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A B S T R A C T   

In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. 
Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal 
neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral struc-
tures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal 
Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation 
algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI 
reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, 
ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, 
submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from 
both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with 
some variability present in the network architecture, optimization, and image pre- and post-processing. The 
majority of teams used existing medical imaging deep learning frameworks. The main differences between the 
submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. 
The challenge results showed that almost all submissions performed similarly. Four of the top five teams used 
ensemble learning methods. However, one team’s algorithm performed significantly superior to the other sub-
missions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind 
benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.   

1. Introduction 

Fetal in-utero magnetic resonance imaging (MRI) is a powerful tool to 
investigate the developing human brain in fetuses with and without 
pathological features (De Asis-Cruz et al., 2021; Hosny and Elghawabi, 
2010). It can be used to portray the complex neurodevelopmental events 
during human gestation, which remain to be completely characterized 
(Vasung et al., 2019). Clinically, it is becoming an important adjunct to 
ultrasound in the detection and diagnosis of congenital disorders (Hart 
et al., 2020), and can be used to aid during prenatal care (Gholipour 
et al., 2014). 

Automated segmentation and quantification of the highly complex 
and rapidly changing brain morphology using MRI prior to birth has 
great potential to improve the diagnostic process, as manual segmen-
tation is both time consuming and subject to human error and inter-rater 
variability. It is clinically relevant to analyze the morphometry of the 
developing brain, where measures such as the volume or the shape can 
be objectively compared with population-based references of normative 
development. Many congenital and acquired disorders manifest in 
reduced brain volume or altered anatomical structure of cerebral tissue 
compartments, for example, slower cortical growth (Clouchoux et al., 
2013; Egaña-Ugrinovic et al., 2013) or reduced white matter volume 
(Rollins et al., 2021). Existing MRI based data of brain growth is mainly 
based on normally developing brains (Jarvis et al., 2019; Kyriakopoulou 
et al., 2017; Prayer et al., 2006), leaving brain growth in various 
numerous pathologies and congenital disorders largely unexplored. 

From a technical standpoint, there are many challenges that an 
automatic segmentation method of the fetal brain would need to over-
come. The cerebral structures are constantly growing and developing in 
complexity throughout gestation, which results in a gradually changing 
appearance in shape, size, and image intensity on MRI. In addition, the 
quality of the images can be poor due to fetal and maternal movement 
and imaging artefacts (Glenn, 2010). The boundary between tissues is 
often unclear on MR images due to partial volume effects (Bach Cuadra 
et al., 2009). Furthermore, fetal brains with abnormal features can have 
radically different morphology than those in a non-pathological brain. 
This can make it challenging for an automatic method to correctly 

identify these structures. 
Fetal MRI requires no special MRI equipment, is noninvasive, safe 

(Gowland, 2011; Zvi et al., 2020), and its value in the diagnosis of 
certain central nervous system or somatic disorders is being increasingly 
recognized (Griffiths et al., 2019; Nagaraj et al., 2022). The develop-
ment of ultra-fast MRI sequences such as the single shot T2-weighted 
sequence have also led to the increasing popularity of fetal MRI as 
these images have excellent soft tissue contrast and reduced motion 
artefact (Gholipour et al., 2014). As a result, fetal MRI is more frequently 
performed at diagnostic and surgical centers worldwide. There is also an 
increase in the number of studies focused on developing computational 
tools to quantitatively analyze the fetal brain. Some studies have focused 
on segmenting a specific tissue for analysis, such as the cortical plate 
(Benkarim et al., 2018; de Dumast et al., 2020; Fetit et al., 2020; Hong 
et al., 2020). Other studies have developed multi-tissue segmentation 
algorithms using a limited in-house dataset (e.g., clinically acquired 
anisotropic coronal images of normal fetuses (Khalili et al., 2019), or 
images of a specific pathology (Sanroma et al., 2018), or with atlas based 
frameworks (Dittrich et al., 2011; Gholipour et al., 2017; Licandro et al., 
2016; Wu et al., 2021b; Xu et al., 2022)). Recently, research groups have 
developed more extensive in-house datasets with which to train auto-
matic segmentation networks, but these datasets remain private (Karimi 
et al., 2023; Zhao et al., 2022). The field of developing automated tools 
for fetal MRI has been understudied due to both challenges in imaging 
and the lack of public, curated, and annotated ground truth data. Such 
shared datasets are currently the backbone for developing 
computer-aided diagnostic support systems. 

In this paper we describe the Fetal Brain Tissue Annotation and 
Segmentation Challenge (FeTA) and outline the challenge organization, 
the submitted segmentation frameworks, and a detailed evaluation of 
the challenge results, with reporting based on the BIAS method 
(Maier-Hein et al., 2020). The aim of the FeTA Challenge was to develop 
reliable, valid, and reproducible methods of analyzing high resolution 
reconstructed MR images of the developing fetal brain from gestational 
week 20–35. The FeTA Challenge used an expanded version of the 
original FeTA Dataset to develop automatic fetal brain tissue segmen-
tation methods (Payette et al., 2021a). Our evaluation compares and 
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analyzes the algorithms on a test dataset hidden to the participants. The 
submitted algorithms are also tested on various subsets of the testing 
dataset in order to determine whether they perform better or worse 
under various circumstances such as image quality or reconstruction 
method. Finally, we investigated two real life applications outside the 
scope of the FeTA Challenge evaluation: First, the performance of the 
submitted algorithms to estimate intracranial volume was evaluated, an 
application relevant to the characterization of developmental delay in 
many conditions, such as intrauterine growth restriction or congenital 
heart defects (Polat et al., 2017; Sadhwani et al., 2022; Skotting et al., 
2021). Second, we looked at the ability of the algorithms to segment 
younger (<29 weeks) versus older (≥29 weeks) fetal brains). The al-
gorithms developed as part of the FeTA Challenge will have the potential 
to help better understand the underlying causes of congenital disorders 
and ultimately to guide the development of perinatal guidelines and 
clinical risk stratification tools for early interventions, treatments, and 
care management decisions. 

2. Materials and methods 

2.1. Challenge organization 

The FeTA Challenge was held as part of the international Medical 
Image Computing and Computer 

Assisted Intervention (MICCAI) 2021 Conference (https://feta. 
grand-challenge.org/). Participants were to create a fully automatic 
multi-class segmentation algorithm of the fetal brain (with optional in-
puts of gestational age and whether the brain was pathological or not). 
The training dataset was made available to the participants on May 3rd, 
2021 on Synapse (https://www.synapse.org/#!Synapse:syn2 
5649159/wiki/610007), (Payette and Jakab, 2021) to train their own 
methods. Participants were able to use other publicly available datasets 
for training if they wished to, as long as it was documented in their al-
gorithm description. Participants created a Docker container which 
stored the algorithm, and submitted this container to the organizers by 
July 30, 2021. Organizers were allowed to submit containers, but were 
not eligible for prizes. This container was run by the challenge orga-
nizers locally on the hidden testing dataset in order to compare the al-
gorithms. Re-submission of the Docker container was only allowed in 
cases of technical difficulties or bugs identified during evaluation. The 
top teams received their results on September 1, 2021 in order to pre-
pare presentations. The complete results and awards to the top three 
teams were presented on Oct 1, 2021 at the MICCAI Conference FeTA 
Challenge Session. Dockers of teams who provided permission are 
available on Dockerhub (https://hub.docker.com/u/fetachallenge). For 
the complete overview of the challenge, see the final challenge proposal 
(Payette et al., 2021b). 

