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The emergence of powerful artificial intelligence (AI) is defining new research directions in neuroscience. To
date, this research has focused largely on deep neural networks trained using supervised learning in tasks
such as image classification. However, there is another area of recent AI work that has so far received less
attention from neuroscientists but that may have profound neuroscientific implications: deep reinforcement
learning (RL). Deep RL offers a comprehensive framework for studying the interplay among learning, repre-
sentation, and decision making, offering to the brain sciences a new set of research tools and a wide range of
novel hypotheses. In the present review, we provide a high-level introduction to deep RL, discuss some of its
initial applications to neuroscience, and survey its wider implications for research on brain and behavior,
concluding with a list of opportunities for next-stage research.
The past few years have seen a burst of interest in deep learning

as a basis for modeling brain function (Cichy and Kaiser, 2019;

G€uçl€u and van Gerven, 2017; Hasson et al., 2020; Marblestone

et al., 2016; Richards et al., 2019). Deep learning has been stud-

ied for modeling numerous systems, including vision (Yamins

et al., 2014; Yamins and DiCarlo, 2016), audition (Kell et al.,

2018), motor control (Merel et al., 2019; Weinstein and Botvinick,

2017), navigation (Banino et al., 2018; Whittington et al., 2019),

and cognitive control (Mante et al., 2013; Botvinick and Cohen,

2014). This resurgence of interest in deep learning has been

catalyzed by recent dramatic advances in machine learning

and artificial intelligence (AI). Of particular relevance is progress

in training deep learning systems using supervised learning—

that is, explicitly providing the ‘‘correct answers’’ during task

training—on tasks such as image classification (Krizhevsky

et al., 2012; Deng et al., 2009).

For all their freshness, the recent neuroscience applications of

supervised deep learning can actually be seen as returning to a

thread of research stretching back to the 1980s, when the first

neuroscience applications of supervised deep learning began

(Zipser and Andersen, 1988; Zipser, 1991). Of course this return

is highly justified, given new opportunities that are presented by

the availability of more powerful computers, allowing scaling of

supervised deep learning systems to much more interesting da-

tasets and tasks. However, at the same time, there are other de-

velopments in recent AI research that are more fundamentally

novel and that have received less notice from neuroscientists.

Our purpose in this review is to call attention to one such area

that has vital implications for neuroscience, namely, deep rein-

forcement learning (RL).

As we will detail, deep RL brings deep learning together with a

second computational framework that has already had a sub-

stantial impact on neuroscience research: RL. Although inte-

grating RL with deep learning has been a long-standing aspira-

tion in AI, it is only in very recent years that this integration has
borne fruit. This engineering breakthrough has, in turn, brought

to the fore a wide range of computational issues that do not arise

within either deep learning or RL alone. Many of these relate in

interesting ways to key aspects of brain function, presenting a

range of inviting opportunities for neuroscientific research: op-

portunities that have so far been little explored.

In what follows, we start with a brief conceptual and historical

introduction to deep RL and discuss why it is potentially impor-

tant for neuroscience. We then highlight a few studies that

have begun to explore the relationship between deep RL and

brain function. Finally, we lay out a set of broad topics for which

deep RL may provide new leverage for neuroscience, closing

with a set of caveats and open challenges.

An Introduction to Deep RL
Reinforcement Learning

RL (Sutton and Barto, 2018) considers the problem of a learner or

an agent embedded in an environment, where the agent must

progressively improve the actions it selects in response to

each environmental situation or state (Figure 1A). Critically, in

contrast to supervised learning, the agent does not receive

explicit feedback directly indicating correct actions. Instead,

each action elicits a signal of associated reward or lack of

reward, and the RL problem is to progressively update behavior

so as to maximize the reward accumulated over time. Because

the agent is not told directly what to do, it must explore alterna-

tive actions, accumulating information about the outcomes they

produce, thereby gradually homing in on a reward-maximizing

behavioral policy.

Note that RL is defined in terms of the learning problem, rather

than by the architecture of the learning system or the learning al-

gorithm itself. Indeed, a wide variety of architectures and algo-

rithms have been developed, spanning a range of assumptions

concerning what quantities are represented, how these are up-

dated on the basis of experience, and how decisions are made.
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Figure 1. RL, Deep Learning, and Deep RL
(A) Left: the reinforcement learning problem. The agent selects actions and transmits them to the environment, which in turn transmits back to the agent ob-
servations and rewards. The agent attempts to select the actions that will maximize long-term reward. The best action might not result in immediate reward but
might instead change the state of the environment to one in which reward can be obtained later. Right: tabular solution to a reinforcement learning problem. The
agent considers the environment to be in one of several discrete states and learns from experience the expected long-term reward associated with taking each
action in each state. These reward expectations are learned independently and do not generalize to new states or new actions.
(B) Left: the supervised learning problem. The agent receives a series of unlabeled data samples (e.g., images) and must guess the correct labels. Feedback on
the correct label is provided immediately. Right: deep learning solution to a supervised learning problem. The features of a sample (e.g., pixel intensities) are
passed through several layers of artificial neurons (circles). The activity of each neuron is a weighted sum of its inputs, and its output is a non-linear function of its
activity. The output of the network is translated into a guess at the correct label for that sample. During learning, network weights are tuned such that these
guesses come to approximate the true labels. These solutions have been found to generalize well to samples on which they have not been trained.
(C) Deep reinforcement learning, in which a neural network is used as an agent to solve a reinforcement learning problem. By learning appropriate internal
representations, these solutions have been found to generalize well to new states and actions.
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Fundamental to any solution of an RL problem is the question

of how the state of the environment should be represented.

