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Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional
and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the
surface and the atmosphere.With the advent of the ESA's Sentinel 3 (S3) satellite, accurate LST retrievalmethod-
ologies exploiting the synergy betweenOLCI and SLSTR instruments can be developed. In this paperwe propose a
candidate methodology for retrieving LST from data acquired with the forthcoming S3 instruments. The LST al-
gorithm is based on the Split-Window (SW) techniquewith an explicit dependence on surface emissivity, in con-
trast to the AATSR level 2 algorithm with emissivity dependence embedded in the algorithm coefficients.
Performance of themethodology is assessed by usingMERIS/AATSR pairs (instruments with similar characteris-
tics to OLCI and SLSTR, respectively). LST retrievals using different datasets of input emissivity are validated
against in situ data measured along one year (2011) in five test sites and intercompared to the standard
AATSR level 2 products. Validation results show that LST is retrieved with the proposed SW algorithm typically
with RMSE below 2 K, providing slightly better results than the AATSR level 2 product. The main advantage of
the proposed algorithm is that it allows for improvements in input emissivities to be directly translated into im-
proved LST retrievals.
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1. Introduction

The Sentinel satellite constellation series is developed by the
European Space Agency (ESA) in order to support European operational
services and the policy needs of the Copernicus programme. The first
three Sentinel missions are planned to contribute to the understanding
of the Earth System by detecting, monitoring and assessing changes in
ocean, cryosphere, and land components (Malenovský et al., 2012;
Berger, Moreno, Johannessen, Levelt, & Hanssen, 2012). In particular,
Sentinel-2 (S2) and Sentinel-3 (S3) missions operate optical radiome-
ters to provide multispectral data at high, medium and low resolution.

The S2missionwas designed i) to provide systematic global acquisi-
tions of high-resolution multispectral imagery with a high revisit fre-
quency, ii) to provide enhanced continuity of multi-spectral imagery
provided by the Satellite Pour l'Obervation de la Terre (SPOT) series of
satellites, and iii) to provide observations for the next generation of
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operational products such as land-cover maps, land change detection
maps, and geophysical variables (Drusch et al., 2012). S2 platform in-
cludes the Multi Spectral Instrument (MSI) with 13 spectral bands cov-
ering the Visible and Near Infra-Red (VNIR) and the Short Wave Infra-
Red (SWIR) spectral ranges, with a spatial resolution ranging from
10 m to 60 m depending on the band.

The S3 mission will provide continuity to ENVISAT's capabilities
while contributing to a number of services related to ocean and land
products (Donlon et al., 2012). The main instruments on board the S3
mission are the Ocean and Land Colour Imager (OLCI) and the Sea and
Land Surface Temperature Radiometer (SLSTR). OLCI is a push-broom
imaging spectrometer instrument building on the heritage of ENVISAT
MERIS, with 21 spectral bands covering the 0.4–1 μm range at maxi-
mum 300 m spatial resolution. SLSTR is a dual view conical imaging ra-
diometer building on the heritage of ENVISAT AATSR. It includes 9
spectral bands covering the 0.5–12 μm spectral range, with two addi-
tional bands for active fire detection, and with a spatial resolution of
500 m for the VNIR bands and 1 km for the thermal infrared (TIR) and
fire bands.
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One of the main objectives of the S3 mission is to provide Europe
continuity in ENVISAT type measurement capability for determining
sea, ice and land surface temperature. In this context, ESA funded the
“Synergistic Use of The Sentinel Missions For Estimating And Monitor-
ing Land Surface Temperature (SEN4LST)” project, which had the
main objective of fully utilizing the synergy between SLSTR and OLCI in-
struments to improve atmospheric correction (including cloud mask)
and land surface emissivity characterization for a better estimation of
land surface temperature (LST). The SEN4LST project also included an
analysis of high resolution data obtained from S2/MSI to improve char-
acterization of the subpixel heterogeneity of the land surface and to po-
tentially use a land cover map derived from S2 for a better
parameterization of emissivity retrieval. A general scheme of potential
synergies between the different instruments (S2/MSI, S3/OLCI, S3/
SLSTR) is presented in Fig. 1. This paper focuses on the performance of
the proposed LST retrieval algorithm for the future S3 mission using
pairs of MERIS/AATSR images as a proxy.

2. Review and selection of the candidate LST algorithm

2.1. Land surface and emissivity retrieval

The selection of the land surface temperature (LST) algorithm to
be applied was based on a literature review and lessons learned
from the development and validation of algorithms for ENVISAT
MERIS/AATSR (e.g. Sòria & Sobrino, 2007). Operational and near-
real time capabilities were also main drivers in the selection of the
algorithm.

A number of algorithms for retrieving LST and land surface emissiv-
ity (LSE) from remote sensing data have been published in recent de-
cades. An exhaustive review can be found in Li et al. (2013a, 2013b).
Since the 1970s, operational LST algorithms for polar-orbiting and geo-
stationary satellites have been mainly based on the split-window (SW)
or two-channel (TC) technique. The split-window technique is based on
Fig. 1. Synergistic approach of the S2/MSI, S3/OLCI, and S3/SLSTR instrumentswith focus on a be
retrievals.
the differential absorption concept (McMillin, 1975), in which the at-
mospheric effect over the measured signal is corrected using the differ-
ence signal measured in two TIR bands at two different wavelengths.
This concept also applies to the signal measured by one TIR band (single
wavelength) under two different view angles, which is the basis of the
so-called dual-angle (DA) algorithms. Both SW and DA LST algorithms
depend on LSE, which is assumed to be known a priori by means of
other independent approaches. With the launch of the ASTER sensor,
with multispectral capabilities in the TIR region, new techniques
based on the Temperature and Emissivity Separation (TES) concept
were adopted (e.g. Gillespie et al., 1998). The main advantage of the
TES technique is that LST and LSE are simultaneously retrieved. Since
the latter is also retrieved from TIR data, this implies that the retrieved
LSE is sensitive to real changes on the surface and even more indicative
of land cover change than traditional vegetation indices in some cases,
especially when emissivities in the range 8–9 μm are used (French
et al., 2008). Although currently the TES algorithm is only operationally
applied to ASTER data, different initiatives are planned to provide LST
and LSE products using this approach on other sensors, like the MODIS
LST MOD21 product (Hulley & Hook, 2011) or a potentially new LST/
LSE product with MSG/SEVIRI data (Jiménez-Muñoz, Sobrino, Mattar,
Hulley, & Gottsche, 2014a). Note that apart from the SW/TC, DA and
TES algorithms, it is also possible to retrieve LST from only one TIR
band under one single observation, the so-called mono-window or
single-channel (SC) algorithm, a technique mainly used for the Landsat
series (e.g. Jiménez-Muñoz et al., 2009a; Jiménez-Muñoz, Sobrino,
Skokovic, Mattar, & Cristóbal, 2014b).