2.2. Mission of the challenge 

The mission of the FeTA Challenge is to boost the development of 
accurate and automatic multi-class segmentation algorithms for the 
developing human brain with fetal MRI, and to create a benchmark for 
future algorithms. There were a total of eight classes: external cere-
brospinal fluid (eCSF), gray matter (GM), white matter (WM), ventricles 
(including cavum), cerebellum, deep gray matter (deep GM), brainstem, 
and background. The target cohort for the FeTA Challenge were preg-
nant mothers who, after an initial ultrasound examination, were clini-
cally referred for a fetal MRI. The acquired fetal MRI images were then 
reconstructed into a 3-dimensional volume using a super-resolution 
method (for details see Section 2.3). The task of the challenge was to 
segment these super-resolution volumes into different brain tissues. The 
challenge cohort was made up of two subgroups: fetuses with normal 
and abnormal development of the nervous system, and covers a gesta-
tional age (GA) range of 20–35 weeks. The accuracy of the automatically 
generated fetal brain segmentations was evaluated in the challenge 

cohort in order to determine the optimal segmentation method for fetal 
brain MRI. 

2.3. Challenge dataset 

For the challenge, a clinically acquired dataset from a single insti-
tution was used for both the training and testing data. 120 fetal MRI 
brain scans were acquired. Recorded gestational age was modified by a 
random value within the range of ±3 days to further anonymize the 
data. Several T2-weighted single shot Fast Spin Echo (ssFSE) images 
were acquired for each subject in all three planes with a reconstructed 
resolution of 0.5mm x 0.5mm x 3 to 5mm. The images were acquired on 
either a 1.5T or 3T clinical GE whole-body MRI scanners (Signa Dis-
covery MR450 and MR750) using an 8-channel cardiac or body coil with 
the following sequence parameters: TR: 2000–3500ms, TE: 120ms 
(minimum), flip angle: 90◦, sampling percentage 55%. Field of view 
(200–240mm) and image matrix (1.5T: 256×224; 3T: 320×224) were 
adjusted depending on the gestational age and size of the fetus. The data 
was acquired at the University Children’s Hospital Zurich in Zurich, 
Switzerland by trained radiographers using clinically defined protocols. 

For each subject, the acquired images were reviewed, and images of 
good quality, at least one image in each of the axial, sagittal, coronal 
planes with respect to the fetal brain, were chosen. A high-resolution 
fetal brain reconstruction was performed with the chosen scans using 
a super-resolution (SR) method (60 cases reconstructed with the mialSR 
method (Pierre Deman et al., 2020; Tourbier et al., 2019; S. 2015) and 
60 cases reconstructed with the Simple IRTK method (Kuklisova--
Murgasova et al., 2012)). Fetal brain masks were created where neces-
sitated by the SR algorithm, either manually or with a custom MeVisLab 
module (Pierre Deman et al., 2020; Tourbier et al., 2015). Cases 
reconstructed with mialSR were reoriented prior to reconstruction 
through the MeVisLab module. Cases reconstructed with the Simple 
IRTK method were registered to an atlas after reconstruction (Serag 
et al., 2012). After reconstruction, each fetal brain volume had an 
isotropic resolution of approximately 0.5mmx0.5mmx0.5mm, with 
some deviation in exact dimensions between the SR methods. Each 
reconstructed image was then histogram-matched using Slicer (Kikinis 
et al., 2014), and zero-padded to be 256×256×256 voxels. For each 
reconstruction method, 40 cases were included in the training dataset 
available to the challenge participants (for a total of 80 cases), and 20 
cases were included in testing dataset not available to the participants 
(for a total of 40 cases). Note that maternal tissue was excluded from the 
super-resolution reconstruction, only the fetal brain was reconstructed. 
Examples of non-pathological fetal brains across the range of gestational 
ages included in the dataset and their corresponding label maps can be 
seen in Fig. 1. 

The training and testing datasets consisted of fetuses with both 
typical and atypical features. In the group with atypical features, a va-
riety of cerebral pathologies of varying severities were included (such as 
Chiari-II malformation or ventricular dysmorphology seen in ven-
triculomegaly). There were slightly more pathological than neurotypical 
cases, as in the clinic where the scans were performed it is more common 
to see pathologic brains (Fig. 2). Fetuses with a gestational age range of 
20 to 35 gestational weeks were included (mean gestational age: 27.0 
±3.60 weeks), with the distribution of ages and pathologies equal be-
tween the training and testing datasets (see Fig. 3). The gestational age 
and the label of “neurotypical/pathological” was made available to the 
participants. Each case’s label map was manually segmented by in-
dividuals with experience in segmenting medical images using the 
method described in (Payette et al., 2021a). Each case consists of a 3D 
super-resolution reconstruction of a fetal brain (256×256×256 voxels) 
and the associated manually segmented label map. There is no overlap of 
subjects between the training and testing dataset, each dataset is unique. 
The dataset and affiliated custom license is publicly available on Syn-
apse (Payette and Jakab, 2021). 

Mothers of the healthy fetuses participating in the BrainDNIU study 
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were prospectively informed about the inclusion in the FeTA Dataset by 
members of the research team and gave written consent for their 
participation. Mothers of all other fetuses included in the current work 
were scanned as part of their routine clinical care and gave informed 
written consent for the re-use of their data for research purposes. The 
ethical committee of the Canton of Zurich, Switzerland approved the 
prospective and retrospective studies that collected and analyzed the 
MRI data (Decision numbers: 2017-00885, 2016-01019, 2017-00167), 
and a waiver for an ethical approval was acquired for the release of a 
fully anonymous dataset for research purposes. 

Participants were free to choose if they wanted to work with the data 
in a 2D or 3D format. A validation dataset was not provided to the 
participants, it was up to the team’s discretion to decide how to train 
their data and what to use for validation. The following section outlines 
the evaluation metrics used to determine the ranking of participants in 
the challenge. 

2.4. Assessment method 

2.4.1. Evaluation metrics 
Three different metrics were chosen to compute the rankings of the 

FeTA Challenge: the Dice Similarity Coefficient (DSC), The Volume 
Similarity (VS), and the Hausdorff distance (HD). The DSC was chosen, 
as it is the most popular segmentation overlap metric for segmentation 
evaluation (Dice, 1945). However, we were also interested in assessing 
volume, as relevant biomarker for fetal development, and surface-based 
error. Therefore the HD (surface, (Hausdorff, 1991)), and VS (volume) 
metrics were chosen as well (Taha and Hanbury, 2015), and the final 
ranking will take all three metrics into account. 

The DSC measures the amount of overlap between the manual seg-
mentations (MS) label and the new segmentation (NS) generated by the 
participant’s algorithm, and is defined as 

DSC =
2 |MS ∩ NS|

|MS| + |NS|

The VS is a volumetric metric that measures the similarity between 
the volume of the GT and NS label map and is defined as 

VS = 1 −
|MSvol − NSvol|

MSvol + NSvol 

The HD is a distance metric that evaluates the distance between two 

Fig. 1. Fetal Brain Segmentations by gestational age.  

