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Abstract: The inevitable noise generated in the acquisition and transmission process of MRIs seriously
affects the reliability and accuracy of medical research and diagnosis. The denoising effect for Rician
noise, whose distribution is related to MR image signal, is not good enough. Furthermore, the brain
has a complex texture structure and a small density difference between different parts, which leads
to higher quality requirements for brain MR images. To upgrade the reliability and accuracy of
brain MRIs application and analysis, we designed a new and dedicated denoising algorithm (named
VST–MCAATE), based on their inherent characteristics. Comparative experiments were performed
on the same simulated and real brain MR datasets. The peak signal-to-noise ratio (PSNR), and mean
structural similarity index measure (MSSIM) were used as objective image quality evaluation. The
one-way ANOVA was used to compare the effects of denoising between different approaches. p < 0.01
was considered statistically significant. The experimental results show that the PSNR and MSSIM
values of VST–MCAATE are significantly higher than state-of-the-art methods (p < 0.01), and also
that residual images have no anatomical structure. The proposed denoising method has advantages
in improving the quality of brain MRIs, while effectively removing the noise with a wide range of
unknown noise levels without damaging texture details, and has potential clinical promise.

Keywords: MRIs denoising; variance-stabilizing transformation (VST); morphological component
analysis (MCA); sparse representation; local adaptive thresholds

MSC: 94A08

1. Introduction

Magnetic resonance (MR) imaging is a kind of tomography technology, which recon-
structs the human body’s information by processing the captured MR signals [1]. In the
acquisition process, due to the limitation of hardware circuit and the object to be imaged,
as well as the influence of sensors and interference of transmission channel in the transmis-
sion process, magnetic resonance images (MRIs) will be polluted and noise points will be
generated in the image, which affects the reliability and accuracy of clinical diagnosis and
medical research. Therefore, before further analysis and processing of MRIs, it is necessary
to preprocess the image to reduce the impact of noise [2].

At present, researchers have investigated many kinds of digital image denoising
methods, but generally for ordinary images or directly for medical MRIs using ordinary
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image denoising algorithms. The most commonly used noise model in common images is
the additive noise model, in which the noise is independent of original image signal, and
has a Gaussian distribution of zero-mean and known standard deviation. Previous studies
have shown that the noise of MRIs mainly obeys the Rician distribution [3–5], hence the
noise in MRIs no longer belongs to additive noise, and the noise intensity is related to the
original image signal. Some denoising algorithms suitable for ordinary images are not
suitable for MRI denoising.

As shown in Figure 1, (a) is the noise-free T1w MRI obtained from IXI Dataset 2021 [6],
and (b) to (e) are noisy images obtained by adding noise to (a). The types of noise are the
Gaussian noise with mean value 0 and variance 10, the Rician noise with noise intensity of
10%, the Salt and Pepper noise with noise density of 10%, and the Rayleigh noise. It can be
seen that, after adding different types of noise, the images are different from each other,
which means the mathematical principle of the denoising algorithm is also different.
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the Rician noise distribution of MRIs are relevant to image data, and that its variance 
changes with the change of the data. To better illustrate these problems, we show the ex-
ample of the noise reduction results of the WNNM method in Figure 2. Figure 2e contains 
a lot of texture information about brain MRIs, which means the WNNM method does not 
do well in protecting the brain texture structure in detail in the process of denoising. Deep 
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Figure 1. Noise-free brain MRI (from normal, healthy subjects, IXI002-Guys-0828-T1 in IXI Dataset
2021) and its four types of noise contaminated images. (a) is the noise-free T1w MRI, and (b–e) are
noisy images obtained by adding noise to (a). The types of noise are the Gaussian noise with mean
value 0 and variance 10, the Rician noise with noise intensity of 10%, the Salt and Pepper noise with
noise density of 10%, and the Rayleigh noise.

The main task of image denoising is to use various filtering techniques to filter out
noise while protecting important information such as image details [7–9]. Filtering can
be carried out in time domain, such as Gaussian filter [10], Wiener filter [11], bilateral
filter [12], total variation (TV) filter [13], and nonlocal mean (NLM) filter [14]; it can also
be used in the transform domain, such as wavelet threshold filtering [15], and curvelet
threshold filtering [16,17], etc. However, the above filtering methods are all designed to
remove noise obeying Gaussian distribution. If they are directly applied to Rician noise
removal, the performance cannot get the expected results. At present, some good medical
image denoising algorithms, such as deep evolutionary networks with an expedited genetic
algorithm [18]; NeighShrink, which is based on chi-square unbiased risk estimation [19];
biquadratic polynomial, with minimum error constraints and low-rank approximation [20];
and weighted nuclear norm minimization (WNNM) [21], etc., have obtained good MRI
denoising effect. However, these methods did not consider that the characteristics of the
Rician noise distribution of MRIs are relevant to image data, and that its variance changes
with the change of the data. To better illustrate these problems, we show the example of
the noise reduction results of the WNNM method in Figure 2. Figure 2e contains a lot
of texture information about brain MRIs, which means the WNNM method does not do
well in protecting the brain texture structure in detail in the process of denoising. Deep
learning-based image denoising methods have also been investigated recently; however,
although they achieved impressive results [22,23], they have a high computational cost
and require a huge training data set. The noise reduction performance of deep learning
depends on the training data, but the reference image data that can be obtained from the
simulated dataset is not sufficient.
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Figure 2. (a) Noise-free image; (b) Noisy MRI distributed by Rician noise; (c) Denoised MRI by
WNNM; (d) Residual image (absolute difference between (b,c)); (e) The lost structure components
(absolute difference between (a,c)).

One of the methods to remove the Rician noise is to remove the Gaussian noise in the
real part and imaginary part signals, respectively, and then reconstruct the MRI; however,
it is easy to cause the reconstructed image to be accompanied by “ringing artifacts” because
of the phase error. In order to solve the application problem of filtering technology in
Rician distribution noise, Nowak [24] proposed a method to reduce the correlation between
image data and noise by modulus square of MRI, and then used the filtering method to
denoise the modulus square image with deviation correction; subsequently, FOI A. [25]
proposed the framework of variance-stabilizing transformation (VST). The methods of
modulus square and VST provide a new way for Rician noise removal, and have therefore
been widely used in MRI denoising in recent years [26,27]. While these methods improve
the effectiveness of removing Rician noise, problems of threshold selection and lack of edge
protection still remain.

