
Token meets Wallet:
Formalizing Privacy and Revocation for FIDO2∗

Lucjan Hanzlik1, Julian Loss1, and Benedikt Wagner1,2

1CISPA Helmholtz Center for Information Security
2Saarland University

November 12, 2022

Abstract

The FIDO2 standard is a widely-used class of challenge-response type protocols that allows to authenticate
to an online service using a hardware token. Barbosa et al. (CRYPTO ‘21) provided the first formal security
model and analysis for the FIDO2 standard. However, their model has two shortcomings: (1) It does not
include privacy, one of the key features claimed by FIDO2. (2) It only covers tokens that store all secret keys
locally. In contrast, due to limited memory, most existing FIDO2 tokens either derive all secret keys from a
common seed or store keys on the server (the latter approach is also known as key wrapping).

In this paper, we revisit the security of the WebAuthn component of FIDO2 as implemented in practice.
Our contributions are as follows. (1) We adapt the model of Barbosa et al. so as to capture authentication
tokens using key derivation or key wrapping. (2) We provide the first formal definition of privacy for the
WebAuthn component of FIDO2. We then prove the privacy of this component in common FIDO2 token
implementations if the underlying building blocks are chosen appropriately. (3) We address the unsolved
problem of global key revocation in FIDO2. To this end, we introduce and analyze a simple revocation
procedure that builds on the popular BIP32 standard used in cryptocurrency wallets and can efficiently be
implemented with existing FIDO2 servers.

1 Introduction

Online authentication is one of the most pressing challenges faced by security engineers and cryptographers today.
Reliable authentication is an important concern for both the security of user’s accounts as well as the reputation of
service providers. A simple way to strengthen the security of an authentication process is to introduce additional
authentication factors. Usually, the user has to just provide a login and password (something she knows). A
popular way to introduce a second factor is to use a device (something she has) that is registered to the user’s
account. Universal Second Factor (U2F) (or CTAP1, as it is currently named) is a protocol to achieve two-factor
authentication using a designated device that we refer to as a token. The token runs a simple piece of code and
interacts with the user’s interface, e.g., a web browser. We refer to this interface as the client or agent. The agent
acts as a proxy device during the authentication process between a token and a server that we call the relying
party. The main benefit of this solution over the login/password approach is the protection against phishing
attacks and database breaches. CTAP1/U2F and its successor CTAP2 are part of the FIDO specification [fid19].
Together with the complement W3C web authentication [web20] (WebAuthn) they form the state-of-the-art for
online authentication using security tokens.

In recent work, Barbosa et al. [BBCW21] gave the first formal model for token-based authentication and
provided a security proof for the FIDO2 standard. While their model provides an important starting point for

∗This is the full version of a paper with the same title that will appear at IEEE S&P 2023.

1

further exploration of FIDO2’s security properties, it does not accurately model several key aspects of FIDO2 as
used in practice. In this work, we revisit the FIDO2 standard and give a more complete security analysis of its
security features. We also augment the existing standard with a new feature that allows to easily revoke keys
of compromised tokens. Before presenting our contributions in more detail, we first explain several disparities
between the model of Barbosa et al. and how FIDO2 is commonly used in practice.

Attestation. Barbosa et al. consider a model where the token and the relying party are initially provided a pair
of attestation secret key and attestation public key by the manufacturer. Thereby, servers can verify that they
interact with tokens from trusted manufacturers. While attestation is common practice for critical interactions
such as banking transactions, it is rarely used for more mundane scenarios such as logging in to an internet
account [BCZ22]. Also, naive attestation violates privacy [GH18]. Therefore, to reason about the security and
privacy of FIDO2 in its most widely used form, we consider a model without attestation.

Privacy. There are two ways to implement FIDO2 tokens. The first is to store all secret keys of the token locally,
i.e. on the authentication token. In practice however, keys are almost exclusively stored externally on the server
[KHWK22, Yub20]. External key storage can be implemented securely using so called key wrapping, where an
encryption of the key is stored with the server. Another approach is to use a key derivation function to derive
keys on the fly. Throughout, we refer to both key wrapping and key derivation function approaches as external
key storage.

Since tokens are limited with regards to storage space, externally stored keys provide a distinct storage advan-
tage over locally stored keys. On the downside, externally stored keys may give the server additional information
that it may use to link separate sessions of the token.

Let us illustrate this using a (pathological) implementation of key wrapping. Assume that the server stores
ciphertexts of the form (Enc(k, sk), H(k)), where Enc is a symmetric encryption scheme, H is a hash function,
k denotes the encryption key, and sk denotes the signing key used for authentication. Observe that the above
scheme appends a hash of the secret encryption key to the ciphertext of Enc. Intuitively, in the random oracle
model, the above scheme is as secure as Enc. However, ciphertexts produced by the same token (i.e. using the
same key k) can trivially be linked using the second component.

The above discussion shows that the use of externally stored keys leads to unexpected subtleties with regards
to privacy across different sessions of the same token. Unfortunately, as Barbosa et al. consider exclusively the
setting of locally stored keys, their model does not provide any treatment of privacy. Thus, proving the privacy
properties claimed by FIDO2 remains an open problem.

1.1 Our Contribution

In this work, we present a new security model for the WebAuthn component of FIDO2. We analyze existing
FIDO2 implementations in this model. In a second step, we identify a lack of practical key revocation in these
implementations that is compatible with our privacy goals. We now explain our contributions in more detail.

New Security Models for Privacy and Impersonation. Our first contribution is to augment the model
of Barbosa et al. with a suitable notion of privacy, and analyzing existing token implementations using key
wrapping and key derivation functions in this augmented model. Concretely, we define a natural security game
with three different winning conditions, leading to strong, medium and weak unlinkability. Intuitively, the winning
condition for strong unlinkability only disallows a generic linking attack that no token implementation can mitigate
[KHWK22]. For medium and weak unlinkability, we slightly weaken the restrictions on this attack. The results
of our analysis in these models are given in the top part of Table 1. Notably, while key wrapping provides strong
unlinkability if we rely on anonymous authenticated encryption, our analysis shows that implementations using
the key derivation function approach provide only medium unlinkability. In this sense, our privacy notions show
exactly which linking attacks are possible for these implementation, and reveal a gap between the key wrapping
and key derivation approaches for externally storing keys. On top of these new privacy definitions, we also define
an appropriate notion of security against impersonation in the context of externally stored keys and show that
existing implementations satisfy it.

2

Adding Global Revocation. When using FIDO2, a crucial aspect is how to securely revoke keys in case access
to the authentication token is ever lost. Indeed, the usability study by Lyastani et al. [LSN+20] shows that one
of the top concerns of users is that an adversary can gain access to their account in case their FIDO2 token gets
lost or is stolen. For all current token implementations, a user has to revoke all keys separately by logging in
at each server, which is highly impracticable. To address this revocation problem in a usable way, we desire a
procedure that allows to simultaneously revoke all keys associated with an token without communicating with
each server individually. This includes also any future keys that the (compromised) token may attempt to register
with the relying party. Ideally, revocation is done by globally publishing some short revocation information, which
is then noticed by all servers. The revocation information can be stored externally (e.g. on a piece of paper) by
the user in a secure location. We refer to such a procedure as global revocation. In terms of security, we desire
three properties: First, as long as the revocation information is not published, all credentials should be unlinkable
to guarantee privacy. Second, we demand security against impersonation even after publishing the revocation
information. This is of great importance, as otherwise an attacker could actively look for such published revocation
information and impersonate a user before a server that periodically checks for revocations may notice. Finally,
it should be difficult for a malicious party to launch a denial of service (DoS) attack in which it revokes keys on
behalf of an honest user. In Section 6 we formalize these security properties of global revocation.

As we observe, however, achieving these properties for global revocation is a challenging endeavour. To get
an intuition why, consider a naive approach where every credential of a user is prefixed with some common tag t.
To revoke, one can simply publish t. This approach clearly links all of the prefixed credentials and hence violates
any reasonable notion of privacy. Additionally, a DoS attack as mentioned above is possible, because t is not
kept secret. This shows the technical challenge introduced by global revocation: On the one hand, keys can not
be generated independently, as the published revocation information has to identify all keys. On the other hand,
generating keys using some correlated randomness may violate the users privacy and security.

Crypto Wallets to the Rescue. Fortunately, we can rely on a practical solution from the cryptocurrency space to
solve this issue. A common approach to store a multitude of keys compactly is to use deterministic key derivation1.
Considering the case of BIP32, the most widely implemented procedure for deterministic key derivation, ECDSA
keys are derived from a pair of master keys msk ∈ Zp,mpk = gmsk and a chaincode chain. Here, g denotes the
base point of an elliptic curve and chain can be thought of as a random seed. To derive a fresh key pair for an
identity id, BIP32 first computes w := Hash(id, chain,mpk), then sets skid := msk + w, pkid := mpk · gw. We
observe that this procedure provides a simple means of global revocation. To revoke all public keys associated with
a pair msk,mpk, one can simply publish mpk and chain. Now, each server can find deterministically recompute
the public keys from mpk and chain, and revoke them. After introducing this new token implementation based
on BIP32, we show that it satisfies the security and privacy properties that we defined. We highlight that proving
that ECDSA signatures remain unforgeable with respect to keys derived in this fashion once chain is leaked turns
out be non-trivial. In recent work, Das et al. were the first to consider this stronger form of unforgeability and
showed that it holds for key-prefixed ECDSA given that no message is ever signed twice [DEF+21]. As we want
our new token implementation to be compatible with existing FIDO2 server implementations, we can not rely on
key-prefixing as it is used by Das et al. [DEF+21], and have to find a way to allow signing the same message
multiple times. This makes the analysis challenging. For further details, we refer the reader to Section 7. Finally,
we give experimental results that showcase the efficiency of our protocol during authentication and revocation.

1.2 Related Work

The first formal model for the FIDO2 protocol was proposed by Barbosa et al. [BBCW21]. The authors introduced
the notion of passwordless authentication that models the WebAuthn protocol in the scenario when the token
uses keys stored locally. They also present a security model for PIN-based access control that tries to formally
define the CTAP protocol executed between the token and the client. Barbosa et al. show that CTAP only
provides a weaker access control notion and proposes an alternative protocol based on password-authenticated
key agreement (PAKE).

1Such a mechanism is colloquially referred to as a wallet.

3

Scheme Unlinkability Authentication Revocation

kdfPA Medium Secure Local
kwrPA Strong Secure Local

bip32PA Weak Secure Global/Local

Table 1: Overview of our results. We give the first analysis of existing schemes kdfPA, kwrPA, and propose and
analyze scheme bip32PA. In local revocation, the user has to revoke all keys separately, while global revocation
means that the user can publish one string to revoke all keys simultaneously.

Bindel, Cremers, and Zhao [BCZ22] (to appear at S&P 2023) recently extended the Barbosa et al. model
to support the latest specification, introducing CTAP in version 2.1. Their model uses explicit user verification
assurance and guarantees stronger token binding properties. Relevant to our contribution is that they consider
the case where attestation of the token is not used (attestation mode None) and argue that this is the most
widely used mode. Unfortunately, their model, similar to [BBCW21], only works if the token permanently stores
all keys. They also do not consider any privacy definition that would model the desired property of cross relying
party unlinkability of the token-generated credentials.

Guirat et al. [GH18] analyzed the WebAuthn protocol using automated verification and modeled a simple
privacy definition. They showed that if the same key is used for attestation, it allows a server to link the same
token. The security and privacy issues faced by developers during the implementation of FIDO and WebAuthn
components were discussed by Alam et al. [AKB19]. Kepkowski et al. [KHWK22] report that existing relying
parties are implemented based on existing open-source solutions and, by default, support only externally stored
keys. The authors also show a timing attack allowing a malicious relying party to link users across different
services, proving that a formal definition and analysis of privacy is needed. Another line of related work provides
alternative protocols and usability studies. Chakraborty et al. [CB19] used a TPM implementation (simTPM)
based on a sim card as a secure and convenient FIDO2 token. A usability and acceptability study of FIDO2 was
done by Lyastani et al. [LSN+20]. The authors report that one of the main concerns of users is that an adversary
can access their account if they lose their token or it gets stolen. An efficient and usable revocation mechanism
would solve some of those concerns and increase the acceptance rate among users.

Revocation in anonymous authentication and privacy-preserving signatures is not a new problem. Camenisch
and Lysyanskaya [CL02] showed how cryptographic accumulators can be used to revoke users in an anonymous
setting,. The system’s authority provides users membership certificates, allowing them to prove zero-knowledge
membership against a publicly available accumulator. Boneh and Shacham [BS04] used a different approach in
the context of group signatures, the so-called verifier-local revocation. The verifier is the only party involved in the
revocation process. Camenisch et al. [CDH16] discussed revocation techniques for pseudonymous systems. Their
solution allows checking the revocation status in logarithmic time in the number of revoked users, independently of
all valid users in the system. A simple alternative approach to VLR is blocklisting in pseudonymous systems. During
the interaction, users generate a domain/application-specific unlinkable pseudonym that the verifier compares with
elements on the blocklist leading to the check taking logarithmic time in the number of revoked users.

Dauterman et al. [DCM+19] discussed the problem of backdooring FIDO tokens. They introduced the notion
of verifiable identity families (VIF) and used it to generate FIDO identities. The key feature is that the tokens can
prove an identity (i.e. public key) to be correct (given a relying party) and pseudorandom to any party holding
a VIF master public key. It allows the user to verify that the token deterministically creates identities and a
manufacturer did not implement any backdoor in the key generation algorithm. Their solution does not support
revocation without per-server interaction since identities are not publicly linkable. To link identities, the token
must create proof of correct VIF evaluation.

Frymann et al. [FGK+20] discussed the token backup procedure proposed by Yubico, a recovery solution in
case of token loss/theft. The solution allows a primary token to generate an identity that the backup device will
use with a specific relying party. Thus, instead of registering both devices, a user can register once using the

4

primary device and use the backup token if the former is lost. The problem of a backup device is orthogonal to
revocation, i.e. in case the primary device gets stolen/lost, it still has to be revoked to protect the user’s account.

From a cryptographic point of view, FIDO2 is a simple authentication scheme, a primitive which has been
extensively studied. One of the first and well-known protocols is the Schnorr identification scheme [Sch91], which
provides impersonation resistance under the discrete logarithm assumption. Authenticated key exchange (AKE)
protocols provide means to agree on a secret key between the interacting parties and simultaneously authenticate
both parties [DvW92, LMQ+03, LLM07]. A different approach to authentication is the folklore challenge-response
protocol based on signature schemes, on which FIDO2 is based. This technique provides a framework for creating
authentication protocols. Instantiated with group signatures [Cv91, BMW03] the protocol provides a way for
group members to authenticate to a server anonymously. A direct solution introduced by Teranishi, Furukawa,
and Sako is anonymous authentication [TFS04]. The extended access control protocol (EAC) [DF11, BF17] is
an alternative approach to authentication using a hardware device for machine-readable travel documents (e.g.,
e-Passports).

