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ReviewNeural Networks and Neuroscience-Inspired
David Daniel Cox1,2,3,* and Thomas Dean4,5

Brains are, at a fundamental level, biological computing
machines. They transform a torrent of complex and ambig-
uous sensory information into coherent thought and
action, allowing an organism to perceive and model its
environment, synthesize and make decisions from dispa-
rate streams of information, and adapt to a changing
environment. Against this backdrop, it is perhaps not sur-
prising that computer science, the science of building
artificial computational systems, has long looked to
biology for inspiration. However, while the opportunities
for cross-pollination between neuroscience and computer
science are great, the road to achieving brain-like algo-
rithms has been long and rocky. Here, we review the his-
torical connections between neuroscience and computer
science, and we look forward to a new era of potential
collaboration, enabled by recent rapid advances in both
biologically-inspired computer vision and in experimental
neuroscience methods. In particular, we explore where
neuroscience-inspired algorithms have succeeded, where
they still fail, and we identify areas where deeper connec-
tions are likely to be fruitful.

Introduction
The human brain is a staggeringly complex computational
system, consisting of some 100 billion neurons, connected
by an estimated 100 trillion synapses [1]. The brain allows
us to make sense of a complex and ever-changing sensory
world, to plan complex actions, to navigate our social
environment and intuit the minds of others, and to learn
and remember across our entire lifespans. It can be said,
without exaggeration, that the complexity of our brains
has given rise to every aspect of our collective civiliza-
tion and our technology. In many ways, the brain repre-
sents one of the greatest frontiers in our understanding of
ourselves.

Throughout history, our understanding of the brain, and
the language we use to describe it, has leaned heavily on
the language and understanding of our contemporary man-
made technologies. Descartes explained the mind in terms
of hydraulic analogies and the movement of fluids [2]. To
Freud the brain was like a steam engine, distributing and
releasing pressure [3]. In the era of radio, brains were
increasingly described in terms of ‘channels’ and fre-
quencies. Perhaps not surprisingly, today we also use
the language of modern-day technologies. Neuroscientists
increasingly speak of neuronal ‘computations’ and the
‘circuits’ responsible for behaviors; distant brain regions
communicate to form ‘networks’ of activity.
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For all of the superficial resemblance between silicon com-
puters and brains, the two systems are in many ways a study
in contrasts. The individual computational elements in man-
made silicon computers typically run at amazingly fast clock
speeds, up to billions of cycles per second, with electrical
signals being transmitted fromone part of the chip to another
at nearly the speed of light. Meanwhile, biological neurons
are positively sluggish by comparison. Action potentials in
mammals propagate at speeds ranging from less than
1 m/s, up to just over 100 m/s [4]. As a result, visual signals
from the eyewould take on the order of tens ofms to traverse
from one side of the brain to another [5]. However, this num-
ber is slowed even further by the delays of synaptic transmis-
sion in intervening synapses along the way. With all of these
delays, signals don’t reach primary visual cortex in humans
until around 50 ms after photons reach the retina [6,7].
Signals don’t reach later stages of visual processing until
almost 200 ms after the retina is stimulated [8]. By the stan-
dards of a silicon computer, such propagation times are
glacially slow. However, what brains lose in the speed of in-
dividual elements, they potentially make up for in parallelism
and connectivity. While an advanced GPU might have thou-
sands of processing cores that operate on data in parallel [9],
the brain has billions of neurons operating simultaneously.
Moreover, while our fastest parallel computing architectures
today are primarily limited by their ability to move the right
data to the processors at the right time to serve a given algo-
rithm [10–12], the human brain is densely interconnected,
with its billions of neurons sending signals to one another
across a network containing trillions of connections. The
sheer number of these connections, and their structure,
allow information to rapidly flow from one part of the brain
to another, often requiring only a few synaptic steps to
span between distant brain regions [13]. Strikingly, our
brains perform their incredible feats while only consuming
about 20 watts of power [14] — roughly the power consump-
tion of an average laptop.
Yet, while it would be easy to dismiss the ‘computational’

perspective on neuroscience as another passing metaphor,
it is a metaphor that runs deeper: beyond the metaphor
of ‘the brain is a computer’, computational science pro-
vides a rigorous formal framework and tools for reasoning
about information-processing systems, separating what
gets computed (‘algorithm’) from how it gets computed
(‘implementation’).
Furthermore, we live today in a world where enormous

computational power is available. With the advent of the
internet, we routinely interact with vast networks of com-
puters and we possess technologies to harness the collec-
tive power of massive server farms. Several groups have
launched large, multinational efforts to simulate parts of or
whole brains in silico [15]. While such efforts are surrounded
by controversy about whether they are biologically realistic
or focus at the appropriate level of biological detail [16],
the exponential nature of the growth of computing power
makes it entirely plausible that we’ll soon be able to routinely
marshall computing power rivaling or exceeding that of
the brain. Meanwhile, a number of groups are working on
producing silicon architectures whose elemental building
blocks work more like neurons [17,18]. Barring big surprises
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in the fundamental nature of neuronal function, we can
contemplate a world where simulating an entire brain be-
comes commonplace.