Early work on RL involved simple environments comprising

only a handful of possible states and simple agents that learned

independently about each one, a so-called tabular state repre-

sentation. By design, this kind of representation fails to support

generalization—the ability to apply what is learned about one

state to other similar states—a shortcoming that becomes

increasingly inefficient as environments become larger and

more complex, and individual states are therefore less likely

to recur.

One important approach to attaining generalization across

states is referred to as function approximation (Sutton and Barto,

2018), which attempts to assign similar representations to states

in which similar actions are required. In one simple implementa-

tion of this approach, called linear function approximation, each

state or situation is encoded as a set of features, and the learner

uses a linear readout of these as a basis for selecting its actions.

Although linear function approximation has been often used in

RL research, it has long been recognized that what is needed for

RL to produce intelligent, human-like behavior is some form of

non-linear function approximation. Just as recognizing visual

categories (e.g., ‘‘cat’’) is well known to require non-linear pro-

cessing of visual features (edges, textures, and more complex
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configurations), non-linear processing of perceptual inputs is

generally required in order to decide on adaptive actions.

In acknowledgment of this point, RL research has long sought

workable methods for non-linear function approximation.

Although a variety of approaches have been explored over the

years, often treating the representation learning problem inde-

pendent of the underlying RL problem (Mahadevan and Mag-

gioni, 2007; Konidaris et al., 2011), a long-standing aspiration

has been to perform adaptive non-linear function approximation

using deep neural networks.

Deep Learning

Deep neural networks are computational systems composed of

neuron-like units connected through synapse-like contacts

(Figure 1B). Each unit transmits a scalar value, analogous to a

spike rate, which is computed on the basis of the sum of its in-

puts, that is, the activities of ‘‘upstream’’ units multiplied by the

strength of the transmitting synapse or connection (Goodfellow

et al., 2016). Critically, unit activity is a non-linear function of

these inputs, allowing networks with layers of units interposed

between the ‘‘input’’ and ‘‘output’’ sides of the system (i.e.,

‘‘deep’’ neural networks) to approximate any function mapping

activation inputs to activation outputs (Sutskever and Hinton,

2008). Furthermore, when the connectivity pattern includes

loops, as in ‘‘recurrent’’ neural networks, the network’s
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activations can preserve information about past events, allowing

the network to compute functions on the basis of sequences of

inputs.

‘‘Deep learning’’ refers to the problem of adjusting the connec-

tion weights in a deep neural network so as to establish a desired

input-output mapping. Although a number of algorithms exist for

solving this problem, by far the most efficient and widely used is

backpropagation, which uses the chain rule from calculus to

decide how to adjust weights throughout a network.

Although backpropagation was developed well over 30 years

ago (Rumelhart et al., 1985; Werbos, 1974), until recently it was

used almost exclusively for supervised learning, as defined

above, or for unsupervised learning, in which only inputs are pre-

sented, and the task is to learn a ‘‘good’’ representation of those

inputs on the basis of some function evaluating representational

structure, as is done for example in clustering algorithms. Impor-

tantly, both of these learning problems differ fundamentally from

RL. In particular, unlike supervised and unsupervised learning,

RL requires exploration, as the learner is responsible for discov-

ering actions that increase reward. Furthermore, exploration

must be balanced against leveraging action-value information

already acquired, or as it is conventionally put, exploration

must be weighed against ‘‘exploitation.’’ Unlike with most tradi-

tional supervised and unsupervised learning problems, a stan-

dard assumption in RL is that the actions of the learning system

affect its inputs on the next time step, creating a sensory-motor

feedback loop and potential difficulties due to nonstationarity in

the training data. This creates a situation in which target behav-

iors or outputs involve multi-step decision processes rather than

single input-output mappings. Until very recently, applying deep

learning to RL settings has stood as a frustratingly impenetrable

problem.

Deep Reinforcement Learning

Deep RL leverages the representational power of deep learning

to tackle the RL problem. We define a deep RL system as any

system that solves an RL problem (i.e., maximizes long-term

reward), using representations that are themselves learned by

a deep neural network (rather than stipulated by the designer).

Typically, deep RL systems use a deep neural network to

compute a non-linear mapping from perceptual inputs to action

values (e.g., Mnih et al., 2015) or action probabilities (e.g., Silver

et al., 2016), as well as RL signals that update the weights in this

network, often via backpropagation, in order to produce better

estimates of reward or to increase the frequency of highly re-

warded actions (Figure 1C).

A notable early precursor to modern-day successes with deep

RL occurred in the early 1990s, with a system nicknamed TD-

Gammon, which combined neural networks with RL to learn

how to play backgammon competitively with top human players

(Tesauro, 1994).More specifically, TD-Gammon used a temporal

difference RL algorithm, which computed an estimate for each

encountered board position of how likely the system was to

win (a state-value estimate). The system then computed a

reward-prediction error (RPE)—essentially an indication of pos-

itive surprise or disappointment—on the basis of subsequent

events. The RPE was fed as an error signal into the backpropa-

gation algorithm, which updated the network’s weights so as to

yieldmore accurate state-value estimates. Actions could then be
selected so as to maximize the state value for the next board

state. In order to generate many games on which to train, TD-

Gammon used self-play, in which the algorithm would play

moves against itself until one side won.

Although TD-Gammon provided a tantalizing example of what

RL implemented via neural networks might deliver, its approach

yielded disappointing results in other problem domains. The

main issue was instability; whereas in tabular and linear systems,

RL reliably moved toward better and better behaviors, when

combined with neural networks, the models often collapsed or

plateaued, yielding poor results.

