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Abstract: The collaborative robot can complete various drilling tasks in complex processing environ-
ments thanks to the high flexibility, small size and high load ratio. However, the inherent weaknesses
of low rigidity and variable rigidity in robots bring detrimental effects to surface quality and drilling
efficiency. Effective online monitoring of the drilling quality is critical to achieve high performance
robotic drilling. To this end, an end-to-end drilling-state monitoring framework is developed in this
paper, where the drilling quality can be monitored through online-measured vibration signals. To
evaluate the drilling effect, a Canny operator-based edge detection method is used to quantify the
inclination state of robotic drilling, which provides the data labeling information. Then, a robotic
drilling inclination state monitoring model is constructed based on the Resnet network to classify the
drilling inclination states. With the aid of the training dataset labeled by different inclination states
and the end-to-end training process, the relationship between the inclination states and vibration
signals can be established. Finally, the proposed method is verified by collaborative robotic drilling
experiments with different workpiece materials. The results show that the proposed method can
effectively recognize the drilling inclination state with high accuracy for different workpiece materials,
which demonstrates the effectiveness and applicability of this method.

Keywords: robotic drilling; process monitoring; inclination state detection; machining signal
processing; deep residual network

1. Introduction

Benefitting from the advantages of high-motion flexibility, large work space, high
efficiency and strong parallel coordination ability, robots can adapt to complex processing
environments, which promote the application potential of robotic drilling technology in
the areas of aerospace manufacturing, automobile, and energy [1]. However, compared
with numerical control machine tools, robots suffer from the inherent weaknesses of low
rigidity and variable rigidity due to the series joint structure and varied robot pose, which
severely limit the practicality and realization of robotic drilling with high performance [2,3].
In the process of practical robotic drilling, the rotation of the drill bit may generate forced
vibrations, which makes the holes drilled by a robot more prone to inclination, affecting
both surface quality and drilling efficiency. Therefore, it is critical to develop an effective
and accurate robotic drilling-state monitoring method to improve the efficiency and quality
of robotic drilling.

To ensure the quality of robotic drilling, a variety of sensors and means are used
for monitoring the drilling process, such as acoustic emission [4], force [5,6], vision [7],
vibration [8–10], and so on. Among them, vibration provides several unique advantages
due to collection convenience, massive data, and its sensitivity to the running state of
a mechanical system, which makes it show better application potential in practical en-
gineering applications [11,12]. In essence, the state monitoring of robotic drilling is a
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state-classification problem. There exist two different states that we care about in the actual
robotic drilling process, namely, vertical drilling and inclined drilling, which generate
different features in the signals. Through state classification methods, we can theoretically
detect the state of the drilling process based on different features. In terms of signal classifi-
cation for the state monitoring of a mechanical system, it can be classed into two categories,
according to the literature, namely a signal processing method and data-driven method.

During the past decades, a large number of signal processing methods have been
applied for quality monitoring and equipment condition monitoring, which can be di-
vided into three main classes according to the fundamentals of these methods, namely,
time-domain analysis, frequency-domain analysis and time-frequency-domain analysis.
Such as time-domain-statistical parameters [13], fast Fourier transform analysis (FFT) [14],
wavelet transform [15,16], Hilbert–Huang transform [17,18], variational mode decompo-
sition (VMD) [19,20], sparse representation [21,22], etc. Qin et al. [23] proposed a chatter
detection approach to recognize robotic drilling chatter effectively, based on the concen-
trated velocity synchronous linear chirplet transform. In [24,25], the authors presented a
robotic drilling chatter monitoring method, which can timely identify chatter precisely by
extracting weak features of chatter in the initial period of the chatter occurrence. These
signal processing methods can effectively achieve noise reduction and highlight features of
interest in the signals, which will be conducive to realize reliable and accurate condition
monitoring further. However, because of the system dynamics and stiffness characteristics
of the robot, the vibration signals generated show strong time-varying characteristics. In ad-
dition, the signal processing methods only extract the signal features but do not mirror the
characteristics of the system generally. Consequently, the classification accuracy depends
on expertise and human intervention when processing the time-varying signal [26].

For the purpose of timely and accurate condition monitoring of complex systems,
such as robot processing systems, many scholars in recent years have focused on the data-
driven methods, which mainly contain statistical analysis [27], machine learning [28–30],
and deep learning [31,32]. In these methods, deep learning methods have achieved fruitful
results in big data processing due to the powerful modeling and representation capabilities.
Through building a deep model and capturing hidden features in the data, deep learning
can describe the rich internal information of the data, and finally improve the accuracy of
classification or prediction [33]. Therefore, due to the excellent classification capabilities,
deep learning methods can extract vital information that we are concerned about from
the original data and distinguish abnormal states from normal states automatically. Abu-
Mahfouz [34] monitored the tool-wear condition of a twist drill through comparing several
architectures of the multi-layer feed-forward neural network. In this study, five different
drill wear conditions were detected and classified effectively. Lu et al. [35] investigated a
health status recognition method to detect the running state of machines based on a stacked
denoising autoencoder (SDA), which can be used for the noisy signals and fluctuant
running conditions. In [36], a two-stage intelligent learning framework is investigated
to identify the health status of mechanical equipment, including an unsupervised sparse
filtering to learn features adaptively and softmax regression to automatically classify the
mechanical health conditions.