In terms of operational LSE retrieval from polar-orbiting and geosta-
tionary satellites, and because of the unavailability of multispectral TIR
sensors, most methods have been based on Vegetation Indices (VIs)
(e.g. Sobrino et al., 2008) and/or classification-based approaches
(Peres & Da Camara, 2005; Snyder, Wan, Zhang, & Feng, 1998). Only
since the launch of ASTER, operational LSE retrievals frommultispectral
TIR data with TES approaches have been possible.
tter characterization of the surface emissivity in order to improve land surface temperature



Since the S3/SLSTR instrument only has two TIR bands, TES ap-
proaches had to be discarded from the list of candidate LST algorithms.
Moreover, in order to allow for near-real time retrievals and to avoid the
dependence on nighttime acquisitions, methods based on day/night
pairs (Goïta & Royer, 1997;Wan& Li, 1997) were also discarded. There-
fore, the analysis of algorithms focused on SW and DA algorithms.
Among the different mathematical structures proposed for these algo-
rithms, the expression proposed by Sobrino, Li, Stoll, and Becker
(1996) was finally selected:

TS ¼ Ti þ c1 Ti−Tj
� �þ c2 Ti−Tj

� �2 þ c0

þ c3 þ c4Wð Þ 1−εð Þ þ c5 þ c6Wð ÞΔε ð1Þ

where Ts is the LST (in K), Ti,j are at-sensor brightness temperatures (in
K), W is the atmospheric water vapor content (in g·cm−2 or cm), ε is
the mean LSE 0.5·(εi + εj), and Δε is the LSE difference (εi − εj).
Subindices ‘i’ and ‘j’ refer to two different TIR bands, thus leading to
the SW algorithm, or to one TIR band but two different view angles
(e.g. nadir ‘n’ and oblique ‘o’ views), thus leading to the DA algorithm.
Coefficients c0 to c6 are obtained from statistical regressions performed
over simulated data.

The main advantage of Eq. (1) is that this expression is physically-
based (it can be directly derived from the radiative transfer equation
after several assumptions), and it explicitly includes the atmospheric
water vapor content and surface emissivity. In terms of operational re-
trieval, the algorithm given by Eq. (1) can easily incorporate external
sources of W and LSE. Hence, whenever improved products of W and
LSE are available, the potential LST product generated with this algo-
rithm can be easily reprocessed to provide a new product version.

For input emissivities, we adopted the Normalized Difference Vege-
tation Index (NDVI) Thresholds Method (NDVI-THM; Sobrino et al.,
2008) given by.

NDVIbNDVIs : ε ¼ aþ bρred
NDVIs≤NDVI≤NDVIv : ε ¼ εs 1−Pvð Þ þ εvPvþ C
NDVIvNNDVI : ε ¼ 0:99

ð2Þ

where ρred is the reflectance at the red band, εs and εv are reference
values of surface emissivity for soil and vegetation, respectively, C is a
cavity term for rough surfaces which depends on geometrical factors
(which can be neglected for operational purposes or assumed to be con-
stant after estimation of a mean value for a number of typical geome-
tries), and Pv is the fractional vegetation cover, which can be obtained
from the scaled NDVI (Gutman & Ignatov, 1998):

Pv ¼ NDVI� NDVIs
NDVIv� NDVIs

ð3Þ

where NDVI is the current value and NDVIs and NDVIv are reference
values of NDVI for bare soil and fully vegetated surfaces, respectively.
These reference NDVI values can be obtained from different techniques,
although values of 0.15 and 0.9 for NDVIs and NDVIv, respectively, are
considered representative at global conditions (Jiménez-Muñoz et al.,
2009b). The NDVI-THM method was selected because it requires re-
duced computing time and allows for near-real time implementation.

For the input of emissivity data to the SW algorithm, Eq. (2) must be
adapted to each sensor band because of the wavelength dependence of
emissivity. For the DA algorithm, the angular dependence on emissivity
should be also taken into account. Note also that NDVI-THM (Eq. (2))
applies only to a mixing of bare soil and vegetation surfaces. For
snow/ice or water surfaces, these pixels should be identified in order
to assign appropriate emissivity values to these two classes.
2.2. Atmospheric correction and cloud screening

In the framework of the SEN4LST project, a review and adaptation of
atmospheric correction and cloud screening methodologies for poten-
tial application to the S3missionwas also performed. In terms of the at-
mospheric correction, total atmospheric water vapor content is a
required input for the LST algorithm (Eq. (1)), whereas at-surface re-
flectances are also required for a correct estimation of the surface emis-
sivity using approaches based on vegetation indices (e.g. NDVI-THM). It
is not the scope of this paper to provide a detailed description of atmo-
spheric correction and cloud screening methodologies, but in this sec-
tion we summarize the main ideas behind this analysis based on the
developments performed in the framework of the MERIS/AATSR Syner-
gy project.

Accurate atmospheric correction requires information on aerosol
scattering to obtain surface reflectance. In addition, independent infor-
mation on atmospheric water vapor contents may be used to enhance
the correction of atmospheric effects. While the effects of aerosols and
absorbing gases may be modelled, the variability of aerosol scattering
typically represents the greatest uncertainty in the derivation of surface
reflectance over land and ocean from remotely-sensed data (Vermote &
Kotchenova, 2008). The magnitude of the aerosol scattering increases
with view angle. Therefore a robust correction is particularly important
whenmaking use of the AATSR or SLSTR off-nadir view (and also in high
latitudes with nadir view), and will be of greater importance for
Sentinel-3 than it was for ENVISAT due to the wider swath width
employed. Use of multiple view-angle imagery, such as the one avail-
able on AATSR and SLSTR, allows for robust retrieval even over bright
land surfaces. A multi-instrument synergistic approach to aerosol re-
trieval was recently developed to use both spectral and angular con-
straints, applicable to both ENVISAT and Sentinel-3. The proposed
aerosol correction for this study was based on the Synergy method de-
veloped for MERIS and AATSR (North et al., 2008; North et al., 2010),
which can be potentially applied to S3 SLSTR and OLCI (North &
Heckel, 2012). The output is aerosol optical depth at a reference
waveband, an estimate of aerosol model and Angstrom coefficient,
and atmospherically corrected surface reflectances for all bands used.