In the noisy image, the frequency of useful information is low, whereas the frequency
of noise is high. On the one hand, the image edge, texture, and other details are predomi-
nantly scattered in the high frequency part, whereas the flat region information is mainly
distributed in the low frequency part. On the other hand, although image noise is mainly
a high frequency component, it also comprises low frequency components, which results
in the overlapping of useful information and noise in the frequency band. Morphological
component analysis [28] (MCA) has potential advantages in image super-resolution appli-
cations, due to its ability to combine sparse representation theory and variational method
to decompose images.

The brain has a complex texture structure and a small density difference between
different parts, which leads to higher quality requirements for brain MRIs, and makes
MR denoising much more challenging. The main purpose of this study is to repair the
tampered pixel values of brain MRIs during the acquisition and transmission operation,
and provide clearer and more reliable noiseless images. In order to avoid the “ringing
artifacts” accompanied with denoised MRIs, we decided against denoising the original
real part signals and imaginary part signals, respectively, and instead applied VST to
MRIs reconstructed from real part signals and imaginary part signals, and set adaptive
thresholds for texture and smooth regions decomposed by MCA. In order to remove the
noise as much as possible without misclassifying the non-noisy pixel, we considered both
the variance of the noisy pixel and the variance of the non-noisy pixel when setting the
local adaptive thresholds.

2. Materials and Methods

In this experiment, we used real clinical MR data from brain tumor patients. Before
doing the experiment, all datasets were reviewed by the appropriate ethics committee.
Since all datasets used in our study are public datasets, which do not pose any potential
risks to individuals or individual privacy and can be publicly accessed online without
restrictions, the ethics committee indicated that ethical approval was not required.

The imaging principle of MRIs is different from that of other types of images, which
leads to differences in the noise they contain. In order to better describe and analyze the
characteristics and distribution of noise in MRIs to develop a more suitable and dedicated
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denoising algorithm for MRIs, we first set a model for noise according to the principle
of MRIs formation. On this basis, we propose a novel denoising algorithm (named VST–
MCAATE). In applying VST–MCAATE, we sought to accurately estimate noise levels and
simplify parameter selection by eliminating the correlation between noise and MRI signal;
we then fixed the noise variance in the MRI by using variance-stabilizing transformation
(VST); in then seeking to resolve the problem of the overlapping of useful information and
noise in the frequency band (which can in turn can preserve complex texture details of MRIs
while denoising), we used morphological component analysis (MCA). During this process,
we also improved the MCA to solve the problem of unfavourable signal processing and
storage due to information redundancy—in order to ensure the model has a better ability
to identify noisy and non-noisy pixels, the variance of the noisy pixel and the variance of
the non-noisy pixel both were both taken into consideration when setting the threshold
model; furthermore, we also set the threshold to locally adaptive in order to avoid a fuzzy
effect and keep detailed information. In this chapter, we will provide a detailed explanation
of the dataset, noise model, MCA (and its improvements), dictionary selection, overall
denoising model framework, denoising performance evaluation criteria, and denoising
significance analysis methods.

2.1. Datasets

Real clinical MRIs cannot be obtained without any noise. Therefore, in order to
use noise-free images as numerical references for objective evaluation indicators, we use
the simulated brain database (SBD) [29] which is taken from the brain-imaging center at
Montreal Institute of Neurology, McGill University. This simulated database consists of
two anatomical models, such as normal brain MR data and MS (multiple sclerosis) lesion
brain data, and provides brain MRIs in T1w, T2w, and PDw modalities. Since MR data from
different modalities have different properties, which lead to differences between images in
different modalities, this paper performs noise reduction tests on MR data from each of the
three modalities separately. We set slice thickness = 1 mm, Intensity non-uniformity = 0%.
Add Rician noise with the single intensity of 3%, 5%, 7%, and 9% to imitate the noised
MRIs. Our experimental data then consisted of three modalities, five noise level types,
and two anatomical models. In addition to using synthetic datasets, we also used two real
clinical brain MRI datasets [6,30] to further illustrate the advantages of this method. (1) The
Whole Brain Atlas dataset: 113 T1w, 184 T2w, 136 PDw neoplastic disease (brain tumor)
MRIs from Harvard Medical School. (2) IXI Dataset (2021): 581 T1w, 578 T2w, 578 PDw
3-dimensional normal, healthy brain MRIs from Imperial College London.

2.2. Noise Model for MRIs

The causes of noise determine the characteristics of noise distribution, and its relation-
ship with image signals. MRI’s original signal comes from the real part and the imaginary
part of the receiving coil of the equipment, and the signal from each of these two channels
has the additive Gaussian white noise with a mean value of 0. MRI data are obtained by
sampling signals from two channels and conducting Fourier transform reconstruction. Due
to the linearity and orthogonality of the Fourier transform, the reconstructed MRI data
still contains complex Gaussian white noise. For image subsequent processing and visual
requirements, take modulo calculation of the reconstructed data of real and imaginary
parts, and let the length of the corresponding vector on the complex plane represent the
pixel values to obtain the final visual MRI image. The modulo calculation transforms the
noise distribution of MRI from a complex Gaussian distribution to a Rician distribution,
which is the cause of the Rician distribution noise in the MRI.

The reconstructed data of MRIs can be expressed as:

X = Xreal + iXimaginary = (F cos θ + ξ1) + i(F sin θ + ξ2), (1)
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where Xreal and Ximaginary are real and imaginary signals, respectively, F and θ are the
amplitude and phase of the image’s original signal, and ξ1 and ξ2 are independent additive
Gaussian white noise with mean 0 and variance σ2.