Deep learning methods have obtained abundant achievements in the state monitoring
of mechanical systems based on vibration signals. However, only limited investigations
on the quality monitoring of robotic drilling based on deep learning have been conducted.
The dynamic response of the robot is far more complex than that of the machine tool,
and the processing quality is affected by multiple sources such as process parameters
and motion accuracy, which increases the difficulty of extracting the implicit relationships
between vibration and processing quality. In addition, most of the existing research pays
more attention to the tool-wear conditions and chatter identification in the robotic drilling
process, while drilling inclination state identification is neglected, which reflects the quality
of robot processing more intuitively.
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Inspired by the above observation, in this paper, an inclination state monitoring
framework for robotic drilling is developed, where the drilling inclination state is quantified
through contour identification and an end-to-end drilling inclination state monitoring
model is constructed. The main contributions of this paper are summarized as follows.

(1) An end-to-end state monitoring scheme for robotic drilling is explored, applying
edge detection integrated with Resnet neural network techniques, which have the
characteristics of high diagnosis accuracy, low resource consumption, and high real-
time performance. With the aid of deep learning, the proposed method requires no
prior knowledge, thus reducing the bias caused by human involvement. It is more
applicable for processing massive signals in the context of big data monitoring.

(2) The Canny operator-based edge detection method is adopted to identify the profiles
of the drilled hole, based on which the inclination angle is obtained to represent the
inclination state of drilling. It provides data labeling information for the monitoring
model training.

(3) Two experimental cases with different kinds of workpiece materials are implemented
to demonstrate the feasibility and applicability of the method. Online monitoring
of the drilling inclination state of collaborative robot is realized in a certain incli-
nation angle range, where the accuracy reaches 100% for both of the two different
workpiece materials.

The remainder of this paper is organized as follows: The characteristics of collab-
orative robots and the drilling processes are briefly described in Section 2. Section 3
details the robotic drilling inclination state monitoring method. In Section 4, collaborative
robotic drilling experiments are carried out to verify the proposed method. Finally, some
conclusions are given in Section 5.

2. Characteristic of Collaborative Robot Drilling
2.1. Stiffness Analysis of Collaborative Robots

Due to the properties of light weight and easy operation, the collaborative robot can
simulate the human arm to complete the task of hole making in a narrow space. However,
the inherent weaknesses of low rigidity and variable rigidity in robots bring detrimental
effects to surface quality and drilling efficiency. For our purpose, the stiffness characteristics
and drilling process of collaborative robot are analyzed first.

For most serial robots, the deformation of the robot mainly comes from the trans-
mission device, reduction device, and servo drive system when it is subjected to external
forces. Therefore, it is normally assumed that the robot link is absolutely rigid in stiffness
modeling, and a spring coefficient ki is used to describe the stiffness of each joint in driving
system, including the transmission and reducing mechanism, which is described as follows:

τi = kidθi (1)

where τi represents the torque of joint, θi denotes the joint variable, and dθi represents the
deformation of the joint variable θi under the torque of joint τi.

For a six-joint series robot, if the stiffness of each joint is k1, k2, · · · , k6, then the joint
stiffness matrix can be described as Kθ = diag(k1, k2, k3, k4, k5, k6), where diag(·) represents
the diagonal matrix composed of the elements in brackets. Further, Equation (1) can be
transformed into the matrix form as follows:

τ = KθdΘ (2)

where τ = [τ1, τ2, τ3, τ4, τ5, τ6]
T denotes the joint torque vector, and

dΘ = [dθ1, dθ2, dθ3, dθ4, dθ5, dθ6]
T denotes the joint angle differential vector, namely, the

deformation of the joint.
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According to the differential kinematics of the robot and the Jacobian definition of
the force field, the mapping relationship between deformation of the joint dΘ and the end
deformation dX can be given as follows:

dX = JdΘ (3)

Meanwhile, the mapping relationship between the joint torque τ and the end force F
is described as follows:

τ = JTF (4)

In Equations (3) and (4), J denotes the Jacobian matrix of the robot,
dX = [dx, dy, dz, dα, dβ, dγ]T denotes the generalized deformation of the robot end, and
F =

[
Fx, Fy, Fz, Nx, Ny, Nz

]T is the generalized external force acting on the robot end.
Considering Equations (2) to (4), the mapping relationship between the deformation

of the robot end dX and the external force F can be obtained, namely, the stiffness model of
the robot is described as follows:

F = KdX (5)

where K represents the Cartesian stiffness matrix of the robot, which can be given through
the joint stiffness matrix Kθ as follows:

K = J−TKθJ−1 (6)

Due to the inverse operation of the Jacobian matrix J in Equation (6), the calcula-
tion errors are usually introduced in this process, especially near the singular configu-
ration. To avoid this problem, Abele et al. [37] proposed a compliance model for robot
stiffness, namely:

dX = CF (7)

where C is Cartesian flexibility matrix, it is given as follows:

C = JK−1
θ JT (8)

Comparing Equations (8) with (6), it can be found that the flexibility matrix C is the
inverse matrix of the Cartesian stiffness matrix K. Since the calculation of C does not involve
the inverse operation of the Jacobian matrix J, the stability and precision of the solution
are improved.

Considering that in the actual processing tasks, such as grinding and drilling, the
robot is mainly subjected to cutting forces, and the magnitude of the rotational deformation
under the non-cutting torque is ignorable compared to the translational deformation. Thus,
Equation (7) can be further expressed as follows:[

dXt
0

]
= C

[
F f
0

]
(9)

where dXt = [dx, dy, dz]T represents the translational deformation of the end of the robot,
and F f =

[
Fx, Fy, Fz

]T denotes the external force on the end of the robot. Furthermore, the
flexibility matrix can be expressed in blocks as follows:

C =

[
Ctt Ctr
CT

tr Crr

]
(10)

where Ctt, Ctr and Crr are the translational flexibility matrix, rotational flexibility matrix,
and coupling flexibility matrix, respectively, and their units are m/N, rad/(N·m) and
rad/N.
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It follows from Equations (9) and (10) that the mapping relationship between the
deformation of the robot end dXt and the external force F f in the Cartesian space is given
as follows:

dXt = CttF f (11)

The stiffness of the robot is influenced by the deceleration, transmission, and servo
devices of each joint; thus, it is difficult to achieve the stiffness of the machine tool in
structure. According to the above derivation process, it is evident that the translational
flexibility matrix Ctt is not a fixed value, but changes with different postures of the robot.
Hence, it is obvious that the stiffness of the robot changes with the posture, that is, the
robot has variable rigidity.

To measure the stiffness of the robot, impulse response tests are conducted on the
collaborative robot. An impulse signal is added at the end effector of the robot arm with
a hammer, and the response vibration is measured by the acceleration sensor. Then, the
critical eigen frequency and damping can be calculated as follows:

ωn =
√

kr/mr, Cr = 2
√

mrkr (12)

where ωn is the eigen frequency, mr denotes the vibrated mass, kr represents the critical
stiffness, Cr is the critical damping. Figure 1 shows the vibration signal under the impulse
response tests. It has a main frequency at 145.6 Hz. By choosing the mass of the end effector
of the robot as the vibration mass, the stiffness of the robot is 4.2 × 104 N/m, while the
critical damping is 582.4 Ns/m.

Figure 1. Vibration signal under impulse response tests, (a) time domain, (b) frequency domain.

Then, 27 measurement points are chosen in the workspace of the robot, which covers
the main workpiece of the robot. Its stiffness map can be calculated by measuring the
impulse response of the robot, as shown in Figure 2. The stiffness of the collaborative robot
under different postures is within 3~4.5 × 104 N/m, which is much lower than the stiffness
of machining tools.

2.2. The Drilling Process of Collaborative Robot

Drilling generally refers to the operation of machining a hole in a workpiece using
a drill bit. The robot drilling is to install the drill bit at the end of the serial manipulator
and rely on the joint movement of the manipulator to realize the drilling operation at the
preset point. Figure 3 shows a drilling scenario of collaborative robot. Figure 4 gives the
geometry of the twist drill used in this study, where the diameter is 2.5 mm, and chisel
edge angle and helix angle are 120◦ and 30◦, respectively. As shown in Figure 5, there
exist three stages in the overall drilling process: (a) initial drilling stage, (b) steady drilling
stage, (c) and drilling through stage. In the initial drilling stage, the drill bit enters into
the workpiece until it entirely sinks in the workpiece. Then the drilling process enters a
steady drilling stage, after the drill bit sinks in the workpiece until it touches the underside
of the workpiece. In the drilling-through stage, the drill bit fully penetrates the underside
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of the workpiece, and the wall of hole completely touches the side wall of the drill bit. The
three stages of the robot drilling process and the corresponding vibration signals are shown
in Figure 4. Due to the probable unstable chatter, the signals of the initial drilling stage
and drilling through stage show unsteady and unstable, it is better to choose the vibration
data during the steady drilling process to recognize the drilling quality. As the trajectory
is designed by the operator, the steady drilling process can be selected after 3 s when the
robot contacts the workpiece.