In order to provide a cloud screening strategy for the SEN4LST pro-
ject, three different methodologies were considered:

i. The operational AATSR cloud masking (Birks, 2007) comprises a se-
ries of threshold tests developed initially for cloud identification
over the ocean (Zavody, Mutlow, & Llewellyn-Jones, 2000) based
on an evolution of the APOLLO cloud clearing for AVHRR
(Saunders, 1986; Saunders & Kriebel, 1988) and later adapted for
use over land (Birks, 2007).

ii. SYNERGY and GlobAlbedo cloud masks generate a cloud probability
from an ensemble of multilayer perceptron artificial neural net-
works using data from both the AATSR and the MERIS instruments
(Gomez-Chova et al. 2007; Gomez-Chova et al. 2009a,b). The
GlobAlbedo cloud-clearing algorithm can be applied to the AATSR,
MERIS and Satellite Pour l'Observation de la Terre Vegetation
(SPOT VGT) instruments. It is based on identifying a series of fea-
tures useful for cloud detection. Each of these features is assigned a
probabilistic value between 0 and 1, where 1 represents a feature
that is definitely true, 0 a feature that is definitely false, and 0.5
that the status of the feature is unknown (Brockmann, Kruger, &
Danne, 2011).

iii. The Bayesian approach (exploiting in this case only thermal infrared
channels) (Merchant, Harris, Maturi, & MacCallum, 2005) calculates
the probability of clear-sky conditions, given both the satellite ob-
servations and prior knowledge of the surface state and total column
water vapor from numerical weather prediction (NWP) data. Previ-
ous studies give a detailed evaluation of the cloud detection algo-
rithm performance over the ocean (Merchant et al., 2005), and
some initial validation of the scheme applied to land imagery has



been undertaken using data from the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) (Mackie, Merchant, Old, Embury, & Francis,
2010).

The inter-comparison of the different methodologies using 25
scenes showed that the SYNERGY mask performs better, while the
Bayesian performs remarkably well given its simple implementation
with a limitednumber of channels. One of the areas of relativeweakness
of the SYNERGY mask was in detection of thin cirrus over land, which
hopefully will be improved with the new bands of SLSTR.

2.3. Final selection of the LST algorithm

As discussed in Section 2.1, the mathematical structure given by
Eq. (1) can be applied to both SW and DA algorithms. In the framework
of the SEN4LST project, a combination between a SW and a DA algo-
rithm (denoted as “Combined” algorithm, CO) was also considered. In
the simulation procedure (detailed in Section 3.1), the uncertainty of
the algorithm for the DA and CO cases was lower than the SW. This re-
sult suggested a priori improvement on the LST retrievalwhen the com-
bination between nadir and oblique views are used. However, based on
previous experiences (e.g. Sòria & Sobrino, 2007) and also on the valida-
tion of the DA and CO algorithms against in situ measurements during
the SEN4LST project, it was observed that practical application of the
combination between nadir and oblique acquisitions added significant
uncertainty on the interpretation and retrieval of the LST because of
the intrinsic thermal heterogeneity over land surfaces, as opposed to
the thermal homogeneity over sea surfaces. For this reason, the DA
and CO algorithms were discarded and a SW approach based on
Eq. (1) wasfinally selected. A similar conclusionwas drawn for the gen-
eration of the AATSR LST Standard Product (described in Section 3.2), in
which the SW approachwas preferred to the DA approach (whereas for
the case of SST retrieval a DA approach was adopted). Therefore, results
presented in the next sections will focus on a SW algorithm given by
Eq. (1).

3. Data and processing

3.1. Simulated data

Algorithm coefficients involved in Eq. (1) are calculated after statis-
tical fits (minimization) from a complete simulated database. For this
purpose, at-sensor brightness temperatures Ti and Tj are obtained
from forward simulations using the radiative transfer equation (RTE):

Lsensori ¼ εiBi Tsð Þ þ 1−εið ÞLatm↑
i

� �
τi þ Latm↑

i ð4Þ

where values of ε are obtained from spectral libraries and atmospheric
parameters (transmisivity, τ, and up-welling and down-welling atmo-
spheric radiances, Latm↑ and Latm↓) are obtained from atmospheric pro-
files and MODTRANv4 radiative transfer code (Berk et al., 1999). All the
spectral magnitudes are averaged using the spectral response function
of the sensor TIR bands.

In this study, we used 108 emissivity spectra extracted from the
ASTER spectral library (Baldridge, Hook, Grove, & Rivera, 2009) and 61
atmospheric profiles under five different surface temperatures. Emissiv-
ity spectra included natural samples of soils, vegetation, water, ice, and
those rocks samples with sizes representative at remote sensing scales.
The atmospheric profiles dataset is based on a selection of 61 atmo-
spheric profiles extracted from the Thermodynamic Initial Guess
Retrieval (TIGR) database. These atmospheric profiles represent a
worldwide set of atmospheric situations, with 28 atm assigned to the
tropicalmodel, 12 to themidlatitude summermodel, 12 to the subarctic
winter, and 9 to the U. S. Standard. W values range from 0 to 6 cm,
whereas temperatures at the first layer range from 240 to 330 K. In
the simulation, LST was chosen as T0 − 5 K, T0, T0 + 5 K, T0 + 10 K,
and T0+20 K,where T0 is the temperature of thefirst layer of the atmo-
spheric profile. The emissivity and atmospheric profiles datasets, aswell
as the simulation procedure are described in detail in Jiménez-Muñoz
et al. (2009a) and Jiménez-Muñoz and Sobrino (2008).

3.2. MERIS and AATSR imagery

A set of MERIS (level 2; L2) and AATSR (level 1b; L1B) pairs were
used as a proxy for the future S3 OLCI & SLSTR imagery. This dataset in-
cludes the necessary inputs in order to apply the selected algorithm and
to intercompare the results obtained with the standard AATSR L2 LST
products.

The AATSR L1B product (ATS_TOA_1P) includes TOA reflectances at
bands 0.55 μm, 0.67 μm, 0.87 μm and 1.6 μm, and at-sensor brightness
temperatures at bands 3.7 μm, 11 μm and 12 μm, both for nadir and for-
ward views. The product also includes several metadata and cloud flags.
MERIS L2 products (MER_RR_2P) include different geophysical vari-
ables related to both land and water studies. For this study, we used
the at-surface reflectance product for computation of theNDVI using at-
mospherically corrected data, and the atmospheric water vapor prod-
uct, a required input to the LST algorithms.

The standard AATSR LST product (level 2, ATS_NR_2P) was used as a
reference for the assessment of performance of the prototype product.
These are geophysical quantities, retrieved from single pass, single sen-
sor data, used for regional or local studies and available a 1-km grid,
Gridded Surface Temperature (GST). It includes the LST and other vari-
ables such as sea surface temperature (SST), cloud top temperature,
cloud top height and NDVI, with several metadata and flags. The LST al-
gorithm used in the AATSR level 2 products is given by

Ts ¼ a0 þ b0 Ti−Tj
� �n þ b0 þ c0ð ÞTj ð5Þ

In comparison to the selected SW algorithm given by Eq. (1), the
AATSR L2 algorithm does not include W and LSE in the formulation,
but they are indirectly included in the coefficients a0, b0, c0, which de-
pend on the land cover, vegetation fraction, and water vapor (Prata,
2002).

3.3. In-situ data and validation strategy

Five different medium to large homogeneous areas are chosen as
test sites in order to validate the LST retrievals, from North to South:
1) an arctic tundra area in Alaska (US), 2) a cropland area in Oklahoma
(US), 3) amarshland area inHuelva (Spain)with natural vegetation and
periodic flooding; 4) a soil area covered by seasonal grass and sparse
trees in Dahra (Senegal); and 5) gravel plains covered by a mixture of
gravel, sand, and sparse grass near the Gobabeb Research & Training
Centre in the Namib Desert (Namibia). Location of the test sites are
shown in Fig. 2, and theywill be denoted as Barrow, Oklahoma, Doñana,
Dahra, and Gobabeb, respectively.

