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A SUPPLEMENTARY METHODS
In this section we provide supplementary information on the meth-
ods we used. In Section A.1 we describe more in depth the context
which our model aims to capture, and in Section A.2 we review the
definition of Interactive POMDPs (I-POMDPs).

A.1 Modelling Context of Interstellar Conflict
The goal is to model the behaviour of civilisations in the universe.
By a civilisation we mean a group of one or more organisms that
collectively control their own local region of the universe. This
region could be a planet or a star system, for example. The civil-
isations of interest here develop technologies for observing and
weapons for attacking other civilisations. Civilisations build ob-
servatories to listen to technosignatures – signs of technologically
advanced civilisations – and use these to form their beliefs about
the capabilities of other civilisations.

The model includes many such civilisations. We assume they are
located together in a relatively small region of space (on the order of
tens to hundreds of light-years) unaffected by the expansion of the
universe. An example is a part of a galaxy such as the Milky Way.
Here we make the simplifying assumption that civilisations do not
move with respect to one another. This includes the assumption that
they do not attempt to invade the home worlds of other civilisations.
The multi-year delays between actions and their effects (imposed by
the speed of light and long distances) are assumed to be negligible,
for simplicity.

A fundamental challenge inmodelling non-human civilisations is
that we do not know how they behave. Here we should distinguish
between preferences (what the civilisations wish would happen) and
the capability to shape the world according to these preferences.
An example of preferences is the willingness of the civilisations to
use violence to protect themselves.

We assume that the most important goal of all civilisations is
to ensure their survival. Such an assumption seems reasonable
because of natural selection: organisms tend to value their own
existence because the ones who did are the ones who survived.
Other preferences are allowed to vary between civilisations. We
further assume that the decision-making capabilities of civilisations
are maximal. In other words, we assume civilisations behave ra-
tionally and therefore attempt to maximise their expected future
rewards. These rewards reflect adherence to their preferences. The
assumption of rationality seems reasonable, since we are concerned
with civilisations that grow to planetary scales, controlling their
own environments and developing advanced technologies. It is
notable here that we only require the civilisation to act rationally
as a whole; the individual organisms do not need to be rational. For

example, during the Cold War the nuclear powers were approxi-
mately rational by thoroughly analysing possible courses of action
[8].

To approximate this rational behaviour, we use the interactive
partially observable Markov decision process (I-POMDP) frame-
work. Each civilisation independently applies the framework to
make decisions.

A.2 Interactive POMDPs
In an interactive POMDP (I-POMDP), the simple state space of
MDPs and POMDPs is extended to include both the states and
models of other agents [4]. Let 𝑁 = {1, . . . , 𝑛} be the set of agents
and 𝑆 the set of (environment) states. A finitely nested I-POMDP
for agent 𝑖 at level 𝐿 is a tuple (𝐼𝑆𝑖,𝐿, 𝐴,𝑂𝑖 ,𝑇𝑖 , 𝑍𝑖 , 𝑅𝑖 ,𝐶𝑖 ) [4]. Here
𝐴 = 𝐴1 × · · · × 𝐴𝑛 is a set of possible joint actions by all agents,
where 𝐴 𝑗 is the set of possible actions of agent 𝑗 . The transition
function 𝑇𝑖 : 𝑆 × 𝐴 × 𝑆 → R≥0 defines a probability distribution
𝑇𝑖 (𝑠, 𝑎, ·) over the state of the environment at the next step given the
current state 𝑠 and joint action 𝑎 = (𝑎1, . . . , 𝑎𝑛). The observation
function 𝑍𝑖 : 𝑆 ×𝐴 ×𝑂𝑖 → R≥0 defines a probability distribution
𝑍𝑖 (𝑠′, 𝑎, ·) over the observation space 𝑂𝑖 given the current state 𝑠′
and previous joint action 𝑎. 𝑅𝑖 : 𝑆 ×𝐴 → R is the reward function,
which gives the expected reward for taking an action in a given
state. Finally, the optimality criterion 𝐶𝑖 specifies how agent 𝑖 val-
ues rewards obtained at different time steps. An example is the
optimality criterion introduced in Section 3.1.6 of the paper.

The most interesting part in this definition is the level 𝐿 interac-
tive state space
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of agent 𝑖 . If 𝐿 = 0, we define 𝐼𝑆𝑖,0 = 𝑆 . Here 𝑆 is the set of possible
environment states and 𝑀𝑘,𝑙 is the set of models for agent 𝑘 at
level 𝑙 . Models contain a function mapping an agent’s history of
observations to a distribution over its actions 𝐴𝑘 . While we will
not characterise this set of models completely, we highlight an in-
teresting subset. The set Θ𝑘,𝑙 ⊂ 𝑀𝑘,𝑙 contains the possible types, or
intentional models, of agent 𝑘 at level 𝑙 . A type 𝜃𝑘,𝑙 ∈ Θ𝑘,𝑙 of agent 𝑘
encapsulates all of the private information used by a rational agent
𝑘 to make decisions. It consists of two parts: beliefs 𝑏𝑘,𝑙 over the
level 𝑙 interactive states of agent 𝑘 , and the frame 𝜃𝑘 which con-
tains the necessary components to define its model of the decision
process. More formally, a frame is a tuple (𝐴,𝑂𝑘 ,𝑇𝑘 , 𝑍𝑘 , 𝑅𝑘 ,𝐶𝑘 ). All
the components are defined like before. A type is then denoted
𝜃𝑘,𝑙 = (𝑏𝑘,𝑙 , 𝜃𝑘 ). In addition to intentional models, another possible
model is a simple no-information model where the agent chooses
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Figure 1: An example of interactive states at level 1 in an
I-POMDP using intentional models on all levels. Each row is
a level 1 interactive state of agent 1. Such an interactive state
consists of a state and a level 0 belief about every other agent’s
beliefs regarding the state. The level 0 beliefs are represented
by an unweighted sample of three states. Together, the three
level 1 interactive states form agent 1’s level 1 belief 𝑏1,1

actions randomly from its set 𝐴𝑘 of possible actions. We will be
using intentional models to model other agents; the exception is
level 0, where we assume a no-information model.

