Model Probability

Dependency Matrix Three-Factorization (PDMTF), for DDI

prediction.

Generally, most previous works utilized large labeled data

and merely considered the structure or sequence information

of drugs, or only focused on the local correlations between

drugs and certain key medical entities(e.g. protein, disease and

side effect), while lacking a comprehensive consideration of the

global scale of drug interactions in human medical system.This,

to some extent, constrained the model’s performance. To

address the limitations, we propose a novel multi-scale feature

fusion model named ALG-DDI, which is a deep learning

framework for DDI prediction and DDI events prediction.

Specifically, we first extracted drug attribute information, local

information, and global information from the molecular graph

of drugs, the heterogeneous graph between drugs and key

medical entities, and the medicine-oriented knowledge graph,

respectively. Subsequently, to integrate information from

different scales, we utilized a Transformer encoder for feature

fusion. Through self-attention mechanisms, ALG-DDI can

explore synergistic effects between different scales, obtaining

high-quality drug embeddings. Moreover,we evaluated the

ALG-DDI model on three datasets of different scales, the

experimental results demonstrate that ALG-DDI achieved the

best performance, thus supporting the effectiveness of the idea

of multi-scale feature fusion. The main contributions of this

article can be summarized as follows:

• Based on the idea of multi-scale feature fusion, we

propose an ALG-DDI model that combines medicine-

oriented knowledge graphs and attention mechanisms for

DDI prediction and DDI events prediction. It can effectively

extract and integrate the features from drug molecular

graph, local correlation and knowledge graph.

• We use a feature fusion strategy based on Transformer

encoder, which can dynamically assign weights to

three different scales of drug information through self

attention mechanism, ultimately obtaining a comprehensive

representation. Compared to other common fusion methods,

our strategy can achieve better performance.

• We compared ALG-DDI with several state-of-art works and

variants of our model for ablation study. Experimental

results have shown that our work outperformed the baselines

on three different datasets.

Materials and Methodology

Dataset description

DrugBank is a comprehensive online database that provides

extensive biochemical and pharmacological information about

drugs, including details about their mechanisms and

targets [18]. In this study, We retrieved the most up-to-date

version of the structure external links dataset for FDA( Food

and Drug Administration) drugs from Drugbank. It includes

valuable structure information in the form of InchI/InchI

Key/SMILES, as well as identifiers for other drug structure

resources, such as ChEBI, ChEMBL, etc. The primary use
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Table 1. The details of datasets

Dataset Source drugs DDIs

DS1 Drugbank 4.0 1294 80866

DS2 Drugbank 5.0 1637 392553

DS3 PrimeKG 2095 1202514

of this dataset is to obtain SMILES sequences of drugs and

filter the DDI data, ensuring that only FDA-approved drugs are

included in our experiment. To test the predictive performance

and robustness of our model across datasets of different sizes,

we utilized three DDI datasets for training and evaluation

purposes. The first dataset, named as DS1, was extracted from

DrugBank 4.0, which was released in 2014 [18]. After filtering,

we obtained 1,294 drugs and 80,866 DDIs from this dataset.

The second dataset, named DS2, is derived from DrugBank

5.0, released in 2018, containing nearly six times the amount

of DDI data compared to version 4.0 [19]. By applying the

same filtering operation, we obtained 1,637 drugs and 392,553

DDIs for DS2. Lastly, the third dataset, DS3, was sourced from

PrimeKG, a large-scale medical knowledge graph published by

Chandak et al. [20] in 2022. This dataset integrates 20 high-

quality resources, encompassing 17,080 issues with 4,050,249

relationships across ten major biological scales. Notably, DS3

includes an extensive number of connecting edges between

drugs and other medical entities. To ensure no label leakage

during the training process, we removed the edges between

drugs, resulting in a total of 1,202,514 triplet data for DS3.

For additional information, please refer to Table 1.

Overview of ALG-DDI

The ALG-DDI framework is presented Figure 1 to illustrate

its structure. Our framework consists of three distinct

modules: the multi-scale drug feature extraction module I,

the feature fusion module II, and the prediction module III.

In module I, we adopt a method that combines Attribute

Masking and Average Pooling to extract drug attribute

information (AI) from molecular graphs, as depicted in I-a.