Visual MRIs are obtained by modulo calculation of reconstructed data,

G = |X| =
√
(F cos θ + ξ1)

2 + (F sin θ + ξ2)
2. (2)

The Formula (2) indicates that the noise in the Visual MRI G is no longer additive
Gaussian white noise independent of the image data, and its Gaussian distribution changes
to Rician distribution related to the original image data. The probability density function is,

P(G|F, σ ) =
G
σ2 exp

(
−
(
G2 + F2)

2σ2

)
I0

(
G × F

σ2

)
, (3)

In(x) = ∑∞
m=0

(−1)m(x/2)n+2m

m!Γ(n + m + 1)
, (4)

where G is the noisy MRI, F is the original noise-free image, σ is the standard deviation of
Gaussian noise in the real and imaginary parts, and I0 is the zero order first class Bessel
functions, In(x) is Bessel function [31].

When n is a positive integer or zero, Γ(n + m + 1)=(n + m)!, therefore

I0(x) = ∑∞
m=0

(−1)m(x/2)n+2m

m!(n + m)!
= ∑∞

m=0
(−1)m(x/2)2m

m!m!
= ∑∞

m=0
1

m!m!

(
− x2

4

)m

. (5)

When the signal-to-noise ratio (SNR) of MRIs is very low, the probability density
function of MRI amplitude can be approximated as:

P(G|F, σ ) ≈ G
σ2 exp

(
−G2/2σ2

)
. (6)

When the SNR of MRIs is high, the probability density function of MRI amplitude can
be approximated as:

P(G|F, σ ) ≈ 1√
2πσ

exp
(
−
(

G −
√

F2 + σ2
)2

/2σ2
)

. (7)

It can be inferred from (6), (7), and Figure 3 that in the very low SNR area of MRI, the
noise will degenerate to Rayleigh distribution from Rician distribution (with no signal, the
distributions are exactly equivalent), whereas in the high SNR area it will degenerate to
Gaussian distribution; at low-medium SNR, it is neither Gaussian nor Rayleigh. Therefore,
the diversity and complex distribution of MRIs bring great difficulties to MRI denoising.
When the SNR is high, some denoising methods aim at white Gaussian noise and, with an
additional unbiased estimation strategy, can still be used for MRI denoising and achieve
good results; however, for MRIs with low SNR, the noise reduction effect still needs to
be improved. A feasible scheme is to use the maximum likelihood of Rician distribution
to restore MRIs in the maximum posterior framework; however, the maximum posterior
framework can only incorporate a limited prior, and its optimization process is relatively
time-consuming. Another scheme is to transform the image amplitude to make the MRI’s
signal independent of the noise by VST—that is, to approximately transform Rician noise
into additive Gaussian noise, and then adopt a noise reduction algorithm with excellent
Gaussian noise removal effect to denoise, and finally obtain, an unbiased denoised image
through inverse VST.
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2.3. Variance-Stabilizing Transformation (VST)

The distribution of Rician noise is dependent on the image data, and its variance
varies with the data. VST is used to transform the Rician noise in the MRI into a Gaussian
distribution with stable variance, so that various filtering methods suitable for Gaussian
noise can be used for denoising; the inverse VST transform is then performed to construct
the denoised MRI [25].

The VST algorithm formula is

f (z) =
√

z2/δ2 − 0.5 + a, (8)

where Z is the measurement signal, δ2 is variance, a is a constant. In this paper, the
measurement signal is noisy MRI images, and in (2)–(7) we use G to represent noisy MRI
images, so

f (G) =
√

G2/δ2 − 0.5 + a. (9)

a = f (Gmax)−
√

G2
max/δ2 − 0.5. (10)

Let ϕ be the denoising method, and then denoise the image f (z), with additive
Gaussian noise after VST conversion to obtain image D, that is

D = ϕ( f (G)). (11)

The final denoising image I, can be obtained by the unbiased estimation of the inverse
VST transform of D, as shown in the following formula:

I = f−1(D) ≈ δ(D − a)2/
√
(D − a)2 + 0.5. (12)

2.4. Morphological Component Analysis (MCA)

Starck et al. [28] assumed that for a given arbitrary signal S is linearly composed
of K sub-elements with different shapes, that is, S = ∑ K

i=1 si, where si represents the
source signal or component of each different feature that composes the signal S. Let the
dictionary accomplish sparseness within the class and different submodes between classes,
so as to achieve the purpose of morphological component separation. The basic idea
is to use the morphological differences of signal components to divide the image into
texture and flat parts, which are applied to image decomposition and reconstruction, as
shown in Figures 4 and 5 (for the convenience of description and comprehension, only
the case of i = 2 is drawn in these figures, and a familiar, easy-to-understand diagram
is used). SGaussians and SLines respectively represent the smooth part and the texture part
of the original image, and the superposition of the two can generate the original image;
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noise may be introduced in the middle; ΦGaussians and ΦLines respectively represent the
sparse dictionary of the smooth part and the texture part. The final framework of the MCA
variational model proposed by Starck et al. [28] as:

{
α

opt
1 , α

opt
2 , . . . , α

opt
i

}
= arg min

{α1,α2,...,αi}

K

∑
i=1

∥αi∥1 + λ

∥∥∥∥∥S −
K

∑
i=1

Φiαi

∥∥∥∥∥
2

2

, (13)

subject to : S =
K

∑
i=1

si =
k

∑
i=1

Φiαi, (14)

where S is a linear combination of K sub-elements, si represents different types of sub-
signals decomposed by S, αi is the representation coefficient generated by the complete
transformation of the signal si, L2 is the error norm, and Φ is for dictionary, which plays
a key role in the MCA algorithm. The use of L2-norm for the residual in (13) is based on
the assumption that the residual is a zero-mean Gaussian white noise distribution. There
is a problem to consider: the solution obtained by (13) may be quite huge, because the
dictionary is a collection of over-complete redundant bases, and the signal transformation
based on the dictionary will naturally generate a large amount of redundant information
(the capacity of α

opt
i is much larger than that of si). Although a large amount of redun-

dant information can achieve the purpose of accurately representing the signal, it is not
conducive to signal processing and storage. The problem of finding the representation
vector {α

opt
1 , α

opt
2 , · · · ,αopt

i

}
is transformed into finding K signal types {s1, s2, · · · , si}; that

is, finding K images can solve this problem. Therefore, the transform coefficient α
opt
i in (13)

can be replaced by the source signal si that constitutes the signal S, namely:

{
sopt

1 , sopt
2 , . . . , sopt

i

}
= arg min

{s1,s2,...,si}

K

∑
i=1

∥Tisi∥1 + λ

∥∥∥∥∥S −
K

∑
i=1

si

∥∥∥∥∥
2

2

, (15)

where Ti is the inverse transformation of the dictionary Φi. In this way, the unknown
becomes an image instead of representing a coefficient. An important aspect of processing
signals instead of coefficients is to add constraints to each individual signal si. Adding the
constraint information for the source signal in (15), can obtain:

{
sopt

1 , sopt
2 , . . . , sopt

i

}
= arg min

{s1,s2,...,si}

K

∑
i=1

∥Tisi∥1 + λ

∥∥∥∥∥S −
K

∑
i=1

si

∥∥∥∥∥
2

2

+
K

∑
i=1

γiξi(si). (16)

Among them, ξi(s i) realizes the constraint on the component si. By solving (16), the
components of the signal can be obtained.
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Figure 4. Schematic diagram of image decomposition and reconstruction using MCA algorithm
(in the case where the input image only contains straight lines and isotropic Gaussian).
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2.5. Dictionary Selection

In image sparse decomposition, it is very crucial to design a suitable dictionary to
approximate the sparse components. For expressing the smooth area, the most com-
monly used dictionaries are curvelet transform dictionary [32], local ridgelet transform
dictionary [33,34], and porous algorithm dictionary; for texture regions, wavelet dictio-
nary [35,36], Gabor dictionary [37], local discrete cosine transform dictionary [38], etc. In
this article, we compared the advantages and disadvantages of these dictionaries, and
considered their applicability to medical images before choosing the curvelet transform
dictionary and the local discrete cosine transform dictionary to approximate the sparse
components decomposed by MCA.

Curvelet transform (CT) dictionary: CT dictionary, Firstly, divide the frequency do-
main into wedge-shaped regions, and then use the local Fourier basis with direction to
transform them. CT dictionary can sparsely express the flat region of the image [28]—that
is, the lowfrequency part of the image.

Local discrete cosine transform (LDCT) dictionary: LDCT dictionary is an orthogonal
transformation, which has good periodicity and can sparse the local texture structure of
the image [28] (i.e., the high frequency part_. In essence, DCT is essentially a special form
of discrete Fourier transform (DFT), and the coefficient of DCT represents the frequency
content, analogous to that derived by Fourier analysis. DCT can represent the texture part of
the image sparsely, whereas LDCT can represent the texture parts with uneven distribution.

2.6. Architecture of Proposed Method

The framework of the brain MRI denoising algorithm proposed in this paper is il-
lustrated in Figure 6. It can be divided into four parts: stabilize noise variance (Step 1),
decompose the image into a textures part and smooth part (Step 2), locally process the
noise (Step 3, and Step 4), and combine two denoised parts and construct the final denoised
MRI. Each step is detailed as follows:

• Step 1: Use VST to convert the Rician distribution of noise in the MRI into a Gaussian
distribution.

• Step 2: Sparse decomposition of image: sparsely decompose the image by MCA, so
as to separate the high frequency part and low frequency part of the image, and use
the CT dictionary and the LDCT dictionary as the sub-dictionaries to represent the
smooth part and texture details.

• Step 3: Design of adaptive threshold function: use the adaptive threshold estimation
method based on wavelet transform to set the threshold [39] separately for the low
frequency area sparsely represented by CT dictionary, and the high frequency area
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sparsely represented by LDCT dictionary. The threshold processing strategy we
adopted is a hard threshold, and the processing is as follows:

∧
ωi,j =

{
ωi,j ,

∣∣ωi,j
∣∣ < Tx

0 ,
∣∣ωi,j

∣∣ ≥ Tx
. (17)

That is, only retain the coefficients with greater modulus than the threshold. In (17)
ωi,j is the wavelet coefficient of each subband, Tx is the adaptive threshold of corresponding
subband, ω̂i,j is the coefficient after threshold processing. In this method

T = 3δδx, (18)

where δ and δx are the standard deviation of noise and the standard deviation of coefficient
matrix under a certain subband, respectively.
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(1) Estimation of noise variance δ:

δ(s,j) =
median

∣∣∣Y(s,j)

∣∣∣
0.6745

,
∣∣∣Y(s,j)

∣∣∣ ∈ HHj, (19)

where Y(s,j) is the wavelet coefficients in the wavelet domain. s = 1, 2, 3 respectively
represent horizontal coefficient HLj, vertical coefficient LH j and diagonal coefficient HH j.
j = 1, 2, 3, · · · N represents the number of decomposition layers, and N is the maximum
decomposition layer.

(2) Estimation of the wavelet coefficient variance δx of the image:
After Step 1, image wavelet coefficients and noise wavelet coefficients are independent

of each other, consequently
Y = X + Q, (20)

δ2
Y = δ2

X + δ2, (21)

where Y is the wavelet coefficient of the noisy image, X is the wavelet coefficient of the
original image, Q is the wavelet coefficient of the noise. δ2

Y is variance of wavelet coefficients
of noisy image, δ2

X is variance of wavelet coefficients of original image.
Since Y obeys Gaussian distribution, so

δ2
Y =

1
n × n

n

∑
i=1

n

∑
j=1

Y2
(i,j). (22)

From (21) and (22), the standard deviation of the wavelet coefficients of the image X
can be estimated as:
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∧
δX =

√
max(

∧
δY

2
−

∧
δ

2
, 0). (23)

• Step 4: Denoise each sparse layer of the image through different thresholds acquired
from the adaptive threshold strategy inStep 3, separately.