In this work we make two simplifying assumptions to the defi-
nition of an I-POMDP. First, we use a simplified definition of the
interactive state space. Instead of (1) we use
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In other words, instead of considering all possible levels of models
of other agents, we only expect other agents to reason at a level
one lower than us. This assumption follows that made in [11] and
[2] and simplifies the work of the planning algorithm. The second
assumption we make is related to the frames 𝜃𝑘 of intentional
models. In most of our experiments we assume that the frames of all
civilisations are common knowledge to everyone. This means that
civilisations know, for example, how others observe and receive
rewards. What is more, we assume that all civilisations use the
same transition function, denoted𝑇 . These assumptions allow us to
identify a type 𝜃𝑘,𝑙 with the beliefs 𝑏𝑘,𝑙 over the level 𝑙 interactive
states of agent 𝑘 . We occasionally use the notation 𝑏 ( ·,𝑘 ),𝑙 (where ·
corresponds to a sequence of agents) to denote 𝑏𝑘,𝑙 to emphasise
who holds the belief about agent 𝑘’s beliefs. For example, 𝑏 (1,2),1
denotes the level 1 beliefs of agent 2 as believed by agent 1. In later
experiments we relax this assumption and allow civilisations to
have uncertainty about others’ frames.

Let us try to gain an intuitive understanding of the (simplified)
interactive state space through an example. Here we are using

intentional models on all levels. Let us assume that the state space
is 𝑆 = {□, △, ◦}. There are three agents, and we are reasoning from
agent 1’s perspective. This situation is illustrated in Figure 1. Beliefs
are represented by unweighted samples of size three.

On the lowest level 𝐼𝑆𝑖,0 = 𝑆 . In other words, level 0 interac-
tive states are simply (environment) states; this corresponds to a
POMDP as the agent does not have a model for the behaviour of
other agents. In our example, level 0 interactive states are thus
shapes and beliefs over level 0 interactive states are probability
distributions over the possible shapes.

At level 1, 𝐼𝑆𝑖,1 = 𝑆 ×
(>
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state consists of an environment state and a model (type) for the
behaviour of each other agent at level 0. Since we can omit the
frames, a level 1 interactive state contains a state and a distribution
over states (i.e. a belief over level 0 interactive states) for each
other agent. Figure 1 illustrates level 1 interactive states. Each such
interactive state consists of a state (a shape) and corresponding
beliefs about agent 2 and 3’s beliefs about the shape. Agent 1 thinks
2 has a reasonably accurate sensing capabilities, getting the shape
right roughly 2/3 of the time. Agent 1 also thinks that while agent 3
can observe triangles and circles perfectly, it cannot detect squares
and will in such a case believe the shape is either a circle or triangle
with equal probability. The three level 1 interactive states together
form agent 1’s level 1 beliefs.

At level 2, each interactive state specifies a state and a belief over
level 1 interactive states. In our example, this could be visualised
as each row being a level 2 interactive state and each symbol in the
two middle columns having corresponding level 0 beliefs for the
other agents (agents 1 and 3 in the middle column, agents 1 and 2
in the rightmost column).

B PLANNING IN I-POMDPS
Our aim in this section is to introduce the theory of solutions to
I-POMDPs and then discuss current algorithms designed for this
purpose.

B.1 Solutions to I-POMDPs
Let us elaborate on what behaving optimally in an I-POMDP of
agent 𝑖 means. The goal is to find an optimal policy 𝜋∗ : Δ(𝐼𝑆𝑖,𝐿) →
Δ(𝐴𝑖 ) mapping beliefs over 𝑖’s level 𝐿 interactive states into a distri-
bution over its actions. Since solving an I-POMDP at a nesting level
𝐿 > 0 involves solving nested I-POMDPs modelling other agents’
decision-making, we will discuss finding the optimal policy for a
belief 𝑏 𝑗,𝑙 of agent 𝑗 ∈ 𝑁 at level 𝑙 ≤ 𝐿.

The goal of agent 𝑗 is to maximise the expected utility (1) (in the
paper). To do this, it may consider the expected utility𝑈 (𝑏 𝑗,𝑙 , 𝑎 𝑗 )
of taking each action 𝑎 𝑗 ∈ 𝐴 𝑗 in belief state 𝑏 𝑗,𝑙 and then con-
tinuing optimally. If it knows these expected utilities, it can sim-
ply choose the action with the highest expected utility; in other
words, the set of optimal actions for agent 𝑗 under this belief is
Opt(𝑏 𝑗,𝑙 ) = argmax𝑎 𝑗 ∈𝐴 𝑗

𝑈 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ). The optimal policy 𝜋∗ (𝑏 𝑗,𝑙 )
assigns a positive probability exactly to the actions in this set. Ad-
ditionally, we define the expected utility of the belief state 𝑏 𝑗,𝑙 as
𝑈 (𝑏 𝑗,𝑙 ) = max𝑎 𝑗 ∈𝐴 𝑗

𝑈 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ). The expected action utility of 𝑎 𝑗



can be expressed as [2]

𝑈 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ) =
∫
𝐼𝑆 𝑗,𝑙

𝑏 𝑗,𝑙 (𝑖𝑠 𝑗,𝑙 )E𝑅 𝑗 (𝑖𝑠 𝑗,𝑙 , 𝑎 𝑗 ) d𝑖𝑠 𝑗,𝑙

+ 𝛾
∫
𝑂 𝑗

𝑝 (𝑜 𝑗 | 𝑎 𝑗 , 𝑏 𝑗,𝑙 )𝑈 (Forward(𝑏 𝑗,𝑙 , 𝑎 𝑗 , 𝑜 𝑗 )) d𝑜 𝑗 . (3)

To clarify the meaning of the terms in this expression, let us first
note that the probability that action 𝑎𝑘 is optimal for agent𝑘 ≠ 𝑗 (ac-
cording to agent 𝑗 ) is given by𝜋∗ (𝑏 ( 𝑗,𝑘 ),𝑙−1) (𝑎𝑘 ) = 1/

��Opt(𝑏 ( 𝑗,𝑘 ),𝑙−1)��
if 𝑎𝑘 ∈ Opt(𝑏 ( 𝑗,𝑘 ),𝑙−1) and 0 otherwise. In other words, if there
are multiple equally good actions, we assume other agents ran-
domly choose between them. Then, the probability that the actions
𝑎∼𝑗 ∈ 𝐴∼𝑗 = 𝐴1 × · · · ×𝐴 𝑗−1 ×𝐴 𝑗+1 × · · · ×𝐴𝑛 are optimal for each
other agent individually is given by

P(𝑎∼𝑗 | 𝑖𝑠 𝑗,𝑙 ) =
∏

𝑘∈𝑁 \{ 𝑗 }
𝜋∗ (𝑏 ( 𝑗,𝑘 ),𝑙−1) (𝑎𝑘 ) . (4)

Now the expected immediate reward of taking action 𝑎 𝑗 in interac-
tive state 𝑖𝑠 𝑗,𝑙 (in the first term of equation (3)) is given by

E𝑅 𝑗 (𝑖𝑠 𝑗,𝑙 , 𝑎 𝑗 ) =
∑︁

𝑎∼𝑗 ∈𝐴∼𝑗

P(𝑎∼𝑗 | 𝑖𝑠 𝑗,𝑙 )𝑅 𝑗 (𝑠, 𝑎) (5)

where we denote 𝑎 = (𝑎∼𝑗 , 𝑎 𝑗 ) = (𝑎1, . . . , 𝑎𝑛).
In the second term of equation (3) the expression