However, even as the barriers of raw computational power
fall away, knowing what to do with all of that power is a
greater problem. Despite significant progress in neurosci-
ence, we still know little about how brain circuits organize
themselves to give rise to behavior and learning. In the
absence of a clear mandate for what to build, the interaction
between neuroscience and biologically inspired computing
has been a co-evolution, with each field providing tanta-
lizing, but ultimately incomplete, clues to the other.

Here, we review the interplay between neuroscience and
computing, focusing on connections between visual neuro-
science and the fields of computer vision and machine
learning, with particular attention to visual object recogni-
tion, where the recent progress has been especially quick.
In many ways, vision lies at the leading edge of both neuro-
science and machine perception; we arguably know more
about the brain’s visual system than we know about almost
any other brain subsystem, and computer vision has played
a leading role in the development of machine learning,
machine perception, and biologically inspired computing in
general [19]. While a full exploration of all connections be-
tween neuroscience and computer science is beyond the
scope of the present article, vision in general, and object
recognition in particular, nonetheless provides an interesting
test case in the intersection of neuroscience and computing.
Here, we explore the past and present of this interface, and
we suggest possible avenues for future cross-pollination.

A Brief History of the Artificial Neural Network
The history of biologically inspired algorithms stretches sur-
prisingly far back into the history of computing. McCulloch
and Pitts formalized the notion of an ‘integrate and fire’
neuron in 1943, and Hebb first proposed the idea of associa-
tive learning in neurons — ‘‘what fires together, wires
together’’ — in the late 1940s [20,21]. Meanwhile, the tran-
sistor was only invented in 1947; practical integrated circuits
emerged only in the late 1950s; mainframes and ‘minicom-
puters’ were not commonplace until the 1960s; and personal
computers did not appear until the 1980s and 1990s. That
theory would precede practical application by somany years
is a testament to the foresight of these early pioneers.

One of the earliest instantiations of a neural network that
could learn was the ‘perceptron’ of Rosenblatt [22–24],
who proposed a simple arrangement of input and output
neurons that could make decisions on the basis of input vec-
tors. The initial form of the perceptron proved to be funda-
mentally limited, only being capable of learning linear
functions of the inputs, and neural network research faced
a temporary setback at the hands of the rival ‘symbolic arti-
ficial intelligence’ camp, which sought to model intelligence
through abstract symbolic operations, rather than drawing
direct inspiration from the machinery of the brain.

The addition of nonlinear activation functions and a ‘hid-
den’ layer of units between the inputs and outputs of the
networks overcame the theoretical limitations of the percep-
tron, and over the next two decades, awide range of different
forms of artificial neural networks (ANNs) emerged [25].
While the inclusion of a hidden layermade it possible, in prin-
ciple, for an ANN to compute any function, it was less clear
how to train a network to compute an arbitrary function of
interest. In the 1960s and 1970s, the back-propagation
algorithm [26–28] was introduced, which provided a con-
crete mechanism for propagating error signals back through
a multi-layer neural network. Back-propagation also lacks a
clear story connecting it to biology — it is not known how
neurons might propagate signals ‘backward’ through multi-
ple synapses to adjust their strengths. However, it allows
networks with hidden layers to be trained efficiently, and
this alone was enough to drive its popularity.
Artificial neural networks flourished through the 1980s and

optimism ran high. ‘Connectionism’ became a popular term
for describing the study of various kinds of early neural net-
works aimed at solving awide range of problems, from vision
to language. A host of investigators (e.g., LeCun, Bengio,
Hinton, Schmidthuber, to name just a few) made seminal
contributions to the state-of-the-art in neural networks, and
they were increasingly applied to a range of practical prob-
lems. The convolutional neural network emerged as a power-
ful tool in the analysis of images and played an important role
in the young field of computer vision, achieving excellent
performance on the problem of hand-written digit recogni-
tion, a real-world application of neural networks. Meanwhile,
neuroscience has provided guiding force for the develop-
ment of artificial neural networks, providing inspiration for
architectural features of neural networks (e.g., simple-to-
complex pooling in Fukushima’s neocognitron [29,30]).