Subsequently, we construct heterogeneous graphs for drug-side

effects, drug-disease, and drug-protein interactions, Through

heterogeneous graph learning and data alignment, we obtain

drug local information (LI), as shown in I-b. Finally,using

the ComplEx knowledge graph embedding model, we acquire

entity embeddings in PrimeKG, enabling the extraction of drug

semantic features as global information (GI), as shown in I-

c.In module II, we employ a Transformer encoder that utilizes

self-attention mechanisms to fuse drug information from the

three mentioned scales. This process allows us to obtain a

high-quality and expressive final representation of drugs. In

module III, we concatenate the representations of two drugs

within a drug pair to create a feature vector. We utilize a

three-layer fully connected neural network to make predictions

about potential DDIs. The following section provides a detailed

explanation of our framework.

Extraction of multi-scale drug feature

Attribute information representation

For each FDA-approved drug di ∈ D, we convert it into the

corresponding molecular graph gi = (V,E) using the RDkit

toolkit [21] based on its SMILES string. Here, V represents

the set of nodes in the molecular graph, which correspond to

atoms, and E represents the set of edges, which are actually the

chemical bonds. To obtain a representation of the molecular

graph as the attribute information for the drug, we utilize a

pre-trained model called Attribute Masking, proposed by Hu

et al [22]. In this model, each node in the molecular graph

is embedded using Attribute Masking, and the embeddings

of all nodes are then averaged to obtain the representation.

Specifically, in the first stage, we use molecular graph, raw node

features, and edge features as inputs to calculate the embedding

for each atom using Attribute Masking. This method involves

setting the features of certain nodes (i.e., masked nodes) to

special values and iteratively updating the embeddings of all

nodes through a Graph Neural Network (GNN) [23]. The

iterative process of node embedding can be represented as

follows:

h
(k)
v = ReLU

MLP
(k)

 ∑
u∈N(v)

⋃
{v}

h
k−1
v +

∑
e=(v,u)

h
k−1
e


where k denotes the index of GNN layers, N (v) represents

a set of nodes that are adjacent to v, and e = (v, v) signifies

the self-loop edge. Additionally, to enhance the representation

of the masked node, an embedding-based linear model is

employed, which predicts the masked node attribute and aims

to preserve the original attributes as closely as possible. In

the second stage, we utilize average pooling to aggregate

the embeddings of all atoms in the molecular graph. This

pooled representation serves as an informative summary of the

drug’s attribute information. The second stage can be precisely

described as follows:

hG = MEAN(h
(K)
v |v ∈ V )

where K represents the final layer(i.e. k = K ), and G is a

set of nodes.Therefore, for FDA drug di, we can regard hG as

its attribute information ai ∈ Rd.

Local information representation

We consider that the performance of DDI prediction tasks

is not only related to the attribute of the drugs themselves

but also closely associated with the connections between drugs

and other crucial medical entities, which can be used to

augment locally detailed information and enhance the capacity

of feature learning expression [24]. Therefore, we constructed

heterogeneous networks for drug-side effect, drug-protein, drug-

disease, and then applied heterogeneous GraphSAGE [25] to

capture local information about FDA drugs.

Inspired by RGCN [26], we consider each type of relationship

in the heterogeneous graph as a homogeneous graph, the

representation learning results of the heterogeneous graph

can be translated into the fusion of results from multiple

homogeneous graph. For each relationship, we employed

GraphSAGE for information propagation. Specifically:

E
(k,r)

N(ν)
= Aggregatek(E

k−1
, ∀µ ∈ N(ν))

E
(k,r)
ν = σ

(
W

k
Concat

(
E

k−1
ν , E

k
N(ν)

))
E

k
ν = Aggregater(E

(k,r)
ν , r ∈ R)

where k represents the depth of aggregation, r represents

the type of relations, N(v) denotes the set of neighboring

nodes for the target node v, µ is one of the neighboring
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Fig. 1. ALG-DDI workflow

nodes, the Aggregatek operation can be either averaging or

multiplication( averaging is used here), σ is the activation

function ( sigmoid function is used here), and Wk represents

the weight matrix of the neural network. Aggregater operation

can be either sum,mean,min,max or mul in PyG library [27](

sum is used here). As k increases, GraphSAGE is capable of

aggregating information from more layers of neighbors for each

node.Finally, for FDA drug di, we can regard Ek
ν as its local

information li ∈ Rd.