Figure 2. Stiffness map of collaborative robot, (a) the measurement points, (b–d) the stiffness map
under different postures.

Figure 3. Drilling scenario of collaborative robot.

Figure 4. The geometry of the drill.
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Figure 5. Schematic diagram of the robot drilling process, (a) initial drilling, (b) steady drilling,
(c) drilling through.

Due to the weak rigidity of the robot, the workpiece will also affect the posture of the
drill bit in the descent process of the drill bit. For industrial robots with relatively high
rigidity, the feed trajectory of the robot can be approximated to the actual motion trajectory.
But in the case of collaborative robots, there exists a certain deviation between the preset
trajectory and the actual trajectory. Assuming that the external force from the workpiece is
F f , the real posture of the robot is given as follows:

Xt = Xr + CttF f (13)

where Xr denotes the preset trajectory, and Xt represents the actual trajectory.
When the robot is inclined downward, the robot drill will receive an upward reactive

force from the workpiece wall. There will be a certain deviation between the actually
generated inclination angle and the preset inclination angle, as shown in Figure 6. Therefore,
for the end-to-end training process, the real inclination angle should be used to evaluate
the drilling quality but not the preset inclination angle.

Figure 6. Force analysis of drilling process.

3. End-to-End Robotic Drilling Inclination State Monitoring

The framework of the proposed end-to-end robotic drilling inclination state monitoring
method mainly includes three parts: 1. Date acquisition and analysis; 2. Inclination
representation of robotic drilling; 3. Inclination state monitoring model training, as shown
in Figure 7. First, a collaborative robot drilling processing platform is set up to acquire
the vibration data of the robot drilling process under deferent conditions. Then, a Canny
operator-based edge detection method is adopted to identify the profiles of the drilled hole
to quantify the inclination state of the hole with the inclination angle, which contributes to
data labeling for further state monitoring model training. Finally, an end-to-end robotic
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drilling inclination state monitoring model is trained, where the stationary vibration signals
in the process of robot drilling is intercepted as the input signals, and the Resnet network is
used for the drilling inclination state classification. After training, the inclination state of
the drilled hole could be identified automatically by inputting the online vibration signals,
and hence, the end-to-end robotic drilling inclination state monitoring is realized.

Figure 7. Framework of the robotic drilling inclination state monitoring method.

3.1. Vibration Data Acquisition and Analysis

In order to acquire the vibration data of the collaborative robot drilling process, a robot
drilling processing platform is set up in this paper, as shown in Figure 3, which mainly
includes the following modules: (1) trajectory execution module, (2) machining execution
module, (3) data acquisition module. In what follows, the three modules are introduced
in detail.

The trajectory execution module is a UR5 manipulator arm, which is responsible for
executing the preset trajectory. The technical parameters of the manipulator arm are given
in Table 1.
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Table 1. Main technical parameters of UR5 manipulator.

Technical Index Payload (kg) Effective Working
Radius (mm)

Repositioning
Precision (mm)

Maximum Speed of the Tool
(mm/s)

Value 5 850 ±0.03 3000

The machining execution of this system is completed by the motorized spindle in-
stalled at the end of the manipulator, and the drill bit can be switched and installed on the
tool-holding end of the motorized spindle. The data acquisition module contains an accel-
eration sensor. The acceleration sensor is installed on the clamping tool of the motorized
spindle close to the drill bit. The technical parameters of the acceleration sensor and data
acquisition instrument are shown in Table 2.

Table 2. Main technical parameters of the acceleration sensor and data acquisition instrument.

Acceleration sensor (IEPE: 1A314E)

(1) Sensitivity: 101 mV/g
(2) Measuring range: ±500 g
(3) Response frequency: 0.5–5000 Hz (X); 0.5–7000 Hz
(Y/Z)

Data acquisition instrument
(DHDAS: DH5922D)

(1) Number of channels: 8CH + 2CH
(2) Maximum analysis bandwidth: DC-50 kHz
(3) ADC resolution ratio: 24 bit/channel

To acquire vibration data under different inclination states, different preset angles,
from 0 degree to 1.5 degree, are set. The actual inclination angle will not be consistent with
the preset angles because of the robot’s low rigidity. The vibration signals are recorded
by the data acquisition instrument, as shown in Figure 8. It is hard to identify the preset
inclination angle from the signals in the time or frequency domain, since many frequency
peaks are excited during drilling, as shown in Figure 9.

Figure 8. Measured vibration signal under different preset inclination angles.

Figure 9. The frequency analysis of the vibration signal under different preset inclination angles.

3.2. Inclination Detection of Robotic Drilling

A visual system is used to measure the real inclination angle during robotic drilling. In
order to realize the quantitative representation of the inclination state of robotic drilling, an
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edge detection method is adopted to identify the profiles of the hole drilled to quantitatively
evaluate the inclination state of robotic drilling.

