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Abstract 

Neuroimaging has entered the era of big data. However, the advancement of preprocessing 

pipelines falls behind the rapid expansion of data volume, causing significant computational 

challenges. Here, we present DeepPrep, a pipeline empowered by deep learning and workflow 

manager. Evaluated on over 55,000 scans, DeepPrep demonstrates a 11-fold acceleration, 

exceptional scalability, and robustness compared to the current state-of-the-art pipeline, providing 

a promising solution to meet the scalability requirements of neuroimaging. 

Main Text 

Advances and transparency in neuroimaging are propelled by the rapidly growing amounts of 

publicaly available data from large-scale projects (e.g., the UK BioBank (UKBB) with 50,000+ 

scans1), data sharing initiatives (e.g., the openneuro2), and international consortiums (e.g., the 

ENGIMA3) (see Extended Data Fig. 1). Neuroimaging data typically requires complex and multi-

stage preprocessing pipelines to enable accurate brain tissue segmentation, spatial normalization, 

and other essential preprocessing steps. While prevailing preprocessing pipelines such as 

FreeSurfer4, fMRIPrep5, QSIPrep6, and ASLPrep7 have led to numerous important findings, their 

original design for relatively small sample sizes makes them hard to meet the scalability demands 

in the era of big data. Concurrently, clinical applications of neuroimaging, such as imaging-guided 

neuromodulation8, require fast turn-around time and robustness at the individual level. This 

becomes particularly challenging when dealing with  patients who exhibit brain distortions induced 

by traumas, gliomas, or strokes9,10. To fulfill these emerging requirements, a computationally 

efficient, scalable, and robust preprocessing pipeline is needed. 
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Hence, we propose DeepPrep, a highly efficient, scalable, and robust preprocessing pipeline for 

neuroimaging powered by deep learning algorithms and a workflow manager. Deep learning-based 

algorithms for neuroimaging have shown great potential in improving computational efficiency 

and robustness11-14. Workflow managers are widely used to manage complex workflows for big 

data processing in various fields, such as bioinformatics, due to their scalability, portablibity, and 

computational resource efficiency15. However, this has not been fully exploited in the field of 

neuroimaging. Here, we applied DeepPrep to structural and functional MRI. We integrated 

multiple learning-based modules, including FastCSR13, SUGAR12, SynthMorph14, and 

FastSurferCNN11 (Fig. 1a, Supplementary Table 1 for all dependencies). These deep-learning 

modules facilitate computational efficiency in typically time-consuming operations, such as 

cortical surface reconstruction, surface registration, anatomical segmentation, and volumetric 

spatial normalization. All software modules are linked by 83 discrete yet interdependent task 

processes, which are packaged into a Docker or Singularity container along with all dependencies16. 

Our incorporation of  Nextflow -- a reproducible, scalable, and portable workflow manager15,17 -- 

enables our pipeline to maximize computational resources utilization through dynamically 

scheduling parallelization. The workflow manager also makes it convenient to deploy the pipeline 

in diverse computing environments, including the local computers, high-performance computing 

(HPC), and cloud computing (Fig. 1b). Importantly, DeepPrep is a BIDS-App that can 

automatically configure appropriate preprocessing workflows based on the metadata stored in the 

brain imaging data structure (BIDS) layout18.  In addition to providing preprocessed structural and 

functional  data (see Supplementary Fig. 1 for an example), DeepPrep also generates a visual report 

for each participant and a summary report for a group of participants to facilitate data quality 

assessments by adapting from MRIQC19 (Supplementary Fig. 2), as well as a detailed runtime 
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report (Supplementary Fig. 3). Documentation (https://deepprep.readthedocs.io/en/latest/) and 

code base (https://github.com/indilab/deepprep) of DeepPrep is version controlled and actively 

updated, enabling users and developers to participate in the further development of the pipeline. 

 

Fig. 1 | A computationally efficient and scalable neuroimaging pipeline is empowered by deep-

learning algorithms and workflow managers. a, The neuroimaging pipeline leverages deep learning 

algorithms, including FastSurfer, FastCSR, SUGAR, and SynthMorph, to replace the most time-intensive 

modules present in conventional pipelines. This substitution enables the achievement of highly efficient 

and robust brain tissue segmentation, cortical surface reconstruction, cortical surface registration, and 

volumetric spatial normalization. The current version of the pipeline supports both anatomical and 

functional MRI preprocessing in both volumetric and cortical surface spaces. b, The preprocessing pipeline 
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is organized into multiple relatively independent yet interdependent processes. Imaging data adhering to 

the BIDS format are preprocessed through a structured workflow managed by Nextflow, an open-source 

workflow manager designed for life sciences17. Nextflow efficiently schedules task processes and allocates 

computational resources across diverse infrastructures, encompassing local computers, HPC clusters, and 

cloud computing environments. The pipeline yields standard preprocessed imaging and derivative files, 

DeepPrep quality control reports, and runtime reports as its outputs. 