• Step 5: Do inverse wavelet transform to obtain the denoised low frequency part and
denoised high frequency part, and use inverse MCA to combine the two parts.

• Step 6: Construct the final denoised MRI by operating inverse VST.

2.7. Evaluation Criteria

Image evaluation methods can be divided into subjective classes and objective classes
from the perspective of evaluation subjects. In the former, the human eye is the main body
to evaluate the image quality; in the latter, the computer model is used to approximate
the visual system of the human eye, and the quantitative index is designed to evaluate the
image quality. The objective evaluation method is widely used in image quality evaluation
of computer vision because it is not altered by the environment and humans. In objective
image quality evaluation methods, the most extensively used criteria are peak signal-to-
noise ratio (PSNR) [40], and structural similarity index (SSIM) [41].

(1) Peak Signal to Noise Ratio (PSNR)
PSNR reflects the fidelity of denoised image, and the higher the value, the better the

fidelity. Its unit is decibels (dB). The smaller the value is, the more serious the distortion is.
PSNR is defined as:

PSNR = 10 log10
M × N[max( f (i, j))]2

∑M
i=1 ∑N

j=1[h(i, j)− f (i, j)]2
. (24)

where f (i, j) and h(i, j) represent the pixel values of the reference image and the measured
image at pixel position (i, j), respectively, and M × N is the size of the image pixel matrix.

(2) Structural Similarity Index (SSIM)
SSIM contrasts the reference image and the estimated image in three dimensions, e.g.,

brightness, contrast and structure, and obtains value by weight multiplication. It reflects
the similarity between the reference image and the tested image. SSIM ∈ [− 1,1], and the
larger the value, the higher the similarity. SSIM is defined as:

SSIM = [L( f , h)]α × [C( f , h)]β × [S( f , h)]γ, (25)

L( f , h) = (2µ f µh + C1)/(µ2
f + µ2

h + C1),
C( f , h) = (2σf σh + C2)/(σ2

f + σ2
h + C2),

S( f , h) = (σf h + C3)/(σf σh + C3),
(26)

where f and h represent the reference image and the measured image; L, C, and S rep-
resent brightness similarity, contrast similarity and structure similarity, respectively; µ f ,
and µh represent the average pixel value of f and h; σf , and σh represent the variance,
and σf h represent covariance of the reference image and the measured image, respec-
tively. α,β, and γ respectively represent the corresponding weight parameter, generally
set to 1. C1, C2, and C3 are three constants to avoid denominators being zero, gener-
ally, C1 = (k1 × L)2, C2 = (k2 × L)2, L is the specified dynamic range of the input image
(255 for 8-bit grayscale), k1 ≪ 1, k2 ≪ 1. When α = β = γ = 1 and C3 = C2/2, (25) can be
simplified to:

SSIM =

(
2µ f µh + C1

)(
2σf h + C2

)
(

µ2
f + µ2

h + C1

)(
σ2

f + σ2
h + C2

) , (27)

Although (27) is easy to calculate and has been processed in many previous studies,
it is applicable to situations where brightness similarity, contrast similarity and structure
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similarity have similar effects on image quality evaluation. The denoising algorithm
designed in this article is aimed at medical MRI images, and contrast similarity and
structural similarity play a relatively important role in evaluating the quality of medical
images, compared with brightness similarity. Therefore, in this experiment, C and S are
given relatively larger weights: α = 1

5 , β = 2
5 , γ = 2

5 . So (25) can be simplified as:

SSIM =


(

2µ f µh + C1

)
(

µ2
f + µ2

h + C1

)


1
5

(

2σf h + C2

)
(

σ2
f + σ2

h + C2

)


2
5

, (28)

In practical applications, the mean structural similarity (MSSIM) is used to estimate
the structural similarity of the entire image, namely:

MSSIM =
1
J

J

∑
j=1

SSIM
(

xj, yj
)
, (29)

where, xj and yj represent the j-th partial image block in the original image and the denoised
image, respectively, and J is the total number of partial windows. MSSIM measures the
structural similarity between the restored image and the original image. Among them,
a larger MSSIM value means that the restored image can better maintain the structural
features of the original image.

2.8. Statistical Analysis

We calculated PSNR, and MSSIM values to evaluate the quality of denoised MRIs,
and used the one-way analysis of variance (ANOVA) to compare the denoising effects of
different approaches. p < 0.01 was considered statistically significant.

3. Results

All algorithms are encoded in matlab_R2020b_win64 environment. The same noised
image datasets were used to ensure the validity and rationality of the evaluation results
when comparing different denoising algorithms.

3.1. Denoising Results on Synthetic MRIs

The denoising results for different methods on the T1w, T2w, and PDw with different
Rician noise levels are displayed in Tables 1–3 and Figure 7. The experimental data
presented in Tables 1–3 are based on a sample size of 5430 synthetic brain MRIs. Each
value in the table is the summed average value of PSNR and MSSIM of multiple images
in the corresponding image group, providing an accurate representation of each group’s
performance. The average values in Tables 1–3 show that the proposed denoising method
upgraded the PSNR, and MSSIM of noisy MRIs significantly, and improved them more
significantly than bilateral filtering [42], anisotropic diffusion (AD) [43], nonlocal means
filtering with non-subsampled shearlet transform (NST–NLM filtering) [44], Gaussian
filtering [45], adaptive blockmatching and 3D (ABM3D) filtering [46], and nonlocal low-rank
tensor approximation with logarithmic-sum regularization (NLRTA–LSR), filtering [47] for
all noise levels (3%, 5%, 7%, 9%).

From Tables 1–3 and Figure 7, it can be seen that the SSIM value and PSNR value of
the noise reduction results of each algorithm decrease with the increase of noise intensity
in the image. From the six histograms in Figure 7a–f, it can be observed that AD have the
largest variation amplitude of MSSIM and PSNR values with the change of noise in the
three modalities of MRI datasets, whereas the variation amplitude of the proposed method
in this paper is minimal.