2 Notation and Preliminaries

We denote by z ← A(x) the execution of algorithm A on input x and with output z. If we want to make the
random coins ρ of algorithm A explicit, we write z := A(x; ρ) instead. We write y ∈ A(x) to indicate that y
is a possible output of A on input x. By r ←$ S we mean that r is chosen uniformly at random over the set S.
We will use [n] to denote the set {1, . . . , n}. By λ, we denote the security parameter. Throughout the paper,
we assume public parameters par are given implicitly to all algorithms. We will use standard notions of digital
signatures and one of the rerandomizable signature schemes discussed in [FKM+16, DFL19]. To formally model
the key wrapping technique, we will use a definition of symmetric key encryption that is both authenticated and
anonymous [RS06]. We present their syntax and security definitions in more detail in Appendix A.

3 WebAuthn and its Implementations

In this section, we give an overview of the WebAuthn protocol contained in the FIDO2 standard, and introduce
the syntax we need for our formal analysis. FIDO2 can be used as means of passwordless authentication or
as a second-factor for the standard login-via-password scenario. The WebAuthn protocol template consists of
a registration and an authentication process executed between a token and a server. In both registration and
authentication, the protocol consists of two messages sent between the server and the token, relayed through a
client which is implemented e.g. by the user’s browser. The first message is sent from the server to the token (via
the client) and contains a challenge rs. This challenge is then signed by the token, and the resulting signature
σ is sent back to the server. In the registration protocol, this second message also contains a public key pk, and
a so called credential identifier cid. The server stores this key and additional information in a credential cred.
In subsequent authentication interactions, the server first finds cid (e.g. by looking up the username), and then
includes it in the first message of the above flow.

Different token implementations may generate key material in a different way. To accommodate for memory-
constraints, the most commonly used implementations do not store the key material locally, but instead use the
value cid to securely outsource it to the server. In this paper we will focus on the following two variants:

• Key Derivation Function. The signing key is generated in a pseudorandom way using a master secret key,
the server’s identifier, and the randomly chosen credential identifier. This method is e.g. used by the
open-source FIDO2 token SoloKey2.

• Key wrapping. The signing keys are encrypted together with the server’s identifier and the ciphertext is the
credential identifier. This method is e.g. used by Yubico in their implementation of FIDO2 tokens [Yub20].

2see https://github.com/solokeys/solo

5

We will now describe the above two schemes in more detail. An overview (in our syntax) can be found in
Figure 1. We refer to the two variants as kdfPA and kwrPA, respectively. WebAuthn makes use of a hash
function H : {0, 1}∗ → {0, 1}2λ, modeled as a random oracle.

Key Generation. Initialization of a token is done using the Gen algorithm that outputs a master secret key msk.
For kdfPA this key is generated by executing msk ←$ {0, 1}λ. In the case of the key wrapping scheme, this key
is the secret key for a symmetric key encryption scheme SKE with length function ν : N → N. Thus, we set
msk← SKE.Gen(par).

Registration. We assume that every server S holds a registration context rcsS , which stores users credentials.
During registration, the server S generates a random nonce rs ←$ {0, 1}λ and sends the challenge c = (idS , rs)
to the client, where idS is a server identifier. The client verifies that idS is correct and sends Mr = H(rs) and
idS to the token. Here, the token implementations kwrPA and kdfPA differ slightly. In kdfPA, the token first
chooses a random identifier cid←$ {0, 1}λ. It then uses a pseudorandom key derivation function PRF to generate
a secret key sk := PRF(msk, (cid, idS)). We assume that PRF outputs values in the secret key space of the
signature scheme. The token computes the corresponding public key pk := ToPK(sk). In kwrPA the key pair is
computed using the signature scheme key generation algorithm (sk, pk) ← Gen(par). The secret key sk and idS
is then encrypted by the token as cid := Enc(msk, (idS , sk)). We assume that pairs (sk, idS) of signing secret
keys and server identifiers all have the same length l0 = l0(λ) ∈ N, which is achieved using appropriate padding.
We set ν∗ := ν(l0). For both schemes the secret key sk is used to create the signature σ ← Sig(sk,m), where
m := (H(idS), cid, pk,Mr). Finally, the token sends a response message Rr = (pk, σ) together with cid to the
client, which forwards it to the server. The server verifies the token’s response as follows. It aborts and stores no
credential in case Ver(pk, σ,m) = 0, where m := (H(idS), cid, pk,Mr). Otherwise, it accepts. This means that
it adds pk to its registration context, i.e. rcsS [cid] := pk.

Authentication. For authentication, we assume that the server knows the credential identifier cid of interest.
Finding cid depends on the concrete use case of WebAuthn, e.g. using FIDO2 as a second factor, or in a standalone
fashion. For example, a user could enter its username, and the server holds a mapping from usernames to credential
identifiers. The authentication protocol begins with the server generating a random nonce rs ←$ {0, 1}λ and
sending the challenge c = (idS , rs) and cid to the client. The client verifies that idS is correct and sends the
message Ma := H(rs), the server identifier idS and identifier cid to the token. Now, in the first step the token
recreates the signing key sk that it created during registration. For kdfPA this means that the token runs sk :=
PRF(msk, (cid, idS)). In case of the kwrPA the token first decrypts the cid to receive (id, sk) := Dec(msk, cid).
It then checks if this secret key correspond to the server, i.e. it returns an error if id 6= idS . For both schemes
the secret key sk is used to create the signature σ ← Sig(sk,m), where m := (H(idS),Ma). Finally, the token
sends Ra = σ to the client, which forwards it to the server. The server verifies the token’s response as follows.
First, the server uses the registration context rcs to get the token’s public key pk ← rcsS [cid]. Then, it sets
m := (H(idS), H(rs)) and accepts if Ver(pk, σ,m) = 1.

Formal Syntax. In our model, we consider parties P = T ∪ S, partitioned into the set of tokens T and the set
of servers S. Each server S ∈ S keeps as a registration context rcsS as internal state, which is an initially empty
key-value table. When new tokens register, an entry to rcsS is added. Each token T ∈ T keeps a fixed state that
is initialized once with a key mskT and does not change. We do not model clients explicitly. Instead, we allow the
adversary to do the computation that the clients do. As in [BBCW21], we assume that each server has a unique
identifier idS . In reality, idS corresponds to a URL, which justifies this assumption. In all experiments that we
define, we assume that these identifiers are given to all parties. We do not explicitly model the initial contact of
user and server, as this may differ depending on the use case. That means that we assume that the server already
knows the users account and therefore its cid.

Definition 1 (Passwordless Authentication). A passwordless authentication scheme (PlA) is a tuple PLA =
(Gen,Reg,Auth) with the following properties:

• The randomized key generation algorithm Gen takes as input parameters par. It outputs a master secret
key msk.

6

• The registration protocol Reg given as a tuple of algorithms (rchall, rcomm, rresp, rcheck).

– The randomized registration challenge generation algorithm rchall takes as input a server identity idS
and outputs a challenge value c and a state st.

– The deterministic registration command creation algorithm rcomm takes as input a server identity idS
and a challenge value c and outputs a message Mr.

– The randomized registration response algorithm
rresp takes as input a master secret key msk, a server identity idS and a message Mr and outputs and
credential identifier cid and a response Rr.

– The deterministic registration check algorithm rcheck takes as input a state st, a credential identifier
cid and a response Rr and outputs a bit b ∈ {0, 1} and a credential cred.

• The authentication protocol Auth is given as a tuple of algorithms (achall, acomm, aresp, acheck).

– The randomized authentication challenge generation algorithm achall takes as input a server identity
idS and outputs a challenge value c and a state st.

– The deterministic authentication command creation algorithm acomm takes as input a server identity
idS and a challenge value c and outputs a message Ma.

– The randomized authentication response algorithm
aresp takes as input a master secret key msk, a server identity idS , a credential identifier cid, and a
message Ma and outputs a response Ra.

– The deterministic authentication check algorithm acheck takes as input a state st, a registration
context rcs, a credential identifier cid and a response Ra and outputs a bit b ∈ {0, 1}

Algorithms rchall, rcheck, achall, acheck are executed by servers, rcomm, acomm are executed by clients, and
rresp, aresp are executed by tokens.

Definition 2 (Completeness of PlA). We say that a PlA PLA = (Gen,Reg,Auth) with Reg = (rchall, rcomm,
rresp, rcheck) and Auth = (achall, acomm, aresp, acheck) is complete, if for all msk ∈ Gen(par), parties T and S,
sets Rinit, Rbetw of tuples (cid, cred), the probability that the following experiment outputs 0 is 0:

1. Let rcs be a key-value table. For each (cid, cred) ∈ Rinit, set rcs[cid] := cred.

2. Run the registration protocol Reg of T at S, as follows:

(c, st)← rchall(idS), Mr ← rcomm(idS , c),

(cid, Rr)← rresp(msk, idS ,Mr), (br, cred)← rcheck(st, cid, Rr).

If br = 0, output 0. Otherwise, set rcs[cid] := cred.

3. For each (cid, cred) ∈ Rbetw, set rcs[cid] := cred.

4. Run the authentication protocol Auth of T at S, which is as follows:

(c, st)← achall(idS), Ma ← acomm(idS , c),

Ra ← aresp(msk, idS , cid,Ma), ba ← acheck(st, rcs, cid, Ra).

5. Return ba.

We assume that cid derived in Step 2 is not in the list Rbetw.

7

Token Client Server

(cid, Rr)← rresp(msk, idS ,Mr) : Mr ← rcomm(idS , c) : (c, st)← rchall(idS) :

cid←$ {0, 1}λ (id, rs) := c rs←$ {0, 1}≥λ

sk := PRF(msk, (cid, idS)) // kdfPA idS ,Mr if id 6= idS : abort c c := st := (idS , rs)

pk := ToPK(sk) // kdfPA Mr := H(rs)

(sk, pk)← Gen(par) // kwrPA (b, cred)← rcheck(st, cid, Rr)

cid := Enc(msk, (idS , sk)) // kwrPA m := (H(idS), cid, pk, H(rs))

σ ← Sig(sk, (H(idS), cid, pk,Mr)) cid, Rr cid, Rr b := Ver(pk, σ,m)

Rr := (pk, σ) if b = 0 : cred :=⊥
else : cred := pk

Ra ← aresp(msk, idS , cid,Ma) : Ma ← acomm(idS , c) : (c, st)← achall(idS) :

sk := PRF(msk, (cid, idS)) // kdfPA idS , cid,Ma (id, rs) := c cid, c rs←$ {0, 1}≥λ

(id, sk) := Dec(msk, cid) // kwrPA if id 6= idS : abort c := st := (idS , rs)

if id 6= idS : abort // kwrPA Ma := H(rs) b← acheck(st, rcs, cid, Ra)

σ ← Sig(sk, (H(idS),Ma)) pk := rcs[cid]

Ra := σ Ra Ra m := (H(idS), H(rs))

b := Ver(pk, σ,m)

Figure 1: The WebAuthn registration (top) and authentication protocol (bottom) protocol for the variations
kdfPA and kwrPA. The highlighted statements are only executed in the variation that is given in the respective
comment. Functions Vt, Vs (cf. Definition 4) are given as (H(idS), H(rs), cid).

4 Modeling Security and Privacy

In this section, we formally define security and privacy models for WebAuthn. While privacy is not considered
in [BBCW21], our security model is closely related to their model. Before presenting our models, we first
define server and token oracles an adversary may access. These oracles model the capability of an adversary to
freely communicate with tokens and servers, and will be used in all of our security definitions. For server S,
rcsS is the registration context, i.e the set of credentials it stores, stS is used to model the state transferred
between algorithms rchall, achall and rcheck, acheck, respectively, and the map CS is used for bookkeeping to
bind registration interactions to authentication interactions.

Definition 3 (Server and Token Oracles). Let A be an algorithm and PLA = (Gen,Reg,Auth) be a PlA. We
associate each party P ∈ T ∪ S with a set of handles πi,jP which model two types of instances corresponding to
registration and authentication. Each party is represented by a number of these instances. Concretely, we refer
to πi,jP for j = 0 as the ith registration instance of party P and for j ≥ 1 as the jth authentication instance of
P corresponding to the ith registration.

We assume that for each token T ∈ T , a secret key mskT ← Gen(par) is given, and that for each server
S ∈ S, key-value tables rcsS , CS , and stS are given. Per default, these are empty. Then, adversary A has access
to oracles Start,Challenge,Complete as follows.

• Start(πi,jS): This executes (c, st) ← rchall(idS) in case j = 0 or (c, st) ← achall(idS) in case j > 0. The
oracle sets stS [i, j] := st, and returns c to A.

• Challenge(πi,jT , idS , cid,M): This runs algorithm (cid, Rr) ← rresp(mskT , idS ,M) if j = 0 or Ra ←

8

aresp(mskT , idS , cid,M) if j > 0. The result ((cid, Rr) or Ra) is returned to A. Note that the input cid is
ignored for j = 0.

• Complete(πi,jS , cid, R): This aborts if Start(πi,jS) has not been queried before. If j = 0, it runs (b, cred)←
rcheck(stS [i, j], cid, R), sets CS [i] := cid, and rcsS [cid] := cred. If j > 0, it aborts if cid 6= CS [i].
Otherwise, it runs b← acheck(stS [i, j], rcsS , cid, R). In both cases, b is returned to A.

We assume that for each (i, j, T, S) ∈ N × N × T × S, the oracles Start(πi,jS),Challenge(πi,jT , ·, ·, ·), and

Complete(πi,jS , ·, ·) are executed only once.

The index i in token handles πi,jT may seem artificial at first, as tokens are stateless. However, this index
will simplify the following definition significantly. Namely, we follow the work of Bellare et al. [BPR00] to define
partnering of handles, which will be used in the winning condition of security experiments. Two handles πi,jS
and πi

′,j′

T are partnered if they share the same session identifier. One should think of partnered handles as if the
adversary just forwarded messages between the respective oracles. Formally, the notion of session identifiers must
be defined by the protocol. A natural choice is that the session identifiers correspond to the view of a party. Note
that the choice of session identifiers influences the notion of security that is achieved.

Definition 4 (Session Identifiers and Partnering). Let PLA be a PlA and consider the oracles from Definition
3. Let Vt be a function that takes as input the transcript tri,jT = (idS , cid,M,R) that a token T ∈ T observes

in an oracle call to Challenge(πi,jT , ·, ·, ·), and outputs a bitstring Vt(tr
i,j
T). Similarly, let Vs be a function that

takes as input the transcript tri,jS = (c, cid, R) that a server S ∈ S observes in oracle calls to Start(πi,jS),

Complete(πi,jS , ·, ·), and outputs a bitstring Vs(tr
i,j
S). We assume that these functions are specified by PLA.