 

To demonstrate the performance of DeepPrep, we applied it to over 55,000 scans from 8 datasets 

acquired with diverse populations, scanners, and imaging parameters (Supplementary Table 2). 

These datasets include structural and functional MRI data from the UKB1 for evaluating 

computational efficiency and scalability, one manually labelled brain dataset (the Mindboggle-101 

dataset20) for evaluating brain segmentation, two precision neuroimaging datasets (the MSC 

dataset 21 and the CoRR-HNU dataset 22) for accuracy and reliability assessment, and three clinical 

datasets (the CRRC-Stroke dataset, SHH-DoC dataset, and BTH-Glioma dataset) for robustness 

assessment. These data were also processed using the current state-of-the-art processing pipeline, 

fMRIPrep5, for comparison. 

 

In a local workstation equipped with CPUs and a GPU (see Methods), DeepPrep successfully 

preprocess 1,189 subjects from the UKB dataset per week, with an average processing time of 8.5 

minutes per subject. This processing speed represents approximately 11-fold faster than that 

achieved by fMRIPrep in the same workstation, which processed 107 subjects with an average 

processing time of 92.6 minutes per subject (Fig. 2a & b). Moreover, when we performed separate 

preprocessing for anatomical and functional scans, DeepPrep exhibited acceleration factors of 13.8 

and 12.1 times, respectively (Extended Data Fig. 2). Notably, in a HPC environment, the trade-off 

between preprocessing time and computational resource utilization, measured in terms of CPU 
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hours and associated costs, becomes a critical consideration. Achieving shorter preprocessing time 

through recruiting more CPUs comes with higher expense on hardware (Fig. 2c), which can be a 

significant concern for users. To explore this trade-off relationship, we conducted an analysis by 

recruiting one, two, four, eight, and sixteen CPUs for processing. FMRIPrep exhibited a 

characteristic curve, illustrating the trade-off between processing time and costs (Fig. 2c). In 

contrast, DeepPrep demonstrated stability in both processing time and associated costs, due to its 

computational flexibility in dynamically allocating computational resources to match the specific 

requirements of individual task processes. Importantly, the computational costs associated with 

DeepPrep were found to be at least 7.5 times lower than those of fMRIPrep. Additionally, we 

demonstrated the scalability of DeepPrep by successfully preprocessing the entire UKB 

neuroimaging dataset, consisting of over 54,515 scans, within 6.5 days in a HPC cluster (see 

Methods).  

 

The DeepPrep and fMRIPrep outputs were also compared in the Mindboggle-101, MSC, and 

CoRR-HNU datasets, covering a range of aspects including anatomical parcellation and 

segmentation (Extended Data Fig. 3), anatomical morphometrics (Extended Data Fig. 4), spatial 

normalization (Extended Data Fig. 5), temporal signal-to-noise ratio (Extended Data Fig. 6), task-

evoked responses (Extended Data Fig. 7), functional connectivity (Extended Data Fig. 8), and test-

retest reliability in functional connectomes (Extended Data Fig. 9). Overall, the comparison 

indicated that DeepPrep consistently yielded preprocessing results that were either highly similar 

or even superior to those generated by fMRIPrep when assessed using various metrics.  These 

results support the accuracy of DeepPrep while concurrently maximizing efficiency. 
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Next, we screened 53 clinical samples that could not be successfully processed by FreeSurfer v6.0 

within 48 CPU hours due to distorted brain or imaging noises from three clinical datasets (see 

Methods). These samples were preprocessed using both DeepPrep and fMRIPrep. The results 

indicated that DeepPrep exhibited a higher pipeline completion ratio (100.0%), a higher 

preprocessing accuracy ratio (60.4%), and significantly shorter processing time for each subject 

(45.5 ± 5.6 minutes) compared to fMRIPrep (Fig. 2d; completion ratio: 69.8%, chi-square test: χ² 

= 16.6, p = 4.7×10−5; accuracy ratio: 34.0%, χ² = 7.4, p = 0.006; processing time = 513.2 ± 108.4 

minutes, two-tailed paired t-test, t(52) = -26.2, p < 0.0001). The occurrences of fMRIPrep 

preprocessing failures and errors could be attributed to four main causes: segmentation errors, 

surface reconstruction failures, surface registration errors, and volumetric registration errors (Fig. 