Fig. 2. Pathological fetal brain viewed in axial, sagittal, and coronal directions A): mialSR reconstruction, 27.3 GA; B) Simple IRTK SR Reconstruction, 26.9 GA.  
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finite point sets A and B. 
The Hausdorff distance (HD) is a spatial metric helpful in evaluating 

the contours of segmentations as well as the spatial positions of the 
voxels. The HD between two finite point sets A and B is defined as 
HD(A,B) = max(h(A,B), h(B,A))

h(A,B) = ||a− b||

Note: The original challenge design had stated that the 95th 
percentile HD of maximum distances would be used to exclude possible 
outliers. However, after the challenge it was discovered that there was 
an error in the implementation of the 95th percentile, and the values 
reported were close to the maximum HD, and therefore these are the 
scores reported in this paper. This makes the HD values reported within 
this report slightly more susceptible to outliers. However, as we take 
three different metrics into account for the final ranking, the overall 
impact of outliers is reduced. For each metric, the implementation 
described in (Taha and Hanbury, 2015) was used (Eval-
uateSegmentation Tool, v2017.04.25). 

2.4.2. Ranking 
Each of the participating teams was ranked based on each evaluation 

metric, and then the final rankings combined the rankings from all of the 
metrics (DSC, HD95, VS). The DSC, HD95, and VS were calculated for 
each label within each of the corresponding predicted label maps of the 
fetal brain volumes in the testing set. The mean and standard deviation 
of each label for all test cases was calculated, and the participating al-
gorithms were ranked from low to high (HD95), where the lowest score 
received the highest scoring rank (best), and from high to low (DSC, VS), 
where the highest value received highest scoring rank (best) based on 
the calculated mean across all labels and test cases. If there were missing 
results, the worst possible value is used. For example, if a label does not 
exist in the NS label map but is present in the GT label map, it will 
receive a DSC and VS score of 0, and the HD95 score will be double the 
max value of the other algorithms submitted. This ranking procedure 
was developed in order to take three different metric types equally into 
account. 

2.4.3. Further analysis 
In addition to the ranking above, several other analyses were per-

formed on the submitted algorithms. Per-label rankings of the entire 
dataset were analyzed. In addition, the algorithms were evaluated in the 
categories ‘Non Pathological cases’ and ‘Pathological cases’, SR recon-
struction method (mialSR and Simple IRTK) as well as ‘Excellent Qual-
ity‘, ‘Good Quality‘ and ‘Poor Quality’, with the identical ranking 
methodology for each category. The pathology of each fetal brain was 

determined by an experienced radiologist. The quality of the fetal brain 
SR reconstructions were determined based on ratings (Excellent, Good, 
Poor) from three independent raters, and the correlation of the re-
viewers was calculated using the Gwet AC coefficient using R (v4.0.2, 
(Gwet, 2019)). As the ratings are ordinal data, the median of the ratings 
were considered to be the final rating of the SR volume. The partici-
pating algorithms were also evaluated on the different SR reconstruction 
methods. 

Intracranial volume was calculated and compared to the manual 
segmentation’s intracranial volume as well, but not used in the rankings. 
Intracranial volume was calculated by adding all labels except the 
background together. 

An analysis of the performance of the algorithms based on gesta-
tional age was also performed, as the structure of the fetal brain changes 
greatly throughout development, especially in the cortex where there is 
increased cortical complexity, disappearance of transient subplate zone 
related to cortical maturation (blurring of white matter and gray matter 
border) and partial volumes (blurring of white matter/gray matter 
border in gyral crest, blurring of CSF/gray matter border because of 
narrow sulci). Because of this, the random error in segmentation of the 
gray matter between 29 and 35 GW might be increased. Therefore, in 
order to determine if gestational age impacts the success of a segmen-
tation algorithm, our testing dataset was split into two age groups 
(21–28 weeks, and 29–35 weeks), and the differences between these two 
groups was analyzed by looking for differences in the evaluation metrics 
between each label for each of the submitted algorithms. 

3. Results 

3.1. Training and testing data 

A Kolmogorov–Smirnov test was performed in R v4.0.0 (R Core 
Team, 2020) in order to compare the distribution of GA and 
non-pathological/pathological fetal brains between the training and 
testing data. No significant differences were found between the training 
and testing datasets (GA: p=0.88; pathology: p=1). 

3.2. Challenge submission 

In total, 21 teams submitted algorithms to the FeTA Challenge. One 
team’s Docker container was not able to be fixed prior to the deadline 
and was thereby excluded. One team (Ichi-love) submitted two algo-
rithms, meaning the total number of participating teams was 20, and the 
total number of valid submissions was 21. Each team submitted a 
written description of their algorithm, which can be found in the Ap-
pendix. Each algorithm is summarized in Table 1, and the pre-processing 

Fig. 3. Dataset Age Range: Histogram of the gestational age range of neurotypical and pathological cases within the testing and training dataset for the 
FeTA Challenge. 
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Table 1 
Overview of algorithms submitted to the FeTA Challenge ordered from best to worst.  

Team Name Network Loss Function 2D/ 
3D 

Patch Size Post-Processing Convolution 
Kernel Size 

Optimizer Initialization Learning Rate Cross- 
Validation 

Epochs GPU Used # of 
Layers 

# of 
Trainable 
Parameters 

NVAUTO MONAI (SegResNet), 
OCR modules 

Dice 3D 224×224×144 Ensemble 
learning 

3 × 3 × 3 AdamW Random 0.0002, 
decrease to 0 at 
final epoch 
with cosine 
annealing 
scheduler 

5-fold 300 4 x Nvidia 
V100 32GB 

5 desc 
/ 5 asc 

75 819 624 

SJTU_EIEE_2–426Lab two steps: coarse to 
fine, 1. nnU-net and 
3D UNet with 
residual 
architecture; 2. 5 3D 
Res-Unets 

1. Cross-entropy 
and Dice; 2. 
Haus-dorff and 
Dice 

3D 128×128×128 - 
nn-UNet. only 

Ensemble 
learning 

3 × 3 × 3 Adam Random 1. 1E-3; 
2. 1E-4 

No 1. 500; 2. 
1000 

Nvidia RTX 
3090 

6 desc 
/ 6 asc 

1. 2 235 680 
(UNet); 
31 199 584 
(nnUNet)  
2. 
214 58 929 
(first UNet); 
85 823 969 
(other 4 
UNets) 