We say that handles πi,jT and πi
′,j′

S are partnered if the following hold:

(j = 0⇐⇒ j′ = 0) ∧ Vt(tri,jT) = Vs(tr
i′,j′

S).

4.1 Impersonation Security

We now define what it means for a passwordless authentication protocol to be secure against impersonation.
Informally, we say that if this property holds then the token that registered must be used to authenticate against a
server and a single interaction cannot be used to authenticate multiple times. In the security game, the adversary
can interact with tokens and servers in an arbitrary way, using the oracles from Definition 3.

Definition 5 (Impersonation Security). For PlA PLA = (Gen,Reg,Auth) and an adversary A, we define the
experiment ImpAPLA as follows.

• Setup. For each token T ∈ T , a key is generated by running mskT ← Gen(par).

• Online Phase. The adversary is allowed to interact with the oracles Start,Challenge,Complete as in
Definition 3.

• Output Phase. Finally, A terminates, and the experiment outputs 1 if and only if there exists a server
handle πi,jS for j > 0 such that the following conditions hold:

1. πi,0S is partnered with a token handle πk,0T .

2. πi,jS accepted, i.e. in call Complete(πi,jS , cid, R), algorithm acheck(stS [i, j], rcsS , cid, R) returned 1.

3. πi,jS is not partnered with any token handle πi
′,j′

T , or it is partnered with a token handle, which is

partnered with a different server handle πi
′′,j′′

S′ .

9

We define the advantage of A in winning the experiment as:

AdvAImp,PLA := Pr[ImpAPLA = 1].

Let us explain the three winning conditions that are defined. By the first condition, we know that the token T
registered at server S. By the second and the third condition we know that the adversary was able to authenticate
at server S for that particular registration. We highlight that this models a “trust-on-first-use” concept. Namely,
servers consider the user communicating during registration as the honest user. In addition to the stateless nature
of tokens, this is another difference to the model by Barbosa et al. [BBCW21], who use attestation keys as their
trust anchor.

4.2 Unlinkability

We define unlinkability for passwordless authentication. Informally, we want that interactions of the same token
are unlinkable, and different registrations of the same token can not be linked. Data that is exchanged outside
of the protocol is out of the scope of our definition, e.g. metadata that could be used to link interactions of the
token.

The Unlinkability Experiment. To model the above goal in a security experiment, we let the adversary A
interact with all oracles in Definition 3 to get a global view of the system. Then, A targets two tokens T0, T1,
and gets two additional oracles Left,Right, running Tb and T1−b internally, for a random bit b. The goal of A
is to determine which token is used in which oracle. That means that if A can link interactions with the same
token, it can for example link the interaction with oracle Left to the interaction with token oracle Challenge for
token Tb. This would allow him to win the game. Also, note that unlinkability can only make sense if there are
at least two tokens used in the system, which is the reason why A has to output two tokens.

To prevent trivial linking, we have to introduce two winning conditions. The first one is a consequence
of our definition of oracles and ensures that A can not violate the assumption in Definition 3. For the second
condition, namely credential separation, we define three variants, leading to strong, medium, and weak unlinkability
guarantees. Due to the stateless nature of tokens, the behavior of a token is determined by cid and idS . This
leads to the following trivial attack: Adversary A gets a cid from oracle Left during registration, and submits it
to oracle Challenge for token T0 and server identity idSL

. It compares the resulting view (e.g. returned public
keys) with the view that it gets from submitting cid to oracle Left in authentication. If the views are consistent,
T0 is used in Left. Our strongest notion of credential separation, leading to strong unlinkability, rules out exactly
this behavior of A.

In practice, servers can follow this strategy to determine if any credential cid in its database belongs to a
user that aims to log in. The server just sends cid instead of the credential that is actually stored for this user
and checks if the authentication goes through. It is worth noting that such an attack can be launched almost
unnoticed by the user. In recent work, Kepkowski et al. [KHWK22] showed a timing attack against unlinkability
where they exploit a small time difference on some hardware tokens when handling the cid. Their paper’s key idea
is to use the WebAuthn specification to amplify the attack. To support multiple tokens, the relying party sends a
list of supported cid’s, which are locally queried to the token by the browser to find the correct one, i.e. the one
for which the token responds with a valid signature. Those queries do not require interaction and are oblivious to
the user.

Going back to our example, the malicious relying party can add cid to the list containing the correct credential
for the user account. If the response is a valid signature for cid, the relying party knows that cid corresponds to
this account. If this distinguishing fails, the user is oblivious to the attack.

Weaker Notions. Not every implementation used in practice is strongly unlinkable. As we still aim for an analysis
and a precise statement about which attacks allow to link, we define weaker variations of the above notion. To
define medium unlinkability, we make the credential separation condition more restrictive. Namely, we also rule
out that A queries the same cid at oracle Challenge (for the target T0, T1, idSL

, idSR
) and Left,Right, even if the

10

cid is made up by A and not returned in a registration of these oracles. Looking ahead, this subtle difference
will be required to prove unlinkability in case cid is not authenticated. For weak unlinkability, we additionally rule
out the case that oracle Challenge (for the target T0, T1, idSL

, idSR
) and Left,Right return the same cid during

registration. If cid has high enough entropy this implies medium unlinkability. However, there are schemes only
satisfying weak unlinkability.

Definition 6 (Unlinkability). For a PlA PLA = (Gen,Reg,Auth) and an adversary A, we define experiments
wUnl,mUnl, sUnl as follows.

• Setup. For each token T ∈ T , a key is generated by running mskT ← Gen(par).

• Phase 1. The adversary is allowed to interact with oracles Start,Challenge,Complete (see Definition 3).

• Phase 2. The adversary outputs two (not necessarily distinct) token identifiers T0, T1, and two (not
necessarily distinct) server identifiers SL, SR ∈ S. Let i0 and i1 be the smallest identifiers for which the
token handles πi0,0T0

and πi1,0T1
were not queried to the Challenge oracle in Phase 1. The experiment chooses

a bit b uniformly at random. It sets j0 := 0, j1 := 0 and initializes two oracles Left,Right as follows:

– Left(cid,M): Return Challenge(πib,jbTb
, idSL

, cid,M) and set jb = jb + 1.

– Right(cid,M): Return Challenge(π
i1−b,j1−b

T1−b
, idSR

, cid,M) and set j1−b = j1−b + 1.

• Phase 3. The adversary is allowed to interact with all the oracles defined in Phase 1 and 2.

• Output Phase. Finally, the adversary outputs a bit b̂. Consider the following lists of cid’s:

– Lrch contains all cid’s returned by queries that are not issued via Left,Right and are of the form

Challenge(πi,0T , idS , ·, ·) for any i, T ∈ {T0, T1} and S ∈ {SL, SR}.
– Lach contains all cid’s that are part of the input of queries that are not issued via Left,Right and are

of the form Challenge(πi,jT , idS , ·, ·) for any j > 0,i, T ∈ {T0, T1} and S ∈ {SL, SR}.
– Lrlr contains all cid’s returned by queries to Left or Right when jb = 0 or j1−b = 0, respectively.

– Lalr contains all cid’s that are part of the queries to Left or Right when jb > 0 or j1−b > 0, respectively.

The experiment returns 1 if and only if:

– bit b̂ is equal to bit b, and

– (instance freshness) the adversary never made a query to oracle Challenge using handles πi0,k0T0
and

πi1,k1T1
for any k0, k1, and

– (credential separation) The following set is empty:

sUnl : SsUnl := (Lrch ∩ Lalr) ∪ (Lrlr ∩ Lach) ,

mUnl : SmUnl := SsUnl ∪ (Lach ∪ Lalr),
wUnl : SwUnl := SmUnl ∪ (Lrch ∪ Lrlr).

For x ∈ {w,m, s}, we define the advantage of A in winning the experiment as:

AdvAxUnl,PLA :=

∣∣∣∣Pr[xUnlAPLA = 1]− 1

2

∣∣∣∣ .
The credential separation condition models the attacks a server can do when the same token is used twice at

the same server. Even for schemes with strong unlinkability, there is a trivial active attack, as sketched above.
For schemes with weak unlinkability, but no medium unlinkability, there is a passive attack that only involves the
two registrations.

11

5 Analysis of Existing Implementations

In this section, we analyze the existing token implementations kwrPA and kdfPA of WebAuthn. Recall that these
schemes are formally given in Figure 1. We analyze both impersonation security and unlinkability.

Analysis of Impersonation Security. As the first part of our analysis, we show that both implementations
kwrPA and kdfPA satisfy impersonation security. We obtain the following statements.

Lemma 1. Let A be an adversary in the impersonation game of kdfPA. Assume that A makes at most QH
queries to random oracle H, at most QS queries to oracle Start, and at most QC queries to oracle Challenge.
Then there exists algorithms B,B′ with the same running time as A such that

AdvAImp,kdfPA ≤
Q2
S +Q2

C

2λ
+
Q2
H

22λ
+ |T | ·AdvB

′

prf ,PRF

+QC ·AdvBeuf -cma,SIG

Lemma 2. Let A be an adversary in the impersonation game of kwrPA. Assume that A makes at most QH
queries to random oracle H, and at most QS , QC queries to oracles Start,Challenge, respectively. Then there
exist algorithms B and C with the same running time as A such that

AdvAImp,kwrPA ≤
Q2
S

2λ
+
Q2
H

22λ
+ |T | ·AdvBanon-auth,SKE

+QC ·AdvCeuf -cma,SIG.

We give a proof intuition here, and postpone the formal proofs to Appendices B.1 and B.2.

Proof Intuition. Our goal is to give a reduction from the euf -cma security of SIG. To do that, recall that the
adversary wins the impersonation game, if a token first registers a public key pk at a server, and then the adversary
authenticates, i.e. it forges a valid signature for m = (H(idS), H(rs)) with respect to pk, without using the token.
We call this interaction the forged authentication.

Our strategy is to embed the public key that we get from the euf -cma game into one of the registration
interactions between oracle Challenge and the adversary. Secret keys are not only used to sign, and we need
to deal with that. Namely, in variant kdfPA, we first need to apply pseudorandomness of PRF to make secret
keys independent and random. The variant kwrPA additionally outputs a ciphertext cid encrypting the secret key.
To eliminate this dependency on the secret key, we perform a hybrid step to switch all cid’s output by oracle
Challenge to random, while internally storing a mapping from cid to the secret key to ensure consistency.

Now we can give a reduction that first guesses the registration interaction in which it embeds the given public
key. To simulate the signatures for the embedded public key, the reduction can use the signing oracle provided
by the euf -cma game. Finally, it can use the signature that the adversary sends in the forged authentication as
a forgery for the euf -cma game. To see that the forgery is fresh, we rule out collisions for random oracle H and
the challenges rs that servers send.

Analysis of Unlinkability. Next, we give our results in terms of unlinkability. Notably, we obtain strong unlinka-
bility for kwrPA, while kdfPA only satisfies medium unlinkability.

Lemma 3. Let A be an adversary in the medium unlinkability game of kdfPA. Assume that A makes at most
QC queries to oracle Challenge. Then, there is an algorithm B, which has the same running time as A, such that

AdvAmUnl,kdfPA ≤
2QC
2λ

+ |T | ·AdvBprf ,PRF.

12

Lemma 4. Let A be an adversary in the strong unlinkability game of kwrPA. Then there exists an algorithm B,
which has the same running time as A, such that

AdvAsUnl,kwrPA ≤ |T |2 ·
(
AdvBanon-auth,SKE +

2QC
2ν∗

)
.

Again, we give a proof intuition here, and postpone formal proofs to Appendices B.1 and B.2.

Proof Intuition. To show unlinkability, our goal is to remove all information about tokens Tb, T1−b from the oracles
Left and Right. For the variant kdfPA and medium unlinkability, this can be done roughly as follows. We first use
the entropy of mskTb

to argue that the adversary can only access the prefixed random oracle G := K(mskTb
, ·) via

oracles Challenge and Left. Then, we rule out that two registrations sample the same cid. This essentially tells us
that we can assume weak credential separation instead of medium credential separation. Using weak credential
separation, we see that oracles Challenge and Left access oracle G on distinct points, which allows us to split the
oracle into two oracles. Using a similar argument for Tb and Right, we can conclude.

For kwrPA, our strategy is different. Namely, we first guess the target tokens and then apply the security of the
encryption scheme, switching all cid’s for these tokens to random. As in the proof of impersonation security, we
hold a mapping to keep the keys that we use consistent. Now, for different cid’s the tokens use independent keys.
The only way to link between oracles Challenge and Left,Right, is to reuse values cid. This is forbidden by the
strong credential separation condition. In contrast to the medium credential separation condition, the adversary
is allowed to submit a fresh cid that is not output in an registration to Challenge and Left,Right. However, as
the encryption scheme is authenticated, this will lead to aborting tokens.

To see why kdfPA does not achieve strong unlinkability in general, consider an adversary that implements the
following strategy. It first chooses two target tokens T0, T1 and server SL = SR passes them to the experiment.
Then, it runs honest registrations with oracle Left, oracle Right, and the oracle Challenge for token T0. It then
samples some random cid, and submits it during authentication interactions with these three oracles, using the
same challenge M . All oracles will return valid signatures. Assuming that these are deterministically computed
or reveal the public key, the adversary can simply compare the public keys to link. This attack would not be
possible if cid’s were authenticated, e.g. using a MAC. In this case, we are confident that one could prove medium
unlinkability.

6 Defining Global Key Revocation

A useful feature that FIDO2 currently does not support is a means of revoking keys of a comprised token.
Informally, we want to give the user the option to revoke its keys globally, without accessing all the servers which
her token is registered to one by one. In this section, we focus on formally defining syntax and security for global
key revocation. Then, in the next section we show a way to add this feature to FIDO2 using BIP32 key derivation.

In short, we define a global revocation mechanism as two algorithms that are associated with PLA. Intuitively,
these should be understood as follows. First, when a user starts using its token T ∈ T , it also obtains a
revocation key rk, which is extracted from the long-term key msk using some algorithm Revoke, and should be
stored externally, e.g. on a piece of paper. Recall from Definition 1 that when token T registers at a server S ∈ S,
the server stores a credential cred for this token in its state. If the user wants to revoke its key, it publishes rk.
We do not further specify how the user publishes rk. However, we assume that all servers periodically scan for
published revocation keys rk. Whenever a new revocation key is published, the server (with identity idS) runs an
algorithm CheckCred(idS , cred, rk) for each credential cred = rcs[cid] in its registration context. If this algorithm
accepts then the credential is considered revoked.