Figure 7 also shows that the PSNR and MSSIM values between bilateral filtering,
AD, and Gaussian filtering in each noise level data set (of T1w, T2w, and PDw) have little
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difference, and are lower than those of the other four denoising algorithms; in contrast, the
values of the proposed method in this paper are highest.

Table 1. Results for different compared methods on the T1w MRIs with different Rician noise levels.

Methods
3% 5% 7% 9%

PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM

Noisy images’ 28.9690 0.7543 24.8977 0.6965 22.6711 0.6475 20.6069 0.5828
Bilateral filtering [42] 31.5046 0.8472 28.4792 0.7928 27.8130 0.7281 25.6071 0.6812
AD [43] 29.5920 0.8563 25.9117 0.7388 23.0982 0.6855 21.1842 0.6532
NST–NLM filtering [44] 37.2181 0.9631 34.6471 0.9428 32.4252 0.9371 31.6326 0.8972
Gaussian filtering [45] 30.0812 0.7932 26.7601 0.7371 25.7025 0.6931 22.7249 0.6280
ABM3D filtering [46] 36.2561 0.9581 34.0411 0.9355 31.9732 0.9176 29.0452 0.8526
NLRTA–LSR [47] 38.9526 0.9795 36.1028 0.9549 34.2501 0.9408 32.8904 0.9247
VST–MCAATE 40.2310 0.9862 39.4210 0.9830 38.7711 0.9820 37.8901 0.9738

Table 2. Results for different compared methods on the PDw MRIs with different Rician noise levels.

Methods
3% 5% 7% 9%

PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM

Noisy images’ 27.3811 0.7592 23.4627 0.5319 21.2795 0.5018 20.6259 0.4075
Bilateral filtering [42] 30.6059 0.7906 27.4632 0.6801 27.3607 0.6428 25.0978 0.6096
AD [43] 29.7682 0.8573 25.8647 0.6036 23.1638 0.5307 21.8560 0.4769
NST–NLM filtering [44] 35.7480 0.9582 30.2139 0.9174 28.0752 0.8918 26.4628 0.8734
Gaussian filtering [45] 26.2501 0.7756 25.9355 0.6501 24.0371 0.6478 23.4001 0.5863
ABM3D filtering [46] 35.7634 0.9463 33.0832 0.9325 30.8031 0.8934 28.3591 0.8758
NLRTA–LSR [47] 39.1127 0.9704 37.4088 0.9631 36.3431 0.9459 33.4136 0.9206
VST–MCAATE 40.2260 0.9861 39.3893 0.9798 38.6811 0.9779 37.8560 0.9622

Table 3. Results for different compared methods on the T2w MRIs with different Rician noise levels.

Methods
3% 5% 7% 9%

PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM

Noisy images’ 27.3551 0.7358 23.0532 0.6207 21.3520 0.5805 20.6149 0.4855
Bilateral filtering [42] 29.3853 0.7863 28.3904 0.7318 28.0345 0.7204 25.9146 0.6908
AD [43] 29.3790 0.8302 25.7041 0.7501 22.5302 0.6094 20.8501 0.4905
NST–NLM filtering [44] 35.5427 0.9363 31.2087 0.9227 29.1058 0.8943 27.5675 0.8901
Gaussian filtering [45] 28.0325 0.7812 26.1740 0.6738 24.6259 0.6031 23.6306 0.5703
ABM3D filtering [46] 34.2550 0.9492 31.3185 0.9204 29.0350 0.9154 28.5041 0.8926
NLRTA–LSR [47] 37.8633 0.9804 34.7425 0.9572 32.5816 0.9488 31.5804 0.9437
VST–MCAATE 40.0342 0.9859 39.4430 0.9829 38.7560 0.9792 36.8791 0.9803

The average PSNR and MSSIM values of different denoising methods in three modality
datasets are displayed in Table 4, and their variation trend are displayed in Figure 8. It can
be seen that the line of the PSNR and MSSIM values of ours are almost horizontal. The
larger standard error values indicate that the denoising effect is influenced by different
data modalities to a greater extent. The standard error values of PSNR and MSSIM of the
proposed method are the lowest among the compared seven denoising methods.

Table 4. Average PSNR and MSSIM values of different methods in different modality datasets.

Methods
T1w PDw T2w Mean ± SD/SE *

PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM PSNR (dB) MSSIM

Noisy images’ 24.2862 0.6703 23.1873 0.5501 23.0938 0.6056 23.5224 ± 0.5414/0.6631 0.6087 ± 0.0491/0.0602
Bilateral filtering [42] 28.3510 0.7623 27.6319 0.6808 27.9312 0.7323 27.9714 ± 0.2949/0.3612 0.7251 ± 0.0337/0.0412
AD [43] 24.9465 0.7335 25.1632 0.6171 24.6159 0.6701 24.9085 ± 0.2250/0.2756 0.6735 ± 0.0476/0.0583
NST-NLM filtering [44] 33.9808 0.9351 30.1250 0.9102 30.8562 0.9109 31.6540 ± 1.6722/2.0480 0.9187 ± 0.0116/0.0142
Gaussian filtering [45] 26.3172 0.7129 24.9057 0.6650 25.6158 0.6571 25.6129 ± 0.5762/0.7058 0.6783 ± 0.0247/0.0302
ABM3D filtering [46] 32.8289 0.9160 32.0022 0.9120 30.7782 0.9194 31.8698 ± 0.8424/1.0317 0.9158 ± 0.0030/0.0037
NLRTA-LSR [47] 35.5490 0.9500 36.5696 0.9500 34.1920 0.9575 35.4368 ± 0.9739/1.1928 0.9525 ± 0.0035/0.0043
VST-MCAATE 39.0783 0.9813 39.0381 0.9765 38.7781 0.9821 38.9648 ± 0.1331/0.1630 0.9799 ± 0.0025/0.0030

* SD: standard deviation; SE: standard error.
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Figure 7. Comparison of PSNR/MSSIM values for different methods on the T1w/PDw/T2w MRI
with different Rician noise levels. (a–c) are PSNR value histogram of different methods in T1w, PDw,
T2w MRIs, separately; (d–f) are MSSIM value histogram of different methods in T1w, PDw, T2w
MRIs, separately. Kalaiyarasi, 2023, used Bilateral filtering [42]; Gupta, 2021, used AD [43]; Sharma,
2021, used NST–NLM filtering [44]; Tyagi, 2018, used Gaussian filtering [45]; Yahya, 2020, used
ABM3D filtering [46]; Wang, 2022, used NLRTA–LSR [47].