2e). Intriguingly, these four causes correspond to four processing modules where deep-learning 

algorithms replace conventional algorithms, indicating the robustness of DeepPrep in handling 

complicated clinical cases. 

 

In summary, DeepPrep pipeline demonstrates exceptional efficiency and robustness in processing 

large sample neuroimaging datasets and complex clinical cases. This success can be attributed to 

the integration of workflow managers for handling big data and the utilization of deep learning 

algorithms. With time, we plan to expand DeepPrep into a comprehensive platform for processing 

multimodal neuroimaging. While the current version focuses primarily on the most time-

consuming workflows in structural and functional MRI, future versions will integrate additional 

modalities, such as arterial spin labeling (ASL) and diffusion imaging (dMRI). These 

enhancements will benefit the broader neuroimaging community. 
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Fig. 2 | DeepPrep achieves over 10-fold acceleration and shows robustness in processing clinical 

samples. a, DeepPrep (blue bars) successfully processed 1189 participants’ scans from the UKB dataset on 

a workstation, whereas fMRIPrep (gray bars) processed 107 participants. b, Average processing time per 

participant of DeepPrep is 8.5 minutes, with a remarkable 11-fold increase compared to fMRIPrep’s 92.6 

minutes. c, In the HPC context, preprocessing time of fMRIPrep can be reduced by allocating additional 

computational resources for processing each single scan, yet with higher hardware expense associated with 

CPU hours (the gray line). DeepPrep offers flexibility in resource allocation, tailoring computational 

resources to the specific requirements of each task process, resulting in reliable costs and efficient 

processing time for individual participants (the blue dot). The cost of DeepPrep is at least 20 times lower 

than that of fMRIPrep. d, Robustness of DeepPrep is assessed in preprocessing intractable clinical samples. 

DeepPrep successfully completed preprocessing in 100% of patients, with 60.4% of patients being correctly 

preprocessed. Meanwhile, fMRIPrep’s success rate was 69.8% for completion and 34.0% for correct 

preprocessing. e, Preprocessing errors are categorized into four types, including brain tissue segmentation, 

cortical surface reconstruction, cortical surface registration, and volumetric spatial normalization. Four 

representative cases with preprocessing errors are presented, illustrating obvious brain lesions or imaging 
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noises in the original images. fMRIPrep yields an inaccurate brain mask when skull stripping, failed to 

reconstruct cortical surfaces, exhibited misalignment in surface parcellation in the pre- and post-central 

gyrus, and produced inappropriate volumetric normalization in perilesional region. In contrast, DeepPrep 

successfully and accurately processed these cases. 
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Methods 
DeepPrep offers a computationally efficient, robust, and scalable neuroimaging preprocessing 

pipeline for investigators, incorporating recent advancements in deep learning for neuroimaging 

processing and dynamic workflow management. Designed to be compatible with the BIDS 

standard18, DeepPrep facilitates automatic workflow configurations with minimal manual 

intervention, utilizing metadata provided by BIDS. Moreover, DeepPrep is facilitated by container 

and workflow manager technologies, and thus is computationally efficient and portable across 

different computing environments, providing a highly efficient alternative for neuroimaging 

preprocessing. For optimial acceleration, it is highly recommended to excute DeepPrep in a 

computing eviornment equipped with GPUs, although it remains executable on CPU-only systems 

(see Supplementary Note 3 for minimum system requirements). Additionally, version control of 

the project’s codes and documents is managed through GitHub. While we plan to expand DeepPrep 

to be a comprehensive pipeline for multimodal neuroimaging in the future, the current version 

primarily focuses on the most time-consuming workflows, including anatomical preprocessing, 

functional preprocessing, and imaging quality control. To evaluate its computational efficiency, 

scalability, accuracy, and robustness, we preprocessed over 55,000 scans from seven datasets using 

DeepPrep and compared the results with fMRIPrep5 and FreeSurfer4. 

 

Preprocessing workflow for anatomical images. 

Overall Description 

The anatomical preprocessing workflow in DeepPrep closely follows the FreeSurfer pipeline while 

efficiently replacing several of the most time-consuming steps with deep learning algorithms. 