Definition 7 (Global Key Revocation). A PlA PLA = (Gen,Reg,Auth) satisfies global key revocation if there are
algorithms Revoke,CheckCred with the following syntax:

13

• Revoke(msk) takes as input a master secret key msk and outputs a revocation key rk.

• CheckCred(idS , cred, rk) takes as input a server identity idS , a credential cred and a revocation key rk and
outputs a bit b ∈ {0, 1}.

Further, the algorithms should be complete in the following sense: For all msk ∈ Gen(par), parties T and S, sets
Rinit, Rbetw of tuples (cid, cred) the following experiment outputs 1 with probability 1:

1. Run steps (1)-(3) from the experiment in Definition 2.

2. Run rk← Revoke(msk) and b← CheckCred(idS , cred, rk). Return b.

Clearly, the above definition is easily satisfied if we make algorithm CheckCred always output b = 1. This is
not what we aim for. Instead, we need a security notion that ensures that only the owner of msk can revoke keys
that are stored on an honest server. In the security experiment we define, the adversary gets arbitrary access to
token and server oracles. Then, it has to choose two partnered oracles corresponding to a registration. It gets
the corresponding credential and has to output a revocation key to revoke it. Intuitively, this means that it tries
to revoke an honest registration, with which it can arbitrarily interfere.

Definition 8 (Revocation Soundness). Let PLA = (Gen,Reg,Auth) be a PlA. Consider an algorithm A and the
following experiment rev-soundAPLA:

• Setup. For each token T ∈ T , a key is generated by running mskT ← Gen(par).

• Online Phase. A gets access to oracles Start,Challenge,Complete as in Definition 3.

• Output Phase. A outputs tuples (T ∗, iT∗) and (S∗, iS∗). If the oracle Complete(πiS∗ ,0S∗ , ·, ·) has never
been queried, the experiment returns 0. Otherwise, the experiment returns cred∗ to A, where cred∗ is the
credential that oracle Complete(πiS∗ ,0S∗ , ·, ·) added to rcsS∗ . Then, A outputs rk∗. The experiment outputs

1 if and only if πiT∗ ,0T∗ and πiS∗ ,0S∗ are partnered and CheckCred(idS∗ , cred∗, rk∗) = 1.

We define the advantage of A in rev-soundAPLA as

AdvArev-sound,PLA := Pr[rev-soundAPLA = 1].

Even for globally revoked keys impersonation should be impossible, in case a server does not update its state
in time. Therefore, we extend the notion of impersonation security.

Definition 9 (Impersonation Security - GR). Let PLA = (Gen,Reg,Auth) be a PlA. We consider the experiment
given in Definition 5 with the following modification, and call the resulting experiment Imp-GRAPLA: After
generating mskT for each T ∈ T , the experiment also generates rkT ← Revoke(mskT) for each T ∈ T . Then,
{rkT }T∈T is given to algorithm A as an additional input. We define the advantage of an algorithm A in the
experiment as

AdvAImp-GR,PLA := Pr[Imp-GRAPLA = 1].

For unlinkability, it is clear that all keys of a token can be linked once the revocation key is published. Thus,
in our modified unlinkability experiment, the adversary gets all revocation keys except the ones for the challenge
tokens. As our scheme only satisfies the weak version of unlinkability with global revocation, we only define this.
The medium and strong version can be defined analogously.

Definition 10 (Unlinkability - GR). Let PLA = (Gen,Reg,Auth) be a PlA. We consider the experiment wUnl
given in Definition 6 with the following modification, and call the resulting experiment wUnl-GRAPLA: After
generating mskT for each T ∈ T , the experiment also generates rkT ← Revoke(mskT) for each T ∈ T . Then,
when A outputs T0, T1 and SL, SR in Phase 2, the experiment gives {rkT }T∈T \{T0,T1} to A. The rest of the
experiment is as in wUnl. We define the advantage of an algorithm A as

AdvAwUnl-GR,PLA :=

∣∣∣∣Pr[wUnl-GRAPLA = 1]− 1

2

∣∣∣∣ .
14

7 BIP32 Passwordless Authentication

In this section, we show how to instantiate FIDO2 using ECDSA with the BIP32 key derivation [Wik18]. The
resulting scheme, denoted by bip32PA supports global key revocation.

7.1 Scheme Description

We give a description of our scheme bip32PA. Then, we also explain how it can support global revocation.

ECDSA Signatures. We recall the ECDSA signature scheme and its key-prefixed variant. The system parameters
par of the scheme contain a group G of prime order p with generator g ∈ G. Let H ′ : {0, 1}∗ → Zp be a random
oracle. We denote the scheme by SIGH′ = (Gen,Sig,SRerand,PRerand,Ver) and its key-prefixed variant as

SIGkpH′ . We first describe key generation and randomization. Key generation and rerandomization are as follows:

• Gen(par) : Sample sk←$ Zp, pk := gsk. Return (sk, pk).

• SRerand(sk, ρ ∈ Zp) : Return sk′ := sk + ρ.

• PRerand(pk, ρ ∈ Zp) : Return pk′ := pk · gρ.

Next, let us explain signing and verification. Signing and verifcation makes use of algorithms Sigint,Verint that
are used internally. For the purpose of this work, we can treat these as a black box. For details, see [DEF+21].
Using these algorithms, signing (i.e. algorithm Sig(sk,m)) is as follows:

1. Set pm := m ((pk,m) for the key-prefixed variant).

2. Compute z := H ′(pm).

3. Return σ ← Sigint(sk, z).

Verification computes z in the same way and runs Verint(pk, σ, z). Looking ahead, the fact that pm is hashed
will allow the reductions in our proof to map key-prefixed messages to messages prefixed with a server identifier.

Key Generation. Let us describe how master secret keys msk are generated for our scheme bip32PA. The key
consists of an ECDSA key pair (sk0, pk0), a so called chaincode ch and a seed seed. Looking ahead, the chaincode
and the public key pk0 can later be used to revoke keys, and the seed seed will be used to derive randomness
for signing. Concretely, the components of the key are generated as sk0 ←$ Zp, pk0 := gsk0 , ch←$ {0, 1}λ, seed←$

{0, 1}λ and we set msk := (sk0, pk0, ch, seed).

Registration and Authentication. Registration and authentication follow the WebAuthn specification. Thus,
they are very similar to the protocols described in Section 5. Formally, we present protocols Reg and Auth in Figure
2. Let us describe the differences between bip32PA and the existing schemes. The most important difference is
how keys are derived during registration and authentication. Namely, the token defines cid := Ĥ(seed, idS) using
a random oracle Ĥ : {0, 1}∗ → {0, 1}λ. Then, it derives a randomness ρ := Ĥ(pk0, ch, idS). This randomness is
used to rerandomize the pair (sk0, pk0) to a new keypair, i.e. sk := SRerand(sk0, ρ) and pk := PRerand(pk0, ρ).
As in the scheme kdfPA, the server stores cid, pk during registration and the key sk is used to sign challenges.

Let us give a brief explanation of the design choices made here. Implementing the signing process in a provably
secure way that is compatible with existing server implementations is non-trivial. This is because provable security
with respect to randomized keys for ECDSA is only known for the key-prefixed version and for one signature per
message [DEF+21]. To support multiple signatures per message, one idea is to let the token choose a random
nonce and append it to messages. As we do not want to change the protocol on the server side, we can not rely on
such random nonces. Instead, we derandomize the signing process by deriving the random coins used for signing
a message m as Ĥ(seed,m). It remains to avoid key-prefixing, as this would also require changing verification on
the server side. Here, we makes use of the fact that with high probability, the mapping from server identities to
public keys is injective. Therefore, prefixing with server identities (which is already done in WebAuthn) is as good
as prefixing with public keys. To make this idea work, we need to ensure that for each server, there is a fixed

15

(cid, Rr)← rresp(msk = (sk0, pk0, ch, seed), idS ,Mr) :

cid := Ĥ(seed, idS)

sk := SRerand(sk0, Ĥ(pk0, ch, idS))

pk := PRerand(pk0, Ĥ(pk0, ch, idS))

m := (H(idS), cid, pk,Mr), coins := Ĥ(seed,m)

σ := Sig(sk,m; coins), Rr := (pk, σ)

Ra ← aresp(msk = (sk0, pk0, ch, seed), idS , cid,Ma) :

if cid 6= Ĥ(seed, idS) : abort

sk := SRerand(sk0, Ĥ(pk0, ch, idS))

m := (H(idS),Ma), coins := Ĥ(seed,m)

σ := Sig(sk,m; coins), Ra := σ

Figure 2: The WebAuthn registration (left) and authentication protocol (right) for our new variation bip32PA.
Functions Vt, Vs, and algorithms rcomm, acomm, rchall, achall, rcheck, acheck are given as in Figure 1.

public key, which explains the definition of cid. As cid is deterministically derived from idS , each registration on
the same server will be associated with the same public key. This is also the reason why the scheme only achieves
weak unlinkability.

Global Revocation. The advantage of the BIP32 key derivation compared to existing schemes is global key
revocation, as defined in the previous section. We present algorithms Revoke and CheckCred for our scheme
bip32PA. Algorithm Revoke(msk) is given as follows:

1. Parse (sk0, pk0, ch, seed) := msk.

2. Return rk := (pk0, ch).

Algorithm CheckCred(idS , cred, rk) is as follows:

1. Parse (pk0, ch) := rk and pk := cred.

2. Run pk′ := PRerand(pk0, Ĥ(pk0, ch, idS)).

3. Return 1 if pk = pk′. Otherwise, return 0.

7.2 Revocation Soundness and Unlinkability

Next, we show revocation soundness and unlinkability of bip32PA. We postpone the formal proofs to Appendix C,
and give proof intuitions here.

Revocation Soundness. We show revocation soundness. Recall that this means that only the owner of a token
can revoke its keys. Our result is summarized in the following statement.

Lemma 5. Let A be an adversary in the revocation soundness game of bip32PA. Assume that A makes at most
QĤ queries to oracle Ĥ and at most QC queries to oracle Challenge. Then we have

AdvArev-sound,bip32PA ≤
QĤ · |T |+Q2

Ĥ
+ 1 +QC ·QĤ

2λ
.

Proof Intuition. In the experiment, the adversary first instructs a token T ∗ with key mskT = (skT∗,0, pkT∗,0,
chT∗ , seedT∗) and a server S∗ to interact in a registration. Then, it gets the resulting credential cred∗ =
pk, and has to output a revocation key rk∗ = (pk∗0, ch

∗). The adversary breaks revocation soundness, if
CheckCred(idS∗ , cred∗, rk∗) = 1, i.e. if pk = PRerand(pk∗0, Ĥ(pk∗0, ch

∗, idS∗)). To show that this is infeasi-
ble, we first argue using the entropy of chT∗ that the adversary will not output rk∗ = (pkT∗,0, chT∗). Then,
we guess the registration interaction of interest and embed an independent public key pk into this registration.
We can do this by programming random oracle Ĥ accordingly. With this, winning the game reduces to solving
the following isolated problem: Given a key pair (sk, pk) and access to a random oracle H̃, find pk′ and ch
such that pk = PRerand(pk′, H̃(pk′, ch)). This problem is statistically hard to solve, as we show in Appendix C,
Lemma 10.

16

Unlinkability. We show unlinkability in presence of global revocation. We obtain the following result.

Lemma 6. Let A be an adversary in the weak unlinkability with global revocation game of bip32PA. Assume
that A makes at most QĤ , QH queries to random oracles Ĥ,H, respectively. Then we have

AdvAwUnl-GR,bip32PA ≤
4 ·QĤ + 2 · |T |2

2λ
+
Q2
H

22λ
.

Proof Intuition. The proof is similar to the proof of variant kdfPA. Namely, we first argue that the adversary can
access the random oracles G1 := Ĥ(pkTj ,0, chTj , ·, ·) or G2 := Ĥ(seedTj , ·) for the challenge tokens j ∈ {0, 1}
only indirectly via the oracles Left,Right and Challenge. Then, we claim that the oracles Left and Challenge access
these prefixed random oracles on distinct inputs. As we have perfect rerandomization of keys, this means that
the keys pk = PRerand(pkTj ,0, Ĥ(pkTj ,0, chTj

, ·, ·)) that tokens use are independent, and the claim follows. To
show the claimed domain separation, we can not rely on entropy of the values cid as we did for the variant kdfPA.
Indeed, variant bip32PA derives cid deterministically from the server identity idS . However, as we consider weak
unlinkability, this argument is not necessary. Namely, for this specific scheme, credential separation implies that
the adversary never uses the same server identity in both Challenge and Left,Right. Then, the domain separation
follows from the fact that Left,Right and Challenge access the oracles G1 and G2 only on inputs that contain
the server identity.

7.3 Impersonation Security

As showing impersonation security with global revocation is technically the most interesting part of our analysis,
we dedicate this entire section to it. We will give an intuitive overview of our analysis, and postpone the formal
definitions and proofs to Appendix C.

Unforgeability of Key-Prefixed ECDSA. The reader may wonder why we can not follow the proof idea of
variant kdfPA and reduce to the euf -cma security of plain ECDSA. To understand this, we have to recall that
in the security experiment, the adversary gets the revocation keys rkT = (pkT,0, chT) for all tokens T , and a

token computes the keys pk that it uses via pk := PRerand(pkT,0, Ĥ(pkT,0, ch, idS)). Therefore, the adversary
knows a non-trivial correlation between these public keys, which may allow to run some related key attack. To
rule out this attack, the security notion of unforgeability under honestly rerandomized keys (uf -hrk1) has been
introduced [DFL19, DEF+21]. This notion is similar to standard euf -cma, but in addition, the adversary gets
access to an oracle RandO that outputs uniform randomness ρ. An adversary can also ask the signing oracle to
sign a message m using rerandomized keys skρ := SRerand(sk, ρ). In the end, a forgery is also allowed to be for a
rerandomization of the public key that the adversary obtained. We have the additional restriction that the signing
oracle can be queried at most once per pair (m, ρ). Das et al. [DEF+21] showed that the key-prefixed variant of
ECDSA satisfies this security notion.

Lemma 7 (informal, [DEF+21]). Let H : {0, 1}∗ → Zp be a random oracle and SIGkpH be the key-prefixed
ECDSA signature scheme. Then, under suitable assumption, for each efficient algorithm A, the advantage
AdvA

uf -hrk1,SIGkp
H

is negligible.

We could just use this result and obtain impersonation security for the key-prefixed variant of bip32PA. As
we aim to avoid key-prefixing, we need to translate the above result into a result for plain ECDSA.