𝑝 (𝑜 𝑗 | 𝑎 𝑗 , 𝑏 𝑗,𝑙 ) =
∫
𝐼𝑆 𝑗,𝑙

𝑏 𝑗,𝑙 (𝑖𝑠 𝑗,𝑙 )
( ∑︁
𝑎∼𝑗 ∈𝐴∼𝑗

P(𝑎∼𝑗 | 𝑖𝑠 𝑗,𝑙 )∫
𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑍 𝑗 (𝑠′, 𝑎, 𝑜 𝑗 ) d𝑠′
)
d𝑖𝑠 𝑗,𝑙 (6)

is the probability (density) of observing 𝑜 𝑗 given the taken action
by agent 𝑗 and the current belief. In addition, Forward(𝑏 𝑗,𝑙 , 𝑎 𝑗 , 𝑜 𝑗 )
is the belief update operation. The belief update is at its essence an
application of Bayes’ theorem. The updated probability (density)
for 𝑖𝑠′

𝑗,𝑙
= (𝑠′, (𝑏′( 𝑗,𝑘 ),𝑙−1)𝑘∈𝑁 \{ 𝑗 } ) ∈ 𝐼𝑆 𝑗,𝑙 is given by

Forward(𝑏 𝑗,𝑙 , 𝑎 𝑗 , 𝑜 𝑗 ) (𝑖𝑠′𝑗,𝑙 ) ∝∫
𝐼𝑆 𝑗,𝑙

𝑏 𝑗,𝑙 (𝑖𝑠 𝑗,𝑙 )
∑︁

𝑎∼𝑗 ∈𝐴∼𝑗

P(𝑎∼𝑗 | 𝑖𝑠 𝑗,𝑙 )𝑇 (𝑠, 𝑎, 𝑠′)𝑍 𝑗 (𝑠′, 𝑎, 𝑜 𝑗 )

×
( ∏
𝑘∈𝑁 \{ 𝑗 }

∫
𝑂𝑘

𝛿𝐷 (Forward(𝑏 ( 𝑗,𝑘 ),𝑙−1, 𝑎𝑘 , 𝑜𝑘 )

− 𝑏′( 𝑗,𝑘 ),𝑙−1)𝑍𝑘 (𝑠
′, 𝑎, 𝑜𝑘 ) d𝑜𝑘

)
d𝑖𝑠 𝑗,𝑙 . (7)

The term in the parentheses makes sure that a positive probability
density is assigned only to interactive states 𝑖𝑠′

𝑗,𝑙
where agent 𝑗 ’s

beliefs of other agents’ beliefs are appropriately updated. Since in
an I-POMDP can include nested I-POMDPs modelling other agents’
decision making, this will trigger a belief update in these lower
level models as well. The symbol 𝛿𝐷 stands for the Dirac delta.

B.2 Algorithms for solving I-POMDPs
Many algorithms have been proposed for solving I-POMDPs. They
can be divided into two categories: offline and online algorithms.
Offline algorithms solve the full optimal policy 𝜋∗ for all belief
states (or a sampled subset) beforehand whereas online algorithms
only solve the optimal action for the current belief at each time
step.

Algorithms for solving I-POMDPs face three challenges [2]. The
curse of dimensionality refers to the fact that the belief space in
which the problem is solved is high-dimensional. In I-POMDPs this
problem is even worse than in POMDPs, as the state space includes
models of other agents which may be (I-) POMDPs themselves. This
is sometimes referred to as the curse of nested reasoning [6]. Finally,
as the time horizon considered gets longer, the space of possible
policies grows exponentially (curse of history).

We will now introduce some of the most notable algorithms
developed for solving I-POMDPs. As many of the algorithms are
inspired by conceptually similar algorithms for POMDPs, we will
also discuss some algorithms designed for them.

B.2.1 Value Iteration. Perhaps the most conceptually straightfor-
ward way to solve an I-POMDP is to use value iteration. The method
is based on the fact that the expected utilities𝑈 (·) = max𝑎 𝑗 ∈𝐴 𝑗

𝑈 (·, 𝑎 𝑗 )
of different beliefs are related to each other through equation (3).
The idea is to construct a sequence of expected utility functions
that converge to the optimal expected utility function. This optimal
expected utility function corresponds to the optimal policy. The
sequence (𝑈𝑡 )𝑡 ∈N≥0 starts with 𝑈0 (𝑏 𝑗,𝑙 ) = 0 for all 𝑏 𝑗,𝑙 ∈ Δ(𝐼𝑆 𝑗,𝑙 )
and is then defined recursively by

𝑈𝑡 (𝑏 𝑗,𝑙 ) = max
𝑎 𝑗 ∈𝐴 𝑗

( ∫
𝐼𝑆 𝑗,𝑙

𝑏 𝑗,𝑙 (𝑖𝑠 𝑗,𝑙 )E𝑅 𝑗 (𝑖𝑠 𝑗,𝑙 , 𝑎 𝑗 ) d𝑖𝑠 𝑗,𝑙

+ 𝛾
∫
𝑂 𝑗

𝑝 (𝑜 𝑗 | 𝑎 𝑗 , 𝑏 𝑗,𝑙 )𝑈𝑡−1 (Forward(𝑏 𝑗,𝑙 , 𝑎 𝑗 , 𝑜 𝑗 )) d𝑜 𝑗

)
(8)

for all 𝑡 ∈ N≥1. Here 𝑈𝑡 can be thought of as the expected utility
function for a finite horizon of length 𝑡 [1]. In essence, the values
𝑈𝑡−1 are used to compute the expected action utilities in equation
(3) and 𝑈𝑡+1 is set to the maximum expected action utility over
the possible actions. The authors in [4] show that the sequence
converges to a unique fixed point𝑈 ∗ corresponding to the optimal
policy. The actual policy can be determined using the values of𝑈 ∗

in equation (3).
Naturally, computing the optimal policy in this way is not feasi-

ble because the belief space Δ(𝐼𝑆 𝑗,𝑙 ) is continuous. However, the
expected utility function𝑈𝑡 (·) is piecewise linear and convex for
any 𝑡 ∈ N0 [4]. This allows writing the value function as a linear
combination

𝑈𝑡 (𝑏 𝑗,𝑙 ) = max
𝛼𝑡 ∈V𝑡

∑︁
𝑖𝑠 𝑗,𝑙 ∈𝐼𝑆 𝑗,𝑙

𝑏 𝑗,𝑙 (𝑖𝑠 𝑗,𝑙 )𝛼𝑡 (𝑖𝑠 𝑗,𝑙 ). (9)

HereV𝑡 is the set of alpha vectors 𝛼𝑡 . Each alpha vector corresponds
to a conditional plan for a horizon of length 𝑡 . A conditional plan
specifies an action and a subsequent conditional plan for each possi-
ble observation received after taking the action [1]. The functions𝛼𝑡
map an interactive state to the expected utility of the corresponding
conditional plan when starting from the interactive state.