Specifically, the volumetric anatomical segmentation, cortical surface reconstruction, and cortical 

surface registration are accomplished using FastSurferCNN4, FastCSR13, SUGAR12, respectively. 

Detailed information on the training and test procedures for each algorithm is provided in 

Supplementary Note 2. The remaining steps in the workflow remain consistent with FreeSurfer 

v7.2, including the spherical mapping, morphometric estimation, and statistics. These steps ensure 

the continued reliability and accuracy of the overall preprocessing process while harnessing the 

benefits of deep learning algorithms to enhance computational efficiency. The preprocessing 

workflow consists of several essential steps as follows: 
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Motion correction. If multiple T1w images are available for each participant or each session, 

FreeSurfer’s “recon-all -motioncor” is employed to correct head motions across the scans. This 

process yields an average T1w image to minimize the impact of head motions on data quality. 

 

Segmentations. The whole brain is segmented into 95 cortical and subcortical regions using 

FastSurferCNN11. Specifically, the segmentation model utilized is FastSurferCNN, which is 

optimized for accurate and rapid anatomical segmentations. 

 

Skull-stripping and bias field correction. A brain mask is generated according the 95 whole-brain 

regions to achieve accurate and robust skull-stripping. The T1w images undergo N4 bias field 

correction using SimpleITK with reference to a brain mask. Afterward, the normalized and skull-

stripped T1w images could be fed into the subsequent steps. 

 

Cortical surface reconstruction. The white-matter and pial cortical surfaces are reconstructed 

based on the anatomical segmentation derived from the FastSurferCNN11. This process utilizes 

FastCSR13, a deep-learning-based model designed to accelerate cortical surface reconstruction. 

FastCSR leverages an implicit representation of the cortical surface through the level-set 

representation, and uses a topology-preserving surface extraction method to yield white and pial 

surfaces represented by triangulated meshes.  

 

Cortical surface registration. The reconstructed surface is inflated to a sphere with minimal 

distortion using the FreeSurfer command mris_sphere. Both rigid and non-rigid registrations for 

the spherical cortical surface are performed to align anatomical landmarks and morphometrics, 

facilitated by the deep-learning cortical surface registration framework, SUGAR12. Individual 

spherical surfaces are aligned to the fsaverage template surfaces by default. 

 

Cortical surface parcellation. The cortical surface parcellation is generated based on the cortical 

surface registration using the FreeSurfer command recon-all -cortparc. Subsequently, the cortical 

parcellation is projected to the volumetric segmentation by assigning voxels their closest cortical 

labels via the command mri_surf2volseg, thereby replacing the cortical parcellation derived from 

FastSurferCNN. 
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Preprocessing workflow for functional images. 

Overall Description 

The functional preprocessing workflow in DeepPrep incorporates advanced registration methods, 

SynthMorph14, to replace the most time-consuming step, the spatial normalization. The workflow 

is also complemented by modules from existing tools, including AFNI23, FSL24, and fMRIPrep5, 

to form a comprehensive functional image preprocessing method. The fMRI preprocessing 

workflow consists of several essential steps as follows: 

 

Motion correction and slice-timing correction. The head motion parameters of the BOLD fMRI 

signals are estimated by MCFLIRT from FSL25, with the reference volume generated from 

averaging non-steady state volumes or dymmy scans. Slice-timing correction is included in our 

processing pipeline for fMRI data using 3dTshift from AFNI23, when slice-timing information is 

available in the BIDS metadata. This is an optional step and can be deactivated if the BIDS 

metadata does not specify slice times.  

 

Susceptibility distortion correction. DeepPrep incorporates SDCFlows (Susceptibility Distortion 

Correction Workflows)26 to correct susceptibility distortions. SDCFlows offers versatile 

workflows designed to preprocess various MRI schemes, enabling the estimation of B0 field-

inhomogeneity maps directly associated with distortion. This distortion correction is applied to the 

fMRI data when the appropriate fieldmap information is available within the BIDS metadata. 

Distortion correction is an optional step.  

 

Coregistration. A rigid registration is performed using FreeSurfer’s boundary-based registration 

to align motion-corrected fMRI volumes to native T1w images for each subject. The registration 

optimizes the boundary-based loss function to align the boundary between gray and white matter 

across different imaging modalities. 

 

Spatial normalization. The spatial normalization step aims to normalize individual brain images 

to a standard template, such as the MNI152NLin6Asym volumetric template and FreeSurfer’s 

fsaverage6 surface template. Traditionally, this step is highly time-consuming due to the 
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requirement of non-rigid surface and volumetric registration, often taking hours for computations. 