Continuous measurements of radiometric temperature are per-
formed in all the five sites (every minute or 10 min depending on the
site), and values available for year 2011 were selected for the validation
exercise. In situ values of emissivity required for the derivation of in situ
LSTs over each site were obtained differently depending on the site. In
the case of theDoñana site,measurementswith amultiband radiometer
(including also broadband) were performed in dedicated field cam-
paigns to obtain the emissivities changes along the year (Sobrino,
Skokovic, & Jiménez-Muñoz, 2015). The Temperature and Emissivity
Separation (TES) algorithm was applied to ground-based measure-
ments of thermal radiances in order to obtain the narrow- and broad-
band emissivities (Jiménez-Muñoz & Sobrino, 2007). In the case of
Dahra and Gobabeb sites, surface emissivity was measured with the
box method (Göttsche & Hulley, 2012; Xu, Yu, Tarpley, Göttsche, &
Olesen, 2014). For the Barrow and Oklahoma sites, monthly values of



Fig. 2. Test sites used in the validation of the LST algorithms.
surface emissivity were extracted from the CIMSS Baseline Fit Emissivi-
ty Database (http://cimss.ssec.wisc.edu/iremis), which provides emis-
sivity values at 0.05° spatial resolution at different wavelengths.
Broadband emissivity was obtained after narrow-to-broadband conver-
sion (Borbas & Ruston, 2010; Cheng, Liang, Yao, & Zhang, 2013). Uncer-
tainty of estimated surface emissivities can vary from one site to
another, but a mean uncertainty of around 1.5% can be considered for
all the sites (see the detailed references). Assuming a surface tempera-
ture of 300 K and a surface emissivity of 0.96, this emissivity uncertainty
leads to an uncertainty on the retrieved surface temperature of around
0.6 K (Jiménez-Muñoz & Sobrino, 2006).

In order to obtain robust statistics, it is important to define a proper
outlier removal strategy, especially to identify pixel values contaminat-
ed by clouds.We used cloud flags included in the AATSR standard prod-
uct (inwhich three different cloudmask schemes are used, versions, 1, 2
and 3), and also the cloud flags obtained from the MERIS/AATSR
SYNERGY methodology. The differences between the cloud masks are
analyzed in Section 4.3. Huge differences between satellite-derived
and in-situ LSTs were observed during the validation process even
when cloud flags were applied. Application of other common outlier re-
moval methodologies such as 3σ criterion (based on the mean value of
the difference) or 3σHampel identifier (based on themedian of the dif-
ference) did not solve the problem either. Therefore, we adopted a 3σ
criterion based on the theoretical uncertainty associated to the algo-
rithm (provided in Section 4.1) in such a way that differences between
satellite-derived and in-situ LSTs higher than three times the algorithm
uncertainty were considered outliers and removed from the validation
statistics computation.

3.4. Input data to the SW algorithm

Input data to the SW algorithm given by Eq. (1) are i) at-sensor
brightness temperatures, ii) surface emissivity at bands 11 and 12 μm,
and iii) atmospheric water vapor content. At-sensor brightness temper-
atures were extracted from the AATSR imagery (Level 1B), whereas
atmospheric water vapor was extracted from the MERIS/AATSR
SYNERGY product. Input surface emissivities are the most critical pa-
rameter, since it accounts for the highest value of uncertainty on the re-
trieved LST (see sensitivity analysis in Section 4.1). In this study,
different sources of surface emissivity were considered: i) estimations
from the NDVI-THM (Eq. (2)), ii) the ASTER Global Emissivity Dataset
(ASTER GED) version 4 (Hulley et al. (2015), and iii) the MODIS
MOD11C3v5 product (Wan, 2008). For case i), results extracted from
the MERIS/AATSR SYNERGY methodology (at-surface reflectance at
red band andNDVI)were used. Cases ii) and iii) providemonthly values
of emissivity at 5-km spatial resolution. It is important to remark that
NDVI-THM can be only applied to daytime acquisitions because its de-
pendence on the VNIR reflectance or NDVI. For nighttime acquisitions,
the same value of the daytime emissivity estimation was considered.

3.5. Data extraction: the BEAM toolbox

BEAM is an open-source toolbox and development platform for
viewing, analyzing and processing remote sensing raster data (http://
www.brockmann-consult.de/cms/web/beam/). An “LST processor”
was developed in BEAM in order to retrieve LST from the different algo-
rithms and methodologies developed during the SEN4LST project to be
potentially applied to the forthcoming S3 OLCI/SLSTR instruments.
BEAM includes the ‘MERIS/AATSR Synergy Toolbox’, which is based on
an atmospheric correction scheme togetherwith a cloud-screening pro-
cedure, as explained in Section 2.2. BEAM also includes other useful
tools for extracting pixel values for validation exercises or identification
of the different quality flags. Results presented in this study were proc-
essed and extracted from this BEAM toolbox, as well as from dedicated
programs developed in Interactive Data Language (IDL).

4. Results

In this section,we present the results obtained in the simulation pro-
cedure for the LST algorithm for both AATSR and SLSTR TIR bands, and
for the LSE algorithm for both combinations MERIS/AATSR and SLSTR/
OLCI. We also analyze the results obtained in the validation, where

http://cimss.ssec.wisc.edu/iremis
http://www.brockmann-consult.de/cms/web/beam/
http://www.brockmann-consult.de/cms/web/beam/


satellite-derived LSTs are compared against in situ measurements over
the five test sites using different sources of input emissivity, andwe fin-
ish off the analysis with some discussion on the disparities observed in
the different cloud masks.
4.1. Estimation of uncertainties

4.1.1. Coefficients for the LST SW algorithm and sensitivity analysis
The SWcoefficients for Eq. (1) are given in Table 1 for the AATSR and

SLSTR TIR bands. The values of the coefficients in these two cases are
similar because the spectral configuration of both sensors is similar
(Fig. 3). Table 1 also includes the different contributions to the total un-
certainty of the LST algorithm. For this purpose, a reference case has
been considered, with uncertainties in brightness temperatures, surface
emissivity andwater vapor of 0.1 K, 0.01 and 0.5 cm, respectively. These
reference values of uncertainties have been justified and considered in
other simulation exercises (e.g. Jiménez-Muñoz & Sobrino, 2008). The
major contribution comes from the uncertainty in the surface emissivi-
ty, about 1.2 K. Other contributions come from the standard error of the
algorithm (due to the statistical fit), 0.9 K, and the Noise Equivalent
Delta Temperature (NEDT), 0.4 K. The uncertainty of the atmospheric
water vapor typically has a minor contribution. The final total uncer-
tainty of the algorithm is estimated at 1.5 K in this reference case.