Decomposing the expected utility function in this way means
that the utility for any belief can be expressed using a finite set of
alpha vectors. While this is helpful, the alpha vectors are still func-
tions over an interactive state space that is continuous in general.
In generalised point-based value iteration [3] the interactive state
space is restricted to a finite set of environment states and a finite
set of models (beliefs) for other agents. Another issue with the alpha
vector decomposition is that in order to express the expected utility
function exactly, the size of the set V𝑡 of alpha vectors may be
prohibitively large [12]. Inspired by point-based value iteration for
POMDPs [10], [3] considers a fixed set of points in the belief space.
This set consists of an initial finite set of beliefs and all beliefs that
can be reached from these beliefs in a given number of time steps.
The set V𝑡 is limited such that each alpha vector is required to be
optimal in at least one of the points in the fixed set of beliefs. This
means that the size of the set of alpha vectors is upper bounded
by the set of belief points considered. Point-based methods thus
limit the curse of history by limiting the number of alpha vectors
(and thus conditional plans) considered. Generalised point based
value iteration still suffers from the curse of dimensionality. This
is because the fixed set of beliefs considered grows exponentially
with the number of time steps considered. In a way, the algorithm
converts the curse of history into the curse of dimensionality.

B.2.2 Interactive Particle Filter. The interactive particle filter (I-PF)
[2] focuses on mitigating the curse of dimensionality by represent-
ing beliefs over interactive states with a finite set of particles. Each
particle corresponds to a particular interactive state. Beliefs about
others’ beliefs are similarly represented by a set of particles within
the particle. This is similar to Figure 1. A variant of the value iter-
ation algorithm is employed: it builds a finite horizon look-ahead
tree starting from a given belief to determine approximately opti-
mal actions to take from the belief. We will not describe the value
iteration algorithm here further.

A particle filter is used to maintain an up to date belief about
the state. Since our algorithm also employs a particle filter, we will
explain the intuition behind the technique. We will first explain it
from the point of view of a POMDP and then discuss the application
to I-POMDPs.

The set 𝐵̃ of particles approximates the current belief 𝑏. Specifi-
cally, given a corresponding vector𝑤 of (possibly uniform) weights,
𝑏 is approximated by 𝑏 (𝑠) = ∑

𝑠∈𝐵̃ 𝑤 (𝑠)𝛿𝐷 (𝑠 − 𝑠), where 𝛿𝐷 is the
Dirac delta. After taking an action 𝑎 and receiving an observation 𝑜′,
the agent’s belief needs to be updated in an attempt to estimate the
new true state. This means that we seek a new set 𝐵̃′ and weights
𝑤 ′ approximating the exact updated belief 𝑏′. A particle filter does
this in two stages: importance sampling and resampling.

Importance sampling allows sampling from the unknown dis-
tribution 𝑏′ by sampling from a proposal distribution and then
weighting the samples appropriately. This is possible as long as
the proposal distribution assigns a non-zero probability (density)
to each state where the target probability (density) is positive. The
sample from the proposal distribution is created by sampling a state
𝑠 (𝑝′) ∼ 𝑇 (𝑠 (𝑝), 𝑎, ·) from the distribution defined by the transition
function for each particle. Here 𝑠 (·) denotes the state stored in the
given particle. Each particle in the resulting set is weighted by the
likelihood 𝑍 (𝑠 (𝑝′), 𝑎, 𝑜′) of observing 𝑜′ assuming the particle’s

state is the true state. The weights are then normalised to give a
weighted approximation to the updated belief.

When applied multiple times in succession, the weights of the
particles tend to have a high variance: most particles get a near-zero
weight while most of the probability is on only a few particles [9]. A
resampling step attempts to fix this by sampling (with replacement)
from the set of particles using the generated weights. This means
that the frequency of particles with high weight is increased while
some particles with low weights might be completely cut out. The
overall effect is to focus the set of particles on the most likely states.
This sample – which now receives uniform weights – represents
the updated belief 𝑏′.

In an I-POMDP, a joint action is needed to propagate a particle
𝑝 ∈ 𝑏 𝑗,𝑙 ; therefore the beliefs 𝑏 ( 𝑗,𝑘 ),𝑙−1 (𝑝), 𝑘 ∈ 𝑁 \ { 𝑗} (represented
by sets of particles) over others’ lower level interactive states are
used to solve their optimal actions. Particle 𝑝 is then propagated
with the joint action like described above. In addition to updating
the environment state, other agents’ beliefs stored in the particle
also need to be updated. This is done for each possible observation of
each other agent1. These lower-level beliefs are again updated using
an I-PF belief update. In other words, the belief update recursively
traverses down the belief hierarchy in the particle until at level
0 a normal POMDP-based belief update is performed. After the
beliefs of other agents are updated, the particle is weighted with the
likelihood of both the agent itself observing its observation and each
other agent observing their respective observations. The resulting
set of particles, of size |𝑏 𝑗,𝑙 |

∏
𝑘∈𝑁 \{ 𝑗 } |𝑂𝑘 |, is then resampled down

to the size |𝑏 𝑗,𝑙 | of the original set of particles.
The number of particles needed to accurately represent a belief

increases exponentially with the number of dimensions of the belief
space [2]. This means that the particle filtering method cannot
completely defeat the curse of dimensionality. However, it does
help in focusing the computation of optimal actions to the relevant
parts of the belief space. The I-PF does not address the curse of
history.

B.2.3 I-POMDP Lite. I-POMDP Lite [6] circumvents the three
curses of planning in I-POMDPs by restructuring the problem. In
an I-POMDP of agent 𝑗 , other agents’ decision making is typically
modelled with nested I-POMDPs; each state has an associated I-
POMDP model for every other agent. In I-POMDP Lite, the authors
assume instead that other agents are modelled as nested Markov
Decision Processes (nested MDPs). The I-POMDP Lite framework
is therefore essentially a POMDP with the added information of
others’ policies, solved from the nested MDP.

Using a nested MDP as a model for other agents’ behaviour
corresponds to the assumption that each other agent 𝑘 ∈ 𝑁 \ { 𝑗}
has full observability of the current state and that 𝑘 assumes that
other agents can also perfectly observe the state. In addition to
being easier to solve, the nested MDP assumption means that the
state space does not need to be interactive and contain models for
other agents. The reason is that the nested MDP policy is already a
mapping from environment states to distributions over actions, so
it can be used as a model for all states.