However, in DeepPrep, a deep-learning algorithm called SynthMorph14 is utilized to achieve both 

rigid and non-rigid volumetric registration in minutes. Additionally, for both rigid and non-rigid 

cortical surface registration, SUGAR is used to achieve accurate alignment in anantomical 

landmakrs and morphometrics in seconds. Subsequently, preprocessed BOLD fMRI volumes are 

projected to the MNI152NLin6Asym template and fsaverage6 template surfaces by default, 

through applying deformation matrices derived from the registrations. The pipeline also flexibly 

supports normalization to other volumetric human brain templates managed by the TemplateFlow 
27.  

 

In summary, this preprocessing workflow utilizes a combination of conventional methods and 

advanced deep learning algorithms to efficiently and accurately preprocess structural and 

functional images for neuroimaging analysis. 

 

The workflow manager and containers 

In the DeepPrep, we used the Nextflow17 (https://www.nextflow.io), an open-source workflow 

manager widely used in life science, and used Docker (https://www.docker.com) and Singularity16 

containers to establish a scalable, portable, and reproducible neuroimaging preprocessing pipeline 

across diverse computing environments.  

 

Nextflow facilitates the DeepPrep in optimizing computational resource utilization, particularly in 

HPC clusters and cloud infrastructures, and ensuring cross-platform portability and reproducibility. 

Specifically, DeepPrep established and executed the pipeline using key Nextflow components, 

including process, channel, workflow, and executor, with some modifications aimed at improving 

the GPU utilization efficiency. Initially, we disassembled the pipeline into 83 discreate minimal 

executable steps, enabling parallelization and substantial improvements in computational 

efficiency. The disassemble also allowed for precise monitoring and control of system resource 

consumption for each individual step. Each step was defined as a Nextflow process, ensuring that 

input and output data adhered to expected standards and specifying the system resource 

requirements for each process. Data flow pipelines were delineated using the Nextflow channel 
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component, and the complete workflow was specified through the Nextflow workflow component, 

integrating predefined processes and data flow pipelines. 

 

Once the pipeline was established, DeepPrep employed the Nextflow executor component, serving 

as an abstraction layer between the processes and the underlying execution system. This 

abstraction facilitated the portable execution of the pipeline across diverse platforms and 

infrastructures. However, in cases where the execution system was set to ‘local’, the existing 

version of Nextflow lacked GPU resource monitoring capabilities. Given the benifits in 

computational efficiency of DeepPrep from multiple GPU-intensive processes, concurrent 

execution on a single GPU-equipped machine could result in errors due to insufficient GPU video 

memory (VRAM). To address this challenge, we devised a GPU scheduling module, utilizing two 

distributed mutual exclusion locks based on Redis (https://redis.io). This module categorized GPU 

processes into two groups: those consuming less than half of the VRAM and those requiring more 

than half. Processes with lower VRAM requirements could proceed upon acquiring a single lock, 

while those with higher demands needed to secure both locks simultaneously. This module 

effectively fixed GPU-related errors and substantially improved GPU utilization efficiency before 

Nextflow’s GPU monitoring implementation. 

 

In addition, we prioritized the reproducibility of our preprocessing pipeline. To this end, DeepPrep 

underwent rigorous version control and was fully compatible with execution in both Docker and 

Singularity containers. Singularity, designed for scientific computational tasks such as 

neuroimaging processing, offered the flexibility to execute across a spectrum of computing 

infrastructures and platforms, ranging from local machines to HPC clusters and cloud 

environments. Notably, Singularity emphasized security, a paramount concern in scientific 

computing, particularly in HPC settings. It operated within a user-space model, obviating the need 

for elevated privileges, thereby substantially reducing security risks typically associated with 

superuser access. 

DeepPrep report 

DeepPrep automatically generates a descriptive HTML report for each participant and session 

(Supplementary Fig. 2). The report commences with a concise summary of key imaging 
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parameters extracted from the BIDS meta information. Subsequently, the report provides an 

overview of the overall CPU and GPU processing times for the data preprocessing. Key processing 

steps and results for structural images are visually presented, including segmentation, parcellation, 

spatial normalization, and coregistration. The normalization and coregistration outcomes are 

demonstrated through dynamic ‘before’ versus ‘after’ animations. Additionally, the report includes 

a carpet plot, showcasing both the raw and preprocessed fMRI data, along with a temporal signal-

to-noise ratio (tSNR) map. Finally, the report concludes with comprehensive boilerplate methods 

text, offering a clear and consistent description of all preprocessing steps employed, accompanied 

by appropriate citations. 