3.2. Evaluation of Real Clinical MRIs

The experimental results of the proposed method show clear advantages over the
previous state-of-the-art algorithms. To use absolute clean MRIs as numerical references,
we used the SBD, which is synthetic data, and may not be realistic enough. To prove the
effectiveness of the proposed algorithm in removing noise in real clinical MRIs and avoid
the contingency of denoising results at the same time, we also conducted further experi-
ments using real clinical MR brain datasets [6,30]. A large number of experiments based on
real clinical datasets showed that denoised MRIs are clearer than original real images, and
residual images have no anatomical structure. Figure 9 is one of the experimental results
with three modalities. Table 5 shows the average denoising results obtained from real brain
datasets (113 2D-T1w, 184 2D-T2w, 136 2D-PDw, 581 3D-T1w, 578 3D-T2w, 578 3D-PDw).
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Figure 9. Real clinical images denoising examples (the 13th slice of brain tumor MRI was taken from
a 22-year-old male brain tumor patient in the real clinical data set of Harvard University). From top
to bottom, the left column represents real T1w, real T2w, and the real PDw; the middle column is
the corresponding filtered images; the right column is the corresponding residual images (removed
Rician noise).
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Table 5. Average PSNR and MSSIM values of different methods (under single noise levels 3%, 5%,
7%, 9%, and mixed noise levels 3 + 5%, 3 + 5 + 7%).

Methods PSNR (dB) MSSIM

Bilateral filtering [42] 27.2930 0.7196
AD [43] 24.6760 0.6456
NST-NLM filtering [44] 31.5442 0.9021
Gaussian filtering [45] 25.5867 0.6612
ABM3D filtering [46] 31.4061 0.8913
NLRTA-LSR [47] 35.1065 0.9486
VST-MCAATE 38.7532 0.9781

3.3. Evaluation Focused on Diagnostic Tasks

The objective evaluation metrics (PSNR, MSSIM) used in this paper to assess denoising
performance are based on the characteristics of the human visual system. These metrics
are also highly sensitive to subtle variations in pixel values that are imperceptible to the
human eye, and are therefore widely utilized for quantitative assessment of image quality
in the field of image processing. However, evaluating the quality of medical images is
different from natural images, as it not only requires consideration of the tampered pixel
values and size, but also requires specific consideration of diagnostic tasks. Therefore,
in this section, we ranked the opinion scores given by radiologists on denoised MRIs to
subjectively compare the denoising effects of different algorithms.

To facilitate scoring and statistical analysis of the scoring results, we customized a
MATLAB image window. Figure 10 shows the radiologists’ scoring GUI interface designed
in this paper. In the scoring interface, denoised images are randomly displayed to eliminate
the influence of image display order on the scoring results. In the scoring interface, denoised
MRIs are randomly displayed to eliminate the influence of image display order on the
scoring results. The evaluation of denoised brain MRI quality is conducted from the
perspective of professional radiologists, focusing on diagnostic tasks. The scoring is based
on the confidence rating of the information extracted from the images. OLED screens
use organic light-emitting diodes to emit light, with each pixel capable of independent
illumination, ensuring consistent display effects from different viewing angles. Taking into
account the varying heights and computer screen viewing habits of different experts, we
used OLED screens to display the MRIs. We invited 13 radiologists to score each randomly
displayed denoised image on a scale of 0–10, with higher scores indicating better image
quality. We discarded abnormal values from the manual scoring results using the outlier
removal method to ensure the reliability of the data. The remaining subjective scores were
averaged to obtain the mean opinion score (MOS).

The comprehensive ranking results of different denoising algorithms (in terms of
objective evaluation of denoising effects on three modality brain MRIs under four noise
levels) are shown in Table 6. In addition, we have added the ranking results of two no-
reference image quality evaluations in the table. The modified blind/referenceless image
spatial quality evaluator (M-BRISQUE) [48] is an improvement on BRISQUE [49]. BRISQUE
was originally designed for natural images and is one of the best state-of-the-art models in
no-reference image quality evaluation, because it considers the luminance, image features
and natural scene statistics of the image with very low computational complexity. In
previous studies, it has been applied to the no-reference quality evaluation of ultrasound
images [50] and MRI images [51]. Subsequent research [48] improved it and proposed a
modified BRISQUE image quality evaluation method that is more suitable for MRIs. The
improved method significantly increases sensitivity to Rician noise, and this paper therefore
adopted M-BRISQUE. The objective measure of quality of denoised images (OMQDI) [52]
also achieved a relatively high Pearson’s linear correlation coefficient (PLCC) [53] in MRIs,
making it a good choice for no-reference image quality evaluations. Figure 11a presents
the histograms of MOS values of different algorithms in the comparative experiment,
with the numbers in the circles indicating the final ranking results; Figure 11b is the
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average histogram of the objective rankings of each denoising algorithm for all image
sets, with the numbers in the circles indicating the final ranking results. As can be seen in
Figure 11, NST–NLM filtering [44] and ABM3D filtering [46] have no significant difference
in MRIs denoising effects; AD [43] and Gaussian filtering [45] also shows no significant
difference. VST–MCAATE ranks at the top, showing significant differences when compared
to other methods.
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Figure 11. Matching of image quality for qualitative and quantitative evaluations: (a) Histograms of
MOS values for each algorithm, (b) Histograms of average ranking of objective evaluation results for
each algorithm. Kalaiyarasi, 2023, used Bilateral filtering [42]; Gupta, 2021, used AD [43]; Sharma,
2021, used NST–NLM filtering [44]; Tyagi, 2018, used Gaussian filtering [45]; Yahya, 2020, used
ABM3D filtering [46]; Wang, 2022, used NLRTA–LSR [47]. The numbers in the circles are indicating
the final ranking results.
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Table 6. Rank score of different methods based on PSNR and MSSIM value.