Translation to Plain ECDSA. Our main insight is that the proof by Das et al. still works if we prefix all signed
messages with some index idx, as long as there is a mapping from idx to ρ, meaning that for each idx, we always
use the same ρ = ρidx. Then, in our scheme, we can use the hash of the server identifier idS as idx. This works
because in WebAuthn, messages are always prefixed with the hash of idS . However, to have this mapping also
means that we can not use different cid for the same idS , which explains why we deterministically derive cid from
idS .

17

We make this approach more formal by introducing a variant uf -hrk-idx1 of the above security notion. In
this variant, oracle RandO takes as input an index idx and always outputs the same ρidx for the same input idx.
Then, all signed messages are prefixed by idx in the signing oracle. The final forgery also has to be prefixed with
the correct index. Then, we show that ECDSA without key-prefixing satisfies this notion.

Lemma 8. Let H0 : {0, 1}∗ → Zp and H1 : {0, 1}∗ → Zp be random oracles. Let SIGH1 be the ECDSA signature

scheme and SIGkpH0
be its key-prefixed variant as above. Let A be an adversary in the game uf -hrk-idx1 for

SIGH1
. Assume that A makes at most QH1

queries to random oracle H1, and at most QR queries to oracle
RandO. Then there exists an algorithm B with the same running time as A such that

AdvAuf -hrk-idx1,SIGH1
≤ (QR +QH1

)2

2λ
+ AdvB

uf -hrk1,SIGkp
H0

.

The idea of the proof is that the reduction can internally simulate random oracle H1(idx, ·) by random oracle
H0(pkidx, ·), where pkidx is given as PRerand(pk, ρidx).

Using this result, we can then show impersonation security with global revocation of bip32PA. This is done
by guessing the token T ∗ for which the adversary will forge a signature, and then embedding the key given by the
uf -hrk-idx1 experiment as pkT∗,0. To see that we only need to query the signing oracle once per pair (m, ρ),
we highlight that we derive the random coins for signing deterministically in bip32PA. We obtain the following
statement.

Lemma 9. Let A be an adversary in the impersonation with global revocation game of bip32PA. Assume that
A makes at most QH , QĤ queries to random oracles H, Ĥ, respectively, at most QS queries to oracle Start, and
at most QC queries to oracle Challenge. Then there exists an algorithm B with the same running time as A such
that A’s advantage in the impersonation with global revocation game can be upper bounded by

Q2
H + |S|2

22λ
+
Q2
S +QĤ · |T |

2λ
+ |T | ·AdvBuf -hrk-idx1,SIGH′

.

7.4 Evaluation

To show the practicality of bip32PA, we created a prototype implementation and evaluated it on the FIDO2
compliant SoloKey token. The SoloKey firmware uses the secp256r1 curve, is open source and can be uploaded
to a special version called Solo Hacker3. Additionally, we evaluate the efficiency of the revocation process
introduced for bip32PA on a standard Macbook Pro with an Intel i7 processor @2,3 GHz with 4 cores and 16
GB of RAM. We show that revoking even 220 (around one million) tokens takes no more than 3 minutes on this
personal computer. It is worth noting that the revocation process is highly parallelizable, and executing it on a
server-based platform with multiple cores will yield significantly better execution times. We make the source code
for our prototype implementation publicly available4.

Token Implementation. We evaluate the on-token execution time for registration and authentication of bip32PA
and compare it to the execution time of the kdfPA variant that is implemented in the original firmware of SoloKey.
The results are presented in Table 2. Our prototype implementation of bip32PA is only around 1.2× as slow as
the original firmware implementation of kdfPA. The difference in execution time is around 40 ms in the case of
authentication, which will only negligibly influence the user experience.

Global Revocation in Practice. We discuss how services can practically implement revocation. Recall that given
the revocation key rk (computed using Revoke), the relying party with identity idS can verify using CheckCred if
the key corresponds to a credential cred. The way we modeled global revocation, the knowledge of rk only allows

3https://solokeys.com/collections/all/products/solo-hacker/
4Code available here: https://anonymous.4open.science/r/bip32PA

18

Scheme Registration Time [ms] Authentication Time [ms]

kdfPA 369.42 176.31
bip32PA 436.70 213.40

Table 2: Execution time for bip32PA and kdfPA averaged across 100 runs. For all measurements, we instrument
the token to not wait for user touch. The standard deviation for all measurements is less than 6ms.

an adversary to link credentials created by the same token and does not allow for impersonation attacks. Thus,
users can generate the revocation key during a setup phase and securely extract it from the token to store it,
e.g., on a piece of paper as a QR code. A straightaway way to implement the revocation mechanism is to use an
approach similar to certificate revocation lists (CRLs) [CSF+08]. The relying party downloads a size B blocklist
with revocation keys of revoked tokens and uses the CheckCred algorithm against an internal database containing
N unique credentials cred. The complexity of this algorithm is B ·N , making it somewhat inefficient for services
with many users (big N). Like in the case of CRLs, the relying party can download the list via delta updates
and only periodically run this check. However, in the case of freshly registered tokens, the relying party must
check the revocation status for all elements on the blocklist. For a more in-depth analysis of how to efficiently
implement the update, storage, and operation of such a revocation list, we refer to the literature on CRLs.

We will now look at how to optimize the revocation process in the case of bip32PA. The revocation key
contains (pk0, ch) and the CheckCred algorithm computes the public key pk′ := PRerand(pk0, Ĥ(pk0, ch, idS))
and compares pk′ against the credential, which in this case is also a public key pk. In other words, the relying party
recomputes the public key the revoked token used for registration, and checks it against the provided public key.
There are two observations here that will provide an improvement to the direct approach to revocation described
above. Firstly, for each entry on the blocklist, the corresponding public key pk′ can be computed once and used
against the whole database of the relying party. Secondly, since we compare public keys, we can use a binary
search instead of comparing the recomputed public key pk′ with every element in the database. The mechanism
will look as follows, assuming a presorted database. For each revocation key rk := (pk0, ch) on the blocklist, first
recompute pk′ := PRerand(pk0, Ĥ(pk0, ch, idS)) using the identity idS and then run a binary search on internal
database. The complexity of this mechanism is B times the cost of PRerand and O(B · log(N)) times the cost
of comparing public keys (done via BigInteger comparison). It is worth noting that the relying party can store
the precomputed public keys and use them in case of new registrations. It can then check the status of a newly
registered token with O(log(B)) public key comparisons.

To evaluate its efficiency, we created a prototype implementation of the revocation mechanism described
above. We designed a basic function that simulates just one revocation key checking. It generates the public key
pk′ by reusing the PRerand function from our bip32PA token implementation. Then it simulates a binary search
by performing log(N) comparisons of the public key pk′ with a random public key. During each test, we execute
this simple function B times. It is easy to see that this process is highly parallelizable, and we used this in our
prototype implementation. We divided the work across T = 16 threads. Further increasing this number did not
significantly improve the mechanism’s efficiency on our test platform. However, executing this mechanism on a
server-oriented platform can make use of this parallelization even more. We executed and computed the average
of 100 test for parameters N ∈ {230, 232, 234, 236, 238, 240} and B ∈ {218, 220, 222, 224}. It is worth noting that
the binary search only constituted around 1 second in total for all cases of N . Thus, we can practically use our
revocation mechanism with even bigger database sizes. Due to this reason, in Table 3 we present the results only
for N = 240. Checking the revocation status of around 1 million (∼ 220) revocation keys takes only about 3
minutes on this personal computer platform. The relying party can check smaller lists of size 218 = 262144 in less
than a minute. It is easy to see that this revocation mechanism is practical. As we mentioned above, blocklists
can be provided periodically, and we can realistically assume that they will probably not exceed 220 entries.

19

Size B 218 220 222 224

Time [s] 44 175 699 2761

Table 3: Execution time for bip32PA revocation averaged across 100 runs. We assume the size of the relying
party’s database to be N = 240 and the blocklist size to be B. The standard deviation for all measurements is
less than 5s.

8 Conclusion

We analyzed the WebAuthn protocol in FIDO2 with a focus on its real-world use cases and adapted the existing
security models accordingly. We showed that privacy (unlinkability) of the protocol is not immediately guaranteed
by the specification if keys are stored externally as in common implementations. To solve this issue we introduced
the first formal security definition to capture privacy. Our results can be used as a guideline for token vendors.
As an important example, we observed that in the case of key-wrapping the underlying encryption scheme must
provide an anonymity property, i.e. ciphertexts created using the same key must be unlinkable to each other.
We also introduced the notion of global key revocation and gave the first formalization of this property. Finally,
we have shown that BIP32 key derivation can be used to obtain an efficient token implementation that supports
global key revocation and is fully compatible with existing server implementations.

References

[AKB19] Aftab Alam, Katharina Krombholz, and Sven Bugiel. Poster: Let history not repeat itself (this time)
- tackling WebAuthn developer issues early on. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2669–2671. ACM Press, November 2019.
(Cited on page 4.)

[BBCW21] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. Provable security analysis
of FIDO2. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS,
pages 125–156, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 1, 3, 4, 6, 8, 10.)

[BCZ22] Nina Bindel, Cas Cremers, and Mang Zhao. FIDO2, CTAP 2.1, and WebAuthn 2: Provable security
and post-quantum instantiation. Cryptology ePrint Archive, Report 2022/1029, 2022. https://

eprint.iacr.org/2022/1029. (Cited on page 2, 4.)

[BF17] Jacqueline Brendel and Marc Fischlin. Zero round-trip time for the extended access control protocol.
In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, ESORICS 2017, Part I, volume
10492 of LNCS, pages 297–314. Springer, Heidelberg, September 2017. (Cited on page 5.)

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer, Heidelberg, May 2003.
(Cited on page 5.)

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against
dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 139–
155. Springer, Heidelberg, May 2000. (Cited on page 9.)

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In Vijayalakshmi
Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM CCS 2004, pages 168–177. ACM Press,
October 2004. (Cited on page 4.)

20

https://eprint.iacr.org/2022/1029
https://eprint.iacr.org/2022/1029

[CB19] Dhiman Chakraborty and Sven Bugiel. simFIDO: FIDO2 user authentication with simTPM. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
2569–2571. ACM Press, November 2019. (Cited on page 4.)

[CDH16] Jan Camenisch, Manu Drijvers, and Jan Hajny. Scalable revocation scheme for anonymous credentials
based on n-times unlinkable proofs. In Edgar R. Weippl, Stefan Katzenbeisser, and Sabrina De Capitani
di Vimercati, editors, Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society,
WPES@CCS 2016, Vienna, Austria, October 24 - 28, 2016, pages 123–133. ACM, 2016. (Cited on
page 4.)

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76.
Springer, Heidelberg, August 2002. (Cited on page 4.)

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280, RFC Editor, May
2008. (Cited on page 19.)

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EURO-
CRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991. (Cited on page 5.)

[DCM+19] Emma Dauterman, Henry Corrigan-Gibbs, David Mazières, Dan Boneh, and Dominic Rizzo. True2F:
Backdoor-resistant authentication tokens. In 2019 IEEE Symposium on Security and Privacy, pages
398–416. IEEE Computer Society Press, May 2019. (Cited on page 4.)

[DEF+21] Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, and Siavash Riahi. The exact security
of BIP32 wallets. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21:
2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, pages 1020–1042. ACM, 2021. (Cited on page 3, 15, 17.)

[DF11] Özgür Dagdelen and Marc Fischlin. Security analysis of the extended access control protocol for
machine readable travel documents. In Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and
Ivana Ilic, editors, ISC 2010, volume 6531 of LNCS, pages 54–68. Springer, Heidelberg, October
2011. (Cited on page 5.)

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic wallets. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 651–668. ACM Press, November 2019. (Cited on page 5, 17, 23.)

[DvW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and authenticated key
exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992. (Cited on page 5.)

[FGK+20] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark Manulis, and Dain Nilsson.
Asynchronous remote key generation: An analysis of yubico’s proposal for W3C WebAuthn. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 939–954.
ACM Press, November 2020. (Cited on page 4.)

[fid19] Client to Authenticator Protocol (CTAP). https://fidoalliance.org/specs/fido-v2.

0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf, 2019.
[Online; accessed 14-January-2022]. (Cited on page 1.)

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and
Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys.
In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I,
volume 9614 of LNCS, pages 301–330. Springer, Heidelberg, March 2016. (Cited on page 5, 23.)

21

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.pdf

[GH18] Iness Ben Guirat and Harry Halpin. Formal verification of the w3c web authentication protocol. In
Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security,
HoTSoS ’18, New York, NY, USA, 2018. Association for Computing Machinery. (Cited on page 2,
4.)

[Jon03] Jakob Jonsson. On the security of CTR + CBC-MAC. In Kaisa Nyberg and Howard M. Heys,
editors, SAC 2002, volume 2595 of LNCS, pages 76–93. Springer, Heidelberg, August 2003. (Cited
on page 24.)

[KHWK22] Michal Kepkowski, Lucjan Hanzlik, Ian Wood, and Mohamed Ali Kâafar. How not to handle keys:
Timing attacks on FIDO authenticator privacy. CoRR, abs/2205.08071, 2022. (Cited on page 2, 4,
10.)

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key
exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS,
pages 1–16. Springer, Heidelberg, November 2007. (Cited on page 5.)

[LMQ+03] Laurie Law, Alfred Menezes, Minghua Qu, Jerome A. Solinas, and Scott A. Vanstone. An efficient
protocol for authenticated key agreement. Des. Codes Cryptogr., 28(2):119–134, 2003. (Cited on
page 5.)

[LSN+20] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes, and Sven Bugiel.
Is FIDO2 the kingslayer of user authentication? A comparative usability study of FIDO2 passwordless
authentication. In 2020 IEEE Symposium on Security and Privacy, pages 268–285. IEEE Computer
Society Press, May 2020. (Cited on page 3, 4.)

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In Michael K. Reiter and Pierangela Samarati, editors, ACM
CCS 2001, pages 196–205. ACM Press, November 2001. (Cited on page 24.)

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer,
Heidelberg, May / June 2006. (Cited on page 5, 24.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, January 1991. (Cited on page 5.)

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times anonymous authentication (extended
abstract). In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 308–322.
Springer, Heidelberg, December 2004. (Cited on page 5.)

[web20] Web Authentication: An API for accessing Public Key Credentials. https://www.w3.org/TR/

webauthn/, 2020. [Online; accessed 14-January-2022]. (Cited on page 1.)

[Wik18] Bitcoin Wiki. Bip32 proposal, 2018. (Cited on page 15.)

[Yub20] Yubico. Yubikey U2F Key Generation, 2020. [Online; accessed 14-January-2022]. (Cited on page 2,
5.)

22

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

Appendix

A Preliminaries

In this section we fix some notation and provide necessary cryptographic background.