Standard output  

The preprocessed structural MRI data are organized to align with the results of FreeSurfer, 

encompassing the normalized and skull-stripped brain, reconstructed cortical surfaces and 

morphometrics, volumetric segmentation, cortical surface parcellation, and their corresponding 

statistics. Additionally, transformation files for surface spherical registration are included, as 

illustrated in Supplementary Fig. 1, depicting the data structure. For the preprocessed functional 

MRI data, the naming adheres to the BIDS specification for derived data. The default output spaces 

for the preprocessed functional MRI consist of three options: 1. the native BOLD fMRI space, 2. 

the MNI162NLin6Asym space, and 3. the fsaverage6 surfaces space. However, users have the 

flexibility to specify other output spaces, including the native T1w space and various volumetric 

and surface templates available on TemplateFlow. The main outputs of the preprocessed data 

include: 

1. Preprocessed fMRI data 

2. Reference volume for motion correction 

3. Brain masks in the BOLD native space, include the nuisance masks, such as the ventricle 

and white-matter masks. 

4. Transformation files for between T1w and the fMRI reference and between T1w and the 

standard templates. 

5. Head motion parameters and the temporal SNR map 

6. Confound matrix 
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Evaluation data.  

Data Description 

We collected over 55,000 scans from 8 datasets to evaluate the performance of DeepPrep. The 

evaluation datasets are distinct from training and validation sets for deep learning models to avoid 

information leakage. The training and validation sets for these models are described in previous 

reports11-14. To achieve comprehensive evaluations, we collected over 55,000 scans from seven 

datasets as test sets. A large-scale dataset (the UKBB dataset1, 49300 participants with 5215 

participants including repeated scans, totally 54515 anatomical and functional scans) was used to 

evaluate the computational efficiency, a dataset with manual annotations of the anatomical regions 

(the Mindboggle-101 dataset20, n = 101) was used to evaluate anatomical parcellation, and two 

repeated measured datasets [the Midnight scanning club (MSC) dataset21 (10 participants and 10 

sessions per participant) and CoRR-HNU dataset22 (30 participants and 10 sessions per participant)] 

were used to evaluate the accuracy and test-retest reliability. Moreover, to evaluate the robustness 

in preprocessing clinical cases with anatomical distortions, we included three in-house patient 

datasets, including the Glioma dataset, the DoC dataset and the Stroke dataset. See the 

Supplementary Note 1 for more detailed description of each dataset. 

 

Comparison to alternative preprocessing tools. 

We compared the processing time and preprocessed anatomical and functional outcomes from 

DeepPrep with those from fMRIPrep (version: 22.0.2) and FreeSurfer (version: 7.2.0), respectively.  

 

Processing time and computational costs 

The preprocessing time of both the DeepPrep and fMRIPrep was recorded for comparison and 

evaluated in the identical hardware environment (a workstation with an Intel Core i9 10980XE 

3.00GHz × 36 CPU and a NVIDIA RTX3090 GPU with 24 GB RAM). To examine the scalability 

of the DeepPrep in large-scale datasets, we also preprocessed 54515 scans from 49300 participants 

in the UKBB dataset using our pipeline in an HPC cluster of CPL. The cluster is equipped with 

1920 CPU cores (2.90GHz) and 20 NVIDIA RTX3090 GPUs. To quantify the computational costs 

in the HPC environment, we calculated CPU hours, derived by multiplying the number of recruited 

CPU cores by the duration of usage. Of note, due to the reliance on GPU processing for DeepPrep, 
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we empirically converted one GPU hour into an equivalent of 15 CPU hours to enable a 

standardized comparison, according to the cloud computing charge1,2. 

 

Assessments of structural imaging preprocessing 

Structural images were preprocessed using both the DeepPrep and fMRIPrep. The preprocessed 

structural results were compared between the two pipelines in anatomical segmentation and 

parcellation and similarities in the morphometrics, as elaborated below.  

Accuracy of anatomical parcellation and segmentation. The surface-based parcellation and 

volumetric segmentation of structural images were automatically delineated by different pipelines. 