We use an edge detection method to identify the profiles of the hole on the upper
surface and lower surface of the workpiece. Then we can obtain the geometric position
relationship between the profiles of the hole on the upper and lower surface, based on
which the inclination angle of the hole can be further acquired by calculations. Edge
detection is to construct an edge detection operator based on a certain neighborhood of
pixels in the image. General edge detection operators contain a Roberts operator, Sobel
operator, Prewitt operator, Laplace operator and Canny operator. According to the criterion,
it can be concluded that the Canny edge detector is the optimal approximation operator for
the product of the signal-to-noise ratio and positioning by using functional derivation. In
addition, in the Canny operator edge detection we applied the closing operation (dilation
followed by erosion) for morphological filtering, which makes the edge around the hole
smoother and removes the influence of noise caused by cutting chips to some extent. Then
hough circle transform is used to find reliable boundaries. The procedure of the Canny
operator edge detection are as follows:

(1) Gaussian smoothing

If the input image is expressed by f (i,j), we can obtain the convolution of the image
and the Gaussian smoothing filter through the separable filtering method, then a smoothed
data matrix can be given as follows:

S(i, j) = G(i, j; σ)× f (i, j) (14)

where σ is the standard deviation of the Gaussian function, which controls the smoothness.

(2) The calculation of gradient magnitude and direction angle

For the gradient of the smoothed data matrix S(i, j), the matrices P(i, j), and Q(i, j) of
partial derivatives in the i and j directions can be calculated by using the 2 × 2 first-order
finite difference approximation.

P(i, j) ≈ (S(i + 1, j)− S(i, j) + S(i + 1, j + 1)− S(i, j + 1))/2
Q(i, j) ≈ (S(i, j + 1)− S(i, j) + S(i + 1, j + 1)− S(i + 1, j))/2

(15)

Then, finite differences are averaged within this 2 × 2 square in order to calculate
the partial derivative gradients of i and j at the same point in the image. Through the
coordinate transformation formula from the Cartesian coordinates to polar coordinates, the
magnitude and direction angle is given as follows:

M(i, j) =
√

P(i, j)2 + Q(i, j)2θ(i, j) = arctan(Q(i, j)/P(i, j)) (16)

where M(i, j) reflects the edge strength of the image and θ(i, j) represents the direction of
the edge.

(3) Non-maxima suppression

The larger the value of the image magnitude matrix M(i, j), the greater the corre-
sponding image gradient value. But it is insufficient to identify the edge, since here the
problem of fast image transformation is just transformed into the problem of finding the
local maximum value of the magnitude matrix M(i, j). In order to determine the edge, the
ridge band in the magnitude image must be refined, that is, only the point with the largest
local change in magnitude is reserved, which is called Non-maxima suppression (NMS).

Through suppressing the magnitudes of all non-ridge peaks on the gradient line, NMS
refines the gradient magnitude ridges in M(i, j). This algorithm reduces the variation range
of the gradient angle θ(i, j) to one of the four sectors of the circle, namely, the normalization
of the direction angle:

ς[i, j] = Sector(θ[i, j]) (17)
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Labeling the four sectors from 0 to 3, corresponding to the four possible combinations
in the 3 × 3 neighborhood, means any point that passes through the center of the neighbor-
hood must pass through one of the sectors. The circle partition in the possible direction
of the gradient line is marked with degrees, and the algorithm uses a 3 × 3 neighborhood
over all points in the magnitude matrix M(i, j). The central pixel amplitude M(i, j) of the
neighborhood at each point is compared with the two elements along the gradient line,
which is given by the sector value ς(i, j) at the point of the neighborhood. If the amplitude
M(i, j) at the center point of the neighborhood is not greater than the amplitude of two
adjacent points along the gradient line, then we assign zero to M(i, j). This process refines
the wide ridge band to only one pixel. During the process of NMS, the ridge height values
are preserved. Assume that the NMS process is described as follows:

N(i, j) = NMS(M(i, j), ς(i, j)) (18)

where non-zero values of N(i, j) are associated with the contrast ratio at steep changes in
image intensity. In spite of the image smooth in the beginning of edge detection, N(i, j) still
involves certain false edges due to noise and texture. In practical application, the contrast
of false edges is generally small, which can be filtered by setting a threshold.

(4) Double threshold detection

In order to solve the problem of false edges, Canny proposed a double-threshold
method. Through the cumulative statistical histogram, one obtains a high threshold and a
low threshold. If the response of the image signal is larger than the high threshold, then it
can be identified as the edge. While it is lower than the low threshold, it is not identified as
the edge. If it lies between the high threshold and the low threshold, it depends on whether
its eight adjacent pixels have an edge larger than the high threshold. If this exists, then it is
an edge, otherwise it is not an edge.