Global information representation

The global information of drugs plays a crucial role in our

DDI prediction task. The medicine-oriented knowledge graph

is pivotal in extracting comprehensive features of drugs, as

it encompasses multiple associations between drugs and many

biological entities rather than just a few. Compared to the

attribute information and the local information, knowledge

graphs focus more on the global scale, which can partially

overcome the issue of insufficient drug feature expressiveness.

Knowledge graph is a structured way to capture

relationships between different entities using sets of ordered

triples in the form (head, relationship, tail), which can be

defined as GKG = {(h, r, t)|h, t ∈ E, r ∈ R}, where E

represents the set of entities, and R represents the set of

relationships between entities in E. Inspires by Ren et al. [24],

we use the effective knowledge graph embedding(KGE) method

of ComplEx, proposed by Trouillon et al. [28] to obtain the

embedding of each entity. ComplEx obtains the knowledge

graph embedding by low-rank decomposition to the knowledge

base tensor, which is one of relation adjacent matrixes in

knowledge base and the decomposed matrix is used to calculate

score. The scoring function ϕ(·) in ComplEx can be defined as

follows:

ϕ(r, h, t; Θ)

= Re(< wr, eh, et >)

= Re

(
K∑

k=1

wrkehketk

)

=< Re(wr),Re(eh),Re(et) >

+ < Re(wr), Im(eh), Im(et) >

+ < Im(wr),Re(eh), Im(et) >

− < Im(wr), Im(eh),Re(et) >

where Θ denotes the parameters of the corresponding model,

namely, embedding wr, eh, et, K represents a hyperparameter

that denotes the embedding dimension , Re(x) stands for the

part of real vector component of vector x, Im(x) represents

the part of imaginary vector component of vector x and x

indicates the conjugate vector of x, say x = Re(x) − iIm(x).

< · > means the Hermitian product, which is dot product with

complex numbers. If there is a relationship between entity hi

and entity ti, than the log-odd of the probability is:

P
(
Yhi,ri,ti = 1

)
= σ(ϕ(ri, hi, ti; Θ))

where σ represents the sigmoid function and Yhi,ri,ti =

{−1, 1} indicates the true or false interaction fact of a triple

where -1 means no interaction otherwise exists interaction.The

ComplEx model is trained to minimize the loss function,

described as follows:

LOSS = min
Θ

N∑
i

log(1+exp(−Yhi,ri,tiϕ(ri, hi, ti; Θ)))+λ∥Θ∥2
2

where the λ is a hyperparameter. Finally, for FDA drug di,

we can obtain its global information gi ∈ Rd through ComplEx

model.
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Strategies of feature fusion

In the feature fusion module, we employee a Transformer

encoder based on the attention mechanism to fuse three

different scales of drug features. The multi-scale drug

feature fusion can provide deep learning models with diverse

information from different views to accurately predict DDIs,

compared to only focusing on one perspective. A Transformer

encoder contains multiple Transformer units, while one unit

includes self-attention layer, layer normalization, residual

connections and feed-forward layer.

Self-attention mechanism

The self-attention mechanism is the central component within

the Transformer encoder. It is a very suitable fusion strategy

for our model because it can effectively capture correlations

between distinct features, enabling the model to assign suitable

weights to each scale, thus enhancing feature fusion.In another

word, self-attention mechanism can help us to recognize which

scale of features are more important for prediction [15].Multi-

head attention, on the other hand, is an extension of self-

attention where the mechanism is applied multiple times in

parallel, with each application focusing on different aspects

of the input. Each ”head” captures different patterns and

dependencies , providing a richer representation of the input.

We denote the representations of drug di from three different

scales as vectors ai ∈ Rd, li ∈ Rd, gi ∈ Rd, respectively.

Different scales have inconsistent contributions to the DDI

prediction task. Therefore, we concatenate ai, li, gi together as

input of the Transformer encoder, and use the self-attention

mechanism to learn the weight distribution of features at

different scales. The multi-head attention is calculated by

following formulas.

Xmulti = Concat(head1, head2, ..., headm)W
O

headi = Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
Vi

X = Concat(ai, li, gi)

Qi = X · WQ
i

Ki = X · WK
i

Vi = X · WV
i

where Xmulti ∈ Rd denotes the fused representation of di

after transformer encoder, WO is a matrix used to transform

the concatenated results. For the i-th head , WQ
i , WK

i and WV
i

are on behalf of three adaptive weights matrices. Qi, Ki and Vi

are the Q (Query), K (Key) and V (Value) matrices derived

from the linear transformation of X, respectively.