We first assessed the similarity, measured by Dice coefficient, between the parcellations and 

segmentations automatically generated by different preprocessing pipelines and manually 

delineated annotations considered as the ‘ground truth’. The higher Dice coefficient indicates 

greater similarity and better accuracy. To visually demonstrate the differences in parcellation and 

segmentations, we directly estimated the difference percentages in Dice coefficients from two 

pipelines. 

Similarity to the morphometric atlas. To assess the surface registration performance, we 

compared the similarities in the morphometrics, including sulcal depth and curvature, between the 

aligned surfaces and the FreeSurfer ‘fsaverage’ template surface. We employed the mean squared 

error (MSE) to measure the dissimilarity, with lower MAE values indicating better alignment 

registration performance. We used the metrics to assess registration performance because the 

primary objective of surface registration is to align these anatomical features between individual 

cortical surfaces and atlases12,28,29. 

 

 

Assessments of functional imaging preprocessing 

Preprocessed functional images were compared between the DeepPrep and fMRIPrep in multiple 

aspects, including spatial normalization, tSNR, task activations, and functional connectivity. To 

fairly compare, we performed identical post-processing pipelines for task and resting-state fMRI, 

                                                        
1 https://aws.amazon.com/cn/ec2/instance-types/r7g/ 
2 https://aws.amazon.com/cn/ec2/instance-types/g5/ 
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controlling preprocessed images to the same smoothing level. For the task fMRI, we used the FSL 

FLIM30 (FMRIB’s Improved Linear Model) to perform a standard general linear model for the 

first level analysis after high-pass temporal filtering (100s). The second level inference was 

performed using the FLAME31 (FMRIB’s Local Analysis of Mixed Effects), based on the first-

level outcomes.  For post-processing resting-state fMRI, we included the bandpass filtering (0.01-

0.08Hz) and regression of nuisance variables, including 6 motion parameters, white-matter signal, 

ventricular signal, whole-brain signal, and their temporal derivatives. 

Spatial normalization. After normalizing the BOLD-fMRI images to the MNI152NLin6Asym 

volumetric template, we calculated the standard deviation map of averaged BOLD time series 

across participants, in order to examine the performance of spatial normalization. A higher 

standard deviation around the brain outline indicates a lower performance of spatial normalization. 

tSNR. The voxel-wise tSNR was calculated to assess the amount of informative signal relative to 

the noise level in preprocessed images, following a previous report 32. The tSNR was estimated by 

the TSNR of Nipype, which first applied a quadratic detrending, then calculated the temporal mean 

and divided by its temporal standard deviation for each voxel of each participant. The individual 

voxel-wise tSNR map was averaged across all participants. 

Motor-task activation map. The MSC motor task21 is a block design with conditions of tongue, 

left hand, right hand, left foot, right foot, adapted from the paradigm used in the Human 

Connectome Project33. Task-evoked activations were modeled by a general linear model (GLM) 

for each voxel and each session for the first-level analyses. The second level analyses averaged 

data across session for each participant based on the fixed effect model. The third level analyses 

grouped data across participants based on the mixed effect model. The task post-processing 

analyses were performed using the FSL24. 

Seed-based cortico-cortical and cortico-cerebellar functional connectivity. To assess the 

similarity in resting-state functional connectivity (RSFC) derived from different pipelines, we 

examined typical long-range RSFC of a cortico-cortical and a cortico-cerebellar circuit. 

Specifically, we identified cortical and cerebellar seeds from previous studies 34. For the cortico-

cortical circuit, a seed in left-hemisphere posterior cingulate cortex (PCC; MNI coordinate = -2, -

53, 26) was selected. For the cortico-cerebellar circuit, a seed in the left angular gyrus (AG, MNI 

coordinate = -49, -63, 45) was selected. Each seed region of interest (ROI) was a 6-mm spheres 

centered around the MNI coordinates of each seed. The RSFC was estimated by Pearson’s 
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correlation coefficient between average BOLD time series within each seed ROI. To normalize 

the distribution of correlation coefficients, these r values were converted to z values through the 

Fisher’s r-to-z transformation. To demonstrate both the surface-based and volumetric RSFC, we 

performed surface-based analyses for the PCC seed and volumetric analyses for the AG seed. The 

similarity in RSFC was assessed in the MSC dataset. 