Methods
PSNR MSSIM OMQDI M-BRISQUE

T * Mean Score R
T1w PDw T2w T1w PDw T2w Mixed Mixed

Bilateral filtering [42] 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 5 6 5 6 5 6 6 6 5 6 6 137 5.2692 ± 0.4436 5
AD [43] 7 7 7 7 6 7 7 7 6 7 7 7 5 6 7 6 5 7 7 7 5 5 5 7 3 5 163 6.2692 ± 1.0212 6
NST-NLM filtering [44] 3 3 3 3 4 4 4 4 3 4 3 4 3 3 3 3 3 4 4 4 4 3 4 4 4 3 91 3.5 ± 0.5 3
Gaussian filtering [45] 6 6 6 6 7 6 6 6 7 6 6 6 7 7 6 7 7 6 5 6 7 7 7 6 7 7 166 6.3846 ± 0.56 7
ABM3D filtering [46] 4 4 4 4 3 3 3 3 4 3 4 3 4 4 4 4 4 3 3 3 3 4 3 3 5 4 93 3.5769 ± 0.5666 4
NLRTA-LSR [47] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 52 2 ± 0 2
VST-MCAATE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24 1 ± 0 1

* T: total score; R: final rank.



Mathematics 2024, 12, 748 18 of 21

4. Discussion

In this paper, we proposed a dedicated noise reduction method to MRIs to upgrade
the reliability and accuracy of brain MRI application and analysis, which was named VST–
MCAATE, and tested on three independent datasets. This method has two most important
advantages: First, the sparse representation and multi decomposition designed in this
study enable the denoising model to solve the problem of useful information and noise
overlapping in the frequency band, which can in turn preserve complex texture details
of MRIs while denoising; second, the variance of the noisy pixel, and the variance of the
non-noisy pixel were both taken into consideration while setting the threshold model, and
the threshold is locally adaptive, which both mean the model has a better ability to identify
noisy and non-noisy pixels. Consequently, the proposed method can also have a good
denoising effect when the noise distributions and intensity are unknown, and can remove
the noise as much as possible without misclassifying the non-noisy pixel. Experimental
results show that denoising method proposed in our study outperforms state-of-the-art
methods (bilateral filtering, AD, NST–NLM filtering, Gaussian filtering, ABM3D filtering,
and NLRTA–LSR), in terms of obtaining better PSNR values and MSSIM values, and
demonstrating strong stable noise reduction capability in different modes and at different
noise levels.

In compared experiments, the numerical results of PSNR and MSSIM decrease with
the increase of noise intensity, which indicates that the degree of noise pollution directly
affects the denoising effect of each denoising model, and also that the denoising effect
will decrease with the increase of noise pollution degree. In real clinical MRIs, the noise
level is unknown, and various levels of noise may exist, which establishes that denoising
robustness at different noise levels is as important as the denoising effect at a certain noise
level. Therefore, we also compared the noise robustness of each denoising model. The
variation amplitude of the MSSIM value and PSNR value of methods at different noise
levels indicates that the noise robustness of the proposed method is the best among them.

Comparison results of PSNR and SSIM values of each denoising model at different
noise levels indicate that the denoising effect of bilateral filtering, AD, and Gaussian
filtering is ordinary, while the denoising effect of the proposed method in this paper is
the most outstanding, when considered against the latest and most advanced (six) noise
reduction algorithms that operate in various noise intensities. The variation trend and
standard deviation of SSIM and PSNR values for different methods in different modality
datasets indicate that the denoising effects of the proposed method are almost the same in
each modality (T1w, T2w, PDw) of MRI datasets; However, other compared methods are
more or less influenced by the modality of MRI data. The denoising results of real clinical
MRIs indicate that VST–MCAATE can effectively remove the Rician noise of the brain MRIs
without affecting the original anatomical structure of the image. The evaluation results
focused on diagnostic tasks indicate that the comprehensive subjective evaluation ranking
results and objective evaluation ranking results of the (seven) compared algorithms remain
consistent; when the focus is on diagnostic tasks, the denoising algorithm proposed in this
paper still performs the best.

Although this method has many advantages, it also has several limitations. First,
due to the limitations of the reference MRIs on the global database (GDB), the denoising
experiments used conventional sequences MR datasets, and did not verify the effect on MR
datasets with different scanning modes, such as diffusion tensor imaging (DTI). Second,
the edge detection method or the multi-modal fusion method can be added to the proposed
denoising process to obtain high-quality clinical images with enhanced edges and textures.
But its denoising effect cannot be evaluated and compared with the state-of-the-art methods
quantitatively by objective evaluation criteria because there are no standard fused noise-free
reference image datasets. If the subjective evaluation method is to be used to evaluate the
effect of image quality improvement, then many professional doctors need to evaluate it by
eye observation scoring. Then, quantitative comparisons can be made. We are committed
to continuously refining and enriching our research to solve the potential limitations.
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5. Conclusions

This paper proposed a dedicated noise reduction method for brain MRIs. A large
number of experiments have used SBD and real clinical data to show that the proposed
denoising method has advantages in upgrading the quality of medical MRIs, which is due
to it protecting the edge contour and texture details while effectively removing the noise
with different and unknown noise levels. This method also has strong noise robustness,
and its denoising effects are not limited by different MRI modalities. The proposed method
significantly outperforms state-of-the-art methods, such as bilateral filtering, Gaussian
filtering, AD, NST–NLM filtering, NLRTA–LSR filtering, and ABM3D filtering, in achieving
higher PSNR and MSSIM. This method can, in reconstructing high-quality MRIs with a
clearer and more precise anatomical structure of human soft tissue, upgrade the reliability
and accuracy of brain MRI application and analysis. In this and other respects, the method
continues to demonstrate potential clinical promises.
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