However, in order to better characterize the different uncertainties
of the LST algorithm, it is worth performing a more detailed analysis
to include other reference uncertainties in water vapor and surface
emissivity, as well as to assess the contribution to the algorithm uncer-
tainty of the different SW coefficients. Fig. 4 shows the uncertainty in
LST for different values of emissivity uncertainties (Fig. 4a) and water
vapor uncertainties (Fig. 4b). As discussed before, the uncertainty in
surface emissivity is a key factor for an accurate estimation of the LST.
Uncertainties in emissivity above 2% lead to a contribution to the uncer-
tainties in LST above 2.5 K. Overall, the uncertainty in the water vapor
has a minor contribution, below 0.3 K, even for huge uncertainties
in water vapor. However, this contribution depends on the terms
(1− ε) and Δε, so for low mean emissivities and/or high spectral vari-
ations, the contribution of the uncertainty in water vapor can be impor-
tant. Hence, for the simulated database used in this study, the lowest
mean emissivity value was 0.91, and the highest spectral variation
was 0.018. For this extreme case, the contribution of the uncertainty
in water vapor is 0.3 K, 0.5 K and 0.8 K for water vapor uncertainties
of 0.5 cm, 1 cm, and 1.5 cm, respectively.
Table 1
Coefficients of the split-window algorithm given by Eq. (1) for ENVISAT/AATSR and Senti-
nel-3/SLSTR cases. Individual contributions to the total uncertainty in LST are also given:
standard error of estimation (σ), Pearson linear correlation coefficient (r), uncertainty
due to the Noise Equivalent Delta Temperature (δNEΔT), contribution of the uncertainty
in the emissivity (δε), contribution of the uncertainty in the total atmosphericwater vapor
content (δw), and total uncertainty (utotal) of the LST algorithm. Uncertainties of 0.1 K,
0.010 and 0.5 cm for brightness temperatures, emissivity and water vapor have been con-
sidered, respectively.

Parameter Units AATSR SLSTR

c0 K −0.268 ± 0.014 −0.268 ± 0.014
c1 Unitless 1.029 ± 0.010 1.084 ± 0.010
c2 K−1 0.2679 ± 0.0017 0.2771 ± 0.0017
c3 K 44.9 ± 0.7 45.1 ± 0.7
c4 K·cm−1 −0.61 ± 0.19 −0.73 ± 0.19
c5 K −121.5 ± 1.7 −125.0 ± 1.7
c6 K·cm−1 16.2 ± 0.5 16.7 ± 0.5
σ K 0.9 0.9
r Unitless 0.975 0.976
δNEΔT K 0.4 0.4
δε K 1.2 1.2
δw K 0.08 0.08
utotal K 1.5 1.6

Fig. 3. Spectral Response Functions for AATSR and SLSTR TIR bands, and AATSR, SLSTR,
MERIS and OLCI red bands.
It is worth to mention that this sensitivity analysis refers to nadir or
near-nadir views. Even in the case of a SW algorithm, in which an
oblique view is not used, the angular effect is playing a role for those
pixels acquired near the border of the image because of the large
swath sensor. In terms of atmospheric absorption, the water vapor con-
tent should be corrected for the view angle, since the atmospheric path
(and then the atmospheric absorption) increase with increasing view
angle. However, the main uncertainty may arise from the angular de-
pendence of the surface emissivity, which is especially critical over
land (e.g. Cuenca & Sobrino, 2004; Cuenca & Sobrino, 2004).

4.1.2. Estimation of surface emissivity using the NDVI-THM
The NDVI-THM is based on a linear approach between surface emis-

sivity and red reflectance for bare soil pixels (Eq. (2)), ε = a + bρred,



Fig. 4. Impact of the uncertainty in (a) emissivity and (b) atmospheric water vapor over
the uncertainty in Land Surface Temperature (LST).

Table 2
Coefficients for the linear relationship between surface emissivities (e-TIR) and red reflec-
tances (ρ-RED) used in the NDVI ThresholdsMethod. Values are provided for the different
combinations between AATSR TIR bands, and AATSR and MERIS red bands, as well as
SLSTR TIR bands 11 and 12, and SLSTR and OLCI red bands. Pearson linear correlation co-
efficients (r) and standard error of estimation (σ) are also given.

ε-TIR = slope × ρ-RED + intercept

ρ-RED ε-TIR Slope Intercept r σ

aatsr_b2 aatsr_b11 −0.051 ± 0.009 0.979 ± 0.002 0.73 0.003
aatsr_b2 aatsr_b12 −0.031 ± 0.007 0.9830 ± 0.0016 0.65 0.003
meris_b8 aatsr_b11 −0.050 ± 0.009 0.980 ± 0.002 0.74 0.003
meris_b8 aatsr_b12 −0.030 ± 0.007 0.9832 ± 0.0016 0.65 0.003
slstr_b2 slstr_b11 −0.051 ± 0.009 0.979 ± 0.002 0.73 0.003
slstr_b2 slstr_b12 −0.032 ± 0.007 0.9829 ± 0.0016 0.65 0.003
olci_b8 slstr_b11 −0.051 ± 0.009 0.980 ± 0.002 0.73 0.003
olci_b8 slstr_b12 −0.032 ± 0.007 0.9830 ± 0.0016 0.65 0.003
where coefficients a and b can be obtained from spectral libraries. Not
all soils follow a linear relationship between ε and ρred, but it has been
found that this linear equation provides acceptable estimations of sur-
face emissivity for the most common soils (Sobrino, Raissouni, & Li,
2001). Table 2 shows the expressions for surface emissivities at AATSR
and SLSTR TIR bands and AATSR/MERIS and SLSTR/OLCI red bands,
using 27 soil samples included in the ASTER spectral library. The linear
correlation coefficient is around 0.7, with standard errors of estimation
of 0.003. The coefficients for a given TIR band are also similar because
the spectral response functions of the red bands are similar (Fig. 3).
Mean emissivity values for the 27 soil samples were 0.969 ± 0.005 for
band 11, and 0.977± 0.003 for band 12 (with emissivity values ranging
from a minimum value of 0.95 to a maximum value of 0.98). These
values can be used as reference for εs in Eq. (2), whereas a constant
value of 0.99 can be considered for εv.

4.2. Intercomparison between different sources of surface emissivity

As discussed in Section 3.4, we used three different sources of input
emissivities to the SW algorithm: i) NDVI-THM, ii) ASTER-GEDv4, and
iii)MOD11C3v5. Before discussing the LST validation results in next sec-
tion, it is worth to analyze the differences observed in the three emissiv-
ity sources, since surface emissivity is a key input to the SW algorithm.
Fig. 5 shows the monthly emissivity values (year 2011) for bands 11
and 12 μm obtained from the three datasets over the five test sites. It
also includes the monthly NDVI extracted from ASTER-GEDv4 and
MERIS. It should be noted that NDVI-THM and MOD11C3v5 emissivitiy
refer to bands 11 and 12 μm,whereas ASTER-GEDv4 emissivitiy refer to
ASTER bands 13 and 14 (10.6 μm and 11.3 μm, respectively), which
slightly differ from the 11 and 12 μm bands.