This state of affairs changed dramatically in 2013, with the

report of the Deep Q Network (DQN), the first deep RL system

that learned to play classic Atari video games (Mnih et al.,

2013, 2015). Although DQN was widely noted for attaining bet-

ter-than-human performance on many games, the real break-

through was simply in getting deep RL to work in a reliably stable

way. It incorporated several mechanisms that reduced nonsta-

tionarity, treating the RL problemmore like a series of supervised

learning problems, upon which the tools of deep learning could

be more reliably applied. One example is ‘‘experience replay’’

(Lin, 1991), in which past state-action-reward-next-state transi-

tions were stored away and intermittently re-presented in

random order in order to mimic the random sampling of training

examples that occurs in supervised learning. This helped greatly

reduce variance and stabilize the updates.

Since DQN, work on deep RL has progressed and expanded

at a remarkable pace. Deep RL has been scaled up to highly

complex game domains ranging from Dota (Berner et al., 2019)

to StarCraft II (Vinyals et al., 2019) to capture the flag (Jaderberg

et al., 2019). Novel architectures have been developed that sup-

port effective deep RL in tasks requiring detailed long-term

memory (Graves et al., 2016; Wayne et al., 2018). Deep RL has

been integrated with model-based planning, resulting in super-

human play in complex games including chess and go (Silver

et al., 2016, 2017a, 2017b, 2018). Furthermore, methods have

been developed to allow deep RL to tackle difficult problems in

continuous motor control, including simulations of soccer and

gymnastics (Merel et al., 2018; Heess et al., 2016), and robotics

problems such as in-hand manipulation of a Rubik’s cube (Ak-

kaya et al., 2019). We review some of these developments in

greater detail below, as part of a larger consideration of what im-

plications deep RL may have for neuroscience, the topic to

which we now turn.

Deep RL and Neuroscience
Deep RL is built from components—deep learning and RL—that

have already independently had a profound impact within neuro-

science. Deep neural networks have proved to be an outstanding

model of neural representation (Yamins et al., 2014; Sussillo

et al., 2015; Kriegeskorte, 2015; Mante et al., 2013; Pandarinath

et al., 2018; Rajan et al., 2016; Zipser, 1991; Zipser and Ander-

sen, 1988; Figure 2A). However, this research has for the most

part used supervised training and has therefore provided little

direct leverage on the big-picture problem of understanding

motivated, goal-directed behavior within a sensory-motor loop.

At the same time, RL has provided a powerful theory of the neural

mechanisms of learning and decision making (Niv, 2009). This
Neuron 107, August 19, 2020 605
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Figure 2. Applications to Neuroscience
(A) Supervised deep learning has been used in a wide range of studies to model and explain neural activity. In one influential study, Yamins and DiCarlo (2016)
used a deep convolutional network (shown schematically in the lower portion of the figure) to model single-unit responses in various portions of the macaque
ventral stream (upper portion). Figure adapted from Yamins and DiCarlo (2016).
(B) Reinforcement learning has been connected with neural function in a number of ways. Perhaps most influential has been the link established between phasic
dopamine release and the temporal-difference reward-prediction error signal (RPE). The left side of the panel shows typical spike rasters and histograms from
dopamine neurons in ventral tegmental area under conditions in which a food reward arrives unpredictably (top), arrives following a predictive cue (conditional
stimulus [CS]), or is withheld following a CS. The corresponding panels on the right plot RPEs from a temporal-difference RL model under parallel conditions,
showing qualitatively identical dynamics. Figure adapted from Niv (2009).
(C) Applications of deep RL to neuroscience have only just begun. In one pioneering study, Song et al. (2017) trained a recurrent deep RL network on a reward-
based decision-making task paralleling one that had been studied inmonkeys by Padoa-Schioppa and Assad (2006). The latter study examined the responses of
neurons in orbitofrontal area 13 m (see left panel) across many different choice sets involving two flavors of juice in particular quantities (x axes in upper plots),
reporting neurons whose activity tracked the inferred value of the monkey’s preferred choice (two top left panels), the value of each individual juice (next two
panels), or the identity of the juice actually chosen (right panel). Examining units within their deep RL model, Song et al. (2017) found patterns of activity closely
resembling the neurophysiological data (bottom panels). Panels adapted from Song et al. (2017), Padoa-Schioppa and Assad (2006), and Stalnaker et al. (2015).
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theory most famously explains the activity of dopamine neurons

as a RPE (Watabe-Uchida et al., 2017; Glimcher, 2011; Lee et al.,

2012; Daw andO’Doherty, 2014; Figure 2B) but also accounts for

the role of a wide range of brain structures in reward-driven

learning and decision making (Stachenfeld et al., 2017; Botvinick

et al., 2009; O’Reilly and Frank, 2006; Gl€ascher et al., 2010;

Wang et al., 2018; Wilson et al., 2014b). It has been integrated

into small neural networks with handcrafted structure to provide

models of how multiple brain regions may interact to guide

learning and decision-making (O’Reilly and Frank, 2006; Frank

and Claus, 2006). Just as in the machine learning context, how-

ever, RL itself has until recently offered neuroscience little guid-

ance in thinking about the problem of representation (for discus-
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sion, see Botvinick et al., 2015; Wilson et al., 2014b; Stachenfeld

et al., 2017; Behrens et al., 2018; Gershman et al., 2010).

Deep RL offers neuroscience something new, by showing how

RL and deep learning can fit together. While deep learning fo-

cuses on how representations are learned, and RL on how re-

wards guide learning, in deep RL new phenomena emerge: pro-

cesses by which representations support, and are shaped by,

reward-driven learning and decision making.