Notation. We denote by z ← A(x) the execution of algorithm A on input x and with output z. If we want to
make the random coins ρ of algorithm A explicit, we write z := A(x; ρ) instead. We write y ∈ A(x) to indicate
that y is a possible output of A on input x. By r ←$ S we mean that r is chosen uniformly at random over the
set S. We will use [n] to denote the set {1, . . . , n}. By λ, we denote the security parameter. Throughout the
paper, we assume public parameters par are given implicitly to all algorithms.

Signatures. We recall the standard notion of digital signatures. We also introduce rerandomizable signature
schemes [FKM+16, DFL19] and the corresponding security notion.

Definition 11 (Digital Signature Scheme). A digital signature scheme is a tuple of algorithms SIG = (Gen,Sig,Ver)
with the following properties.

• The randomized key generation algorithm Gen takes as input parameters par. It outputs a secret key and
public key(sk, pk).

• The randomized signing algorithm Sig takes as input a secret key sk and a message m. It outputs a signature
σ.

• The deterministic verification algorithm Ver takes as input a public key pk, a signature σ, and a message
m. It outputs 0 (reject) or 1 (accept).

We say that a digital signature scheme is correct if for all (sk, pk) ∈ Gen(par) and all messages m ∈ {0, 1}∗ we
have

Pr
σ←Sig(sk,m)

[Ver(pk, σ,m) = 1] = 1.

We assume that secret keys are chosen uniformly at random and there is an algorithm ToPK that maps secret
keys to public keys, i.e. pk := ToPK(sk).

Definition 12 (Unforgeability under Chosen Message Attacks). Let SIG = (Gen,Sig,Ver) be a digitalsignature
scheme and consider the experiment euf -cmaASIG defined as follows:

• Setup. The experiment generates (sk, pk) via (sk, pk)← Gen(par). It runs the adversary A on input pk.

• Online Phase. In this phase, A is given access to oracle SignO, which takes as input a message m and
returns the signature σ ← Sig(sk,m).

• Output Phase. When A returns (m∗, σ∗), the experiment returns 1 if Ver(pk, σ∗,m∗) = 1 and m∗ was
not queried to SignO. Otherwise, it returns 0.

We define the advantage of A in euf -cmaASIG as

AdvAeuf -cma,SIG := Pr[euf -cmaASIG = 1].

Definition 13 (Rerandomizable Signature [FKM+16, DFL19]). A rerandomizable signature scheme is a tuple
of algorithms SIG = (Gen,Sig,SRerand,PRerand,Ver), where (Gen,Sig,Ver) is a digital signature scheme, and
algorithms SRerand,PRerand have the following properties.

• The deterministic secret key rerandomization algorithm SRerand takes as input a secret key sk and a string
ρ. It outputs a rerandomized key skρ.

23

• The deterministic public key rerandomization algorithm PRerand takes as input a public key pk and a string
ρ. It outputs a rerandomized key pkρ.

Moreover, we require that for all (sk, pk) ∈ Gen(par), key pairs (skρ, pkρ) generated as ρ ←$ {0, 1}λ, skρ :=

SRerand(sk, ρ), and pkρ := PRerand(pk, ρ) are identically distributed to key pairs generated via (sk′, pk′) ←
Gen(par).

Symmetric Primitives. Here, we recall the definition of symmetric key encryption that is both authenticated
and anonymous. For the definition of security, we follow [RS06]. For simplicity of exposition, we choose to leave
nonces implicit, leading to a potentially weaker notion. We note that this notion is satisfied using the OCB mode
of operation [RBBK01] or the CCM mode of operation [Jon03].

Definition 14 (Symmetric Key Encryption Scheme). A symmetric key encryption scheme (SKE) with length
function ν : N→ N is a tuple of algorithms SKE = (Gen,Enc,Dec) with the following properties.

• The randomized key generation algorithm Gen takes as input parameters par. It outputs a secret key sk.

• The randomized encryption algorithm Enc takes as input a secret keysk and a message m. It outputs a
ciphertext c ∈ {0, 1}ν(|m|).

• The deterministic decryption algorithm Dec takes as input a secret key sk and a ciphertext c. It outputs
either ⊥ or a message m.

Definition 15 (Authenticated Anonymous Security for SKE). Let SKE = (Gen,Enc,Dec) be a symmetric key
encryption scheme with length function ν. For an algorithm A and a bit b ∈ {0, 1}, consider the following
experiment anon-authASKE,b:

• Setup. The experiment generates a key sk← Gen(par) and initializes a map L[·].

• Online Phase. The adversary A is run on input par with oracle access to oracles EncOb,DecOb, which are
defined as follows.

– EncO0(m): Return c← Enc(sk,m).

– DecO0(c): Return m := Dec(sk, c).

– EncO1(m): Sample a ciphertext c←$ {0, 1}ν(|m|) uniformly at random, define L[c] := m and return c.

– DecO1(c): If L[c] 6=⊥, return L[c]. Else, return ⊥.

• Output Phase. The adversary outputs a bit b′. The experiment outputs b′.

We define the advantage of A against authenticated anonymous security of SKE as

AdvAanon-auth,SKE :=
∣∣∣Pr[anon-authASKE,0 = 1]− Pr[anon-authASKE,1 = 1]

∣∣∣ .
Definition 16 (Pseudorandom Function). Let `1 = `1(λ), `2 = `2(λ) ∈ N. Consider a efficiently computable
function PRF : {0, 1}λ × {0, 1}`1 → {0, 1}`2 , an algorithm A, a bit b ∈ {0, 1}, and the following experiment
prfAPRF,b:

• Setup. The experiment samples K ←$ {0, 1}λ and initializes a map F [·].

• Online Phase. The adversary A is run on input par with oracle access to oracle EvalOb, which is defined
as follows.

– EvalO0(x ∈ {0, 1}`1): If F [x] 6=⊥, return F [x]. Else, sample F [x]←$ {0, 1}`2 and return F [x].

– EvalO1(x ∈ {0, 1}`1): Return PRF(K,x).

• Output Phase. The adversary outputs a bit b′. The experiment outputs b′.

We define the advantage of A against the pseudorandomness of PRF as

AdvAprf ,PRF :=
∣∣∣Pr[prfAPRF,0 = 1]− Pr[prfAPRF,1 = 1]

∣∣∣ .
24

B Omitted Proofs for Existing Implementations

B.1 Omitted Proofs For Key Derivation Function

Proof of Lemma 1. We show the statement via a sequence of games. For each game Gi, we denote the advantage
of A, i.e. probability that Gi outputs 1, by Advi.
Game G0: This is the real impersonation game. Recall that at the beginning, each token T ∈ T is initialized
with a master secret key mskT ←$ {0, 1}λ. Then, the adversary gets access to oracles Start,Challenge,Complete
and a random oracle H. By definition, we have

Adv0 = AdvAImp,kdfPA.

Game G1: We rule out a bad event. That is, we let the game abort if this bad event occurs. Namely, we abort
whenever there is a collision for random oracle H. Precisely, we abort, if for x 6= x′ we have H(x) = H(x′). As
the images of H are sampled uniformly at random from {0, 1}2λ, we have

|Adv0 −Adv1| ≤
Q2
H

22λ
.

Game G2: In this game, we introduce another bad event, for which we let the game abort on its occurrence.
To define this event, consider the server-side oracles Start. Recall that these oracles (in both registration and
authentication) sample a random rs←$ {0, 1}≥λ. The bad event occurs if the same rs is sampled in two different
invocations of the oracle Start. Clearly, we can bound the distinguishing advantage by

|Adv1 −Adv2| ≤
Q2
S

2λ
.

Game G3: In this game, we introduce yet another bad event, for which we let the game abort on its occurrence.

Namely, consider a query of the form Challenge(πi,0T , ·). Recall that in such a query, a value cid is sampled
uniformly at random. Now, the game aborts if this cid has been output or input of a previous query of the form

Challenge(πi
′,j
T , ·). Clearly, we have

|Adv2 −Adv3| ≤
Q2
C

2λ
.

Game G4: In this game, we change the way the secret signing keys sk used in queries of the form Challenge(πi,jT ,
idS , cid, ·) are derived. Namely, before they were derived as sk := PRF(mskT , (cid, idS). Now, the game samples
them at random and stores an initially empty map KT [·] (for each token T ∈ T) to ensure consistency. Concretely,
the game first checks if KT [cid, idS] is already defined. If it is not, it samples a secret key sk uniformly at random,
and sets KT [cid, idS] := sk. In any case, it uses sk := KT [cid, idS] to continue. We can use the pseudorandomness
of PRF to bound the distinguishing advantage between G3 and G4. Namely, we use a hybrid argument over the
|T | tokens, and in each hybrid step, we introduce the map KT [·] as above for the next token T . We can show
that two hybrids are close using the pseudorandomness of PRF, via a straight-forward reduction B′, and get

|Adv3 −Adv4| ≤ |T | ·AdvB
′

prf ,PRF.

Finally, we bound the probability Adv4 that G4 outputs 1. Recall that the game outputs 1 if none of the
introduced aborts occur, and the adversary successfully finished an authentication via oracle Complete(πi,jS , ·), for

which j = 0, the oracle πi,jS is not partnered with any oracle πi
′,j′

T and the oracle πi,0S is partnered with an oracle

πi
′,0
T . In the following, we will call this interaction with oracle Complete the forged authentication. We refer to

the interaction with oracle πi
′,0
T as above via oracle Challenge as the target registration.

Now, we give a reduction B from the euf -cma security of SIG. The reduction is as follows.

• B gets as input a public key pk∗. It gets access to a signing oracle SignO.

25

• B samples an index k∗ ←$ [QC]. It simulates game G4, except for the k∗th query to oracle Challenge, for
which it works as follows:

– If this query is an authentication query, i.e. it is of the form Challenge(πi,jT , ·) for j > 0, then B aborts.

– If this query is a registration query, i.e. it is of the form Challenge(πi,0T , ·), then it sets pk := pk∗,
and continues the simulation using this key. Thereby, it obtains the signature σ from its signing oracle
SignO. Let cid be the random credential identifier sampled within this simulation. Later, whenever
the adversary queries oracle Challenge for authentications for this cid, B uses its signing oracle SignO
to answer the query.

• After termination of A, reduction B first finds the forged authentication and the corresponding target
registration.

• If the target registration is not the k∗th query to oracle Challenge, B aborts. Otherwise, let σ be the
signature that A submitted in the forged authentication, idS be the server identity that is used in the forged
authentication, and rs be the challenge that is used.

• B returns
m∗ := (H(idS), H(rs)), σ∗ := σ.

First, assume that B does not abort. It is easy to see that, the simulation of game G4 is perfect. Also, by
definition of algorithm acheck, as the forged authentication accepted, σ∗ is a valid signature on m∗ under pk∗.
Furthermore, due to the changes introduced in games G1 and G2, if A wins game G4, we know that the signing
oracle SignO was never used on a message (·, H(rs)), and thus the forgery output by B is fresh. Finally, note
that A’s view is independent of k∗, until an abort happens. Thus, we have

Adv4 ≤ QC ·AdvBeuf -cma,SIG.

Proof of Lemma 3. We show the statement via a sequence of games. For each game Gi, we denote the probability
that Gi outputs 1 by pri. We note that games G1,G2 are taken verbatim from the proof of Lemma 1.
Game G0: This game is the real medium unlinkability game. Recall that at the beginning of this game, a
master secret key mskT ←$ {0, 1}λ is generated for each token T ∈ T . The adversary A gets access to oracles
Start,Challenge,Complete. Then, it outputs two tokens T0, T1 and servers SL, SR. Afterwards, it also gets
access to oracles Left,Right, which internally run Challenge(πib,jbTb

, idSL
, ·, ·) and Challenge(π

i1−b,j1−b

T1−b
, idSR

, ·, ·),
respectively. By definition, we have

AdvAmUnl,kdfPA =

∣∣∣∣pr0 −
1

2

∣∣∣∣ .
Game G1: This game is as G0, but we introduce a bad event and let the game abort if it occurs. Consider
the lists Lrlr and Lrch as in the definition of the unlinkability game. Game G1 aborts if there is a collision, i.e.
Lrlr ∩ Lrch 6= ∅. Recall that the values cid is sampled uniformly at random, and |Lrlr| ≤ 2. Therefore, we have

|pr0 − pr1| ≤
2QC
2λ

.

Game G2: This game is as G1, but we change the way the secret signing keys sk used in queries of the form

Challenge(πi,jT , idS , cid, ·) or queries to Left and Right are derived. This is similar to the proof of impersonation
security. Recall that before they were derived as sk := PRF(mskT , (cid, idS) for each token T ∈ T . Now, we
introduce an initially empty map KT [·] for each token T ∈ T . Then, whenever G1 would compute sk as above,
game G2 first checks if KT [cid, idS] is already defined. If it is not, it samples a secret key sk uniformly at random,
and sets KT [cid, idS] := sk. In any case, it uses sk := KT [cid, idS] to continue. As in the proof of impersonation

26

security, we can use the pseudorandomness of PRF in |T | hybrid steps to bound the distinguishing advantage
between G1 and G2. To subsequent hybrids are shown to be close via a straight-forward reduction B, and we get

|pr1 − pr2| ≤ |T | ·AdvBprf ,PRF.

Game G3: This game is as G2, but we split the map KTb
into two maps. To recall, Tb is the challenge token

used in oracle Left. In game G3, instead of having one map KTb
that is used in Challenge(πi,jTb

, ·) and Left, we

now only use KTb
in Challenge(πi,jTb

, ·), and a separate independent map KL[·] in oracle Left. It follows from
credential separation and the bad event that we ruled out in G1 that this is only a conceptual change. Namely,
the change can only be noticed, if the game accesses both KTb

[cid, idS] and KL[cid, idS] for some (cid, idS). By
definition of oracle Left, this means that S = SL, and therefore credential separation applies. We get

pr2 = pr3.

Game G4: This game is as game G3, with a similar change as the previous one but for oracle Right and token

T1−b. Namely, we split the map KT1−b
into two maps. The map KT1−b

is used in Challenge(πi,jT1−b
, ·) and a map

KR[·] is used in oracle Right. Similarly as above, we get

pr3 = pr4.

We highlight that the steps from G2 to G4 would not be correct if we tried to prove strong unlinkability.
This is because in this case, A would be allowed to come up with some fresh cid and submit it to oracle Left and
Challenge, which react consistently in G2 and inconsistently in G3.

Finally, we see that the behavior of oracles Left and Right in game G4 and thus A’s view is independent of
the bit b. Thus, we have pr4 = 1/2. This shows the claim.

B.2 Omitted Proofs For Key Wrapping

Proof of Lemma 2. We show the statement by presenting a sequence of games Gi, where for each such game
Gi the probability that the game outputs 1 is denoted by Advi.
Game G0: This is the real impersonation game. At the beginning of this game, every token T ∈ T is initialized
with a master secret key mskT ← Gen(par). Then, the adversary gets access to oracles Start,Challenge,Complete.
By definition, we have

Adv0 = AdvAImp,kwrPA.