Residual connections & layer normalization

Residual connections [29], also known as skip connections,

are a critical component of the Transformer encoder. They

allow the network to skip one or more layers in order to

mitigate the vanishing gradient problem, which is common

in deep neural networks. In a residual connection, the input

to a layer is directly added to the output of the same layer,

effectively creating a shortcut path. This helps in the flow of

gradients during training and enables the network to learn more

efficiently.

Layer normalization [30] is a technique used in deep learning

to stabilize training by normalizing the inputs to each layer. In

the Transformer encoder, it was used on two occasions: after the

self-attention layer and after the feed-forward network layer.

Comparison with other fusion strategies

In addition to the Transformer encoder, we also employee

three common feature fusion methods, including concatenate

operation, Hadamard product, and element-wise average, for

comparison. These strategies can be described as follows:

Xconcat = Concat(ai, li, gi)

XHadamard = ai ⊙ li ⊙ gi

Xaverage =
ai + li + gi

3

where Xconcat ∈ R3d, XHadamard ∈ Rd and Xaverage ∈ Rd

denotes the fused representation of di. It should be noted

that due to the inconsistent feature dimensions obtained by

the four methods, we use a linear layer to convert fused

representation into the final drug representation Xfinal with

the same dimension d.

Predicting DDIs

In the prediction module, we concatenate the representations

of a pair of drugs and then fed them into fully connected layers

to predict the DDI probability score. We represent the Xfinal

of drug di and drug dj as xi and xj , respectively. Then the

probability score can be calculated as follows:

Xpair = Concat(xi, xj)

ŷij = σ(MLP (Xpair))

where yij is the possibility of drug pair interaction , σ is

the sigmoid function. During the model training process, we

optimize the ALG-DDI parameters by minimizing the cross-

entropy loss, as described below:

loss = − [yijlogŷij + (1 − yij)log(1 − ŷij)]

where yij denotes the true interaction label for drug pair

(di, dj) in training set.

Strategies for DDI events prediction

To validate the effectiveness of the model in extracting drug

features and its generalizability across different scenarios,

we further applied ALG-DDI to the DDI events prediction

task.The objective of the DDI prediction task is to predict the

presence or absence of a relationship between two drugs, while

the DDI events prediction task aims to predict the specific

relationship. Clearly, the latter holds greater practical value

and is more complex than the DDI binary classification task.

Specifically, We obtained the DDI multi-class dataset from

the relevant work of Ryu [4], comprising a total of 86 DDI

types and 192,284 DDIs. By ensuring that the drugs within

the DDI pair are all FDA approved and filtering out categories

with insufficient data (fewer than 10 DDIs), we ultimately

obtained the multi-class dataset Multi-DS for the DDI events

prediction task, which includes 82 categories and a total

of 172,323 DDIs. Nevertheless, there is still an imbalance

within Multi-DS, with variations in quantity between different

categories possibly reaching hundreds or thousands of times. In

an effort to mitigate the potential impact of data imbalance on

experimental results, we employed the following strategies:

Firstly, we employed a combination of Focal Loss [31]

(FL) and Cross Entropy Loss (CE) as our loss function. FL

can address the issues of imbalanced sample quantities and
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difficulty in imbalanced classification. However, due to the

instability of FL during training, the neural network requires

more training iterations to converge, and in some cases, it may

not converge at all [15]. Therefore, in the first half of epochs,

we continued to use CE as our loss function, and in the later

epochs, we switched to FL. The details are described as follows:

lmulti =

−
∑C

i=1 yi · logy′
i , epoch < epoch num

2

−
∑C

i=1(1 − y′
i)

γ · yi · log(y′
i) , epoch ≥ epoch num

2

where C represents the number of DDI categories, y′
i is the

predicted probability for the i-th category, yi is the one-hot

value for the i-th category of the true label, and γ is the focal

parameter in FL, which is used to adjust the weights for easily-

classified samples and difficultly-classified samples, aiming to

place more emphasis on challenging samples.