If deep RL offered no more than a concatenation of deep

learning and RL in their familiar forms, it would be of limited

import. But deep RL is more than this; when deep learning and

RL are integrated, each triggers new patterns of behavior in

the other, leading to computational phenomena unseen in either
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Figure 3. Meta-Reinforcement Learning
(A) Visualization of representations learned through meta-reinforcement learning, at various stages of training. An artificial agent is trained on a series of inde-
pendent Bernoulli two-armed bandits (100 trials per episode), such that the probabilities of reward payout PL and PR are drawn uniformly from U(0, 1). Scatter
points depict the first two principal components of the recurrent neural network (RNN) activation (LSTM output) vector taken from evaluation episodes at certain
points in training, colored according to trial number (darker, earlier trials) and whether PL > PR. Only episodes for which |PL � PR| > 0.3 are plotted are shown.
(B) Panels adapted fromBromberg-Martin et al. (2010) andWang et al. (2018). Left: dopaminergic activity in response to cues ahead of a reversal and for cueswith
an experienced and inferred change in value. Right: corresponding RPE signals from an artificial agent. Leading and trailing points for each data series corre-
spond to initial fixation and saccade steps. Peaks and troughs correspond to stimulus presentation.
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deep learning or RL on their own. That is to say, deep RL is much

more than the sum of its parts. And the novel aspects of the in-

tegrated framework in turn translate into new explanatory princi-

ples, hypotheses, and available models for neuroscience.

We unpack this point in the next section in considering some of

the few neuroscience studies to have appeared so far that have

leveraged deep RL, turning subsequently to a consideration of

some wider issues that deep RL raises for neuroscience

research.

Vanguard Studies
Although a number of commentaries have appeared that

address aspects of deep RL from a neuroscientific perspective

(Hassabis et al., 2017; Zador, 2019; Marblestone et al., 2016),

few studies have yet applied deep RL models directly to neuro-

scientific data.

In a few cases, researchers have deployed deep RL in ways

analogous to previous applications of supervised deep learning

and RL. For example, transplanting a long-standing research

strategy from deep learning (Yamins et al., 2014; Zipser, 1991)

to deep RL, Song et al. (2017) trained a recurrent deep RL model

on a series of reward-based decision making tasks that have

been studied in the neuroscience literature, reporting close cor-

respondences between the activation patterns observed in the

network’s internal units and neurons in dorsolateral prefrontal,

orbitofrontal, and parietal cortices (Figure 2C). Work by Banino

et al. (2018) combined supervised deep learning and deep RL
methods to show how grid-like representations resembling

those seen in entorhinal cortex can enhance goal-directed nav-

igation performance.

As we have stressed, phenomena arise within deep RL that

do not arise in deep learning or RL considered separately. A

pair of recent studies focused on the neuroscientific implica-

tions of these emergent phenomena. In one, Wang et al.

(2018) examined the behavior of recurrent deep RL systems

and described a novel meta-RL effect: when trained on a se-

ries of interrelated tasks (e.g., a series of forced-choice deci-

sion tasks with the same overall structure but different reward

probabilities) recurrent deep RL networks develop the ability

to adapt to new tasks of the same kind without weight

changes. This is accompanied by correspondingly structured

representations in the activity dynamics of the hidden units

that emerge throughout training (Figure 3A). Slow RL-driven

learning at the level of the network’s connection weights

shape the network’s activation dynamics such that rapid

behavioral adaptation can be driven by those activation dy-

namics alone, akin to the idea from neuroscience that RL

can be supported, in some cases, by activity-based working

memory (Collins and Frank, 2012). In short, slow RL spontane-

ously gives rise to a separate and faster RL algorithm. Wang

et al. (2018) showed how this meta-RL effect could be applied

to explain a wide range of previously puzzling findings from

neuroscientific studies of dopamine and prefrontal cortex

function (Figure 3B).
Neuron 107, August 19, 2020 607
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Figure 4. Distributional RL
(A) Top: in the classic temporal difference (TD) model, each dopamine cell
computes a prediction error (d) with respect to the same predicted reward (V).
Bottom: in distributional TD, some RPE channels amplify negative RPEs (blue)
and others amplify positive RPEs (red). This causes the channels to learn
different reward predictions, ranging from very pessimistic (blue) to very
optimistic (red).
(B) Artificial agents endowed with diverse RPE scaling learn to predict the
return distribution. In this example, the agent is uncertain whether it will suc-
cessfully land on the platform. The agent’s predicted reward distribution on
three consecutive time steps is shown at right.
(C) In real animals, it is possible to decode the reward distribution directly from
dopamine activity. Here, mice were extensively trained on a task with proba-
bilistic reward. The actual reward distribution of the task is shown as a gray
shaded area. When interpreted as RPE channels of a distributional TD learner,
the firing of dopamine cells decodes to the distribution shown in blue (thin
traces are the best five solutions and the thick trace is their mean). The de-
coded distribution matches multiple modes of the actual reward distribution.
Panels adapted from Dabney et al. (2020).
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A second such study was conducted by Dabney et al. (2020).

They leveraged a deep RL technique developed in recent AI work

and referred to as distributional RL (Bellemare et al., 2017).