1The authors also describe a variant suitable for large or continuous observation spaces,
where an observation is instead sampled for each particle.



The authors show that the performance of a policy computed
with I-POMDP Lite significantly outperforms I-POMDP policies
computed using I-PBVI (Section B.2.1). The performance difference
is greater if the agents have better observation capabilities. This
highlights an important downside to I-POMDP Lite: it is best suited
to situations in which agents’ observation capabilities are reason-
ably accurate. Assuming that other agents observe perfectly might
not be a good model in some situations. For example, if observing
other civilisations’ strengths is difficult even for strong civilisations,
their behaviour might be markedly different compared to if they
had perfect information regarding how strong they are compared
to others.

B.2.4 Policy Iteration. Thus far all the algorithms discussed use
the expected utility function in one way or another to compute
optimal actions. In policy iteration, the search happens instead in
the space of policies [15]. The advantage of working with policies
directly is that the policy might be optimal before the expected
utility function itself converges. Intuitively this is because knowing
which action is best is easier than knowing the exact expected
utilities of taking different actions.

In Interactive Bounded Policy Iteration (I-BPI) [15], the candidate
policies are expressed as finite state controllers. In this context, a
finite state controller 𝜋 consists of a set of nodes N each of which
corresponds to a distribution over actions. Edges E between nodes
are labelled with observations. The transition function T gives
the probability of following each edge to a next node, given the
action taken and observation received. Each node is associated
with a vector of values for each possible interactive state. A value
represents the expected utility of taking the action prescribed by the
node and then continuing according to the finite state automaton.
These vectors correspond to the alpha vectors in value iteration.

The agent’s own policy is modelled as such a finite state con-
troller. What is more, the policies of the other agents are also mod-
elled as finite state controllers (provided that the reasoning level
𝑙 is at least 1). This gives rise to a nested hierarchy of finite state
controllers. Specifically (and continuing with the assumption that
the frames of other agents at all levels are known and therefore
they can be ignored), the algorithm maps the interactive state space
𝐼𝑆 𝑗,𝑙 = 𝑆 × (×𝑘∈𝑁 \{ 𝑗 }Δ(𝐼𝑆𝑘,𝑙−1)) into a new compact interactive
state space 𝐼𝑆 𝑗,𝑙 = 𝑆 × (×𝑘∈𝑁 \{ 𝑗 }F𝑘,𝑙−1). Here each element in
F𝑘,𝑙−1 consists of a node for each other agent in their respective
finite state controllers. This transforms the interactive state space
into a much smaller space, limited by the number of nodes in the
lower-level finite state controllers.

Policy iteration in POMDPs consists of alternating between eval-
uating the policy and then improving it by generating new nodes
corresponding to new vectors. A downside of policy iteration is
that it causes the number of nodes to increase exponentially as
iterations are performed. Bounded policy iteration provides a way
to improve policies while keeping the number of nodes bounded.
This is also the method I-BPI employs. In I-BPI policy iteration
happens by iterating through the nested hierarchy of controllers
bottom-up, evaluating and improving each policy at each level once
before moving onto higher levels.

The authors found that I-BPI is able to solve problems with
larger state spaces and deeper reasoning levels than I-PBVI. This is

in part due to the reduction in the size of the interactive state space,
aiding with the curse of dimensionality. However, a downside of
the algorithm is that it may get stuck in a local optimum in the
policy space instead of finding the overall optimal policy.

B.2.5 POMCP. The Partially Observable Monte Carlo Planning
(POMCP) algorithm [13] is an online algorithm for solving POMDPs.
While it is not an algorithm for solving I-POMDPs, we will neverthe-
less introduce its main ideas here. Many of them are also employed
in our algorithm.

POMCP builds a search tree, where each node corresponds to a
particular history of actions and observations. The tree starts with
a single node (the root node) corresponding to an empty history.
A node representing history ℎ contains a value 𝑉 (ℎ), a visitation
count 𝑁 (ℎ) and a set of particles 𝐵(ℎ). Each particle is a particular
state 𝑠 of the decision process. The set of particles is an unweighted
representation of a belief.

The algorithm performs a look-ahead search from the initial be-
lief. This is done through many Monte Carlo simulations, sampling
successive sequences of states, actions, rewards and observations.
The value 𝑉 (ℎ) represents the average (discounted) utility of simu-
lations starting from node with history ℎ; the visitation count 𝑁 (ℎ)
counts the number of times a simulation has visited the node. A
simulation starts by sampling a random particle from the root node.
It then proceeds in two stages, which could be called the tree stage
and the rollout stage.

In the tree stage, the actions are chosen informed by the nodes
already in the tree. Specifically, the UCB1 (Upper Confidence Bound,
version 1) formula from the UCT (Upper Confidence Bounds applied
to Trees) algorithm is used to select the next action 𝑎 as follows:

𝑎 = argmax
𝑎′

𝑉 (ℎ𝑎′) + 𝑐

√︄
log𝑁 (ℎ)
𝑁 (ℎ𝑎′) (10)

The first term corresponds to a greedy selection of the action with
the highest utility estimate. The second term is called the explo-
ration bonus. It encourages choosing actions that are relatively
unexplored. Note that an unexplored action (𝑁 (ℎ𝑎′) = 0) is given
“infinite” weight and is therefore always chosen first. The constant
𝑐 controls the balance between exploitation of the actions believed
to be the best and exploration of other actions. Tree search that uses
the UCT algorithm is known as Monte Carlo Tree Search (MCTS).

After an action 𝑎 is chosen and an observation 𝑜 is received, the
current state is propagated with the action using the transition
function of the POMDP. The simulation moves to the node with
history ℎ𝑎𝑜 . This procedure is then repeated with the propagated
state, using action selection from the new node.

The simulation enters the rollout stagewhen a previously untried
action is chosen. A rollout policy, typically a uniform distribution
over the possible actions, is used to propagate the action forward
until a predefined horizon is reached. When the rollout finishes,
all the states generated during the simulation are added to their
respective nodes. Exactly one new node is added to the search tree:
this node corresponds to the newly visited history after taking
the first untried action. The visitation counts of the visited nodes
are increased by one. The value of each visited node is updated
to reflect the updated average discounted utility received starting
from that node.



In addition to structuring the search, the tree functions as a
particle filter. The particles in each node represent an updated
belief after taking an action and receiving an observation. The tree
can thus also be called a belief tree. This is utilised in the algorithm
after a real action 𝑎 is taken and a real observation 𝑜 is received. The
tree is simply pruned such that the node ℎ𝑎𝑜 , where ℎ is the history
of the current root node, becomes the new root. The particles in
the new root node represent the updated belief.