In addition, we employed stratified K-fold cross-validation

instead of the conventional K-fold cross-validation in DDI

events prediction task. This approach ensures that the data

proportions within each fold are consistent, avoiding the

possibility of sampling all instances of a particular class into

the same fold. Stratified K-fold cross-validation is particularly

useful when dealing with imbalanced data or datasets with

limited volume.

Experimental Results and Discussion

Baseline

To evaluate the effectiveness of our model, we compared ALG-

DDI with the following state-of-art works.

• GCN-BMP [32] utilizes the GCN with Bond-aware

Message Propagation to encode molecular graphs. And

introduce the self-contained attention mechanism to identify

crucial local atoms that align with domain knowledge,

providing a level of interpretability.

• EPGCN-DS [33]proposed a GCN based framework for

type-specific DDI identification from molecular structures.

The proposed framework includes an encoder with GCN

layers and a decoder that captures complicated interactions

while preserves permutation invariant on inputs.

• MR-GNN [34] is an end-to-end GNN that employs a

multi-resolution-based architecture to extract node features

from various neighborhoods of each node. Additionally,

it utilizes long short-term memory networks (LSTMs)

to summarize local features of each graph and extract

interaction features between pairwise graphs.

• DeepDrug [35]developed a deep learning framework,

which can use graph convolutional networks(GCN) to learn

graphical representations of drugs and proteins, such as

molecular fingerprints and residual structures, to improve

prediction accuracy.

• SSI-DDI [36]proposed a deep learning framework,

which operates directly on the raw molecular graph

representations of drugs for richer feature extraction and

decomposes the DDI prediction task between two drugs

into the identification of pairwise interactions between the

substructures of the respective drugs.

• DeepDDI [4] designed a multi-class DDI prediction model

utilizing a DNN framework. Structural information of each

drug in the input drug pair was employed to generate a

feature vector referred to as the structural similarity profile,

which was designed to effectively capture a drug’s unique

structural characteristics.

• DDIMDL [37] introduces a multimodal deep learning

framework for predicting DDI-associated events. It first

constructs deep neural network sub-models based on four

types of drug features, and then combines these sub-models

to learn cross-modal representations between drug pairs.

• Lee et al. [38] utilizes autoencoders and a deep feedforward

network, trained on the structural similarity profiles, Gene

Ontology term similarity profiles, and target gene similarity

profiles of known drug pairs, to predict the pharmacological

effects of DDIs.

Among them, GCN-BMP, EPGCN-DS, MR-GNN, SSI-

DDI, DeepDrug, and DeepDDI serve as baselines for the DDI

prediction task, while DDIMDL, Lee, and DeepDDI serve as

baselines for the DDI events prediction task.

Evaluation metrics

In this work, we employed commonly used classification metrics

to evaluate the performance of our framework from various

angles, encompassing five key indicators: Accuracy, Precision,

Recall, F1, ROC-AUC, PR-AUC. In addition, we also evaluated

the performance of ALG-DDI on the DDI events prediction

task, so we introduced metrics suitable for multi-class tasks:

macro-P (macro-precision), macro-R (macro-recall), and micro-

F1 (micro-precision and recall).These evaluation criteria are

defined as follows:

• Accuracy:accuracy evaluates overall correctness and it

can be calculated using the following formula:Accuracy =

(TP+TN)/(TP+FN+FP+TN), where TP, TN, FP and

FN indicate the true positive, true negative, false positive

and false negative, respectively.

• Precision measures how many of the samples predicted as

positive by the model are actually true positive cases, as

opposed to being false positives. It can be calculated using

the following formula:Precision = TP/(TP + FP ).

• Macro-precision is calculated in multi-class classification

tasks by computing the precision for each class and then

taking the average of these precision values: macro − P =∑n
i=1 Pi.

• Recall, also known as sensitivity, measures how many of the

actual positive cases the model correctly identifies. It can be

calculated using the following formula:Recall = TP/(TP +

FN).

• Macro-recall is calculated in multi-class classification

tasks by computing the recall for each class and then taking

the average of these recall values: macro − R =
∑n

i=1 Ri

• F1 score is a trade-off between precision and recall. And the

harmonic mean of average precision and recall score can be

calculated using the following formula:F1 = (2∗Precision∗
Recall)/(Precision + Recall). Similarly, macro − F1 can

be calculated using the following formula:macro − F1 =

(2 ∗ macro − P ∗ macro − R)/(macro − P + macro − R)

• ROC-AUC is the abbreviation for ”Area under the

Receiver Operating Characteristic Curve”, which represents

the area under the plot of the true positive rate against the

false positive rate at various thresholds.