pengyy nnU-Net Cross-entropy 
and Dice 

3D 128×128×128 Ensemble 
learning 

3 × 3 × 3 Stochastic 
Gradient 
Descent 

Random 0.01 with 
reduction 

10-fold 1000 Nvidia 
GeFor-ce 
RTX 3090 

6 desc 
/ 6 asc 

72 142 688 

Hilab nnU-Net Cross-entropy 
and Dice 

3D 128×128×128 Ensemble 
learning 

3 × 3 × 3 Stochastic 
Gradient 
Descent 

Random 0.01 with decay 5-fold 400 Nvidia 
GeFor-ce 
RTX 2080 Ti 

6 desc 
/ 6 asc 

30 847 564 

Neurophet U-Net sum of Cross- 
entropy and Dice 

3D 64×64×64 Isolated 
segmented 
voxels removed 

3 × 3 × 3 AdamW Random 1.00E-05 No 500 3 x Tesla 
V100 

5 desc 
/ 5 asc 

314 999 688 

davoodkari-mi U-Net with 
additional short and 
long skip 
connections 

Novel loss 
function derived 
from mean 
absolute error 

3D 128×128×128 Label Fusion 3 × 3 × 3 Adam He 1E-4 with 
reduction 

No 400 Nvidia 
GeFor-ce 
GTX 1080 

5 desc 
/ 5 asc 

18 500 000 

2Ai U-Net/nnU-Net Dice 3D 128×128×128 Isolated 
segmented 
voxels removed 

3 × 3 × 3 Adam Xavier 1E-3 with 
decay 

No 800 1 x GTX1070 6 desc 
/ 6 asc 

29 971 032 

xlab U-Net/nnUnet Cross-entropy 
and Dice 

2D No None 3 × 3 Adam Random 3.00E-04 5-fold 1000 Nvidia RTX 
3090 

5 desc 
/ 5 asc 

– 

Ichilove-axe Two step networks. 
Dynamic U-Net with 
pre-trained 
ResNET34 network 
blocks (desc) and 
pixelShuffle ICNR 
blocks (asc) 

Lovasz-Softmax 
loss 

2D No None 3 × 3 OneCycle ResNet34 - 
encoder, ICNR 
- Decoder 

1.00E-03 No 60 1 x 
GTX1080Ti 

4 desc 
/ 4 asc 

41 221 768 

TRABIT DynU-Net from 
MONAI; 10 networks 

Label-set Loss 
function: Leaf- 
Dice and 
marginalized 
cross entropy 

3D 128×160×128 Ensemble 
learning 

3 × 3 × 3 Stochastic 
Gradient 
Descent 

He 0.01 with decay No 2200 1 x Tesla 
V100- 
SXM2–32GB 

6 desc 
/ 6 asc 

31 195 784 

Ichilove-Combi Two step networks. 
One for ROI, 3 for 
each axis (Coronal, 
Axial, Sagittal). 
Dynamic U-Net with 
pre-trained 

Lovasz-Softmax 
loss 

2D No Label Fusion 3 × 3 OneCycle ResNet34 - 
encoder, ICNR 
- Decoder 

1.00E-03 No 60 1 x 
GTX1080Ti 

4 desc 
/ 4 asc 

103 054 420 

(continued on next page) 
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Table 1 (continued ) 
Team Name Network Loss Function 2D/ 

3D 
Patch Size Post-Processing Convolution 

Kernel Size 
Optimizer Initialization Learning Rate Cross- 

Validation 
Epochs GPU Used # of 

Layers 
# of 
Trainable 
Parameters 

ResNET34 network 
blocks (desc) and 
pixelShuffle ICNR 
blocks (asc) 

muw_dsobotka multi-task U-Net 
with two decoders 
(segmentation and 
reconstruction) 

Homoscedastic 
uncertainty, 
cross-entropy, 
mean squared 
error 

3D 128×96×96 None 3 × 3 × 3 Adam Random 0.001 No 100 Nvidia 
GeFor-ce 
RTX 2080 Ti 

3 desc 
/ 3 asc 

6 491 385 

Physense-UPF Team nnU-Net Cross-entropy 
and Generali-zed 
Dice 

3D 128×128×128 None 2 × 2 × 2 Stochastic 
Gradient 
Descent 

Random 0.01 5-fold 100 1x Nvidia 
GEFORCE 
GTX 1080 Ti 

6 desc 
/ 6 asc 

31 199 584 

SingleNets U-Net Soft Dice and 
Contour Dice 

3D 96×96×96 Majority Voting, 
clipping using 
"skull" 
(background- 
foreground) 
network 
response with 
threshold 0.5 

3 × 3 × 3 Adam Fine tuning 
from 
previously 
trained 
networks on 
smaller 
training set 

0.005 with 
reduction 

No 100 Tesla M60 5 desc 
/ 5 asc 

4 727 841 

BIT_LILAB CNN-Transformer 
Hybrid (Trans-U- 
Net) 

Cross-entropy 
and Dice 

2D 16×16 None 3 × 3 Stochastic 
Gradient 
Descent 

Pre-trained 
ResNet-50 and 
ViT 

1E-2 with 
decay 

No 150 4 x Nvidia 
GTX 1080Ti 
GPU 

5 desc 
/ 5 asc 

54 000 000 

Moona Mazher DenseNet Binary Cross- 
entropy 

2D No Label Fusion 3 × 3 Adam Random 0.0003 5-fold 1000 4 x Nvidia 
V100 

5 desc 
/ 5 asc 

49 510 728 

MIAL U-Net hybrid loss (Dice 
and Cross- 
entropy) 

2D 64×64 Majority Voting 3 × 3 Adam Random 0.001 with 
decay 

5-fold 100 NVIDIA RTX 
2070 

5 desc 
/ 5 asc 

– 

ZJUWULAB U-Net with conv 
downsampling 
instead of max 
pooling 
downsampling 

L1 Regularization 
and feature- 
matching with a 
pre-trained 
VGG19 Network 

2D No None 3 × 3 Adam Random 0.002 No 100 4 x RTX 
3080Ti 

5 desc 
/ 5 asc 

7 765 442 

FeVer Res-Unet Dice 3D 48×224×224 Ensemble 
learning 

3 × 3 × 3 QHAdam Random 0.005–0.0005 No 300 1 x RTX 3090 5 desc 
/ 5 asc 

2 369 496 

Anonymous U-Net Focal Loss 2D No None 3 × 3 Adam Random 0.002 No 30, 
backbone 
frozen for 
15 

- – - 

A3 V-Net with PReLU 
activation 

Binary Cross- 
entropy 

3D Crop-ped & pad- 
ded to 
192×192×192; 
down-sampled to 
128×128×128 

None 3 × 3 × 3 Adam Random 1E-4 with 
reduction 

No 200 2 x NVIDIA 
P100, 

3 desc 
/ 3 asc 

283 886 304  
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and data augmentation used by each team is outlined in Table 2. All 
teams submitted a deep learning-based method, most of which were 
variants based on the U-Net architecture (Çiçek et al., 2016; Ronne-
berger et al., 2015). The top five teams used similar loss functions 
(mainly the combination of Dice loss and cross-entropy loss), and four of 
the five (excluding Neurophet) used an ensemble learning method. 
Every method used a 3×3 (or 3×3×3) convolutional kernel except for 
one team (Physense-UPF) who used a 2×2×2 kernel. Most submissions 
(14 of 21) used a random initialization of network parameters. The 
networks were of varying depths, between 3 and 6 layers on each of the 
ascending and descending layers of the networks. Thirteen of the sub-
mitted networks were 3D networks, the remainder were 2D or 2.5D. 
Seven teams used cross-validation. A variety of different data augmen-
tation strategies were used, and only two team did not employ data 
augmentation at all. Only four teams used external datasets, either 
during the training step or used pre-trained network backbones trained 
on publicly available datasets. 