Casualties of the A.I. Winter
While the 1980s saw enormous enthusiasm and hope around
the idea that machines could model and recreate perceptual
and cognitive abilities of humans, this enthusiasm waned
significantly in the 1990s. The promise (and promises) of
the neural network community in the 1980s were great, but
in many ways these approaches failed to deliver practical re-
sults, as did parallel efforts to model higher-level cognition
from the ‘symbolic A.I.’ camp. This period came to be known
as the ‘A.I. winter’, since it represented a significant cooling
off in both interest and funding for both artificial neural net-
works and symbolic A.I. research.
In the domain of computer vision, while neural networks

saw some early successes, a diverse range of conventional,
engineered solutions to specific computer vision problems
emerged and gained prominence.Many of these approaches
could have been tied either implicitly or explicitly to neurosci-
ence ideas, but the community largely eschewed such con-
nections, emphasizing intuitive and theoretical appeal over
biological inspiration. For instance, David Lowe’s widely
influential Scale Invariant Feature Transform (SIFT) was orig-
inally described in analogy to the primate ventral visual
pathway [31], but although it quickly became a ubiquitous
component of conventional computer vision systems, its
biological inspiration is rarely mentioned.
In the domain of machine learning, the 1990s saw the

development and rise of a variety of machine learning
approaches that would supplant the neural network.
Support vectormachines (SVMs), in particular, offered excel-
lent generalization performance and relative freedom from
mysterious and difficult-to-choose training parameters [32].
Because SVMs rely on the mathematics of convex optimiza-
tion at their heart, they can guarantee efficient arrival at a
global optimum, even for problems that are large in the num-
ber of training examples. Neural networks, by comparison,
required seemingly arbitrary decisions about the number of
units in the network, how long to spend training a network,
and how big a change to make in the network connection
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Figure 1. A rough correspondence between
the areas associated with the primary visual
cortex and the layers in a convolutional
network.

(A) Four Brodmann areas associated with the
ventral visual stream along with a block dia-
gram showing just a few of the many forward
and backward projections between these
areas. (B) A simple feedforward convolutional
network [105] in which the two bracketed
pairs of convolution operator followed by a
pooling layer are roughly analogous to the
hierarchy of the biological visual system.
Adapted from [106].
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weights at each training step. Neural
networks came to be painted as slow
and finicky to train, beset by voodoo-
parameters, and simply inferior to other
approaches.

Deep Learning and the Second
A.I. Spring
One of the principal limitations of tradi-
tional artificial neural networks has
been that methods for training a
system with multiple layers were not
straightforward or not available. From
a visual neuroscience perspective,
however, the appeal of having multi-

layer networks is obvious. In primates, the ventral visual
pathway (Figure 1A) is thought to subserve visual form and
object vision, and it is organized as a hierarchical series of
interconnected visual areas. Neurons in early areas, such
as area V1, respond to comparatively simple, spatially local
features of the retinal image, while later areas, such as area
V4 and inferotemporal cortex, respond to increasingly com-
plex visual features over larger regions of visual space.While
the exact nature of population representations in the visual
cortex are still poorly understood, it is clear that as one pro-
gresses along the ventral visual pathway, neurons begin to
represent visual objects in a way that is tolerant to variation
in the exact appearance of that object on the retina. Because
a visual object can be viewed from different vantage points
and under different lighting conditions, it can cast an effec-
tively infinite number of different images onto the retina
(Figure 2A). The converse is also true: any given image on
the retina can correspond to infinitely many possible objects
in the world (Figure 2B). The idea that the ventral visual
pathway exists to transform images into a better format,
one that allows the brain to reason about objects in spite
of this level of variation, is an old idea in neuroscience, and
one that continues to serve as a foundational working hy-
pothesis in the study of high level vision.