• PR-AUC: is the abbreviation for ”Area under the

Precision-Recall Curve”, which represents the area under

the plot of the precision rate against recall rate at various

thresholds.
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Table 2. Results of comparing with state-of-the-art method on DS2

Method Accuracy Precision Recall F1 ROC-AUC PR-AUC

GCN-BMP 0.7422 0.7409 0.7471 0.7431 0.8172 0.7828

EPGCN-DS 0.7463 0.7081 0.8394 0.7679 0.8224 0.7885

MR-GNN 0.8444 0.8191 0.8865 0.8503 0.9185 0.8966

SSI-DDI 0.8612 0.8420 0.8910 0.8651 0.9327 0.9158

DeepDrug 0.9022 0.8664 0.9512 0.9068 0.9557 0.9418

DeepDDI 0.9480 0.9514 0.9442 0.9478 0.9848 0.9832

ALG-DDI 0.9867 0.9788 0.9949 0.9868 0.9986 0.9985

Table 3. The results of different fusion strategies on different datasets

Dataset Method Accuracy Precision Recall F1 ROC-AUC PR-AUC

DS1

Concat 0.9603 0.9521 0.9695 0.9606 0.9891 0.9852

Hadamard 0.9177 0.9034 0.9356 0.9191 0.9670 0.9580

Average 0.9474 0.9321 0.9651 0.9483 0.9827 0.9766

Transformer 0.9681 0.9521 0.9857 0.9686 0.9899 0.9855

DS2

Concat 0.9813 0.9736 0.9894 0.9814 0.9977 0.9974

Hadamard 0.9197 0.9122 0.9289 0.9204 0.9721 0.9694

Average 0.9569 0.9383 0.9781 0.9578 0.9898 0.9879

Transformer 0.9867 0.9788 0.9949 0.9868 0.9986 0.9985

DS3

Concat 0.9756 0.9689 0.9828 0.9758 0.9975 0.9974

Hadamard 0.8370 0.8328 0.8434 0.8380 0.9194 0.9166

Average 0.9181 0.8956 0.9465 0.9203 0.9774 0.9762

Transformer 0.9859 0.9800 0.9920 0.9859 0.9991 0.9990

Comparison of other methods

To comprehensively evaluate the performance of ALG-DDI,

we compared it with the aforementioned baselines. To

ensure fairness, we uniformly utilized the DS2 dataset and

employee average values based on 5-fold cross-validation as

the experimental results, which are shown in Table 2. The

comparison results indicate that ALG-DDI performs best

with outstanding improvements of 3.87%-24.45%, 2.74%-

27.07%, 4.37%-24.78%, 3.90%-24.37%, 1.38%-18.14%, 1.53%-

21.57%, 0.0107-0.2136, 0.0123-0.1365 against others in terms

of accuracy, precision, recall, F1, ROC-AUC and PR-AUC,

respectively.

We attribute this superior performance to two factors. First,

compared to baseline methods that only focus on a single scale,

ALG-DDI has a more powerful capability to exploit multi-scale

drug information, including the attribute information of drugs

themselves, local information from the interactions with key

medical entities, and global information from the large-scale

knowledge graph. Second, the Transformer encoder based on

the self-attention mechanism effectively integrates multi-scale

information by assigning dynamic weights, which contributes

to its performance.

Comparison of different fusion strategies

In the feature fusion module of ALG-DDI, we employee the

Transformer encoder as a fusion strategy, achieving notable

results. To highlight the effectiveness and superiority of the

Transformer encoder in our work, we compared it with four

common fusion strategies mentioned above. We conducted 5-

fold cross-validation experiments on DS1, DS2, and DS3, and

the average experimental results are presented in Table 3.

Firstly, we can observe that ALG-DDI demonstrates good

robustness, achieving excellent performance on datasets of

various sizes. As the dataset size increases, the results

improve even further. Even in DS3, AUROC and AUPR reach

the highest values of 0.9991 and 0.9990, respectively. This

demonstrates that richer information and more training data

enable ALG-DDI to learn more potential patterns, contributing

to the improvement of its generalization ability.