The authors report that POMCP is able to scale to very large
problems (with up to 1056 states). This scalability is thanks to MCTS
being able to break the curses of dimensionality and history: sam-
pling is efficiently focused on the most relevant parts of the search
space. Another advantage of POMCP is that instead of having to
know the exact form of the transition and observation functions,
it is sufficient to be able to sample from these distributions. This
is advantageous in systems that are hard to represent explicitly in
the POMDP framework.

B.2.6 I-NTMCP. Interactive Nested Tree Monte Carlo Planning
(I-NTMCP) [11] is an online planning algorithm for I-POMDPs.
Like POMCP, it uses belief trees and MCTS to perform a forward
search. Unlike POMCP, it maintains a nested hierarchy of trees.
Our algorithm is heavily inspired by it.

Specifically, at the top of the hierarchy at level 𝐿 is agent 𝑖’s own
search tree T𝑖,𝐿 . Each node in this tree corresponds to a specific
agent history of 𝑖 – a sequence of actions and observations of 𝑖 .
The search tree has a root node which corresponds to the actual
agent history observed by the agent. Nodes contain particles, each
of which contains a state. Importantly, they also contain a joint
history, specifying the agent histories of each other agent. These
particles are also called history states. The set of particles represents
a belief. In addition, nodes contain a visitation count and an average
value of simulations that have started from the node.

At one level below are agent 𝑖’s models of the other agents. These
are search trees too. For example, T(𝑖,𝑘 ),𝐿−1 is agent 𝑖’s model of
agent 𝑘 ∈ 𝑁 \ {𝑖}. The nodes in this tree correspond to agent
histories of 𝑘 . Since 𝑖 does not know the exact agent history of 𝑘 ,
there may be multiple root nodes in this tree2. The tree T(𝑖,𝑘 ),𝐿−1
uses the trees T(𝑖,𝑘,𝑗 ),𝐿−2, 𝑘 ∈ 𝑁 \ {𝑘}, as models of other agents.
This hierarchy continues until level 0.

Simulations happen bottom-up: first, 𝑀 simulations are per-
formed in each of the level 0 trees. Next, the level 1 trees are simu-
lated. This continues until the highest level. A simulation consists
of the same steps as POMCP. A particle is sampled from one of the
root nodes of the tree; it is propagated step by step down the tree,
until a previously untried action is used to propagate it; and finally
a rollout is performed and the value is backed up to all of the nodes
visited during the simulation. However, due to the multi-agent na-
ture of the problem, there are important differences, which we will
cover next.

Sampling a particle to start simulating from is straightforward
in the highest level tree T𝑖,𝐿 ; this tree has only one root node. To
focus the simulations in the lower-level trees on the histories (and
therefore beliefs) deemed most likely by 𝑖 , the following procedure

2More accurately, these trees are therefore forests, i.e. collections of trees. This is the
terminology we adopt for our algorithm.

is used. First, a particle is sampled from the root node of the top-
level tree T𝑖,𝐿 . This particle contains an agent history for each other
agent. The stored agent history is used to determine a root node in
a lower level tree. For example, if we are simulating T(𝑖,𝑘 ),𝐿−1, we
use the agent history of 𝑘 stored in the sampled particle to uniquely
determine a root node in T(𝑖,𝑘 ),𝐿−1. We can then start the simulation
by sampling a particle from this node. If we are simulating a tree
further down the hierarchy, we simply repeat the same procedure
from the root node identified in the level 𝐿 − 1 tree.

The forward step differs from POMCP fundamentally because
in an I-POMDP, actions from all agents are needed to propagate
a state. The action of the agent whose behaviour the tree models
can be determined by using the tree policy (10). We then need an
action from each other agent. Luckily, since the lower-level trees
have already been planned in, we have a model for which actions
the other agents will choose. Specifically, we use the joint history
stored in the particle we want to propagate to find matching nodes
in the trees on the level below. Let the agent history of 𝑘 stored in
the particle be ℎ𝑘 , and assume we are simulating a level 𝑙 > 0 tree.
The probability of choosing each action 𝑎𝑘 is determined using the
softargmax function, proportional to

exp

(
𝑁𝑘,𝑙−1 (ℎ𝑘𝑎𝑘 )√︁
𝑁𝑘,𝑙−1 (ℎ𝑘 )

)
(11)

where 𝑁𝑘,𝑙−1 denotes the visitation counts in the tree T𝑘,𝑙−1. If
𝑙 = 0, we assume some default distribution over actions, such as
a uniform distribution3. After the actions of the other agents are
chosen, a next state can be sampled by propagating the state in the
particle with the joint action and the I-POMDP transition function.

I-NTMCP scales to much larger problems than I-POMDP Lite
(Section B.2.3), the algorithm the authors use as a baseline. This
demonstrates that Monte Carlo Tree Search can effectively be ap-
plied to multi-agent problems.

B.2.7 LABECOP. So far all of the algorithms we have seen rely
on the fact that either the state space or the observation space (or
both) are finite and discrete4. Since our model has both a continuous
state space and a continuous observation space, we need an efficient
algorithm that can handle this requirement. The last algorithm we
cover, Lazy Belief Extraction for Continuous Observation POMDPs
[7] is, as the name suggests, such an algorithm for POMDPs. While
the authors describe the algorithm in terms of sequences of state-
action-reward-observation quadruples, we will instead present it
in the context of a search tree for ease of understanding.

Each node in the search tree corresponds to a specific action
history. In other words, the branches of the tree only correspond to
particular actions; the tree does not branch on observations. The
root node corresponds to the history of actions performed so far.
Nodes contain particles, each of which corresponds to a state. In
addition, the current belief is represented and updated separately
from the search tree, for example with a particle filter.

3Calling the lowest level tree level 0 is the convention the authors use. Note, however,
that strictly speaking the level 0 model (tree) corresponds to level 1 in the I-POMDP
framework, since other agents’ behaviour is modelled using a subintentional model
(random actions). In our work we call level 1 what the authors here call level 0. The
term level 0 is correct if the lowest level model is defined as a POMDP.
4The interactive particle filter can technically support both, but its performance makes
it an unattractive option.



Planning consists of sampling sequences of states, actions, ob-
servations and rewards, starting from the current belief. These
sequences are encoded by the particles: each particle knows the
previous and next particle in the sequence. A particle contains a
value: the discounted sum of rewards received during the sequence
from that particle onward.