While many artificial neural networks in the 1980s were
largely treated as classifiers, responsible for mapping high-
dimensional input vectors (e.g., images) onto class labels
or some other output function, when seen through the lens
of visual systems neuroscience, the role of a visual system
is not so much to classify images, but to successively trans-
form images from one format of representation into a
different, more flexible one that better reflects the structure
of the external world. Rather than simply mapping one
function onto another, the goal of a visual hierarchy is to
discover latent structure and make it explicit, such that it
can be manipulated to serve a number of different tasks.
Some aspects of this distinction are largely semantic —
any neural network will, by definition, map from one function
to another, but a representation-learning perspective dic-
tates a very different set of priorities in the design of a neural
network. For one, since this perspective seeks to discover
representations of the external world, unsupervised pre-
training — using unlabeled examples to train an initial state
of a network — makes increasing sense, especially where
the network might need to serve multiple end goals. In
addition, following a ventral stream-inspired plan places a
premium on networks with many layers of processing —
so-called ‘deep’ networks.
While the A.I. Winter took a broad toll on research in

machine perception and machine intelligence — including
neural networks and biologically-inspired vision — many
of the original stalwarts of classical neural network ap-
proaches, such as Geoff Hinton, Yann LeCun and Yoshua
Bengio, continued their work and increasingly rallied around
‘deep learning’ approaches [33]. Researchers working on
deep networks began to accumulate a steady stream of
practical successes. In the domain of vision, convolutional
architectures — which scan a set of filters across an image
at each level of a deep hierarchy — proved to be especially
effective during this period. These systems have fewer
weights to train, work well even when the weights aren’t
trained, and naturally capture the spatial stationarity in natu-
ral images (a set of similar visual features tend to appear at
different spatial locations in an image).
With the introduction of the Restricted BoltzmannMachine

and its variants [34], Hinton, Bengio and their collaborators



Figure 2. The robustness of the human visual
system.

(A) We are capable of recognizing objects
across awide variation in pose, lighting condi-
tions and partial occlusion, and (B) we deal
effortlessly with the ambiguities that routinely
arise in the process of projecting 3-D images
on the approximately 2-D retina. As an illustra-
tion, we note that the image cast on the retina
when viewing a simple line drawing is consis-
tent with an infinite number of wire frame ob-
jects (B), and yet we have no trouble making
the right interpretation in all but contrived
situations.
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revived interest in multilayer perceptrons, but the training
procedures tended to be complex, and the update rules,
such as contrastive divergence, lacked clear theoretical
grounding. A high-visibility publication by Hinton and Sala-
khutdinov in the journal Science added credibility to the field
[35], but still only a relatively small community wasworking in
the area.

Meanwhile, neuroscience made important theoretical
moves forward during this period, providing new clues as
to how the earlier generation of neural networks could be
improved: max pooling has all but replaced winner-take-all
in pooling layers, thereby providing impressive performance
gains [36]; surround suppression in classical receptive fields
is routinely applied in the form of local non-max suppression
for edge and contour detectors and localization in object
recognition [37]; rectified linear units have substantially out-
performed sigmoidal activation functions to obtain the best
results in several benchmark problems [38]; and local (divi-
sive) normalization which appears to operate in a number
of neural systems [39] applied in the form of local contrast
normalization is one of the most important components in
state-of-the-art object recognition systems [40].

The rapid ascendance of deep learning approaches
reached critical mass in 2013, when Hinton and colleagues
demonstrated a deep network that yielded exceptional per-
formance on the ImageNet object classification challenge
data set. Variants on this network would subsequently be
applied to a wide range of different problems, scoring top re-
sults effectively everywhere it was applied [41]. While it can
bedifficult toquantitatively chart theups anddownsof schol-
arly zeitgeist, in the case of the new field of deep learning, its
popularity can be measured in dollars, with industry titans
such as Google, Facebook, and Baidu hiring up a significant
fraction of the fieldof experts in deep learning,with vast sums
of money changing hands. Arguably never before has such a
large fraction of a research community been so rapidly priva-
tized, resulting in shockwaves through the field.

While it would be appealing to paint the rise of deep
learning in terms of some key breakthrough theoretical
advance, in truth, some of themost successful deep learning
systems are not so different from the back-propagation
networks of the 1980s. Certainly, theo-
retical advances have been made, but
in large part the enabling factor in the
latest deep learning is the availability
of computational power and of vast
quantities of data. Google and Face-
book each handle enormous volumes
of images (e.g., 100 hours of video are uploaded to YouTube
every minute). This provides an unprecedented pool of data
to use in training networks, and models can now be trained
on datasets orders of magnitude larger than previously avail-
able. Meanwhile, GPUs havemade certain key computations
necessary for deep learning approaches very fast, particu-
larly convolutions. Modern data centers also made it
possible to train many models simultaneously, and thus
search the space of models more effectively.
Simply put, the community seized the opportunity pre-

sented by advances in hardware, figured out efficient numer-
ical recipes for performing algorithms like back-propagation
effectively, and were able to perform thousands of experi-
ments quickly. Over a short period of time, neural network
models went from an obscure and maligned artifact of the
past to a dominant force in nearly every field of machine
learning and perception. A godfather of this field, Geoff
Hinton, is fond of saying that it took 17 years to get deep
learning right; one year thinking and 16 years of progress in
computing, praise be to Intel.