A robot visual inspection system is given in Figure 10a, while Figure 10b shows the
measured image of the hole taken vertically to the workpiece. In theory, the profiles of
drilling in and drilling out can be obtained by edge detection and circle fitting, and then
the farthest distance between the two circles can be found to serve as the displacement of
the hole. However, there exists a certain degree of blurring in the drilling out profile due
to the unsmooth edge from drilling into metal and the problem of focal length and light,
which increases the difficulty of the circle fitting of the drilling out. Therefore, when the
drilling dataset is built through experiments, the inclination direction of the hole is fixed by
presetting the inclination angle, which ensures that the maximum distance between the
two profiles is at the position y = 0(x > 0) of the image. In this way, only the positions of
points A and B need to be found, as shown in Figure 10b.

Figure 10. The image of the hole taken perpendicular to the workpiece surface and calculation
of the inclination of the hole. (a) UR5 robotic arm from Universal Robots in Odense, Denmark,
(b) calculation of the inclination of the hole.

To obtain the inclination angle of the hole, the Canny operator edge detection is first
carried out on the original image to obtain the drilling out profile, and the position of point
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B can be found by traversing from the image center o to the right, as shown in Figure 11.
Then, the binarization of the original image is performed to eliminate the hole wall area
with low pixel value, based on which the Canny operator edge detection is carried out to
obtain the drilling in profile. At this time, the position of point A can be found by traversing
from the center of the image o to the right. Finally, if the horizontal distance from point A
to point B is lAB, and the thickness of the workpiece is h, then the inclination of the hole
can be given as follows:

θd = arctan(
h

lAB
) (19)

Figure 11. Edge detection based on Canny operator.

3.3. Inclination State Monitoring Model Training

Since the inclination angle of the collaborative robot drilling is related to the actual
drilling conditions, it is necessary to detect the drilling state in real time. Especially when
the number of holes reaches the tens of thousands, this real-time state detection becomes
particularly important. For practical collaborative robot drilling, the actual inclination
angle will not agree with the preset inclination angle. To this end, an end-to-end training
framework is proposed in this paper, where the relationship between the actual inclination
states and the vibration signals is trained by using the vibration data and the actual
inclination states as the training set.

We use collaborative robots to drill 40 holes, whose working conditions are shown
in Table 3. We drill 10 holes with each preset angle, where the feeding speed of five holes
is 0.5 mm/s and the other five holes is with a feeding speed of 1 mm/s. Figure 12 shows
the different preset angles and the corresponding actual inclination angle of collaborative
robot drilling. When the preset angles are set as 0◦ and 0.5◦, the actual inclination angle
is about 0.3◦. It follows that, due to the mechanical deformation of the robot, the slight
change in preset angle shows little influence on the actual inclination angle. In addition,
robots are difficult in achieving attitude adjustment with a high precision due to the limited
control accuracy of collaborative robots. When preset angles are 1◦, the actual inclination
angle is about 0.6◦. While preset angles are set as 1.5◦, the actual inclination angle is
between 1.1◦and 1.3◦. It can be seen that the actual inclination changes obviously when the
preset inclination changes from 1◦ to 1.5◦. Therefore, in the end-to-end training process,
the acceptable angle is set as the real inclination angle lower than 0.8 degree (the preset
angle lower than 1 degree), while the unacceptable angle is set as the real inclination angle
larger than 0.8 degree (the preset angle larger than 1 degree), as shown in Figure 12b.
The data groups 1–30 are set as the normal group, and the groups 31–40 are set as the
abnormal group. Then, a Resnet classification network is used to distinguish the normal
and abnormal groups.
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Table 3. The working conditions of the 40 holes.

Sample Index Rotation Speed (r/s) Feeding Speed (mm/s) Preset Angle

1–5 350 0.5 0◦

6–10 350 1 0◦

11–15 350 0.5 0.5◦

16–20 350 1 0.5◦

21–25 350 0.5 1◦

26–30 350 1 1◦

31–35 350 0.5 1.5◦

36–40 350 1 1.5◦
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Figure 12. The preset angles and the corresponding actual inclination angle of collaborative robot
drilling, (a) differences between the preset and actual inclination angle, (b) the classification boundary
between acceptable and unacceptable angle.

Figure 13 shows an end-to-end classifier training framework for robotic drilling based
on vibration signals, where Resnet is used for the drilling inclination state classification. In
order to obtain a reasonable training set, the stationary vibration data in the process of robot
drilling are taken as the input signals, which is labeled by the drilling quality. The data are
divided into normal and abnormal categories with the real angle of 1◦ as the boundary,
which is then fed into the Resnet network to train a suitable robot drilling-state classifier.
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Figure 13. End-to-end classifier training method for robotic drilling.