Earlier, in discussing the history of deep RL, we mentioned the

RPE. In conventional RL, this signal is a simple scalar, with pos-

itive numbers indicating a positive surprise and negative ones

indicating disappointment. More recent neuroscientifically

inspired models have suggested that accounting for the distribu-

tion and uncertainty of reward is important for decision making

under risk (Mikhael and Bogacz, 2016). In distributional RL, the
608 Neuron 107, August 19, 2020
RPE is expanded to a vector, with different elements signaling

RPE signals on the basis of different a priori forecasts, ranging

from highly optimistic to highly pessimistic predictions (Figures

4A and 4B). This modification had been observed in AI work to

dramatically enhance both the pace and outcome of RL across

a variety of tasks, something, importantly, that is observed in

deep RL but not in simpler forms such as tabular or linear RL

(in part because of the impact of distributional coding on repre-

sentation learning; Lyle et al., 2019). Carrying this finding into the

domain of neuroscience, Dabney et al. (2020) studied electro-

physiological data from mice to test whether the dopamine sys-

tem might use the kind of vector code involved in distributional

RL. As noted earlier, dopamine has been proposed to transmit

an RPE-like signal. Dabney et al. (2020) obtained strong evi-

dence that this dopaminergic signal is distributional, conveying

a spectrum of RPE signals ranging from pessimistic to optimistic

(Figure 4C).

Topics for Next-Step Research
As we have noted, explorations of deep RL in neuroscience have

only just begun.What are the key opportunities going forward? In

the sections below we outline six areas where it appears that

deep RL may provide leverage for neuroscientific research. In

each case, intensive explorations are already under way in the

AI context, providing neuroscience with concrete opportunities

for translational research. Although we stress tangible proposals

in what follows, it is important to bear in mind that these pro-

posals do not restrict the definition of deep RL. Deep RL is

instead a broad andmulti-faceted framework, within which algo-

rithmic details can be realized in a huge number of ways, making

the space of resulting hypotheses for neuroscience bracingly

diverse.

Representation Learning

The question of representation has long been central to neuro-

science, beginning perhaps with the work of Hubel and Weisel

(1959) and continuing robustly to the present day (Constanti-

nescu et al., 2016; Stachenfeld et al., 2017; Wilson et al.,

2014b). Neuroscientific studies of representation have benefited

from tools made available by deep learning (Zipser and Ander-

sen, 1988; Yamins et al., 2014), which provides models of how

representations can be shaped by sensory experience. Deep

RL expands this toolkit, providing for the first time models of

how representations can be shaped by rewards and by task de-

mands. In a deep RL agent, reward-based learning shapes inter-

nal representations, and these representations in turn support

reward-based decision making. A canonical example would be

the DQN network training on an Atari task. Here, reward signals

generated on the basis of howmany points are scored feed into a

backpropagation algorithm that modifies weights throughout the

deep neural network, updating the response profiles of all units.

This results in representations that are appropriate for the task.

Whereas a supervised learning system assigns similar represen-

tations to imageswith similar labels (Figures 5A and 5B), deep RL

tends to associate images with similar functional task implica-

tions (Figures 5C and 5D).

This idea of reward-based representation learning resonates

with a great deal of evidence from neuroscience. We know, for

example, that representations of visual stimuli in prefrontal
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cortex depend on which task an animal has been trained to

perform (Freedman et al., 2001) and that effects of task reward

on neural responses can be seen even in primary visual cortex

(Pakan et al., 2018).

The development and use of deep RL systems has raised

awareness of two serious drawbacks of representations that

are shaped by RL alone. One problem is that task-linked rewards

are generally sparse. In chess, for example, reward occurs once

per game, making it a weak signal for learning about opening

moves. A second problem is overfitting: internal representations

shaped exclusively by task-specific rewards may end up being

useful only for tasks the learner has performed but completely

wrong for new tasks (Zhang et al., 2018; Cobbe et al., 2019). Bet-

ter would be some learning procedure that gives rise to internal

representations that aremore broadly useful, supporting transfer

between tasks.

To address these issues, deep RL is often supplemented in

practice with either unsupervised learning (Higgins et al.,

2017), or ‘‘self-supervised’’ learning. In self-supervised learning

the agent is trained to produce, in addition to an action, some

auxiliary output that matches a training signal that is naturally

available from the agent’s stream of experience, regardless of

what specific RL task it is being trained on (Jaderberg et al.,

2016; Banino et al., 2018). An example is prediction learning, in

which the agent is trained to predict, on the basis of its current

situation, what it will observe at future time steps (Wayne et al.,

2018; Gelada et al., 2019). Unsupervised and self-supervised

learning mitigate both problems associated with pure RL, as

they shape representations in a way that is not tied exclusively

to the specific tasks confronted by the learner, thus yielding rep-

resentations that have the potential to support transfer to other

tasks when they arise. All of this is consistent with existing

work in neuroscience, in which unsupervised learning (e.g., Ol-

shausen and Field, 1996; Hebb, 1949; Kohonen, 2012) and pre-

diction learning (e.g., Schapiro et al., 2013; Stachenfeld et al.,

2017; Rao and Ballard, 1999) have been proposed to shape in-

ternal representations. Deep RL offers the opportunity to pursue

these ideas in a setting in which these forms of learning can mix

with reward-driven learning (Marblestone et al., 2016; Richards

et al., 2019) and the representations they produce support adap-

tive behavior.

One further issue foregrounded in deep RL involves the role of

inductive biases in shaping representation learning. Most deep

RL systems that take visual inputs use a processing architecture

(a convolutional network; Fukushima, 1980) that biases them to-

ward representations that take into account the translational

invariance of images. And more recently developed architec-

tures build in a bias to represent visual inputs as comprising

sets of discrete objects with recurring pairwise relationships

(Watters et al., 2019; Battaglia et al., 2018). Such ideas recall ex-

isting neuroscientific findings (Roelfsema et al., 1998) and have

interesting consequences in deep RL, such as the possibility of

exploring and learning much more efficiently by decomposing

the environment into objects (Diuk et al., 2008; Watters

et al., 2019).