Do Neuroscience and Deep Learning Still Need Each
Other?
Given the current excitement surrounding modern deep
learning approaches, an obvious question that one might
ask is whether machine learning still needs anything from
neuroscience. Certainly, the gains of deep learning ap-
proaches have been impressive, and there is a great deal
of enthusiasm that deep learning approaches will continue
to overcome many current problems in machine learning.
Meanwhile, the flow of ideas from neuroscience to computer
science has been sporadic, and not always responsible for
the greatest progress. Against this backdrop, it might be
easy to assume that machine learning doesn’t need neuro-
science anymore. Indeed, Yann LeCun, a major player in
the new A.I. Spring, has even been recently quoted as saying
that while we can get inspiration from the biology, we
shouldn’t be blinded by it.
While there is much cause for optimism for deep learning,

there is also substantial evidence that should temper this
enthusiasm. While deep learning approaches are beginning
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to rival human performance in certain situations, the gap be-
tween humans and machines is still great. One important
divide between humans and current deep learning systems
is in the size of required training datasets. Humans and ani-
mals can rapidly learn concepts, often from single training
examples. Studies of human concept learning show that hu-
mans can accurately learn complex visual object categories
from fleeting numbers of examples [42,43]. In contrast, cur-
rent deep learning approaches require vast quantities of
data to work. For instance, the Krishevsky et al. model that
was used to achieve high levels of performance in the
ImageNet challenge [38] was trained using 1,000 labeled ex-
amples each from 1,000 categories of objects, for a total of 1
million labeled images. This number begins to approach the
scale of the number of visual fixations a human makes in a
year (assuming three saccades per second during waking
hours), and only a fleeting few of those fixations could be
counted as being ‘labeled’ in any sense.

A related issue for modern computer vision is out-of-set
generalization. One fundamental challenge in computer
vision is in evaluating performance. Computer vision perfor-
mance is typically assessed against benchmark datasets.
However, Torralba and Efros [44] have elegantly shown
that most systems trained on one data set perform better
on that data set than on another that contains the same
categories of objects, suggesting some degree of bias in
these benchmark datasets. The more effective tests of
deep learning approaches will comewhen they are deployed
in real operational settings and real applications. Tests of
this sort are underway, albeit largely in commercial settings
where the resulting performance data may not always be
made available.

Moreover, most computer vision test benchmarks are ex-
amples of so-called ‘closed-set’ problems — problems
where all of the classes that a system will encounter are
known in advance. Thus when building a system that iden-
tifies the category ‘cars’, we not only have a number of
labeled examples of cars, but we also have a large number
of examples of the other categories that we might encounter
(e.g., faces, people, houses, etc.). In contrast, in the real
world, we rarely enumerate all of the possible negative
classes of objects that we might encounter. Indeed, a large
fraction of patches of the visual world that we encounter
cannot even be unambiguously labeled. Attempts to come
to terms with such ‘open-set’ problems shows them to be
much more difficult. Indeed, even the venerable, largely
solved MNIST hand-written digit recognition dataset [45]
(current systems achieve in excess of 99%accuracy [46]) be-
comes difficult when the system doesn’t have access during
training to examples of all of the possible digits it might
encounter during testing [47]. This concern is also echoed
in large-scale object datasets — the ImageNet challenge in-
cludes a ‘detection’ variant of the challenge wherein objects
must be locatedwithin images [48]. Because the negative set
of image patches that the system must reject includes an
enormous diversity of image content, not all of which can
be easily labeled, it is effectively an open-set problem. Per-
formance on this variant protocol for ImageNet is still uni-
formly poor for current artificial systems [49]. Several
computational efforts have sought to break free of this
mold, tackling extremely large numbers of categories by
treating object recognition as a mapping rather than a clas-
sification problem [50]; however, such approaches today
remain the exception rather than the rule.
Other, more subtle signs of trouble also exist in the deep
learning literature. For instance, Szegendy and colleagues
[51] showed that one can add carefully crafted ‘noise’ to
images and cause them to be arbitrarily misclassified by a
current deep learning system. While the original image and
the altered image are classified as completely different ob-
jects by the deep learning system, they are effectively indis-
tinguishable by humans (they would be considered to be
‘metamers’ in the language of visual psychophysics [52]).
This suggests that the nature of representations in humans
and deep neural networks are still qualitatively different.
Taken together, the gap between the performance of artifi-
cial and biological systems suggests there is more that
neuroscience can teach deep learning.