3.3. Metric values and rankings 

Statistical analysis of the metrics of the challenge and images dis-
played in this section were created using the ChallengeR tool (Wie-
senfarth et al., 2021). The individual metrics for each team (all labels 

combined) can be found in Figs. 4-6. The final ranking of all teams and 
their average evaluation metrics can be found in Table 3. The full reports 
(DSC, HD95, VS of all labels combined) created by the ChallengeR Tool, 
including details on the statistical tests performed can be found in Sec-
tions 2-4 of the Appendix. In the significance maps displayed, the testing 
was done using a one-sided Wilcoxon signed rank test at a 5% signifi-
cance level, with adjustments for multiple comparisons. In all cases, the 
x-axis in the boxplots are ranked according to the mean values of the 
respective evaluation metric, and the black bar indicates the median 
value. 

The top three teams according to the DSC were NVAUTO, 
SJTU_EIEE_2–426Lab, and Neurophet. The top three teams according to 
the HD95 were NVAUTO, Hilab, and 2Ai. The top three teams according 
to the VS were ichilove-axe, NVAUTO, and SJTU_EIEE_2–426Lab. With a 
few exceptions, there was no statistically significant differences between 
the top 10–12 teams in all three metrics, suggesting that a plateau has 
been reached. The highest and lowest average DSC were: 0.786 (team 
NVAUTO) and 0.534 (team A3). The lowest and highest average HD95 
were: 14.012 (team NVAUTO) and 39.608 (team A3). The highest and 
lowest average VS were: 0.888 (team ichilove-axe) and 0.791 (team A3). 
However, when the bootstrapping and significance maps are investi-
gated, it is clear that NVAUTO is the top team for the DSC metric, placing 
first in 100% of the bootstrap sampling, and is statistically significant to 

Table 2 
Overview of the data augmentation, and pre-processing used in each submission.  

Team Name Data Augmentation External Dataset used Pre-processing 
NVAUTO Rotation, Flipping, Zoom, contrast adjustment, Gaussian 

noise, Gaussian smoothing 
No Normalize images to zero mean 

SJTU_EIEE_2–426Lab Rotation, Scaling, Flipping No Normalize images to zero mean, cropping in 2nd stage 
pengyy Rotation, scaling, elastic deformation, mirroring, Gaussian 

noise, Gamma Correction 
No resample dimensions to .5x.5x.5 mm; z-score 

normalization 
Hilab Pathological Cases copied 3 times in training data, rotation, 

scaling, Gaussian noise, Gaussian blur, brightness, contrast, 
simulation of low resolution, gamma augmentation, 
mirroring 

No Cropping and normalization 

Neurophet Affine, Blur No Intensity Normalization, classification of images into poor 
and good quality 

davoodkarimi Flipping, rotation, elastic deformation, label perturbation 
and smoothing 

No Intensity Normalization 

2Ai Flipping, rotation, scaling, grid distortion, optical 
distortion, elastic transformations, noise, brightness, 
contrast, gamma transformations 

No Image normalization (mean value zero) 

xlab Mirroring, rotation, scaling, gamma correction, random 
elastic transformation 

No nnUNet standard preprocessing 

Ichilove-axe Intensity, contrast, scaling, normalization, rotation, 
intensity inhomogeneity 

No No 

TRABIT Flipping, zooming, rotation, Gaussian noise, spatial 
smoothing, gamma augmentation 

Uses external fetal brain 
atlases and neonatal MRI’s 
segmented with dHCP 

generated brain mask (from atlas + niftyReg), registered 
brain to atlas, resampled to 0.8 mm isotropic; skull 
stripping; thresholding of intensity percentiles; z-score 
normalization 

Ichilove-Combi Intensity, contrast, scaling, normalization, rotation, 
intensity inhomogeneity 

No No 

muw_dsobotka Elastic deformation, flipping, rotation, contrast, Gaussian 
noise, Poisson noise 

No z-score normalized patches 

Physense-UPF Team Rotation, elastic deformation, scaling, Gaussian noise, 
Gaussian blur, gamma transform, mirror, brightness, 
contrast, low resolution simulation, zoom 

No Cropping, resampling, normalization, classification of 
quality of images, registration to Gholipour atlas 

SingleNets Flipping, rotation, translation, scaling, Poisson noise, 
contrast, intensity 

No Thresholding, cropping, windowing, normalization, 
downscaling by 0.5 in all axes 

BIT_LILAB Rotation and flipping Yes, Synapse multi-organ 
segmentation dataset (for pre- 
training) 

None 

Moona Mazher Cropping, Flipping, Brightness and Contrast, Random 
Gamma 

No None 

MIAL Flipping, Rotation No Intensity standardization 
ZJUWULAB No yes, pre-trained 

VGG19network 
Normalize, color map labels 

FeVer Flipping, Mixup No Intensity-based image filtering, resampling voxels to have 
equal spacing, remove slices with only background label 

Anonymous No ResNet backbone pre-trained 
on Kinect400 

Intensity re-scaling; ResNet backbone pre-trained on 
ImageNet 

A3 Shifting, rotation, flipping No Image normalization (mean value zero)  
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all but one of the algorithms (Team pengyy). There is no difference 
between teams in places 2 to 4 for the DSC metric in both the boot-
strapping and statistical significance testing. The same trend appears 
when looking at the HD95 metric, with NVAUTO being the clear winner, 
and the teams in places 2 to 4 performing equivalently. Some differences 
exist in the VS metrics, with ichilove-axe as the first place, but with not 
as clear of a lead with no statistical difference from any of the top teams, 
and a less clear winner when looking at the bootstrapping. 

3.4. Further analysis 

A variety of subsets of the data were created in order to determine if 
the algorithms perform better or worse based on various criteria such as 
image quality, SR method used, and normal vs pathological brains. The 
rankings of the teams based on the different subsets can be seen in Fig. 7. 
A large amount of variability in the rankings is present depending on the 
subset of data being investigated. However, NVAUTO remains in the 
number 1 ranking spot in all subsets except two (Excellent Quality and 
IRTK_SR). 

3.4.1. Per-label metric values and ranking 
Each team’s algorithm was analyzed separately per tissue label. The 

average DSC, HD95, and VS scores for each team and label can be found 
in Figs. 8- 10. The order of the teams on the x-axis in each graph is or-
dered from best to worst, left to right. When looking at the DSC, team 
NVAUTO placed first in all labels except eCSF (MIAL), deepGM (TRA-
BIT), and brainstem (SJTU_EIEE_2–426Lab). When looking at the HD95, 
team NVAUTO placed first in all labels except eCSF (ichilove-combi), 
Ventricles (Hilab), and deepGM (SJTU_EIEE_2–426Lab). In the VS 
metric, almost every label had a different top team: eCSF (MIAL), GM 
(2Ai), WM (NVAUTO), Ventricles (NVAUTO), Cerebellum (ichilove- 
axe), deepGM (A3), and brainstem (SJTU_EIEE_2–426Lab). 

Fig. 11 shows example error maps of the gray matter level for two 
test cases. The label maps of the top 5 teams were analyzed to show 
voxels where many teams mis-identified the cortical gray matter, and 

where all top 5 teams were able to correctly identify it. 

3.4.2. Image quality 
The dataset was split into three subsets based on the quality of the SR 

reconstructions as determined by experienced raters (excellent quality 
SR: n=11 (mialSR/IRTK: 1/10); good quality SR: n=25 (mialSR/IRTK: 
15/10); poor quality SR: n=4 (mialSR/IRTK: 4/0)). Each team’s algo-
rithm was analyzed with the average metrics across all labels. The 
average DSC, HD95, and VS scores for each team and label can be found 
in Fig. 12. The order of the teams on the x-axis in each graph is ordered 
from best to worst, left to right. Team pengyy performed the best (ac-
cording to the DSC) when the fetal brain reconstructions were of 
excellent quality, while NVAUTO performed the best for good and poor 
quality reconstructions. Complete ranking information taking all three 
metrics into account based on SR reconstruction quality can be found in 
Fig. 7. 