Game G1: We change the game as follows. The game is as G0, but it aborts if for x 6= x′ we have H(x) = H(x′).
The images of H are sampled uniformly at random from {0, 1}2λ, which implies that

|Adv0 −Adv1| ≤
Q2
H

22λ
.

Game G2: This game is as G2, but we introduce another abort. To this end, consider the server-side oracles
Start. Recall that during the execution of such an oracle, a random rs←$ {0, 1}≥λ is sampled. Game G2 aborts
if the same rs is sampled in two different invocations of the oracle Start. Clearly, we have the bound

|Adv1 −Adv2| ≤
Q2
S

2λ
.

Game G3: In this game, we will no longer generate master secret keys mskT for each token. Recall that these
keys are used in the previous games to encrypt signing keys via cid← Enc(mskT , (idS , sk)) in queries of the form
Challenge(πi,0T , idS , ·) (i.e. in registration) and to decrypt such cid in queries of the form Challenge(πi,jT , idS , cid, ·),
j > 0 (i.e. in authentication). In game G2, we instead hold an initially empty map L[·, ·]. In each registration query
Challenge(πi,0T , idS , ·) the value cid is now sampled uniformly at random from {0, 1}ν∗ , and an entry L[T, cid] :=

(idS , sk) is added. In each authentication query Challenge(πi,jT , idS , cid, ·), j > 0, the entry (id, cid) := L[T, cid]

27

is retrieved from the map instead of decrypting cid, and it is used if it is defined. If it is undefined, the oracle
aborts its execution.

We can bound the distinguishing advantage between G2 and G3 using |T | intermediate hybrids. Namely, in
hybrid i, we apply the change to the first i tokens T ∈ T . For each hybrid step we can give a straight-forward
reduction B from the anonymous authentication security of SKE. Thus, we have

|Adv1 −Adv2| ≤ |T | ·AdvBanon-auth,SKE.

Now, if we take a look at G3, we see that each challenge that the adversary gets via oracle Start and has to sign
is unique. Also, signing keys sk are only needed to sign, and not in the plain anymore. Thus, similar to the proof
of Lemma 1 we can build a reduction C from the euf -cma security of SIG to bound Adv3. At a high level, the
reduction guesses in which query of the form Challenge(πi,0T , ·) the adversary obtained the public key, for which it
forges a signature. We have

Adv3 ≤ QC ·AdvCeuf -cma,SIG.

Proof of Lemma 4. We show the claim by presenting a sequence of games Gi. For each game Gi, we denote
the probability that it outputs 1 by pri.
Game G0: This game is the real strong unlinkability game. In this game, a key skT ← Gen(par) is gen-
erated for each token T ∈ T . Then, the adversary A gets access to oracles Start,Challenge,Complete and
outputs tokens T0, T1 and servers SL, SR. Afterwards, it also gets access to oracles Left,Right, which run
Challenge(πib,jbTb

, idSL
, ·, ·) and Challenge(π

i1−b,j1−b

T1−b
, idSR

, ·, ·), respectively. By definition, we have

AdvAsUnl,kwrPA =

∣∣∣∣pr0 −
1

2

∣∣∣∣ .
Game G1: We change game G0 in the following way. In the beginning, G1 samples T ∗0 , T

∗
1 ←$ T . Later, if

T0 6= T ∗0 or T1 6= T ∗1 , the game returns a random bit. Otherwise, it continues as G0 does. As A obtains no
information about T ∗0 , T

∗
1 until the potential abort, we have∣∣∣∣pr1 −

1

2

∣∣∣∣ =
1

|T |2

∣∣∣∣pr0 −
1

2

∣∣∣∣ .
Game G2: We change G1 in the following way. In G1, whenever A starts a registration with token Tr, r ∈ {0, 1}
via oracles Challenge or Left,Right, a ciphertext cid is created as cid := Enc(mskTr , (idS , sk)). Furthermore, when
A starts an authentication interaction with token Tr, r ∈ {0, 1} via oracles Challenge or Left,Right, it provides a
ciphertext cid, which is then decrypted as (id, sk) := Dec(msk, cid). If Dec returns ⊥ or id does not match with
the server identity idS provided, the oracles abort. Otherwise, they continue their execution using secret key sk.

Now, in game G2, we change this encryption and decryption for the tokens T ∗0 , T
∗
1 that we guessed in G1.

Note that if G1 does not abort, we know that (T ∗0 , T
∗
1) = (T0, T1) and these tokens are also used in oracles

Left and Right. Concretely, the game works as follows: Initially, two empty maps L0[·], L1[·] are initialized.
Then, in each registration interaction with token T ∗i , i ∈ {0, 1} (including the ones in oracle Left or Right) the
value cid is sampled randomly from {0, 1}ν∗ . Then, an entry Li[cid] := (idS , sk) is added. Furthermore, in
each authentication interaction with token T ∗i , i ∈ {0, 1} (including the ones in oracle Left or Right), where the
adversary provides cid, we check if Li[cid] is defined. If it is, we use it instead of decrypting cid. If it is not defined,
we abort this interaction. A direct reduction B from the anonymous authentication security of SKE shows that

|pr1 − pr2| ≤ AdvBanon-auth,SKE.

We note that now, the only dependence of A’s view on bit b is the shared use of the maps L0, L1. Namely, the
table Lb is used by challenge oracles for token Tb and by the oracle Left.
Game G3: Similar to game G2, but we partition map Lbinto two tables: The first map, L′b, is used in oracle
Challenge for token Tb. The second map, LL is used in oracle Left. The maps are used as before, and the
difference is that oracle Challenge never accesses LL and oracle Left never accesses L′b.

28

We claim that the view of A does not change from G2 to G3. To see this, note that A can only observe the
change, if the same cid is given out in registration twice (once in Left,Right, and once in Challenge), or it sends
a value cid to one oracle in authentication (e.g. Challenge), which was given out by the other oracle (e.g. Left)
in registration. The former only occurs with probability at most 2QC/|{0, 1}ν

∗ |, and the latter is forbidden due
to (strong) credential separation. It follows that

|pr2 − pr3| ≤
2QC
2ν∗

.

Game G4: This game is as G3, but we partition the map L1−b into two tables L′1−b and LR. The change is
similar as above, and the same argument shows

pr3 = pr4.

We note that in G4, the view of A is independent of bit b, which implies that pr4 = 1/2.

C Omitted Definitions and Proofs For BIP32

Lemma 10. Let SIGH = (Gen,Sig,SRerand,PRerand,Ver) be the ECDSA signature scheme and H̃ : {0, 1}∗ →
{0, 1}λ be a random oracle. For an adversary A, consider the following game:

1. Run AH̃ on input par and obtain a string id ∈ {0, 1}∗.

2. Generate a key pair (sk, pk)← Gen(par) and give it (including sk) to AH̃ .

3. When AH̃ outputs (pk′, ch), output 1 if and only if

PRerand(pk′, H̃(pk′, ch, id)) = pk.

Then, if algorithm A makes at most QH̃ queries to H̃, the probability that the game outputs 1 is at most QH̃/2
λ.

Proof. Consider an adversary A and the game as in the statement. Let sk′ ∈ Zp be such that gsk
′

= pk′. Then,

note that the winning condition is equivalent to H̃(pk′, ch, id) = sk− sk′. Note that pk′ uniquely determines sk′

and thus sk− sk′. Hence, for each random oracle query of A, the probability that it can be used for a valid output
is at most 1/2λ. The claim follows from a union bound.

Proof of Lemma 5. We show the statement via a sequence of games. For each game Gi, we denote the advantage
of A, i.e. probability that Gi outputs 1, by Advi.
Game G0: This is the real revocation soundness game. Recall that in the beginning of the game, a key
mskT = (skT,0, pkT,0, chT , seedT) is generated for each token T ∈ T . Then, the adversary gets access to
oracles Start,Challenge,Complete and outputs tuples (T ∗, iT∗) and (S∗, iS∗). Afterwards, it gets the credential
cred∗ = pk and outputs a revocation key rk∗. The game outputs 1 if and only if the oracles πiT∗ ,0T∗ and πiS∗ ,0S∗ are
partnered and CheckCred(idS∗ , cred∗, rk∗). By definition, we have

Adv1 = AdvArev-sound,bip32PA.

Game G1: This game is as G0, but we add a bad event and make the game abort if this event occurs. Namely,

we say that the bad event occurs, if A queries Ĥ(pkT,0, chT , ·, ·) at some point during the game for some token
T ∈ T . Clearly, all information that A obtains about chT are the random oracle hashes that it (implicitly) sees.
Thus, by a union bound over A’s random oracle queries and all tokens T ∈ T we get

|Adv0 −Adv1| ≤
QĤ · |T |

2λ
.

29

Game G2: This game is as G1, but we rule out another bad event. Namely, the game aborts if there is a collision

for random oracle Ĥ, i.e. there are x 6= x′ such that Ĥ(x) = Ĥ(x′). Clearly, we have

|Adv1 −Adv2| ≤
Q2
Ĥ

2λ
.

Game G3: This game is as G2, but we add another bad event and make the game abort if this event occurs.
We say that the bad event occurs if A’s final output is rk∗ = (pkT∗,0, chT∗). As all information that A obtains

about chT∗ are the random oracle hashes that it sees, the probability of this bad event is at most 1/2λ. Thus,

|Adv2 −Adv3| ≤
1

2λ
.

Game G4: This game is as game G3, but it samples an index I ←$ [QC] uniformly at random in the beginning.
Then, it aborts in the end, if the Ith query to oracle Challenge is not the first registration query for token T ∗ and
server identity idS∗ . More formally, it is not the first query of the form Challenge(π·,0T∗ , idS∗ , ·, ·). By definition of
the game, such a query must exist if the adversary wins the game. Intuitively, the game guesses which query to
oracle Challenge defines credential that is attacked by the adversary. As A’s view is independent of I until the
potential abort, we have

Adv3 = QC ·Adv4.

Game G5: This game is as G4, but we change the execution of the Ith query to oracle Challenge. Recall that

in previous games, during that registration, a key pair (sk, pk) is generated using ρ := Ĥ(pkT∗,0, chT∗ , idS∗) and

sk := SRerand(skT∗,0, ρ), pk := PRerand(pkT∗ , ρ).

Especially, assuming that G4 does not abort, this is the first query for T ∗ and idS∗ , and due to the change in
G1, the value ρ is uniformly random at this point. In game G5, the game samples (sk, pk) as a fresh key pair via
(sk, pk)← Gen(par) and programs

Ĥ(pkT∗,0, chT∗ , idS∗) := sk− skT∗,0.

As the distribution of rerandomized keys is the same as fresh keys if the randomness ρ is uniform, it follows that
the view of A does not change. Therefore, we have

Adv4 = Adv5.

Finally, we can bound the advantage Adv5 of A in game G5 using a reduction from the game in Lemma 10.
The reduction gets as input parameters par and gets oracle access to an oracle H̃. It sets up the game for A as
in G5, while simulating oracle Ĥ by forwarding queries to H̃. Then, in the Ith query to oracle Challenge, the
reduction outputs id := idS∗ to its game. It obtains (sk, pk) from its game and programs

Ĥ(pkT∗,0, chT∗ , idS∗) := sk− skT∗,0

as in G5. Later, when A outputs rk∗ = (pk′, ch), it outputs (pk′, ch) to its own game.
It is easy to see that the reduction perfectly simulates game G5 for A. Moreover, if the bad event defined in

G3 does not occur, the random oracles H̃ and Ĥ coincide on (pk′, ch, id), which is why the reduction wins its
game. Thus, Lemma 10 implies that Adv5 ≤ QĤ/2λ and the statement follows.

Proof of Lemma 6. We show the statement via a sequence of games. For each game Gi, we denote the probability
that Gi outputs 1 by pri.
Game G0: This game is the real unlinkability game. At the beginning of the game, a master secret key mskT =
(skT,0, pkT,0, chT , seedT) is generated, and a revocation key rkT ← Revoke(mskT) is derived for each token T ∈
T . Adversary A gets access to oracles Start,Challenge,Complete. Then, it outputs two challenge tokens T0, T1

30

and servers SL, SR. Afterwards, it also gets {rkT }T∈T \{T0,T1}, and access to oracles Left,Right, which internally

run Challenge(πib,jbTb
, idSL

, ·, ·) and Challenge(π
i1−b,j1−b

T1−b
, idSR

, ·, ·), respectively. Additionally, the adversary gets

access to random oracle Ĥ. By definition, we have

AdvAwUnl-GR,bip32PA =

∣∣∣∣pr0 −
1

2

∣∣∣∣ .
Game G1: This game is as G0, but we introduce a bad event and let the game abort if this bad event occurs.

The bad event occurs, if the adversary ever queries Ĥ(pkTj ,0, chTj
, ·, ·) or Ĥ(seedTj

, ·) for one of the challenge
tokens j ∈ {0, 1}. Note that A obtains no information about chTj

and seedTj
throughout the game (except via

hash values). Thus, we can use a union bound over the two cases, all QĤ random oracle queries and the two
tokens to obtain

|pr0 − pr1| ≤
4 ·QĤ

2λ
.

Game G2: This game is as G1, but we introduce another bad event and let the game abort if this bad event
occurs. The bad event occurs, if there are tokens T 6= T ′ such that chT = chT ′ or seedT = seedT ′ . As these
values are sampled uniformly at random from {0, 1}λ and independently, we have

|pr1 − pr2| ≤
2 · |T |2

2λ
.

Game G3: This game is as G2, but it aborts if there are x 6= x′ such that H(x) = H(x′). Clearly, we have

|pr2 − pr3| ≤
Q2
H

22λ
.

Game G4: This game is as G3, but we change the way oracle Left works. First, we recall how oracle Left works

in G3. By definition of the protocol, it returns cidL = Ĥ(seedTb
, idSL

) when it is queried for the first time, i.e.
during registration. Later, it always aborts if the value cid that is input is not equal to cidL. By the definition
of the bad event in G1, the value cidL is distributed uniformly from A’s perspective when A queries Left for the
first time. Next, recall that on input cidL,M , oracle Left(cidL,M) in game G3 samples a key pair (sk, pk) as
follows: It derives ρ := Ĥ(pkTb,0

, chTb
, idSL

) and sets

sk := SRerand(skTb,0
, ρ), pk := PRerand(pkTb,0

, ρ).

Then, it computes a signature on a message m using random coins coins := Ĥ(seedTb
,m).