 

Test-retest reliability in functional connectomes. To assess test-retest reliability in functional 

connectomes, we utilized a volumetric atlas comprising 300 cortical and subcortical ROIs 35 and a 

cortical surface atlas comprising 300 cortical ROIs36 to estimate the whole-brain and cortical 

functional connectomes, respectively. The test-retest reliability was measured by calculating the 

similarity between functional connectomes obtained from two different segments in the repeated 

measured datasets, namely, the MSC dataset and the CoRR-HNU dataset. Furthermore, we 

investigated the dependence of reliability on scanning duration by randomly selecting and 

concatenating two or more sessions to measure the functional connectome and its corresponding 

test-retest reliability, following the procedure described previously21. 

 

Application to data in clinical setting 

To assess the pipelines’ robustness in handling clinical cases with distorted brains, we included a 

total of 53 scans from three clinical datasets, comprising patients with various conditions, 

including stroke, glioma, and disorders of consciousness (see Supplementary Note 1 for more 

details). Notably, the selected structural images of these clinical cases either failed or yielded 

significant errors during original preprocessing using the conventional FreeSurfer v6.0 procedure. 

The criterion for processing failure is that the procedure cannot be completed within 48 hours on 

a CPU. To compare the pipelines’ performance, we employed both DeepPrep and fMRIPrep to 

preprocess all cases and recorded the processing time, completion and accuracy rates, as well as 

analyzed the error reasons. Completion is defined as successfully producing the processed outputs 

within 48 hours on 8 CPUs and one GPU. 

 

Processing success and accuracy rate. The completion rate was determined as the proportion of 

clinical datasets that successfully completed all preprocessing steps, resulting in intact output files. 

On the other hand, the accuracy rate was defined as the proportion of samples whose preprocessing 
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results were deemed accurate, considering the rationality of surface reconstruction, anatomical 

segmentation, registration quality, and functional connectivity. The assessment of processing 

accuracy was conducted independently by three experienced neuroimaging experts through visual 

inspection (J.R., W.C., and H.L.). The experts were blinded to the label of the preprocessing 

pipeline to minimize subjective biases. A sample was classified as accurate when at least two 

neuroscientists reached a consensus on its accuracy. 

 

Preprocessing error categories. During the assessment of failed and inaccurate samples, we 

conducted a systematic step-by-step inspection of the preprocessing outputs to identify the 

underlying reasons for the errors. Based on this analysis, the failures were categorized into four 

distinct groups: segmentation errors, surface reconstruction failures, surface registration errors, 

and volumetric registration errors. Segmentation errors were observed in cases where clear 

inaccuracies were present in the segmentation of anatomical tissues. These errors were more 

commonly found in samples with extensive lesions or substantial head motion during T1w imaging 

scanning. Surface reconstruction failures were characterized by either the failure to reconstruct 

cortical surfaces or an excessively prolonged processing time (exceeding 48 hours) to produce 

results. These issues often arose due to challenges in accurately fixing surface topology in distorted 

brains. Both surface and volumetric registration errors indicated misalignment of morphometric 

features, such as sulci and gyri. Such misalignments could lead to inaccuracies in the registration 

of brain structures. 

 

Meta-analysis of large-scale neuroimaging studies 

To summarize recent trends in big data of neuroimaging, we conducted a meta-analysis of large-

scale neuroimaging studies. First, we performed a PubMed (http://www.pubmed.gov) search on 

studies published before June 30, 2023, using the keywords: (large scale OR large sample size) 

AND (neuroimage OR *MRI). Next, we collected further studies by reviewing the reference lists 

of relevant papers, including studies that employed open-source big data or reviews focusing on 

large-sample size studies. The inclusion criteria for large-scale datasets were as follows: (1) the 

study recruited a sample larger than 1000 healthy participants or 400 participants from specific 

populations, such as patients, twins, or preterm brains; (2) the study was peer-reviewed; and (3) 

the study contained MRI data with at least one type of structural and functional images. These 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.06.581108doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.581108
http://creativecommons.org/licenses/by-nc/4.0/


literature searches yielded a total of 42 studies, comprising over 200,000 participants. Each sample 

was then categorized into one of three types of projects based on its funding resources. The first 

type was named “Big Project” as it was supported by a single funding source. The second type 

was named “Consortium” as it involved international collaboration with multiple funding sources. 

The last type was named “Data Sharing Platform” as it shared data on the same or different topics 

from different groups. 

 

Statistical Analysis 

Chi-square tests were used for comparisons in completion and accuracy ratios. Processing time, 

Dice coefficients of cortical parcellation  and subcortical segmentations, similarities in functional 

connectomes of two pipelines were statistically compared using a two-tailed paired-sample t-test. 

False Discovery Rate (FDR) correction was used to account for multiple testing. 
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