3.4.3. SR reconstruction 
The dataset was split into two subsets based on SR reconstruction 

method used. Each team’s algorithm was analyzed with the average 
metrics across all labels. The average DSC, HD95, and VS scores for each 
team and label can be found in Fig. 13. The order of the teams on the x- 
axis in each graph is ordered from best to worst, left to right. Team 
NVAUTO performed the best (according to the DSC) with the mialSR 
reconstruction, and Team SJTU_EIEE_2–426Lab performed the best 
(according to the DSC) with the IRTK SR reconstruction. Complete 
ranking information taking all three metrics into account for each SR 
reconstruction can be found in Fig. 7. 

3.4.4. Pathology 
The dataset was split into two subsets based on whether the fetal 

brain contained a pathology (n=25 (mialSR/IRTK: 14/11)) or not 
(neurologically normal, n=15 (mialSR/IRTK: 6/9)). Each team’s algo-
rithm was analyzed with the average metrics across all labels. The 
average DSC, HD95, and VS scores for each team and label can be found 

Fig. 4. DSC values of FeTA Challenge participants a) 
Dot and box plot; b) Blob plot for visualizing ranking 
stability based on bootstrap sampling, black cross 
indicated the median rank for each algorithm and 95% 
bootstrap intervals across samples are indicated by 
black lines; c) Significance maps for visualizing ranking 
stability based on statistical significance (Yellow: met-
rics from the algorithm on the x-axis were significantly 
superior to the algorithm on the y-axis, blue color in-
dicates no significant difference). Figures were created 
using the ChallengeR Tool (Wiesenfarth et al., 2021).   
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Fig. 5. HD95 values of FeTA Challenge participants a) 
Dot and box plot; b) Blob plot for visualizing ranking 
stability based on bootstrap sampling, black cross 
indicated the median rank for each algorithm and 95% 
bootstrap intervals across samples are indicated by 
black lines; c) Significance maps for visualizing 
ranking stability based on statistical significance 
(Yellow: metrics from the algorithm on the x-axis were 
significantly superior to the algorithm on the y-axis, 
blue color indicates no significant difference.).   

Fig. 6. VS values of FeTA Challenge participants a) Dot 
and box plot; b) Blob plot for visualizing ranking sta-
bility based on bootstrap sampling, black cross indi-
cated the median rank for each algorithm and 95% 
bootstrap intervals across samples are indicated by 
black lines; c) Significance maps for visualizing ranking 
stability based on statistical significance (Yellow: met-
rics from the algorithm on the x-axis were significantly 
superior to the algorithm on the y-axis, blue color in-
dicates no significant difference.).   
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in Fig. 14. The order of the teams on the x-axis in each graph is ordered 
from best to worst, left to right. Team NVAUTO performed best for both 
pathological and non-pathological brains. No details of the specific pa-
thologies were available to the challenge participants. Complete ranking 
information taking all three metrics into account for the pathological 
and non-pathological datasets can be found in Fig. 7. 

3.4.5. Intracranial volume 
The intracranial volume of each case in the test set was calculated 

using all labels (excluding the background) and compared to the intra-
cranial volumes determined by each participant in the challenge. While 
most methods had some outliers, all teams except for five had a median 
percent difference from GT within ±1% (Fig. 15). 

3.4.6. Gestational age comparison in the GM 
The evaluation metrics for the cortex (gray matter label) were 

calculated based on age of the fetus. The top-scoring teams for the 
younger fetuses (GA 21–28; n=28) were pengyy, NVAUTO, and Hilab. 

The top scoring teams for the older fetuses (GA 29–35; n=12) were 
xlab, pengyy, and Hilab. When all ages were combined together, the top 
teams for the GM label were pengyy, Hilab, and NVAUTO (see Table 4), 
showing that gestational age does play a small role in the success of the 
algorithms in segmenting the cortex. There are fewer cases included in 
the older group mainly due to the smaller gestational age range, and the 

fact that the majority of fetal scans at the center used to collect the data 
happen by the 32nd gestational week. The evaluation metrics of the GM 
from both the older and younger fetuses can be seen in Fig. 16 and 17. 

4. Discussion and conclusion 

In this paper we present the results of the first FeTA Challenge held at 
the MICCAI 2021 conference. All submissions to the FeTA Challenge 
were deep-learning based submissions. Other machine-learning 
methods or purely atlas-based approaches were not submitted. This 
demonstrates that deep learning is currently the leading method for fetal 
brain medical image segmentation, and confirms its dominance in 
medical image segmentation more broadly. Indeed, the top three teams 
all had very similar network architectures. The majority of participating 
teams obtained very similar evaluation metrics; however, one team 
performed significantly better than all other teams on the complete 
testing dataset. 

4.1. Top methods 

When all labels are combined together and the entire testing dataset 
is used, Team NVAUTO submitted the top algorithm of the challenge. 
They ranked first in two out of the three evaluation metrics (DCS and 
HD95), and came second in the third (VS). In addition, the bootstrapping 
and significance testing showed that NVAUTO was the clear winner in 
the DSC and HD95 coefficients. The VS metric was more ambiguous 
across all participants, with no statistically significant difference among 
the first 9 teams. This suggests that while volumetry is a valuable 
biomarker when performing imaging studies, it is potentially not a 
sensitive evaluation metric for this challenge as it is unable to show 
differences in the performance. However, these results could also point 
to the fact that volumetry is indeed a stable measurement for fetal MRI 
studies, as the challenge results demonstrate that this measurement was 
stable across different segmentation methods. 

There were many methodological similarities among the top five 
ranking teams. All were 3D U-Nets, all used either a Dice or cross- 
entropy/Dice combination loss function, none used an external data-
set, and all used standard data augmentation techniques such as rota-
tion, flipping, scaling, addition of Gaussian noise, Gaussian smoothing, 
gamma correction, affine transformations, and contrast adjustment. 
Four of the teams used Pytorch, while the fifth used MONAI, which is 
Pytorch-based (MONAI Consortium, 2020). All used the same convolu-
tion kernel size (3×3×3) with random initialization. Four out of five 

Table 3 
Final FeTA Ranking; * indicates a tie.  