Forging New Links
Sowhat’s next? Howcan the neuroscience, computer vision,
and machine learning communities communicate more
effectively with one another?
Historically, the dialogue between neuroscience and

machine learning has been hampered by limitations in tech-
nology and differences in culture. On the one hand, neurosci-
ence has historically lacked experimental tools that could
provide new inspiration and constraint for existing neural
network architectures. Electrophysiology, a gold-standard
in characterizing neuronal responses, has typically only
allowed relatively brief sessions with cells, and it has not
generally been possible to target the same cells across
long spans of time. Using traditional tracing techniques,
the connectivity between cells could only be probed
sparsely, providing comparatively macroscopic information
about the projections of neurons between areas, but
providing little detail about the fine-grained organization of
brain circuitry.
On the other hand, following an initial flurry of excitement,

neural network approaches lagged behind other machine
learning methods for decades. While various neuroscience-
inspired vision models have been fit to neuroscience data,
given the paucity of data to fit and the large number of free
parameters to be fit, it is difficult to draw strong conclusions
from such an exercise, since one would expect almost any
sufficiently expressive model to be able to fit the experi-
mental results. While such efforts are clearly important, few
testable predictions have emerged to date. Further, it is un-
clear what conclusions to draw frommodels that can explain
neuronal firing rates, but can’t reproduce the function of the
larger system. If we built a model that could explain some
small number of measurements taken from the inside of a
car engine, but the model car itself was unable to operate,
then we are left in uncertain territory on how to interpret
the model.
Today, both of these barriers have been removed. Increas-

ingly, neuroscience tools give access to the activity of
large populations of cells [53,54], and the same cell across
large spans of time [55]. We can directly measure the
connectivity between identified cells, and genetic tools
give us unprecedented cell-type-specific access to neuronal
networks, with the ability to measure, stimulate, and silence
cells with exquisite precision [56,57]. Meanwhile, deep
neural networks have become a dominant approach in
many machine learning domains [58], and high performance
computing tools give us the power to test new ideas at
scale. This creates several promising avenues for further
exploration.
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Figure 3. Examples of extant recurrent network architectures.

(A) ‘Reservoir computing’ avoids the difficulties of training recurrent
architectures by feeding inputs into randomly connected recurrent net-
works and then reading out a result via a simple linear learning rule.
Such architectures have found uses in a variety of applications with
time-varying signals. (B) Another kind of recurrent network that is gain-
ing popularity is the ‘long-short-term memory’ network. The detailed
function of such networks is beyond the scope of the present article,
but at a high level the network allows information to be stored and
accumulated in a recurrent loop, while multiplicative ‘gates’ control
the flow of information into, out of, and within the loop. Networks of
this sort have the ability to learn over long timescales and to produce
outputs at irregular time intervals.

Current Biology Vol 24 No 18
R926
Recurrence, Feedback, and Dynamics
At their root, the current crop of successful deep networks
are actually quite simple in their final structure — most are
still largely feedforward in their organization, and many of
the key operations can be conceptualized as a generalized
convolution — a computation that operates on a local
neighborhood of inputs. Meanwhile, we know that the real
visual cortex is quite a bit more complex. Local cortical mi-
crocircuits contain myriad local recurrent connections and
ubiquitous feedback connections between cortical areas,
not to mention subcortical loops [59] and long-range modu-
latory connections (e.g., [60]). Visual cortex is organized
into six cell layers with stereotyped patterns of connectiv-
ity, collectively comprising at least dozens of genetically
distinguishable cell types, which presumably subserve
distinct functions within the network [61]. We don’t argue
here that artificial networks need to slavishly copy this
complexity to be computationally ‘like’ the brain or to be
useful for machine vision. Indeed, from an applied, engi-
neering perspective, copying superficial features of the
architecture of cortex is not necessary, and might even
be distracting from the goal of building better vision sys-
tems. However, the extent of the complexity found in the
brain relative to artificial networks suggests qualitative,
rather than quantitative, gaps that need to be spanned, or
at least, understood.
This is not to say that no work has been done on networks
that include recurrence or feedback. Several major families
of current deep neural networks, such as Restricted Boltz-
mann Machines, incorporate algorithmic forward and
reverse passes to perform inference, and these provide
some concrete hypotheses for roles that feedback might
play in real neuronal networks [34,62,63]. Meanwhile, recur-
rent neural networks (RNNs; e.g., Figure 3), which contain
loops in their connectivity graph, have long been a topic of
study [64,65]; though, with a few exceptions, they have
proven more difficult to train than feedforward networks.
RNNs allow for the incorporation of feedback and support
models that essentially remember the results of prior compu-
tations and are capable of establishing long-range temporal
dependencies within visual, auditory and text data [66,67].
A variety of functional roles have been proposed for recur-