A central idea in the algorithm is that the set of particles in a node
can be used to represent many different beliefs by weighting them
appropriately. As sampling progresses down the tree, new beliefs
are formed in each node corresponding to the currently sampled
sequence. Let ℎ be the current action history. Say we choose action
𝑎 in the node corresponding to ℎ, and receive an observation 𝑜 . The
sampling proceeds to the node corresponding to action history ℎ𝑎.
We need to form a belief in this node based on the observation by
weighting the particles in it. The weight𝑤ℎ𝑎 (𝑝′) of particle 𝑝′ with
state 𝑠 (𝑝′) is given by Bayes’ theorem:

𝑤ℎ𝑎 (𝑝′) ∝ 𝑤ℎ (ancestor(𝑝′))𝑍 (𝑠 (𝑝′), 𝑎, 𝑜) (12)

where ancestor(𝑝′) is the particle before 𝑝′ in its sequence and𝑤ℎ

are the weights in the node corresponding to ℎ. The weights are
then normalised. By weighting all the particles in the node in this
way, a new approximate belief is created. This belief approximation
is more accurate for actions that are taken more often, since there
are more particles to weight.

To actually sample episodes, we need to choose which actions to
sample in each node we encounter. This is done using ideas from
Monte Carlo Tree Search and UCB1. Specifically, given that we
have already formed a belief 𝑏 (as defined by the particles and the
corresponding weights𝑤 ) in a node, the action sampled is chosen
as follows. Let 𝑁+ (𝑏) be the number of particles that get a positive
weight under the belief. This approximates the total number of
times actions have been sampled from the belief. Then let𝑊 (𝑏, 𝑎)
be the sum of weights of particles that have 𝑎 as the next action in
their sequences. We can approximate the expected utility of taking
action 𝑎 from the belief and then continuing optimally as

𝑈 (𝑏, 𝑎) = 1
𝑊 (𝑏, 𝑎)

∑︁
𝑝 :𝑎 (𝑝 )=𝑎

𝑤 (𝑝)𝑉 (𝑝), (13)

in other words, we calculate a weighted sum of the values of par-
ticles that have been with action 𝑎 next (𝑎(𝑝) = 𝑎). Using these
estimates, the next action is chosen with UCB1 according to

𝑎 = argmax
𝑎′∈𝐴

©­«𝑈 (𝑏, 𝑎′) + 𝑐

√︄
log𝑁+ (𝑏)

𝑁+ (𝑏)𝑊 (𝑏, 𝑎′)
ª®¬ . (14)

The quantity in the numerator is the approximate number of times
action 𝑎 has been sampled from the belief. As before, 𝑐 is the con-
stant controlling the extent of exploration in action selection.

Sampling a sequence thus starts by sampling a state from the
initial belief and then repeatedly choosing an action from a node,
propagating the statewith the action and creating a belief in the next
node. After a previously untried action is sampled (the denominator
of (14) is zero for some action), sampling stops, and a rollout is
performed. The newly sampled particles are then added to each
encountered node and their values are defined as the discounted
sum of rewards received from that particle onward.

Table 1: The parameter values used in the experiments. Range
refers to the values explored in experiment 1 and sensitivity
analysis (Appendix C).

Parameter Meaning Value Range

Parameters of Civilisations
𝑛 Number of agents 2
𝑟𝐷 Reward received by a de-

stroyed civilisation
−1

𝑟ℎ Reward for performing a hid-
ing action

−0.01

𝑟𝑎 Reward for attacking another
civilisation

{0, −0.1 } [−0.2, 0.1]

𝜎obs Standard deviation of obser-
vation noise

0.15

𝐿 Reasoning level of civilisa-
tions

{1, 2}

𝛾 Discount factor 0.6 [0.5, 0.7]
𝑣𝑚 Multiplier for visibility when

performing a hiding action
0.5

I𝑡 Range of initial age [0, 50]
I𝑣 Range of initial visibility {1}
I𝑔𝑠 Range of possible growth

speeds
[0.3, 0.5]

I𝑔𝑡 Range of possible takeoff
ages

[20, 40]

Parameters of the Solver
𝑛init Number of initial particles 1000
𝑛simul Number of simulations per

forest per time step
10 000

𝜀 Defines the discount horizon 0.1
𝑐explr MCTS exploration coeffi-

cient (see (4))
0.6 [0.1, 1]

𝑐sft Softargmax coefficient (see
(5))

0.1 [0.01, 1]

𝜎𝑔𝑠 Standard deviation of the
noise added to the growth
speed parameter

0.03

𝜎𝑔𝑡 Scale of the noise added to
the takeoff age parameter

3

The performance of the algorithm is on par or even surpasses
other algorithms on problems with continuous observation spaces.
Many of the other algorithms tested had to use a discretised version
of the observation space because they did not support continuous
observation spaces. A downside of LABECOP is that the execu-
tion time increases superlinearly as more and more sequences are
sampled, as later sequences have to weight more particles in each
encountered node to form beliefs.

C PARAMETERS AND SENSITIVITY ANALYSIS
It is important to assess the extent to which the output of the
model is sensitive to its input parameters. We have two groups
of parameters: the parameters of the solving algorithm and the



parameters of the model itself. Ideally, we would first find the
parameters of the solving algorithm that are the most suitable
for our model. After this, we would fix these and only assess the
sensitivity of the model output to the model parameters. However,
because model evaluations are quite costly, we opted to instead
perform a global sensitivity analysis on a chosen subset of all of
the parameters. For an explanation on how final solver parameters
were chosen, see Appendix D.

We included two model parameters (the attack reward 𝑟𝑎 and
discount factor 𝛾 ) and two solver parameters (the exploration coef-
ficient 𝑐explr and the softargmax coefficient 𝑐sft) in the sensitivity
analysis. Attack reward is an obvious choice for sensitivity analy-
sis, since based on our experiments it greatly affects the outcomes.
Discount factor is interesting to analyse since it determines the
discount horizon, i.e. the amount civilisations look forward in time
when they plan. The two solver parameters were chosen because
among the parameters they seem the most influential: they de-
termine how a forest is searched and how the results from that
planning are used in planning in higher-level forests. The ranges
explored are shown in Table 1. In addition, the analysis was per-
formed at reasoning levels 1 and 2. We explore the sensitivity of
two outputs: the proportions of attacks and hiding actions over a
model run.

We calculate Sobol indices using SALib [5]. Sobol indices ap-
portion the variation in the output variable of interest to the un-
certainty in the model parameters [14]. First order indices indicate
the proportion of the total variation of the output that is directly
attributable to the parameter in question. Total order indices indicate
how much of the variation is due to either the parameter itself or
its interaction with other parameters. It is possible to also estimate
second order indices which quantify the pairwise interactions, but
we do not do that here since it is more computationally intensive.
Since the indices are proportions, they should have values between
0 and 1. However, estimation errors can sometimes lead to negative
estimates or estimates exceeding 1. Our Sobol sample consists of 64
samples for both reasoning levels, meaning 384 model evaluations
per reasoning level.