Ranking Team Name Average DSC Average HD95 (voxels) Average VS 
1 NVAUTO 0.786 ± 0.161 14.012 ± 9.285 0.885 ± 0.156 
2 SJTU_EIEE_2–426Lab 0.775 ± 0.173 14.671 ± 9.917 0.883 ± 0.166 
3 Pengyy 0.774 ± 0.182 14.699 ± 10.049 0.875 ± 0.182 
4 Hilab* 0.774 ± 0.181 14.569 ± 9.954 0.873 ± 0.180 
4 Neurophet* 0.775 ± 0.171 15.375 ± 9.277 0.877 ± 0.165 
6 davoodkarimi 0.771 ± 0.171 16.755 ± 11.443 0.882 ± 0.156 
7 2Ai* 0.767 ± 0.170 14.625 ± 9.892 0.867 ± 0.166 
7 xlab* 0.771 ± 0.183 15.262 ± 14.769 0.873 ± 0.182 
9 ichilove-axe 0.766 ± 0.176 21.329 ± 13.241 0.888 ± 0.158 
10 TRABIT 0.769 ± 0.174 14.901 ± 9.049 0.866 ± 0.173 
11 ichilove-combi* 0.762 ± 0.188 16.039 ± 9.395 0.873 ± 0.183 
11 muw_dsobotka* 0.765 ± 0.171 17.159 ± 11.905 0.874 ± 0.168 
11 Physense-UPF Team* 0.767 ± 0.182 15.018 ± 10.145 0.863 ± 0.180 
14 SingleNets 0.748 ± 0.172 26.121 ± 12.072 0.876 ± 0.154 
15 BIT_LILAB 0.752 ± 0.190 18.162 ± 12.644 0.868 ± 0.183 
16 Moona Mazher 0.755 ± 0.183 18.548 ± 12.739 0.866 ± 0.179 
17 MIAL 0.740 ± 0.211 25.107 ± 19.425 0.845 ± 0.213 
18 ZJUWULAB 0.703 ± 0.217 27.948 ± 22.400 0.835 ± 0.218 
19 FeVer 0.683 ± 0.180 34.419 ± 15.990 0.828 ± 0.164 
20 Anonymous 0.621 ± 0.192 37.385 ± 18.249 0.801 ± 0.181 
21 A3 0.534 ± 0.178 39.608 ± 18.249 0.791 ± 0.199  

Fig. 7. Ranking of each algorithm for each subset of data in Section 3.3.  
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Fig. 8. DSC per label for each team (teams ranked from best to worst are visualized from left to right on the x-axis of each graph).  
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Fig. 9. HD95 per label for each team (teams ranked from best to worst are visualized from left to right on the x-axis of each graph).  
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Fig. 10. VS per label for each team (teams ranked from best to worst are visualized from left to right on the x-axis of each graph).  
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Fig. 11. Error maps for the top 5 teams of the 
gray matter for two test cases. Top Row: 
Ground truth gray matter label; Middle Row: 
Error map of false positives, meaning voxels 
that teams identified as cortex but weren’t; 
Bottom Row: Error map of false negatives, 
meaning the voxels which should have been 
identified as cortex but weren’t. Left two col-
umns: Pathological brain (ventriculomegaly 
and other associated malformations); Right 
Column: Neurotypical brain. In the pathological 
brain, many of the top 5 algorithms mis-
identified some parts of the cerebellar cortex as 
cerebral cortex, and misidentified septum pel-
lucidum as cortex as well. In the neurotypical 
brain, errors were mainly located at the inter-
face between the white and gray matter.   

Fig. 12. DSC across all labels for each team, based on the quality of the SR reconstruction (teams ranked from best to worst are visualized from left to right on the x- 
axis of each graph). 
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used an ensemble learning strategy, three teams out of the top five used 
cross-validation. The main differences in networks appeared to be in the 
training procedures, such as the number of epochs, and in how the 
learning rate was manipulated throughout training. 

When looking at the changes in rankings based on different subsets of 
the data the interpretation of the results become challenging. As shown 
in Fig. 7, the rankings change considerably depending on the data subset 
tested. This is relevant, as different centers have different data, different 
age ranges at which fetal MRI is acquired and one algorithm may not 
work well across all sites. As the submitted algorithms were all similar 
deep learning-based methods, this suggests that fine tuning the networks 
plays a key role in any potential practical application of these algo-
rithms, depending on the specific clinical or research usage. 

4.2. Performance of submitted algorithms 

As mentioned already, all submissions were deep learning-based 
submissions. To go one step further, it was not just that all sub-
missions used deep learning, but 19 out of 21 submissions used some 
form of U- Net, consisting of a contracting and an expanding path 

forming a U-shaped network. During the former, higher resolution in-
formation is sacrificed for more context. However, U-Net has the capa-
bility, using skip connections, of combining this information with the 
corresponding output from the expanding path. There were many dif-
ferences within each U-Net, but the overall shape and structure of the 
network remained consistent, including the depth of the network. Eight 
teams used the pre-existing medical imaging neural network frame-
works nnU-Net (Isensee et al., 2021) or MONAI (MONAI Consortium, 
2020). The main differences across the submissions were in how the 
training was performed (such as the use of cross-validation or changes in 
the learning rate decay), or in the pre-processing (patch size, how the 
data was normalized) and post-processing (such as ensemble learning, 
removal of external label ‘blobs’). The plateauing of the top team entries 
is interesting as well, potentially suggesting that U-Nets have a perfor-
mance limit in multi-class segmentation tasks with limited data. Inter-
esting to note is that none of the teams took advantage of the option to 
use the meta data provided as network input (gestational age in weeks, 
pathological/neurotypical brain classification). This could have poten-
tially allowed some teams to differentiate themselves in the ranking and 
is still an area for future research. 

Fig. 13. DSC across all labels for each team, based on the SR reconstruction used (teams ranked from best to worst are visualized from left to right on the x-axis of 
each graph). 

Fig. 14. DSC across all labels for each team, based on whether the fetal brain was pathological or non-pathological (teams ranked from best to worst are visualized 
from left to right on the x-axis of each graph). 
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The most likely labels to fail to be segmented (that is, where the 
algorithm was unable to detect any voxels with the specific tissue) were 
the brainstem and the cerebellum, in particular in the pathological 
cases. This could potentially be explained by unclear demarcations of 
the brainstem and cerebellum in pathological groups which contained 
some cases of the Chiari-II malformation. Additionally, the overall seg-
mentation accuracy for the cortical gray matter was rather moderate. 
We noticed that this might be due to the limited image resolution that 
leads to some degree of blurring of the smaller sulci, as well as due to 
annotation uncertainty. As a result, the cortical surface is often not to-
pologically correct, contains holes or the thickness of the cortex is not 
homogeneous. Obtaining topologically correct cortical GM segmenta-
tion is an active field of research with some recent publications in the 
field that may overcome this limitation (de Dumast et al., 2020).The 
most likely labels to fail to be segmented (that is, where the algorithm 
was unable to detect any voxels with the specific tissue) were the 
brainstem and the cerebellum, in particular in the pathological cases. 
This could potentially be explained by unclear demarcations of the 
brainstem and cerebellum in pathological groups which contained some 
cases of the Chiari-II malformation. Overall, the most challenging labels 
to segment were cortical GM, deep GM, and the brainstem. This can be 
seen in Figs. 8-10, where these three tissue labels have worse perfor-
mances than the other tissues, along with a larger distribution of eval-
uation metrics in each team. The potential reasons for this are multifold. 
The lateral and ventral borders of the deep GM and ventral portion of the 
brainstem are not well defined and are challenging for experienced ra-
diologists to delineate. In the GM, the contrast between WM and GM 
changes throughout gestation due to neuronal migration and axonal 
outgrowth, while the surface pattern of the cortical GM becomes 
increasingly complex. 