Additionally, we observed that as the dataset size increases,

the advantage of the Transformer encoder becomes more

pronounced. The lead in AUROC grows from 0.0008-0.0229

to 0.0016-0.0797. We attribute this to the self-attention

mechanism’s ability to allocate weights to different scale

features, enabling it to extract more crucial patterns for

the task from large-scale data compared to other methods.

Surprisingly, we found that the simplest concatenate operation

also yields good results. We attribute this to the fact that drug

embeddings have already integrated sufficient rich information

through the feature extraction module, making straightforward

fusion strategies effective as well.

Version validation experiment

To further test the model’s effectiveness, we conducted a version

validation experiment. We trained the model on a lower version

of the dataset and made predictions for all other possible DDIs.

We select the top-N DDIs based on these scores and verified

their existence in higher versions of the dataset. The results are

shown in Figure 2. Specifically, we initially compile all possible

drug pairs formed by FDA-approved drugs. The DDIs within

DS1 are used as a training set, while the remaining DDIs are

employed to generate prediction scores. We select DDIs with

prediction scores in the top 50, top 100, top 0.1%(7,251 DDIs),
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Table 4. Results of ablation test on ALG–DDI with DS2

Scales Accuracy Precision Recall F1 ROC-AUC PR-AUC

Only A 0.9346 0.9170 0.9558 0.9360 0.9819 0.9792

Only L 0.9407 0.9162 0.9702 0.9424 0.9819 0.9780

Only G 0.9555 0.9523 0.9591 0.9557 0.9896 0.9892

A+L 0.9837 0.9743 0.9936 0.9838 0.9980 0.9978

A+G 0.9857 0.9788 0.9929 0.9858 0.9986 0.9984

L+G 0.9842 0.9783 0.9904 0.9843 0.9981 0.9979

A+L+G 0.9867 0.9788 0.9949 0.9868 0.9986 0.9985

Note: ”A” implies the use of attribute information, ”L” implies the use of local information and ”G” implies the use of global information.

Fig. 2. Result of version validation experiment

and top 0.5%(36,452 DDIs), and examine whether they exist in

DS2 and DS3.

The results show that the top 10 predicted DDIs have

been successively confirmed by subsequent researchers. Even

among the top 0.5% (i.e., the top 36452), 44.67% of them were

confirmed in DS2 (published in 2017), and 64.55% of them were

confirmed in DS3 (published in 2022). This further illustrates

that ALG-DDI possesses good foresight and have a excellent

performance of potential DDI identification.

Ablation experiments

To validate the necessity and contribution degree of information

at each scale, we designed six different variants for the ablation

study, with three of them using single-scale drug information

for experimentation, and the other three using information from

dual-scale information, The results are presented in 6.

Firstly, when we use information from all scales, the

model achieves the best performance. Reducing any of the

scales results in a performance drop, and employing dual-

scale information is more effective than using a single scale

alone. These findings strongly demonstrate the necessity and

effectiveness of multi-scale feature fusion, indicating that ALG-

DDI can indeed enhance the performance through multiple

information complementing.

Additionally, we observed that in single-scale experiments,

using global information (G) yielded the best results, and

in dual-scale experiments, the performance drop was most

significant when not using only global information compared

to using all scales (A+L+G). This implies that the impact

of global information extracted from the knowledge graph is

greater compared to other scales. It indicates the correctness of

introducing the knowledge graph into the DDI prediction task.

Model performance on DDI events task

We tested the performance of ALG-DDI on DDI event

prediction task, the evaluating metrics include macro − P ,

macro − R, macro − F1, Accuracy, AUROC, and AUPR.

We compared ALG-DDI with other state-of-the-art DDI event

prediction models, including DeepDDI [4], DDIMDL [37], and

Lee et al [38]. Additionally, we also compared ALG-DDI with

general classification methods, such as Random Forest (RF),

Deep Neural Network (DNN), and Logistic Regression (LR).

The average results of 5-fold cross-validation under the same

experimental conditions are presented in Table 5.

Case study:Cannabidiol

To validate the excellent performance of ALG-DDI in

practical prediction tasks, we conducted a case study using

Cannabidiol(CBD). Specifically, we trained the model with

the latest DS3 dataset and then scored all unknown drug

pairs involving Cannabidiol that were not present in DS3.