The main conclusion drawn from the intercomparison results pre-
sented in Fig. 5 is that both NDVI-THM and ASTER-GEDv4 datasets pro-
vide more realistic values of surface emissivity than the emissivity
derivedwithMODIS, since they are in accordancewith the seasonal var-
iation on NDVI. In contrast, theMOD11C3v5 typically provides constant
values of emissivity, which can be attributed to the classification-based
approach used to obtain the emissivity in Collection 5. Except for the
Barrow site, it is also observed that NDVI-THM emissivities are higher
than ASTER-GEDv4 emissivities, especially for band 12. MOD11C3v5
provided the highest values of emissivity. Mean differences between
NDVI-THM and ASTER-GEDv4 over the five sites were 0.006 ± 0.008
and 0.011 ± 0.011 for bands 11 and 12, respectively. These differences
are within the average absolute band error of ~1% obtained in the vali-
dation of the ASTER-GED with lab spectra (Hulley et al., 2015).

4.3. Validation from in-situ measurements

The comparisons between LSTs extracted from the AATSR L2 and
SEN4LST algorithms and the LSTs measured in situ are presented in
Fig. 6 for the five test sites. Fig. 6 shows the results obtained for both
daytime and nighttime acquisitions, and also the results obtained with
the SW SEN4LST algorithm using the three emissivity datasets. When
all the validation points are considered, the bias (LSTalgorithm − LSTsitu)
obtained with the SEN4LST algorithm and emissivity estimated with
the NDVI-THM (SEN4LSTndvi) is lower than the bias obtained with
the AATSR L2 algorithm for all the test sites, except for the Gobabeb
site, with similar standard deviations for the two algorithms. Conse-
quently, the Root Mean Square Error (RMSE) for the SEN4LSTndvi algo-
rithm is similar or lower than the RMSE for the AATSR L2 algorithm
(1.8 K vs 1.8 K for Barrow, 1.8 K vs 3 K for Oklahoma, 2 K vs 2.1 K for
Doñana, 2.3 K vs 2.6 K for Dahra), except for the Gobabeb site (2.4 K
vs 1.8 K). When daytime and nighttime acquisitions are analyzed sepa-
rately (Table 3), it is observed that both algorithms typically provide
better results for nighttime acquisitions than for daytime acquisitions,
with the SEN4LSTndvi providing similar or better results than the
AATSR L2 algorithm. The better performance of LST algorithm for night-
time acquisitions can be explained because of the higher thermal homo-
geneity when the surface is not heated by direct light from the sun, and
then the thermal contrast between sunlit spots and shadows is mini-
mized. In the case of daytime acquisitions over the Gobabeb site, the
SEN4LSTndvi algorithm provides a similar RMSE than the AATSR L2 al-
gorithm (2.1 K vs 2.2 K), whereas for nighttime acquisitions the RMSE
value provided by the SEN4LSTndvi algorithm is higher than the RMSE
value provided by the AATSR L2 algorithm (2.2 K vs 1.4 K), mainly due
to the higher bias obtained with the SEN4LSTndvi algorithm. An expla-
nation for this result requires further analysis, but it may be attributed
to the assumption that daytime emissivities remain unchanged during



Fig. 5. Monthly values of surface emissivities for bands 11 and 12 μm obtained from the NDVI-THM (e11_ndvi, e12_ndvi), the ASTER-GEDv4 (e11_ast, e12_ast), and the MOD11C3v5
product (e11_mod, e12_mod) over the five test sites. Monthly values of NDVI extracted from ASTER-GEDv4 (NDVI_ast) and MERIS (NDVI_mer) are also provided. In the case of
ASTER-GEDv4, e11 and e12 refer to ASTER bands 13 (10.6 μm) and 14 (11.3 μm), whereas in the case of MOD11C3v5, e11 and e12 refer to MODIS bands 31 (11 μm) and 32 (12 μm).
Some monthly data are missing in the case of NDVI-THM because in-situ measurements of LST were not available at that particular month or pairs MERIS/AATSR were not available
for the validation procedure. In the case of the Barrow site, the surface was covered by snow in month 1 to 5, and 11 to 12, so the NDVI was not computed.
nighttime, as considered for operational application of the NDVI-THM,
which may be not accomplished over this particular site.

Fig. 6 also shows the validation results when input emissivities to
the SW algorithm are extracted from the ASTER-GED (SEN4LSTaster)
and MOD11C3 (SEN4LSTmodis) datasets. As a general rule,
SEN4LSTaster provides slightly better results (lower RMSE values)
than the SEN4LSTmodis, which agrees with a better emissivity char-
acterization of the ASTER-GED dataset compared to the MOD11C3
product (as discussed in Section 4.2). When LST results obtained
from the three emissivity sources are intercompared (SEN4LSTndvi,
SEN4LSTaster, SEN4LSTmodis), it is also typically observed that
RMSEaster b RMSEndvi b RMSEmodis, although the differences
are only slight. These results also agree with the intercomparison
among the three emissivity sources (Section 4.2), in which
MOD11C3 provided the highest values of emissivity and ASTER-
GED provide the lowest values of emissivity, with the NDVI-THM
providing intermediate values. In the case of the Oklahoma site,
SEN4LSTaster and SEN4LSTmodis provide a similar RMSE (2.3 K),



Fig. 5 (continued).
but the SEN4LSTndvi algorithm decrease the RMSE to 1.8 K. This im-
provement can be attributed to the land cover of the Oklahoma site,
mainly croplands, in whichmethods for emissivity retrieval based on
NDVI approaches provide better results than other Temperature/
Emissivity Separation (TES) algorithms (Jiménez-Muñoz, Sobrino,
Gillespie, Sabol, & Gustafson, 2006). In contrast, SEN4LSTndvi pro-
vides the worst results over the Gobabeb site (RMSE = 2.4 K), a de-
sert area for which the NDVI-THM may be not applicable (see
Table 4). In any case, the RMSE is similar to the value obtained
using ASTER-GED emissivity (RMSE = 2.2 K). Note also that in this
case the AATSR-L2 algorithm provided the lowest RMSE (1.8 K), al-
though the emissivity is not explicitly present in the algorithm.

4.4. Inter-comparison among the different cloud masks

As explained in Section 3.3, the cloud flags included in both the
AATSR-L2 and MERIS/AATSR SYN products did not completely filter
out the values contaminated by clouds. However, it is worth analyzing
the impact of the different cloud mask versions on the results. Table 5
provides the percentage of cloud/no cloud detections for the three ver-
sions of the AATSR-L2 cloud mask. Results are provided for all data
points, and also separately for daytime and nighttime acquisitions.
Doñana, Dahra andGobabeb test sites were selected to illustrate the dif-
ferences in the cloud mask. Percentages were calculated for the data
points used in the validation (year 2011).When all data points are con-
sidered, version 2 provides a huge percentage of cloud detections
(N75%). The other two versions provide similar percentage of cloud de-
tection, with the exception of the Doñana test site where version 1 pro-
vides a higher detection of clouds than version 3 does. The percentage of
cloud detections for version 2 is reduced for the case of daytime acqui-
sitions, though it is still higher than the other versions for the Dahra and
Gobabeb test sites. However, cloud detection over the Doñana test site
for daytime acquisitions is similar for versions 1 and 2 (around 60%).
The overestimation of cloud detection for the cloud mask v2 is clearly
observed for nighttime acquisitions, where the other versions provide
a percentage of cloud detection between 15% and 30%, and version 2
provides 100% cloud detection. Table 5 also includes intercomparison
of the different cloud mask versions using version 1 as a reference.
The agreement between version 1 and version 3 is typically higher
than 85%. For those cases where both versions provide different results,
typically version 1 provides a “cloud detection” flag whereas version 3
identifies the values as “no cloud”.