In general, the pathological brains were more challenging to segment 
than the non-pathological brains due to the larger variations in neuro-
anatomy. Selective data augmentation on these pathological cases could 

be a potential solution to this. The results of the image quality and SR 
reconstruction methods are related to each other, as the majority of the 
low quality images were done with the mialSR method, and the excellent 
quality brain volumes included were reconstructed with the Simple 
IRTK method. We would like to emphasize this is not a comment on the 
SR methods themselves, only a reflection of what cases were chosen for 
each reconstruction method. As expected, the low quality images, and 
therefore also the mialSR reconstructions were more challenging to 
accurately segment than the high quality and IRTK SR reconstructions, 
with lower DSC scores and a wider range of variability as can be seen in 
Fig. 13. 

4.3. Clinical applications 

Potential applications of the fully automatic and highly accurate fetal 
brain MRI segmentation algorithms are broad and span from neurosci-
ence (characterizing spatio-temporal lateralization of the cortex 
(Kasprian et al., 2011; Vasung et al., 2020), virtopsies (identification 
and analysis of the details of demise (Rüegger et al., 2014)), surgery 
(clinical guidelines for early fetal surgery (Clewell et al., 1982; Meuli 
et al., 1997; Meuli and Moehrlen, 2013)), medicine (identification of 
biomarkers of outcome needed for stratification tools and development 
of early interventions (Rollins et al., 2021)), volumetric studies (Polat 
et al., 2017; Sadhwani et al., 2022) and development of new public 
health policies (prenatal programs focused on reduction of stress during 
pregnancy (van den Heuvel et al., 2021; Wu et al., 2020)). 

Fetal MRI offers a unique possibility to study the human specific 
aspects of neurodevelopment. It remains the only non-invasive in vivo 
imaging modality to study connectivity, function, and structural anat-
omy of the fetal brain in a single session (Jakab et al., 2021; A. 2015). 
From the perspective of neuroscience, it is critically important to study 
the relationship between brain structure and function. However, this 
requires parcellation of the brain and cortex into regions or areas (e.g. 

Fig. 15. Percent difference in intracranial volume between the submitted algorithms and the reference label map.  
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(Amunts et al., 2020; Desikan et al., 2006; Klein and Tourville, 2012)). A 
first crucial step toward this is to perform reliable segmentation of the 
developing cerebral cortex, which was the objective of this FeTA 
Challenge. 

Furthermore, normative charts showing age-related changes in vol-
ume of different brain structures throughout the lifespan, similar to head 
circumference in the pediatric population, have just started to emerge 
(Bethlehem et al., 2021)https://paperpile.com/c/igTxNz/ikp0. None-
theless, in addition to obvious challenges of fetal MRI acquisition, the 
harmonization of MRI acquisition protocols across sites and the devel-
opment of robust and automatic algorithms for accurate and precise 
segmentation of fetal brain remain prerequisites for any future clinical 
application. 

4.4. Limitations, lessons learned, and future considerations 

Some limitations of the challenge include the fact that all images 
included were acquired from a single center, and therefore algorithms 
developed with this dataset are unlikely to be generalizable to other 
centers. In addition, while the total number of cases included is rela-
tively large for the type of dataset, it is relatively small when compared 
to other datasets used for training neural networks (Bakas et al., 2019; 
Menze et al., 2015). The manual segmentations included in both the 
training and testing dataset were not perfect, and therefore there are 
mislabeled voxels. Annotations were made mainly in the axial plane, 
leading to some noisy labels and discontinuity in the annotations in the 
coronal and sagittal planes. The manual annotations were especially 
challenging in the mialSR reconstructions, as it was the low-resolution 
scans that underwent reorientation rather than the final reconstructed 
volume, resulting in a final reconstruction that was not exactly ‘in plane’ 

according to standard fetal atlases. This led to the phenomenon of par-
ticipants’ algorithms performing quite well visually but receiving 
mid-range evaluation metrics. One team even performed their own re-
visions on the manual segmentations using their own in house experts, 
and then used them in their training dataset (L. Fidon et al., 2021). 
While organizing the challenge we were aware of these errors, and 
therefore included three different metrics in order to reduce the reliance 
on any one metric. Future work includes improving the manual seg-
mentations included in the FeTA Dataset. Further research into 
inter-rater variability in fetal brain segmentations is also required to 
understand what values of evaluation metrics are considered ‘good 
enough’. Preliminary research has been conducted using a small sample 
set (Payette et al., 2021a), and the results showed that when the quality 
of the SR reconstruction was good, the inter-rater agreement was very 
high. With decreasing quality of the reconstructions, the inter-rater 
agreement also decreased, especially in the external CSF, brainstem, 
and deep GM tissues. A more extensive study with more samples and 
raters should be performed to truly understand the inter-rater agreement 
of fetal brain segmentations. 

Differences in the manual annotation protocols to other, publicly 
available resources (Gholipour et al., 2017; Makropoulos et al., 2018) 
further limit the generalizability of our results. Compared to these re-
sources, our ground truth annotations did not include the amygdalae 
and hippocampi as separate labels. We decided not to include these 
structures as separate labels since their visibility in younger fetuses and 
pathological cases was deemed low in our data, which would have likely 
led to a high inter-rater variability. Furthermore, the ventricle label in 
our dataset comprised the lateral, 3rd and 4th ventricles, while the dHCP 
newborn release defined these as part of the eCSF label. Unifying 
anatomical annotation rules remains a challenging task. 

In the future, we aim to expand the FeTA Dataset to include data 
from multiple centers in order to increase the generalizability of algo-
rithms trained using this dataset. We also hope to extend the number of 
different pathologies included, and to increase the number of cases at 
the outer range of the gestational ages, especially at older gestational 
ages. At the moment, the FeTA dataset does not provide demographic Ta
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Fig. 16. Evaluation metrics (DSC, HD95, VS) of the GM label from younger GA fetuses (21-28GA).  

Fig. 17. Evaluation metrics (DSC, HD95, VS) of the GM label from older GA fetuses (29-35GA).  
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information on the participants. This is potentially something to include 
in the future, as recent research has demonstrated that ethnicity may be 
important in fetal brain imaging (Wu et al., 2021a). We also hope to 
streamline the manual segmentation procedure in order to allow a larger 
training dataset, and to re-evaluate the evaluation metrics used for 
future challenges. In addition, a FeTA 2022 Challenge is planned, 
focusing on generalization of automatic segmentation algorithms across 
data from different hospitals (Payette et al., 2022). 

5. Conclusion 

The algorithms developed as part of the FeTA Challenge provide a 
benchmark for future segmentation algorithms and can already be used 
to research fetal neurodevelopment. Our study found that most groups 
working on segmentation methods are using U-Nets, and that 3D U-Nets 
seem to be superior to 2D based on the evaluation metrics. In a dataset 
with large variation, such as the FeTA Dataset, the variation plays a role 
in the success of the algorithm. There was not one algorithm that was the 
‘best’ when specific subsets of the data was analyzed, although there was 
a ‘best’ algorithm when the testing dataset was assessed as a whole. With 
the current networks, it appears as if a plateau of performance has been 
reached when the super-resolution reconstructions are of good quality. 
There is still room for improvement in low quality reconstructions, and 
in pathological cases. The use of trustworthy AI methods as demon-
strated in Fidon et al. (2022) could also be used to improve performance, 
or pathology-specific atlases (Lucas Fidon et al., 2021). There are still 
many opportunities for improvement in developing multi-class seg-
mentation techniques for the fetal brain throughout gestation, and 
therefore this challenge is the starting point for further development of 
such algorithms. 
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