Model-Based RL

An important classification of RL algorithms is between ‘‘model-

free’’ algorithms, which learn a direct mapping from perceptual
inputs to action outputs, and ‘‘model-based’’ algorithms, which

instead learn a ‘‘model’’ of action-outcome relationships and

use this to plan actions by forecasting their outcomes.

This dichotomy has had a marked impact in neuroscience, in

which brain regions have been accorded different roles in these

two kinds of learning, and an influential line of research has

focused on how the two forms of learning may trade off against

each other (Lee et al., 2014; Daw et al., 2005, 2011; Balleine and

Dickinson, 1998; Dolan and Dayan, 2013). Deep RL opens up a

new vantage point on the relationship between model-free and

model-based RL. For example, in AlphaGo and its successor

systems (Silver et al., 2016, 2017b, 2018), model-based planning

is guided in part by value estimates and action tendencies

learned through model-free RL. Related interactions between

the two systems have been studied in neuroscience and psy-

chology (Cushman and Morris, 2015; Keramati et al., 2016).

In AlphaGo, the action-outcome model used in planning is

hand coded. Still more interesting from a neuroscientific point

of view (Gl€ascher et al., 2010) is recent work in which model-

based RL relies on models learned from experience (Schritt-

wieser et al., 2019; Nagabandi et al., 2018; Ha and Schmidhuber,

2018). Although these algorithms have achieved great success in

some domains, a key open question is whether systems can

learn to capture transition dynamics at a high level of abstraction

(‘‘If I throw a rock at that window, it will shatter’’) rather than being

tied to detailed predictions about perceptual observations (pre-

dicting where each shard would fall) (Behrens et al., 2018; Koni-

daris, 2019).

One particularly intriguing finding from deep RL is that there

are circumstances under which processes resembling model-

based RLmay emerge spontaneously within systems trained us-

ing model-free RL algorithms (Wang et al., 2016; Guez et al.,

2019). The neuroscientific implications of this ‘‘model-free plan-

ning’’ have already been studied in a preliminary way (Wang

et al., 2018), but it deserves further investigation. Intriguingly,

model-based behavior is also seen in RL systems that use a

particular form of predictive code, referred to as the ‘‘successor

representation’’ (Vértes and Sahani, 2019; Momennejad, 2020;

Kulkarni et al., 2016; Barreto et al., 2017), suggesting one

possible mechanism through which model-free planning

might arise.

An interesting question that has arisen in neuroscientific work

is how the balance between model-free and model-based RL is

arbitrated, that is, what are the mechanisms that decide,

moment to moment, whether behavior is controlled by model-

free or model-based mechanisms (Daw et al., 2005; Lee et al.,

2014). Related to this question, some deep RL work in AI has

introduced mechanisms that learn through RL whether and

how deeply to plan before committing to an action (Hamrick

et al., 2017). The resulting architecture is reminiscent of work

from neuroscience on cognitive control mechanisms imple-

mented in the prefrontal cortex (Botvinick and Cohen, 2014), a

topic we discuss further below.

Memory

On the topic of memory, arguably one of the most important in

neuroscience, deep RL once again opens up fascinating new

questions and highlights novel computational possibilities. In

particular, deep RL provides a computational setting in which
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Figure 5. Representations Learned by Deep Supervised Learning and Deep RL
(A) Representations of natural images (ImageNet; Deng et al., 2009) from a deep neural network trained to classify objects (Carter et al., 2019). The t-distributed
stochastic neighbor embedding (t-SNE) of representations in one layer (‘‘mixed5b’’), colored by predicted object class, and with example images shown.
(B) Synthesized inputs that maximally activate individual artificial neurons (in layer ‘‘mixed4a’’) show specialization for high-level features and textures to support
object recognition (Olah et al., 2017).
(C) Representations of Atari video game images (Bellemare et al., 2013) from a DQN agent trained with deep RL (Mnih et al., 2015). The t-SNE of representations
from the final hidden layer, colored by predicted future reward value, and with example images shown.
(D) Synthesized images that maximally activate individual cells from the final convolutional layer reveal texture-like detail for reward-predictive features (Such
et al., 2019). For example, in the game Seaquest, the relative position of the submarine to incoming fish appears to be captured in the top rightmost image.
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to investigate how memory can support reward-based learning

and decision making, a topic that has been of growing interest

in neuroscience (see, e.g., Eichenbaum et al., 1999; Gershman

and Daw, 2017). The first broadly successful deep RL models

relied on experience replay (Mnih et al., 2013), wherein past ex-

periences are stored and intermittently used alongside new ex-

periences to drive learning. This has an intriguing similarity to

the replay events observed in hippocampus and elsewhere

and indeed was inspired by this phenomenon and its suspected

role in memory consolidation (Wilson and McNaughton, 1994;

Kumaran et al., 2016). Although early deep RL systems replayed

experience uniformly, replay in the brain is not uniform (Mattar

and Daw, 2018; Gershman and Daw, 2017; Gupta et al., 2010;

Carey et al., 2019), and non-uniformity has been explored in ma-

chine learning as a way to enhance learning (Schaul et al., 2015).