The Resnet network architecture comprises an input layer, a convolutional layer, four
residual shrinkage units (ResUnit), a batch normalization layer (BN), a ReLU activation
function layer, a global average pooling layer, and a full connection layer (GAP). The
convolution layer employs a convolutional kernel with a kernel size of eight. Each residual
shrinkage unit is composed of kernels with varying sizes. The subsequent BN, ReLU, and
Pooling layers can maintain their default parameters. The final FC layer utilizes the softmax
activation function. In addition, the batch size will be set to 256. Table 4 shows the structure
parameters of Resnet.
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Table 4. Structure parameters of Resnet.

Layer Parameter Size Output Size Activation

Input / 1 × 2000 /
Convolutional 3 × 3, 8 1 × 1000 /
Residual Unit

[
3 × 3 16
3 × 3 16

]
× 3 1 × 500 ReLU

Residual Unit
[

3 × 3 32
3 × 3 32

]
× 4 1 × 250 ReLU

Residual Unit
[

3 × 3 64
3 × 3 64

]
× 6 1 × 128 ReLU

Residual Unit
[

3 × 3 128
3 × 3 128

]
× 3 1 × 64 ReLU

GAP 64 2 Softmax

The whole data comes from a 40 group test experiment. A total of 60 data slots are
extracted from each test data. Thus, 2400 group training data are obtained. In those data,
1800 group data is used as training data, while 600 group data are treated as test data. The
inclined holes are set to be positive samples for the neural network model and the vertical
holes to be negative samples, where then we can then construct the confusion matrix for
this binary classification problem, as shown in Figure 14. The accuracy performed on the
training set can reach more than 95%. The dataset is separated into different training folds
and the test are folded multiple times for cross validation. Specifically, the training dataset
is equally divided into four folds, and one of them is taken as the validation fold, and the
remaining three parts are taken as the training fold, so as to obtain better bias estimation
to verify the stability and effectiveness of the model. The accuracy on the test set can all
reach more than 93%. After training, the accuracy performance of the test data is about 95%.
We can see from the confusion matrix that the model’s misclassifications mostly involve
mistakenly identifying positive samples as negative, while almost all negative samples are
correctly detected. which is acceptable for ensuring processing quality in practical scenarios.
The results indicate that the training process is efficient for the drilling state monitoring.

Figure 14. Confusion matrix of four different datasets for testing, (a–d) for different selected training data.



Sensors 2024, 24, 1095 15 of 20

4. Experimental Verification

In this section, the collaborative robotic drilling experiments are carried out to testify
the proposed robotic drilling-state monitoring method, where two kinds of materials were
tested to demonstrate feasibility and applicability, namely aviation aluminum and carbon
fiber composite. Due to the differences in structure and material properties between the two
materials, training data were prepared separately for each material. Figure 15 shows the
natural frequencies of the workpieces of two materials measured by the hammer method.
The static stiffness and critical damping coefficient are calculated based on Equation (12).
Here the mass of the aluminum plate and composites board are 0.636 kg and 0.394 kg,
respectively, and we can calculate that the stiffness of the aluminum plate is 19,101 N/m,
the damping coefficient is 220 N·s/m, the stiffness of composite board is 15,509 N/m,
and the damping coefficient is 156 N·s/m. The comparison of vibration signals between
aviation aluminum and carbon fiber composite is shown in Figure 16. It is indicated that
there exist obvious differences in the modal parameters and vibration signals between the
two materials.

Figure 15. The natural frequencies, (a) aviation aluminum, (b) carbon fiber composite.

Figure 16. Comparison of vibration signals between aviation aluminum and carbon fiber composite.

A. Drilling-state monitoring for aviation aluminum materials

Figure 17 shows the cooperative robot drilling scenarios of aviation aluminum and
composite materials. The training set is formed by 16 groups of robot drilling data, where
the preset angles are 0◦, 0.5◦, 1.0◦, and 1.5◦, respectively. A total of four holes were drilled at
each preset angle. We set the feed speed as 0.5 mm/s and the drilling speed as 350 r/s. The
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inclination state monitoring model is trained according to the training process in Section 3.3,
where the actual critical angle between vertical and inclination angle is 0.8 degree.

Figure 17. Cooperative robot drilling scenarios of aviation aluminum and composite materials, where
the robotic arm is UR5 from Universal Robots in Odense, Denmark.

After the training, the robot drills eight holes at the testing set. Each preset angle
has two holes, as shown in Figure 18a. Based on the edge detection method, the actual
inclination angles of the holes are, respectively, identified as 0.16◦, 0.24◦, 0.21◦, 0.24◦, 0.62◦,
0.51◦, 0.92◦, 0.96◦. The results of robotic drilling inclination state detection for aviation
aluminum plate are given in Figure 18b. It can be seen that when the actual inclination
angles of the holes on the aluminum plate is 0.92◦and 0. 96◦, it is identified as an inclined
drilling state by applying the proposed robotic drilling inclination detection method. It
follows that the proposed method can separate the inclined drilling and non-inclined
drilling effectively.