rent connections, by both the neuroscience and computer
vision communities. One natural idea is that recurrence en-
ables contextual information to be incorporated to enhance
otherwise ambiguous inputs. Humans are able to recognize
highly degraded images when external context provides
additional clues. Incorporating such context, for instance in
a Bayesian framework, is a popular idea, although one that
remains to be fleshed out. Similarly, a variety of models posit
specific roles for top-down feedback connections in allo-
cating attention to different parts of a scene [68]. New tools
in neuroscience increasingly provide experimental access
to study these connections directly. For instance, viruses
now exist that can jump across a single synapse [69], deliv-
ering genetically encoded indicators and opsins that enable
the activity of neurons that provide input to a given target to
be measured and manipulated. We believe that coming to
terms with the nature of these connections and their roles
will be one area where neuroscience and computer vision
might enjoy special synergy.
Another elephant in the room is the role of spiking in

neuronal information processing. Real neuronal systems ex-
change information through a chatter of discrete action
potentials, or ‘spikes’. However, the current wave of deep
learning success does not include any notion of spiking,
instead propagating scalar-valued ‘activation’ through the
network in discrete time steps. Even within neuroscience,
while no one doubts that there are many timing-dependent
phenomena in neurons (such as spike timing-dependent
plasticity [70]), there remains substantial debate about
whether understanding detailed spike timing is critically
important to understanding sensory coding, or whether
slower timescale rate codes suffice [71]. Such concerns
become even more pronounced when considering recurrent
networks, and a growing subfield of theoretical neurosci-
ence is using the tools of dynamical systems and statistical
mechanics to describe and understand the behavior of pop-
ulations of interconnected spiking neurons [72]. While it is
safe to say that spiking networks have not participated as
top performers in machine vision at any point in history to
date, this could easily change as theory and available
computational power catch up.

Beyond Still Images
Another clear area for growth in neuroscience-inspired com-
puter vision is in the processing of time-varying images. To
date, many of the greatest successes in computer vision
and object recognition have been with still images — this is
perhaps not surprising given that we’ve only just now
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attained a level of computational power to handle images
effectively, and video multiplies the scale of raw data
involved. There are other practical challenges with video.
Still images on the web are often accompanied by linguistic
cues in the form of anchoring text linked to photos or cap-
tions in the case of figures in more traditional documents.
Video on the other hand, especially the wild type found on
such sites as YouTube, often has little or no annotation and
what annotation it does have, for example comments written
by visitors to thewebsite, are ambiguous, often spurious and
generally have little to do with the specific visual categories
shown in the frames of the video. This makes it difficult to
train systems that require a great deal of supervision. The
analysis of motion in video has been shown to be of value
in several areas, such as categorizing different kinds of hu-
man action in video [73–75]. The analysis of time-varying sig-
nals for object perception has long been the subject of
convergent interest across computational neuroscience
and computer vision [76–86], but we argue that there is a
good deal of room tomake these connections stronger going
forward.

Real neuronal systems perform a variety of different kinds
of temporal filtering and processing on incoming inputs, and
the visual system is no exception. Neurons in area V1, for
instance, have obvious tuning in both space and time, with
many responding optimally to moving edges [87]. Some
visual areas, such as area MT, are clearly specialized for
analyzing motion [88], but even ventral stream areas that
are thought to be involved in representing object form
show interesting temporal structure in their responses. For
example, the responses of neurons in inferotemporal cortex,
at the end of the ventral visual hierarchy, show complex pat-
terns of adaptation based on previously seen images [89]. In
an extreme example, Meyer et al. showed that responses of
inferotemporal neurons to particular stimuli could be nearly
completely suppressed if the animal learned to expect their
appearance in a particular ordered sequence; these same
stimuli evoked strong responses when seen out of the
learned order [90]. This suggests that object processing in
visual cortex is sensitive to temporal contingencies, though
systems neuroscience has only begun to scratch the surface
of understanding what role time plays in the ventral pathway,
and little is known about what mechanisms might underlie
these phenomena.