Table 6 provides a similar analysis as Table 5, but in this case the
MERIS/AATSR SYN cloud mask is also included, and therefore the anal-
ysis is reduced to daytime acquisitions. Results show that SYN cloud
maskprovides the lowest percentage of cloud detection,with similar re-
sults to the AATSR-L2 versions 1 and 3 over the Dahra and Gobabeb test
sites. In the case of the Doñana test site, version 3 provides a slightly
lower percentage of cloud detections than SYN does, whereas versions
1 and 2 provide similar cloud detections percentages (and significantly
higher cloud detections than v3 and SYN masks do).

5. Summary and conclusions

In the framework of the SEN4LST project, different LST algorithms,
atmospheric correction and cloud screeningmethodologieswere exam-
ined in order to fully exploit the synergy between S2/MSI, S3/OLCI, and
S3/SLSTR instruments. In this paper we focused on the LST retrieval al-
gorithmusing the TIR bands of the SLSTR instrument, so the synergy ap-
proach is not directly linked to the LST algorithm itself but rather to the
improvement of the input data to the algorithm, namely, cloudmasking,
surface emissivity characterization, and atmospheric water vapor con-
tent. Although the spectral configuration and high spatial resolution of
S2/MSI has the potential to improve the land cover identification, and
in turn the emissivity characterization, in this paper we focused only
on the synergy between S3 instruments (OLCI and SLSTR), using
ENVISAT MERIS and AATSR data as a proxy. Based on previous lessons
learned in the development and validation of LST algorithms from
AATSR data, where the DA algorithm provided poor results over hetero-
geneous areas, a SW approach was finally selected as a candidate algo-
rithm for the future SLSTR instrument. The sensitivity analysis from
simulated data shows that LST can be retrieved with the SW algorithm
with uncertainties around 1.5 K, where the major uncertainty stems
from surface emissivity (N1 K). The proposed SW algorithm and the
standard AATSR LST product were validated against in situ measure-
ments over five test sites (one site in Alaska, one site in the continental
U.S., two African sites and one in Spain). Three different emissivity
sources were also considered to extract the input emissivity to the SW
algorithm (NDVI-THM, ASTER GED, MOD11C3). Among the three emis-
sivity datasets, the NDVI-THM is actually a retrieval method that allows
emissivity estimation from image only data (preferably atmospherically
corrected values), whereas the other two datasets (ASTER GED and
MOD11C3) are considered as external sources and therefore they are
not directly linked to AATSR/MERIS (or future OLCI/SLSTR) acquisitions.

Validation results with in situ measurements over five test sites
show a slightly better performance of the SEN4LST SW algorithm com-
pared to the AATSR L2 product over four of the five sites (a better bias
for the SEN4LST SW algorithm, and similar standard deviation for both
algorithms). RMSE values for the SEN4LST SW algorithm are below
2 K for three sites, and around 2.4 K for the other two sites. The highest
RMSE is obtained over Oklahoma and Dahra sites with the AATSR L2 al-
gorithm, 3 K and 2.6 K, respectively. In the case of the Oklahoma site, the
SEN4LST SW algorithm especially improves the accuracy of the re-
trieved LST, with a RMSE of 1.8 K. In contrast, the SEN4LST SW provides
the highest RMSE value over the Gobabeb site (2.4 K), with the AATSR-
L2 product providing a RMSE of 1.8 K. In this case the better perfor-
mance of the AATSR L2 product is only observed in nighttime



Fig. 6. Validation of the AATSR-L2 and SEN4LST products over the Barrow, Oklahoma, Doñana, Dahra and Gobabeb test sites. Input emissivities to the SW SEN4LST algorithm were
extracted from the NDVI-THM (SEN4LSTndvi), the ASTER Global Emissivity Database (SEN4LSTaster), and the MODIS MOD11C3 product (SEN4LSTmodis). Statistics included in the
graphs refer to all data points. Results obtained for daytime and nighttime acquisitions are provided in Table 3.
acquisitions (RMSE of 1.4 K for the AATSR L2 product and 2.2 K for the
SEN4LST SW algorithm), since both algorithms provide a similar RMSE
for daytime acquisitions (around 2.2 K).
It is important to remark that the proposed SEN4LST SWalgorithm is
an emissivity explicit algorithm (Eq. (1)), in contrast to the surface-type
dependent algorithm used in the standard AATSR L2 LST product, in



Table 3
Statistics for the validation of the LST algorithms (SW given by Eq. (1) and the standard
AATSR L2) over the different test sites. Input emissivities to the SW algorithm were ex-
tracted from the NDVI-THM (SEN4LSTndvi), the ASTER Global Emissivity Database
(SEN4LSTaster), and the MODIS MOD11C3 product (SEN4LSTmodis). ‘Bias’ is the differ-
ence between LST derived from the algorithm and the LST measured in situ, ‘SDev’ is the
1-sigma standard deviation, and ‘RMSE’ is the Root Mean Square Error. Oklahoma and
Dahra test sites are not included because nighttime datawere filtered out, so only daytime
acquisitions are available over these two sites (see Fig. 6).

Day Night

Site Algorithm N Bias SDev RMSE N Bias SDev RMSE
Barrow AATSR-L2 98 −0.4 1.8 1.8 16 −1.1 1.1 1.6

SEN4LSTndvi 98 0.3 1.8 1.8 16 −0.6 1.2 1.3
SEN4LSTaster 98 −0.8 1.5 1.7 16 −1.4 1.1 1.8
SEN4LSTmodis 98 −1.1 1.5 1.8 16 −1.6 1.1 2.0

Doñana AATSR-L2 23 2.0 2.1 2.9 43 −0.2 1.5 1.5
SEN4LSTndvi 23 1.2 1.9 2.2 43 −0.7 1.2 1.4
SEN4LSTaster 23 0.6 2.0 2.1 43 −1.5 1.4 2.0
SEN4LSTmodis 23 0.6 2.0 2.1 43 −1.4 1.5 2.1

Gobabeb AATSR-L2 46 0.7 2.1 2.2 49 −1.0 0.9 1.4
SEN4LSTndvi 46 1.1 1.8 2.1 49 −1.9 1.1 2.2
SEN4LSTaster 46 1.2 2.0 2.3 49 −1.8 0.9 2.0
SEN4LSTmodis 46 0.5 2.0 2.1 49 −2.4 0.9 2.6

Table 5
Percentage (%) of data points used in the validation identified as “cloud/no cloud” accord-
ing to the AATSR level-2 cloud mask (versions 1, 2 and 3). The three last columns include
the results obtained for the comparison of Versions 2 and 3 against Version 1. The value
‘−1’ indicates that for a given version the value is identified as “no cloud”whereas version
1 identifies the pixel as “cloud”; the value “0” indicates that both versions provide the
same results; the value “1” indicates that for a given version the value is identified as
“cloud” whereas version 1 identifies the pixel as “no cloud”.