The results of the sensitivity analysis are shown in Figure 2. For
the proportion of attacks (top row), the results are as expected:
most of the variation can be attributed to attack reward, while the
influence of the other parameters is negligible. This is true at both
reasoning levels.

For the frequency of hiding actions the results are less clear.
The proportion of hiding actions remains relatively constant. Thus,
there is not a lot of variance to explain and consequently the index
estimates are quite uncertain. However, there is one parameter that
stands out: at level 1 the discount factor 𝛾 accounts for between
half and three quarters of all variance in the output. This warrants
further investigation.

Figure 3 shows the proportion of hiding actions as a function of
the discount factor. There does, indeed, seem to be a trend of increas-
ing frequency of hiding when the discount factor is increased. As
opposed to the result of the sensitivity analysis, the pattern seems
to exist at both reasoning levels. The reason for why increasing the
discount horizon increases hiding is unclear. One possible expla-
nation is that looking further into the future gives the civilisation
an earlier warning of a potential attack against it, which gives it
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Figure 2: Sensitivity of proportion of actions that are at-
tacks (top row) and hiding actions (bottom row). Sensitivity
is shown for four continuous parameters (attack reward 𝑟𝑎 ,
discount factor 𝛾 , softargmax coefficient 𝑐sft and exploration
coefficient 𝑐explr) and for reasoning levels 1 and 2. Red bars
show the first order sensitivity index and blue bars the total
order sensitivity index. Black lines indicate 95% confidence
intervals. Note that some indices exceed 1 or are negative.
This is due to estimation errors caused by the limited number
of samples we were able to perform.

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
Discount factor ( )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n 
of

 H
id

in
g 

Ac
tio

ns

Figure 3: The proportion of hiding actions as a function of
the discount factor 𝛾 . All data from the sensitivity analysis,
both levels 1 and 2, are shown. Black line shows an average
with 95% confidence intervals.

more time to perform hiding actions. However, more investigation
is needed.



D PERFORMANCE AND PARAMETERS OF
THE SOLVING ALGORITHM

In this section, we explain the rationale used when choosing pa-
rameter values for the solver algorithm. Since our algorithm is new,
we will also present some of the data pertaining to its operation.

Ideally, we would first search the parameter space of the solver
to find values that are optimal for our model. Optimal parameters
of the solver could be found by testing the algorithm with different
combinations of parameters and measuring the average reward
(over time and over multiple repetitions) of an agent using it against
various fixed opponents. Because of computational constraints, we
opt instead to choose the values more heuristically. We will discuss
these choices as we encounter relevant data.

First, we will show how i) the number of generated particles
and ii) the fraction of all possible nodes explored varies across
the depth of the search trees. We will compare two cases: when
the number of samples per forest 𝑛simul is varied, and when the
length of the discount horizon (as defined by 𝛾 and 𝜀 = 0.1) is
varied. We do this to get an understanding of suitable values for
𝑛simul and 𝛾 . All the results in this section are for a model with two
agents. Note that while 𝛾 is technically the amount of discounting
civilisations do for future rewards and is thus not a solver parameter,
here we slightly abuse it as such. The result of this is shown in
Figure 4 (top two rows). In the left column we vary the number
of simulations performed per forest. Doing 10 000 is at the limit
of our computational budget so we want to investigate whether
an additional 5 000 would make a significant difference. Since the
difference between the results at 10 000 and 15 000 simulations is
not very large and the number of particles per node is significantly
higher at 10 000 than at 1 000, we chose the former. At ten thousand
simulations all nodes of the forest are explored down to a depth of
4; naturally some nodes are explored more than others.

Our goal with choosing the discount factor 𝛾 was to make sure
that each node has sufficient particles to accurately represent a
belief. This is important as our belief space is continuous and has
4𝑛 dimensions, where 𝑛 is the number of agents. We chose 𝛾 = 0.6
corresponding to a maximal search depth of 4, since the number
of particles in the most explored node is roughly a thousand at
minimum throughout the forest and on average the nodes have
between 10 and 100 particles at depth 4.

An important aspect of the algorithm is determining the actions
the other agents choose based on the lower level forests. We call this
querying the forests. A query is not always successful. It is possible
that the belief of the other agent has diverged. This means that all
particles are deemed impossible based on the observations we have
generated for the other agent as we simulate a higher level forest.
It is also possible that not all of the actions have been expanded,
or that the agent is altogether missing the relevant node in their
forest. In all of these cases we assume the other agent chooses a
random action, lacking a better alternative. However, it is important
to quantify the extent to which this happens.

Figure 4 (bottom row) shows the success rates during the first
planning step in a level 2 forest. We can see that at 10 000 simu-
lations and with a search depth of 4 (𝛾 = 0.6) the success rate is
approximately 90% (the leftmost bar of lower right graph), which is
reasonably good. At greater search horizon lengths the proportion

of successful queries decreases, as the lower forest is less likely to
have explored a specific node deeper in the forest.

The success rate changes over time. Figure 5 shows this for
different combinations of the exploration coefficient 𝑐explr and soft-
argmax coefficient 𝑐sft. These success rates are based on the sen-
sitivity analysis data and thus represent a relatively broad sweep
over the parameter space. They are shown over the entire duration
of the simulation, which is 100 time steps. The figure shows that
having a lower 𝑐sft is advantageous for the success rate. This can
be explained by the fact that if 𝑐sft is very high, queries result in
a broader range of possible actions of the other agent. Thus the
following queries to the lower forest may target nodes that are not
very well explored.

A sufficiently high exploration coefficient is also important. If the
exploration coefficient is too low, even a single unlucky simulation
in a forest might mean that the corresponding first action is never
expanded again. On the other hand, the exploration coefficient
must not be too high: otherwise the benefits of the UCB1 algorithm
are lost and the search becomes a full-width expansion of the tree.
Based on the success rates it seems that an exploration coefficient
of over 0.55 is better than a smaller coefficient: the blue line remains
above the red for a part of the hundred step interval, and otherwise
they seem roughly equal. Based on these considerations and further
trial-and-error tuning, we settled on 𝑐sft = 0.1 and 𝑐explr = 0.6.
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Figure 4: Metrics of a forest after a single planning step. In the left column the number of simulations 𝑛simul is varied. In
the right column the search depth is varied. The depths 14, 6 and 4 correspond to discount factors 0.85, 0.7 and 0.6. First row
shows the average (solid line) and maximum (dashed line) number of particles in the nodes at the given depth, shown on
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shows the success rate of determining the other agent’s action using a lower level forest after it has been planned in once. The
parameters used here are the same as Table 1 except for the ones varied. The discount factor 𝛾 is 0.7 instead of 0.6 to show
particles at greater depths. The uncertainties shown are confidence intervals, calculated over five repetitions.
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