In addition to driving consolidation, memory maintenance and

retrieval in the brain are also used for online decision making

(Pfeiffer and Foster, 2013; Wimmer and Shohamy, 2012; Born-

stein and Norman, 2017; O’Reilly and Frank, 2006). In deep RL,

two kinds of memory serve this function. First, ‘‘episodic’’ mem-

ory systems read andwrite long-term storage slots (Wayne et al.,

2018; Lengyel and Dayan, 2008; Blundell et al., 2016). One inter-
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esting aspect of these systems is that they allow relatively easy

analysis of what information is being stored and retrieved at

each time step (Graves et al., 2016; Banino et al., 2020), inviting

comparisons with neural data. Second, recurrent neural net-

works store information in activations, in a manner similar to

what is referred to in neuroscience as working memory mainte-

nance. The widely used ‘‘LSTM’’ (long short-term memory) and

‘‘GRU’’ (gated recurrent unit) architectures use learnable gating

to forget or retain task-relevant information, reminiscent of

similar mechanisms that have been proposed to exist in the brain

(Chatham and Badre, 2015; Stalter et al., 2020).

Still further deep RL memory mechanisms are being invented

at a rapid rate, including systems that deploy attention and rela-

tional processing over information in memory (e.g., Parisotto

et al., 2019; Graves et al., 2016) and systems that combine

and coordinate working and episodic memory (e.g., Ritter

et al., 2018). This represents one of the topic areas where an ex-

change between deep RL and neuroscience seemsmost action-

able and most promising.

Exploration

As noted earlier, exploration is one of the features that differen-

tiate RL from other standard learning problems. RL imposes the
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need to seek information actively, testing out novel behaviors

and balancing them against established knowledge, negotiating

the explore-exploit trade-off. Animals, of course, face this chal-

lenge as well, and it has been of considerable interest in neuro-

science and psychology (see, e.g., Costa et al., 2019; Gershman,

2018; Wilson et al., 2014a; Schwartenbeck et al., 2013). Here

once again, deep RL offers a new computational perspective

and a set of specific algorithmic ideas.

A key strategy in work on exploration in RL has been to include

an auxiliary (‘‘intrinsic’’) reward (Schmidhuber, 1991; Dayan and

Balleine, 2002; Chentanez et al., 2005; Oudeyer et al., 2007),

such as for novelty, which encourages the agent to visit unfamil-

iar states or situations. However, because deep RL generally

deals with high-dimensional perceptual observations, it is rare

for exactly the same perceptual observation to recur. The ques-

tion thus arises of how to quantify novelty, and a range of inno-

vative techniques have been proposed to address this problem

(Bellemare et al., 2016; Pathak et al., 2017; Burda et al., 2019;

Badia et al., 2020). Another approach to intrinsically motivated

exploration is to base it not on novelty but on uncertainty,

encouraging the agent to enter parts of the environment where

its predictions are less confident (Osband et al., 2016). And still

other work has pursued the idea of allowing agents to learn or

evolve their own intrinsic motivations, on the basis of task expe-

rience (Niekum et al., 2010; Singh et al., 2010; Zheng et al., 2018).

Meta-RL provides another interesting and novel perspective on

exploration. As noted earlier, meta-RL gives rise to activation dy-

namics that support learning, even whenweight changes are sus-

pended. Importantly, the learning that occurs in that setting in-

volves exploration, which can be quite efficient because it is

structured to fit with the kinds of problems the systemwas trained

on. Indeed, exploration inmeta-RL systems can lookmore like hy-

pothesis-driven experimentation than random exploration (Denil

et al., 2016; Dasgupta et al., 2019). These properties of meta-

RL systems make them an attractive potential tool for investi-

gating the neural basis of strategic exploration in animals.

Finally, some research in deep RL proposes to tackle explora-

tion by sampling randomly in the space of hierarchical behaviors

(Machado et al., 2017; Jinnai et al., 2020; Hansen et al., 2020).

This induces a form of directed, temporally extended, random

exploration reminiscent of some animal foraging models (Viswa-

nathan et al., 1999).

Cognitive Control and Action Hierarchies

Cognitive neuroscience has long posited a set of functions,

collectively referred to as ‘‘cognitive control,’’ that guide task se-

lection and strategically organize cognitive activity and behavior

(Botvinick and Cohen, 2014). The very first applications of deep

RL contained nothing corresponding to this set of functions. How-

ever, as deepRL research has developed, it has begun to grapple

with the problem of attaining competence and switching among

multiple tasks or skills, and in this context a number of computa-

tional techniques have been developed that bear an intriguing

relationship with neuroscientific models of cognitive control.

Perhaps most relevant is research that has adapted to deep

RL ideas originating from the older field of hierarchical RL.

Here, RL operates at two levels, shaping a choice among high-

level multi-step actions (e.g., ‘‘make coffee’’) and also among ac-

tions at a more atomic level (e.g., ‘‘grind beans’’; see Botvinick
et al., 2009). Deep RL research has adopted this hierarchical

scheme in a number of ways (Bacon et al., 2017; Harutyunyan

et al., 2019; Barreto et al., 2019; Vezhnevets et al., 2017). In

some of these, the low-level system can operate autonomously,

and the higher level system intervenes only at a cost that makes

up part of the RL objective (Teh et al., 2017; Harb et al., 2018), an

arrangement that resonates with the notions in neuroscience of

habit pathways and automatic versus controlled processing (Do-

lan and Dayan, 2013; Balleine and O’Doherty, 2010), as well as

the idea of a ‘‘cost of control’’ (Shenhav et al., 2017). In deep

RL, the notion of top-down control over lower level habits has

also been applied in motor control tasks, in architectures reso-

nating with classical neuroscientific models of hierarchical con-

trol (Merel et al., 2018; Heess et al., 2016).