Higher scores indicate a greater likelihood of a relationship with

Cannabidiol. The top 10 predicted drugs are shown in ??, where

nine of them have been further confirmed and included in the

DrugBank database, along with detailed DDI descriptions.

To provide a biomedical speculation for the potential

interaction between unconfirmed Cannabidiol-Goserelin, we

consulted their pathophysiological knowledge. Cannabidiol

have anti-tumour effects, which induce cell death pathways, cell

growth arrest and tumour angiogenesis invasion and metastasis

inhibition [39].Goserelin is a gonadotropin-releasing hormone

(GnRH) analogue frequently utilized in the management

of hormone-related tumors, including breast cancer and

prostate cancer [40].Although their mechanisms of action differ,

both can act on the relevant symptoms of breast cancer,

and in certain situations, they may impact aspects like

cancer cell growth, inflammatory responses, or cell apoptosis

through different pathways.The relevant study by Alsherbiny

et al. [41] also suggests that the cytotoxic mechanisms of

CBD are encouraging, providing impetus for further research

on the interaction between CBD and hormonal therapies,

including aromatase inhibitors and new-generation drugs such

as goserelin.

Conclusions

In this article, we introduced a model named ALG-DDI,

which leverages a Transformer encoder to integrate multi-scale

drug information for DDI prediction tasks, including attribute

information from molecular graphs, local information from

heterogeneous graphs, and global information from knowledge

graphs. Experimental results have proved that our proposed
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Table 5. Results of comparing with state-of-the-art methods on Multi-DS

Model Accuracy macro-P macro-R macro-F1 AUROC AUPR

RF 0.7775 0.7893 0.5161 0.5936 0.9956 0.8349

LR 0.7920 0.7437 0.5236 0.5948 0.9960 0.8400

DNN 0.8797 0.8047 0.7027 0.7223 0.9963 0.9134

DeepDDI 0.8371 0.7275 0.6611 0.6848 0.9961 0.8899

DDIMDL 0.8852 0.8471 0.7182 0.7585 0.9976 0.9208

Lee et al 0.9094 0.8509 0.8339 0.8391 0.9961 0.9562

ALG-DDI 0.9142 0.8901 0.8449 0.8579 0.9964 0.9637

Table 6. Top 15 Predicted Drugs

Rank Drug Name DDI Description

1 Desmopressin The risk or severity of hypertension can be increased when Desmopressin is combined with Cannabidiol.

2 Cyclosporine The serum concentration of Cyclosporine can be increased when it is combined with Cannabidiol.

3 Folic acid Cannabidiol may decrease the excretion rate of Folic acid which could result in a higher serum level.

4 Fluvoxamine The risk or severity of adverse effects can be increased when Cannabidiol is combined with Fluvoxamine.

5 Valsartan The metabolism of Cannabidiol can be decreased when combined with Valsartan.

6 Amphetamine The metabolism of Amphetamine can be decreased when combined with Cannabidiol.

7 Nicotine The metabolism of Nicotine can be decreased when combined with Cannabidiol.

8 Cevimeline The metabolism of Cevimeline can be decreased when combined with Cannabidiol.

9 Lorazepam The risk or severity of adverse effects can be increased when Cannabidiol is combined with Lorazepam.

10 Goserelin N.A.

11 Esmolol The metabolism of Esmolol can be decreased when combined with Cannabidiol.

12 Bortezomib The serum concentration of Bortezomib can be increased when it is combined with Cannabidiol.

13 Tramadol The risk or severity of serotonin syndrome can be increased when Cannabidiol is combined with Tramadol.

14 Betaxolol The metabolism of Betaxolol can be decreased when combined with Cannabidiol.

15 Sildenafil The metabolism of Sildenafil can be decreased when combined with Cannabidiol.

model is better than the state-of-the-art models. In addition,

we demonstrated the effectiveness and robustness of our

model by conducting experiments across various datasets and

employing different fusion strategies. The ablation study also

demonstrated the necessity of each scale in feature fusion.

In summary, ALG-DDI is an effective model for discovering

potential DDIs which can be used for preliminary screening of

potential DDIs before the wet laboratory experiments. In the

future work, we aim to further optimize the model and bring the

idea of multi-scale drug information fusion to the DDI events

prediction task, with the expectation of achieving good results.
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