On the machine learning side, various kinds of recurrent
networks are enjoying the beginnings of a resurgence in in-
terest for temporal learning. For instance, a conceptually
simple framework known as ‘reservoir’ computing [91]
(Figure 3A), which uses unstructured, randomly connected
recurrent networks, paired with a simple linear read-out,
has been applied to a variety of temporal recognition prob-
lems outside of vision with a surprising degree of success
(though effective applications to vision are still rare). In
addition, more complex networks, such as long-short-term
memory models (LSTMs) are increasingly showing impres-
sive performance in tasks that require sequence learning
[92–94]. Even more promising, early work on LSTMs is
already feeding back onto neuroscience, having spawned
several theories about neural structures responsible for
sequence learning involving prefrontal cortex and the basal
ganglia [95,96]. Another promising point of contact between
neuroscience and computation in the context of temporal
data streams is in the simulation of eye movements to simu-
late focused serial sampling of an otherwise cluttered and
difficult to parse scene [97–100]. A number of efforts to utilize
object tracking in conjunction with object recognition have
been proposed.

Towards Better Representation Learning
A dominant theme in the recent resurgence of neural net-
works has been the importance of learning good, flexible
representations of the external visual world. While from an
engineering perspective there is no strict requirement that
the representations found in artificial networks be similar to
those found in nature, we argue that biology provides a
potentially exciting and rich source of ideas for representa-
tion learning. Importantly, neuroscience increasingly has
tools that allow large populations of neurons to bemonitored
over long periods of time, offering hope that we can begin to
‘watch’ biological learning in progress as an animal learns to
perform a given task. Such efforts would provide both static
snapshots of the properties of how ‘good’ representations
are organized, along with dynamic information about what
kinds of learning rules might give rise to them. With the
BRAIN initiative fueling even greater interest in large-scale
methods for recording neuronal activity [101], the tools for
undertaking such work will only get better.

Beyond Visual Cortex
Most current artificial neural networks for vision exist as iso-
lated visual systems, which take in an image as input, and
output a category label or a vector representation that can
be given to a classifier to provide a label. However, real visual
systems do not exist in a vacuum, but rather exist integrated
into larger networks concerned with guiding motor action,
monitoring and distributing signals about reward value,
and integrating disparate senses together. Several efforts
are underway to study vision in the context of larger net-
works [102,103] that include other components such as
working memory, retinas and/or attentional spotlights that
can move to sample different portions of the scene, and
motor effectors that allow the system to interact with the
environment. We know from decades of neuroscience
research that brains devote vast networks of neuronal hard-
ware to driving such active feedback loops, and we know
that the de facto activity of ventral visual cortical responses
are heavily shaped by saccadic eye movements during nat-
ural viewing behavior. Incorporating active sensing and flex-
ible task requirements will no doubt shape the nature of
representations in the deep learning systems, and it repre-
sents a promising direction for interplay between neurosci-
ence and computer vision.

Conclusion
While the interchange of ideas between neuroscience and
computer vision has experienced ups and downs, it is
hard not to be enthusiastic about the future of neurosci-
ence-inspired computer vision. In many ways, the current
environment is a perfect storm of opportunity, with recent
successes in machine learning and recent advances in
neuroscience technology coinciding almost perfectly, and
with the two fields perhaps poised to take advantage of
each other’s insight at an unprecedented scale. However,
seizing this opportunity will require effort and a cultural shift,
as the two fields often have very different goals and
approaches. With elevated enthusiasm also come elevated
expectations; the broader field of brain-inspired A.I. has
already gone through one boom–bust cycle, and some
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observers worry that hopes are already running too high
[104]. The cyclic nature of passing academic trends may
very well be unavoidable, but we argue that in many ways
we stand at a very different place today relative to the begin-
ning of the first A.I. Winter. For one, in contrast to the first
A.I. Winter, where the ‘product’ being sold in commercial
contexts was arguably largely hype, today, the current
crop of neural networks are being used to solve a wide vari-
ety of real-world problems of core interest to companies like
Apple, Facebook, Google, IBM, and Microsoft. But perhaps
even more salient, never before have the fields of neurosci-
ence, computer vision, and machine learning had so much
to say to one another. The trick will be making sure that we
listen.
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