We remark that the deterministic derivation of cid from server identities idS in combination with credential
seperation implies that idSL

and idSR
are never submitted to oracle Challenge directly. From this, assuming the

game G1 does not abort, we know value ρ is uniformly distributed for A here. Also, whenever a message m
is signed by oracle Left for the first time, the value Ĥ(seedTb

,m) is uniformly distributed for A. Especially,
due to our remark about credential separation above and non-colliding ch’s, the oracle Challenge never queries
Ĥ(pkTb,0

, chTb
, idSL

). Note that signed messages m always contain H(idS) and we ruled out collisions for H, so

oracle Challenge never queries Ĥ(seedTb
,m).

Oracle Left in G4 now holds a map LL and works as follows: It samples a random cidL, and a fresh key pair
(sk, pk)← Gen(par). When Left is called for the first time, it returns cidL, pk and a signature as in the protocol.
For the following calls Left(cid,M), it aborts if cid 6= cidL. Otherwise, it answers them as before, but using
that particular key pair and randomness LL[m] to sign a message m. Whenever LL[m] is not yet defined, it is
sampled uniformly at random. The above arguments show that if the game does not abort, the view of A does
not change. Thus we have

pr3 = pr4.

Game G5: This game is as G4, but we change how oracle Right behaves. Concretely, we apply a similar change
using fresh key pairs, a random cidR and a map LR as we did for oracle Left in game G3. With the same
arguments, it follows that

pr4 = pr5.

31

Finally, note that oracles Left and Right in game G5 and thus A’s view are independent of the bit b. Thus,
we have pr5 = 1/2 and the claim follows.

Definition 17 (Unforgeability under Honestly Rerandomized Keys). Let SIG = (Gen,Sig,SRerand,PRerand,Ver)
be a rerandomizable signature scheme and consider the experiment uf -hrk1ASIG defined as follows:

• Setup. The experiment generates (sk, pk) via (sk, pk)← Gen(par). It runs the adversary A on input pk.

• Online Phase. In this phase, A is given access to oracles SignO and RandO:

– RandO takes no inputs and returns ρ←$ {0, 1}λ.

– SignO takes as input a message m and a string ρ ∈ {0, 1}λ. If ρ was not a previous output of RandO
or the pair (m, ρ) has been queried before, SignO returns ⊥. Otherwise, it returns the signature σ
computed via σ ← Sig(SRerand(sk, ρ),m).

• Output Phase. When A returns (σ∗, ρ∗,m∗), the experiment returns 1 if Ver(PRerand(pk, ρ∗), σ∗,m∗) =
1, ρ∗ was a previous output of RandO, and (m∗, ρ∗) was not queried to SignO. Otherwise, it returns 0.

We define the advantage of A in uf -hrk1ASIG as

AdvAuf -hrk1,SIG := Pr[uf -hrk1ASIG = 1].

Definition 18 (Unforgeability under Honestly Rerandomized Keys With Index). Let SIG = (Gen,Sig,SRerand,
PRerand,Ver) be a rerandomizable signature scheme. We consider experiment uf -hrk-idx1ASIG, which is defined
as follows:

• Setup. The experiment generates (sk, pk) via (sk, pk)← Gen(par). It runs the adversary A on input pk.

• Online Phase. In this phase, A is given access to oracles SignO and RandO:

– RandO takes as input an index idx ∈ {0, 1}2λ. If ρidx is not defined yet, it samples ρidx ←$ {0, 1}λ.
It returns ρidx.

– SignO takes as input a message m and an index idx ∈ {0, 1}2λ. If the pair (m, idx) has been queried
before, SignO returns⊥. If RandO has never been queried with input idx before, it also returns⊥. Oth-
erwise, it returns the signature σ for message (idx,m) computed via σ ← Sig(SRerand(sk, ρidx), (idx,m)).

• Output Phase. When A returns (σ∗, idx∗,m∗), the experiment returns 0 if RandO has never been
queried with input idx∗ before. Otherwise, it returns 1 if Ver(PRerand(pk, ρidx∗), σ

∗, (idx∗,m∗)) = 1, and
(m∗, idx∗) was not queried to SignO. Otherwise, it returns 0.

We define the advantage of A in uf -hrk-idx1ASIG as

AdvAuf -hrk-idx1,SIG := Pr[uf -hrk-idx1ASIG = 1].

Proof of Lemma 8. To prove the claim, we present some changes to the game G0 = uf -hrk-idx1ASIGH1
, leading

to a sequence of games Gi, i ∈ [4]. For each such game Gi the probability that the game outputs 1 is denoted
by Advi.
Game G0: This game is the game uf -hrk-idx1ASIGH1

. Here, A has access to random oracle H1. First, a pair

(sk, pk) of keys is generated and pk is given to A. Then, A has access to oracles SignO and RandO. The game
internally keeps track of randomness ρidx that oracle RandO output on input idx. Finally, A outputs a forgery
(σ∗, idx∗,m∗). By definition, we have

Adv0 = AdvAuf -hrk-idx1,SIGH1
.

32

Game G1: This game is as G0, but we slightly change the simulation of oracles RandO and H1. Namely, when
A queries H1 on input (idx,m), it now checks if ρidx is already defined. If it is not defined yet, it samples
ρidx ←$ {0, 1}λ. This ρidx will later be used by oracle RandO if A queries idx. Note that oracle SignO still aborts
if RandO has never been queried on input idx before, even if ρidx is already defined due to random oracle queries.
Similarly, the winning condition is unchanged. Therefore, this is only a conceptual change, and we have

Adv0 = Adv1.

Game G2: This game is exactly as G1, but it aborts if there are two different idx 6= idx′ for which ρidx = ρidx′ .
As the values ρidx and ρidx′ are sampled uniformly at random from {0, 1}λ, the probability of such a collision
for fixed idx, idx′ is 1/2λ. Using a union bound over all pairs that the adversary can query, we derive an upper
bound on the probability of such an abort, leading to

|Adv1 −Adv2| ≤
(QR +QH1

)2

2λ
.

Game G3: We change how the random oracle H1 is simulated. Concretely, the game now internally runs a
random oracle H0 : {0, 1}∗ → Zp, which is not provided to A. For each query H1(idx,m), it first makes sure
that ρidx is already defined, as introduced in G1. Then, it computes pkidx := PRerand(pk, ρidx) and returns
H0(pkidx,m). Due to the change in the previous game, indices idx are injectively mapped to randomness ρidx.
For the concrete ECDSA randomization algorithm PRerand, the mapping ρ 7→ PRerand(pk, ρ) is also injective.
Therefore, idx is injectively mapped to pkidx, which implies that

Adv2 = Adv3.

Game G4: We change how oracle SignO is provided. Recall that in previous games, whenA queries SignO on input

m and idx, the oracle either aborts, or returns σ ← Sigint(SRerand(sk, ρidx), H1(idx,m)). From now on, the
oracle runs σ ← Sigint(SRerand(sk, ρidx), H0(pkidx,m)) instead, where pkidx := PRerand(pk, ρidx). We claim
that this change is only syntactical. Indeed, due to the previous change, we have H0(pkidx,m) = H1(idx,m),
which implies that

Adv3 = Adv4.

Finally, it is easy to see that we can bound Adv4 using a reduction B from the game uf -hrk1SIGkp
H0

. More

precisely, the reduction simulates G4 as follows:

• B gets as input a public key pk. It gets access to oracle SignOkp,RandOkp and a random oracle H0.

• B forwards public key pk to A. It also provides a random oracle H1 to A, which is simulated using oracle
H0 as in game G4.

• B provides oracles SignO and RandO to A. Whenever, B needs to sample a new randomness ρidx (either
in RandO or in H1) it queries RandOkp to do so. To simulate oracle SignO on input m and idx, B either
aborts as in G4 or submits m and ρidx to SignOkp.

• When A returns (σ∗, idx∗,m∗), B first checks the winning conditions as in G4. If they hold, then ρidx∗ is
defined. The reduction B submits (σ∗, ρidx∗ ,m

∗) as its forgery to the game uf -hrk1SIGkp
H0

.

It is easy to see that B perfectly simulates game G4 for A. Furthermore, due to H0(pkidx,m) = H1(idx,m) and
the injectiveness of the mapping idx 7→ ρidx, reduction B wins its game whenever G4 outputs 1. Therefore, we
have

Adv4 ≤ AdvB
uf -hrk1,SIGkp

H0

.

33

Proof of Lemma 9. We show the statement by presenting a sequence of games Gi, where for each such game
Gi the probability that the game outputs 1 is denoted by Advi.
Game G0: This game is the real impersonation with global revocation game. That is, at the beginning a
master secret key mskT = (skT,0, pkT,0, chT , seedT) is generated for each token T ∈ T . Further, the global
revocation keys rkT := (pkT,0, chT) are passed to the adversary. Then, the adversary A gets access to oracles
Start,Challenge,Complete. By definition, we have

Adv0 = AdvAImp-GR,bip32PA.

Game G1: This game is as G0, but we introduce an additional abort. Namely, G1 aborts whenever for we have
H(x) = H(x′) for x 6= x′. As the images of H are sampled uniformly at random from {0, 1}2λ, we have

|Adv0 −Adv1| ≤
Q2
H

22λ
.

Game G2: In this game, another abort is introduced. Recall that in an execution of the server-side oracles Start,
the game samples rs←$ {0, 1}≥λ. Game G2 aborts if the same rs is sampled in two different invocations of the
oracle Start. Clearly, we have

|Adv1 −Adv2| ≤
Q2
S

2λ
.

Game G3: In this game, we introduce another abort. Namely, the game aborts if for some token T ∈ T , A
queries Ĥ(seedT , ·). As the values seedT are sampled uniformly at random from {0, 1}λ, a union bound over all
tokens and all random oracle queries shows that

|Adv2 −Adv3| ≤
QĤ · |T |

2λ
.

Game G4: In this game, we add another abort. Namely, the game aborts if there exist servers S 6= S′ ∈ S, such
that H(idS) = H(idS′). As server identifiers are assumed to be unique and the hash values are sampled uniformly
from {0, 1}2λ, a union bound over all pairs of servers shows that

|Adv3 −Adv4| ≤
|S|2

22λ
.

Before we proceed, we introduce some terminology. We recall that the game outputs 1 if none of the
introduced aborts occur, and the adversary successfully finished an authentication via oracle Complete(πi,jS , ·), for

which j > 0, the oracle πi,jS is not partnered with any oracle πi
′,j′

T , and the oracle πi,0S is partnered with an oracle

πi
′,0
T . We call this interaction with oracle Complete the forged authentication and the interaction with oracle πi

′,0
T

as above via oracle Challenge the target registration.
Game G5: This game is as G4, but in the beginning of the game, it samples a random token T ∗ ←$ T . Then,
it aborts if this is not the token that is used in the target registration. As A obtains no information about T ∗, it
follows that

Adv4 = |T | ·Adv5.

Game G6: This game is as G5, but we add another change. Namely, the game now holds a map Lσ[·, ·] which

is initially empty and used as follows. Whenever the oracle Challenge(πi,0T∗ , idS ,M) for the guessed token T ∗ is
called and a message m has to be signed during the execution of this oracle, the game first checks if Lσ[idS ,m]
is already defined. If it is not defined yet, it samples random coins coins ←$ {0, 1} for the signing algorithm
and computes the signature σ as in the real protocol, but using these random coins instead of deriving them as
Ĥ(seedT∗ ,m). Then, it stores Lσ[idS ,m] := σ. To proceed, it uses Lσ[idS ,m]. Note that this change is only
conceptual. First, note that in previous games, for token T ∗ and a fixed server idS , signatures deterministically
depend on messages m. Therefore, signatures can be stored by the game and be reused as it is done in G6.
Further, due to the abort that we introduced in G3, the coins coins that are used for signing are distributed

34

uniformly at random to A when a message is signed for the first time. Note that a message that is signed always
contains hash of the server identifier, which is uniquely bound to idS by the change we introduced in G6. In
summary, we have

Adv5 = Adv6.

We want to bound Adv6 using a reduction from the uf -hrk-idx1 security of SIGH′ . This is possible, as all
keys involved for token T ∗ are rerandomizations of pkT∗,0, signing keys are only needed for signing, we only need
one signature per message, and each signed message is prefixed with the hash of the server identifier. Further,
the winning condition and the aborts that we introduced imply that a successful adversary forges a signature for
a fresh message. Formally, we give a reduction B, which is as follows.

• B gets as input a public key pk∗. It gets access to a signing oracle SignO and a randomness oracle RandO.

• B samples T ∗ as in G6 at random. Then, it sets pkT∗,0 := pk∗. It also samples chT∗ , seedT∗ as in the
scheme and defines the revocation key rkT∗ := (pkT∗,0, chT∗). For the other tokens T ∈ T \T ∗ it generates
keys honestly as in the scheme. Then, it passes all revocation keys rkT , T ∈ T to A.

• B simulates oracles Start,Challenge,Complete and random oracles. To simulate random oracle Ĥ, it uses its
oracle RandO. More precisely, to answer a query Ĥ(pkT∗,0, chT∗ , idS), it returns RandO(H(idS)). For other

queries it simulates Ĥ honestly using lazy sampling. To simulate oracle Challenge(πi,jT , ·, ·) for T 6= T ∗, it

proceeds as in G6. To simulate oracle Challenge(πi,jT∗ , ·, ·) it uses its oracle SignO. Concretely,

– Whenever B is needs to compute a signature according to game G6, it uses oracle SignO. More
precisely, whenever the entry Lσ[idS ,m] is not defined yet, it sets idx := H(idS), queries RandO(idx),
and queries SignO(m̄, idx), where m = (H(idS), m̄). Note that each message that has to be signed
can be written in this way. Also, the usage of the map Lσ ensures that each message is only queried
once.

• After termination of A, reduction B first finds the forged authentication and the corresponding target
registration. If the target registration does not involve token T ∗, B aborts as in G6.

• Let σ be the signature that A submitted in the forged authentication, idS be the server identity that is used
in the forged authentication (and thus also in the target registration, see G6), and rs be the challenge that
is used.

• B returns σ∗ := σ, idx∗ := H(idS), and m∗ := H(rs).

One can easily see that B simulates G6 perfectly. Further, due to the changes introduced in games G1,G2 and
G6, if A wins game G6, we know that the forgery output by B is fresh. We conclude with

Adv6 ≤ AdvBuf -hrk-idx1,SIGH′
.

35

	Introduction
	Our Contribution
	Related Work

	Notation and Preliminaries
	WebAuthn and its Implementations
	Modeling Security and Privacy
	Impersonation Security
	Unlinkability

	Analysis of Existing Implementations
	Defining Global Key Revocation
	BIP32 Passwordless Authentication
	Scheme Description
	Revocation Soundness and Unlinkability
	Impersonation Security
	Evaluation

	Conclusion
	Preliminaries
	Omitted Proofs for Existing Implementations
	Omitted Proofs For Key Derivation Function
	Omitted Proofs For Key Wrapping

	Omitted Definitions and Proofs For BIP32