Site N Mask Cloud
(%)

No cloud
(%)

−1
(%)

0
(%)

1
(%)

All
Doñana 125 v1 43.2 56.8 – – –

v2 80.8 19.2 8.0 46.4 45.6
v3 22.4 77.6 23.2 74.4 2.4

Dahra 60 v1 23.3 76.7 – – –
v2 75.0 25.0 0.0 48.3 51.7
v3 26.7 73.3 5.0 86.7 8.3

Gobabeb 132 v1 13.6 86.4 – – –
v2 81.8 18.2 0.0 31.8 68.2
v3 12.1 87.9 1.5 98.5 0.0

Day
Doñana 62 v1 64.5 35.5 – – –

v2 61.3 38.7 16.1 71.0 12.9
v3 25.8 74.2 38.7 61.3 0.0

Dahra 33 v1 21.2 78.8 – – –
v2 54.5 45.5 0.0 66.7 33.3
v3 21.2 78.8 6.1 87.9 6.1

Gobabeb 64 v1 10.9 89.1 – – –
v2 62.5 37.5 0.0 48.4 51.6
v3 9.4 90.6 1.6 98.4 0.0

Night
Doñana 63 v1 22.2 77.8 – – –

v2 100.0 0.0 0.0 22.2 77.8
v3 19.0 81.0 7.9 87.3 4.8

Dahra 27 v1 25.9 74.1 – – –
v2 100.0 0.0 0.0 25.9 74.1
v3 33.3 66.7 3.7 85.2 11.1

Gobabeb 68 v1 16.2 83.8 – – –
v2 100.0 0.0 0.0 16.2 83.8
v3 14.7 85.3 1.5 98.5 0.0
which surface emissivity is embedded in the algorithm coefficients de-
pending on land cover. It is recognized that significant uncertainty can
be introduced into a surface-type dependent algorithm because of
mis-classifications (e.g. assessment of the NPP-VIIRS LST algorithm per-
formance; Yu, Liu, Yu, Wang, & Csiszar, 2014). Therefore, it is recom-
mended the use of an emissivity explicit algorithm, which allows for
improvements in input emissivity to be directly translated into im-
proved LST retrievals. This fact is illustrated in the validation exercise,
in which three different emissivity datasets were used as input to the
SEN4LST SWalgorithm,whereas it is not possible to include these emis-
sivity sources into theAATSR L2 algorithm. The improvement on the LST
retrieval with an emissivity explicit algorithmwhen input surface emis-
sivities are improved can be demonstrated for the Gobabeb test case.
The SEN4LST SW algorithm using emissivities estimated with the
NDVI-THMprovided amean difference (bias) of (−0.9± 2.4) K, similar
to the mean difference obtained when MOD11C3 emissivities are used.
Results are slightly improved when ASTER-GED emissivities are consid-
ered, with a mean difference of (−0.4 ± 2.1) K. However, when in situ
measurements of emissivity are introduced in the SEN4LST SW algo-
rithm (results not shown), themean difference is (0.4± 1.7) K. This ex-
ample clearly illustrates the benefit of an emissivity explicit algorithm. It
is worth to mention that validation results refer to the five test sites se-
lected in this study. Although they are globally distributed and
Table 4
Values of NDVI, atmospheric water vapor (W) and surface emissivities at bands 11 (ε11)
and 12 (ε12) over Doñana, Dahra and Gobabeb test sites. NDVI andWwere extracted from
theMERIS level 2 product, whereas ε11 and ε12 were calculated with the NDVI Thresholds
Method. Mean, standard deviation (σ), minimum and maximum values refer to the
dataset used in the validation along the year 2011.

Site Parameter Mean σ Min. Max.

Doñana NDVI 0.099 0.100 0.092 0.332
W 1.851 0.669 0.717 3.313
ε11 0.974 0.001 0.973 0.976
ε12 0.980 0.001 0.979 0.981

Dahra NDVI 0.196 0.070 0.163 0.475
W 2.717 1.389 0.463 5.347
ε11 0.969 0.001 0.967 0.970
ε12 0.977 0.001 0.976 0.977

Gobabeb NDVI 0.040 0.005 0.039 0.060
W 1.363 0.924 0.390 3.783
ε11 0.968 0.003 0.961 0.969
ε12 0.976 0.002 0.972 0.977
represent different land covers, validation over additional sites is rec-
ommended in order to better understand the performance of the LST al-
gorithm over extreme atmospheric conditions (e.g. dry atmospheres in
the Arctic or humid atmospheres in the tropics), where the accuracy of
the LST retrievals is expected to be degraded. Note also that two of the
sites (Oklahoma and Dahra) provide only a low number of available
data, with the available data concentrated on daytime acquisitions and
particular months, which may limit the validation results.

Another key factor for accurate LST retrieval and appropriate inter-
pretation of the statistics obtained in validation exercises is the cloud
Table 6
Same as Table 5, but including also the MERIS/AATSR SYNERGY cloud mask. In this case,
only statistics for daytime acquisitions are available.

Site N Mask Cloud
(%)

No cloud
(%)

−1
(%)

0
(%)

1
(%)

Doñana 59 v1 64.4 35.6 23.7 42.4 33.9
v2 59.3 40.7 22.0 50.8 27.1
v3 25.4 74.6 30.5 67.8 1.7
SYN 32.2 67.8 – – –

Dahra 33 v1 21.2 78.8 15.2 78.8 6.1
v2 54.5 45.5 15.2 45.5 39.4
v3 21.2 78.8 15.2 75.8 9.1
SYN 15.2 84.8 – – –

Gobabeb 60 v1 10.0 90.0 1.7 90.0 8.3
v2 61.7 38.3 1.7 38.3 60.0
v3 8.3 91.7 1.7 91.7 6.7
SYN 1.7 98.3 – – –



mask. It is not the scope of this paper to dealwith cloud screeningmeth-
odologies and validation of such methodologies, but the basic analysis
presented in Section 4.4, in which different results were obtained for
different versions and approaches to the cloud mask, illustrates the
problem of the cloud mask in the LST retrieval procedure. Further im-
provements of the SEN4LST SW algorithm are also on the way, such as
an adaptation of SW coefficients to day- and nighttime conditions, im-
provements on surface emissivity characterization using advanced
land cover products, and validation over additional sites.
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