Intriguingly, hierarchical deep RL systems have in some cases

been configured to operate at different timescales at different

levels, with slower updates at higher levels, an organizational

principle that resonates with some neuroscientific evidence con-

cerning hierarchically organized timescales across cortex (Ba-

dre, 2008; Hasson et al., 2008).

Social Cognition

A growing field of neuroscience research investigates the neural

underpinnings of social cognition. In the past couple of years

deep RL has entered this space, developing methods to train

multiple agents in parallel in interesting multi-agent scenarios.

This includes competitive team games, where individual agents

must learn how to coordinate their actions (Jaderberg et al.,

2019; Berner et al., 2019); cooperative games requiring difficult

coordination (Foerster et al., 2019); as well as thorny ‘‘social di-

lemmas,’’ where short-sighted selfish actions must be weighed

against cooperative behavior (Leibo et al., 2017). The behavioral

sciences have long studied such situations, and multi-agent

deep RL offers new computational leverage on this area of

research, up to and including the neural mechanisms underlying

mental models of others, or ‘‘theory of mind’’ (Rabinowitz et al.,

2018; Tacchetti et al., 2018).

Challenges and Caveats
It is important to note that deep RL is an active, and indeed quite

new, area of research, and there are many aspects of animal and

especially human behavior that it does not yet successfully cap-

ture. Arguably, from a neuroscience perspective, these limita-

tions have an upside, in that they throw into relief those cognitive

capacities that remain most in need of computational elucidation

(Lake et al., 2017; Zador, 2019) and indeed point to particular

places where neuroscience might be able to benefit AI research.

One issue that has already been frequently pointed out is the

slowness of learning in deep RL, that is, its demand for large

amounts of data. DQN, for example, required much more expe-

rience to reach human-level performance in Atari games than

would be required by an actual human learner (Lake et al.,

2017). This issue is more complicated than it sounds at first,

both because standard deep RL algorithms have become pro-

gressively more sample efficient, through alternative ap-

proaches such asmeta-learning and deep RL based on episodic

memory (Ritter et al., 2018; Botvinick et al., 2019), and because

human learners bring to bear a lifetime of prior experiences to

each new learning problem.
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Having said this, it is also important to acknowledge that deep

RL systems have not yet been proved to be capable of matching

humans when it comes to flexible adaptation on the basis of

structured inference, leveraging a powerful store of background

knowledge. Whether deep RL systems can close this gap is an

open and exciting question. Some recent work suggests that

deep RL systems can, under the right circumstances, capitalize

on past learning to quickly adapt systematically to new situations

that appear quite novel (Hill et al., 2019), but this does not invari-

ably happen (see, e.g., Lake and Baroni, 2017), and understand-

ing the difference is of interest both to AI and neuroscience.

A second set of issues centers on more nuts-and-bolts as-

pects of how learning occurs. One important challenge, in this re-

gard, is long-term temporal credit assignment, that is, updating

behavior on the basis of rewards that may not accrue until a sub-

stantial time after the actions that were responsible for gener-

ating them. This remains a challenge for deep RL systems. Novel

algorithms have recently been proposed (see, e.g., Hung et al.,

2019), but the problem is far from solved, and a dialog with

neuroscience in this area may be beneficial to both fields.

More fundamental is the learning algorithm almost universally

used in deep RL research: backpropagation. As has been widely

discussed in connectionwith supervised deep learning research,

which also uses backpropagation, there are outstanding ques-

tions about how backpropagation might be implemented in bio-

logical neural systems, if indeed it is at all (Lillicrap et al., 2020;

Whittington and Bogacz, 2019; although see Sacramento

et al., 2018, and Payeur et al., 2020, for interesting proposals

for how backpropagation might be implemented in biological cir-

cuits). And there are inherent difficulties within backpropagation

associated with preserving the results of old learning in the face

of new learning, a problem for which remedies are being actively

researched, in some cases taking inspiration from neuroscience

(Kirkpatrick et al., 2017).

Finally, although we have stressed alignment of deep RL

research with neuroscience, it is also important to highlight an

important dimension ofmismatch. The vastmajority of contempo-

rary deep RL research is being conducted in an engineering

context, rather than as part of an effort to model brain function.

As a consequence, many techniques used in deep RL research

are fundamentally unlike anything that could reasonably be imple-

mented in a biological system. At the same time, many concerns

that are central in neuroscience, for example, energy efficiency

or the heritability of acquired knowledge across generations, do

not arise as natural questions in AI-oriented deep RL research.

Of course, even when there are important aspects that differen-

tiate engineering-oriented deep RL systems from biological sys-

tems, theremaystill behigh-level insights that canspan thedivide.

Nevertheless, in scoping out the potential for exchange between

neuroscience and contemporary deepRL research, it is important

to keep these potential sources of discrepancy in mind.

Conclusion
The recent explosion of progress in AI offers exciting new oppor-

tunities for neuroscience on many fronts. In discussing deep RL,

we have focused on one particularly novel area of AI research

that, in our view, has particularly rich implications for neurosci-

ence, most of which have not yet been deeply explored. As we
612 Neuron 107, August 19, 2020
have described, deep RL provides an agent-based framework

for studying the way reward shapes representation, and how rep-

resentation in turn shapes learning and decision making, two is-

sues that together span a large swath of what is most central to

neuroscience. We look forward to an increasing engagement in

neuroscience with deep RL research. As this occurs there is also

a further opportunity. We have focused on how deep RL can

help neuroscience, but as should be clear from much of what we

have written, deep RL is a work in progress. In this sense there

is also the opportunity for neuroscience research to influence

deepRL, continuing the synergistic ‘‘virtuous circle’’ that has con-

nected neuroscience and AI for decades (Hassabis et al., 2017).
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