Figure 18. Drilling effect of aviation aluminum by cooperative robot, (a) the preset and real angles,
(b) detection results of robotic drilling inclination state for aluminum plate.
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B. Drilling-state monitoring for carbon fiber composite materials

To demonstrate the applicability of the proposed method, a cooperative robot drilling
experiment is also carried out in composite materials. A total of 16 groups of robot drilling
data are used as the training set and 8 groups of robot drilling data are used as the testing
set. The drilling speed and the feed speed are set as the same as the experiment with
aviation aluminum. We set the actual critical angle between vertical and inclination states
as 0.5 degree.

The eight holes are arranged in a straight line and two holes are drilled at each preset
angle, which are 0◦, 0.5◦, 1.0◦, and 1.5◦, as shown in Figure 19a. The actual inclination
angles of the holes are identified based on the edge detection method as 0.15◦, 0.19◦,
0.19◦, 0.23◦, 0.38◦, 0.35◦, 0.46◦, 0.72◦, respectively. The detection results of robotic drilling
inclination state of composite materials are given in Figure 19b. It can be seen that when the
actual inclination angle of the hole on the composite plate is 0.72◦, it is identified as inclined
drilling state. This result shows that the proposed method is also suitable for composite
materials, and the identification resolution is similar to that of aluminum plate drilling,
which demonstrates the effectiveness and extensibility of this method.

Figure 19. Drilling effect of composite materials by cooperative robot, (a) the preset and real angles,
(b) detection results of robotic drilling inclination state for composite plate.

With regard to the delay in the real-time monitoring, the drilling inclination state of the
hole can only be identified after each hole is drilled, where stable drilling signals acquisition
and data processing based on Resnet classifier consume 0.028 ms and 0.054 ms, respectively,
on a personal computer (CPU: i7 7700k, GPU: GTX 1060). Thus, the total time delay of
the method reaches as low as 0.082 ms after each hole is drilled, which demonstrates the
real-time performance of the algorithm.

C. Discussions

The actual inclination angle when drilling is slightly different from the preset incli-
nation angle due to the weak rigidity and variable rigidity of robot. In order to obtain
more accurate results, the actual inclination of each test hole is calculated by the con-
tour recognition method. In general, because the drill bit is constrained by the hole wall,
the actual inclination angles are smaller than the preset angles overall, as we can see in
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Figures 17a and 18a. However, it is still largely related to the magnitude of the preset
inclination angle. According to requirements of various drilling scenarios, the definition
of actual inclination state, namely inclination angle range, can be modified in practical
application. This work realizes online monitoring for drilling inclination state of collabo-
rative robot in a certain inclination angle range, where the accuracy reaches 100% in the
experiments. Compared to the methods that rely on laser tracking detection and traditional
vibration signal analysis, this study could directly capture discriminative information of
the drilling quality through establishing the matching relationship between vibration and
inclination state, requiring no prior knowledge and reducing the bias caused by human
involvement. Meanwhile, it possesses low-resource consumption, high real-time perfor-
mance, and the deep learning-based classification methods offer higher credibility than
traditional methods that require human inference. From a holistic perspective, the proposed
method demonstrates scientific rigor and practical significance.

5. Conclusions

In this paper, an end-to-end inclination state monitoring method is developed for
robotic drilling process. For our purpose, the drilling process of the collaborative robot
is analyzed first. To quantify the inclination state of robotic drilling, the Canny operator-
based edge detection method is used for drilling contour recognition, based on which the
inclination angle is obtained to represent the inclination state of drilling. In addition, the
robotic drilling inclination state monitoring model is constructed based on Resnet network.
According to different inclination states represented by the inclination angle, the training
dataset is constructed and the Resnet classifier is trained for the drilling-state classification.
The proposed method is testified by collaborative robotic drilling experiments. In the cases
of the two different workpiece materials, the inclined drilling and non-inclined drilling
states were 100% identified by the proposed method, which verifies the effectiveness and
applicability of the proposed method.

This paper has specifically explored an online monitoring scheme for robotic drilling
with the characteristics of easy implementation in hardware, low-resource consumption,
and monitoring delay. The vibration signals are easy to collect with the acceleration sensor
installed near the motorized spindle, and the total monitoring delay is as low as 0.082 ms,
after each hole is drilled. It is worth pointing out that the classification errors could be
further reduced along with the increase in the number of the data.

There are some issues that can be considered in future work: (1) In the actual process-
ing scenarios, process technology, working conditions and processing materials change
frequently. Therefore, the adaptability of inclination state monitoring method cross working
conditions and processing materials can be further studied through deep transfer learning
in future work. (2) Based on the consideration that it takes much time and effort to obtain
enough data in practical applications, thus inclination state monitoring method with a
model-aided data augmentation technique can be further developed.
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