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Abstract—With integration of large-scale renewable energy,
new controllable devices, and required reinforcement of power
grids, modern power systems have typical characteristics such as
uncertainty, vulnerability and openness, which makes operation
and control of power grids face severe security challenges.
Application of artificial intelligence (AI) technologies represented
by machine learning in power grid regulation is limited by
reliability, interpretability and generalization ability of complex
modeling. Mode of hybrid-augmented intelligence (HAI) based
on human-machine collaboration (HMC) is a pivotal direction
for future development of AI technology in this field. Based
on characteristics of applications in power grid regulation, this
paper discusses system architecture and key technologies of
human-machine hybrid-augmented intelligence (HHI) system for
large-scale power grid dispatching and control (PGDC). First,
theory and application scenarios of HHI are introduced and
analyzed; then physical and functional architectures of HHI
system and human-machine collaborative regulation process are
proposed. Key technologies are discussed to achieve a thorough
integration of human/machine intelligence. Finally, state-of-the-
art and future development of HHI in power grid regulation are
summarized, aiming to efficiently improve the intelligent level
of power grid regulation in a human-machine interactive and
collaborative way.

Index Terms—Artificial intelligence, human-machine
collaborative control, human-machine hybrid intelligence,
optimization and evolution, power grid dispatching and control.

I. INTRODUCTION

AS the largest artificial system, power system has char-
acteristics of openness, nonlinearity and complexity due

to access of controllable devices and continuous changes in
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scale and structure of the power grid. Power grid dispatching
and control (PGDC) system, being the control center of
power systems, plays an important role in ensuring a safe
and stable operation of the system for reliable power supply.
At present, the PGDC information system is highly auto-
mated, integrates data collection, decision-making and control,
as a typical human-machine interactive automation system.
Generally, power grid operators effectively achieve safe and
stable operations of power grid through status information
with auxiliary decision-making obtained via a human-machine
interaction, which is largely dependent on experiences from
human experts.

Rapid development of renewable energy integration and
commission of large-scale long-distance transmission lines,
result in a constantly expanding scale of the power grid
with complex operational modes. Thus, power system oper-
ators face challenges in analysis and control, with a current
insufficiently developed system. It still relies on empirical
analysis of operators due to its lack of learning and adaptive
capabilities when handling complex tasks. Furthermore, drastic
reconfiguration of power systems leads to complex operational
characteristics, where the decision of operators can be affected
by factors including personnel decision-making capabilities,
psychological and physical conditions. It is possible opera-
tional accidents caused by human errors happen under com-
plicated working conditions such as power grid operational
failures and extreme weather conditions. Data-driven based
artificial intelligence (AI) technologies have strong perception,
prediction and decision-making capabilities, which can be
effectively integrated into the PGDC system to improve the
intelligence level of power grid operation and control, and
reduce working pressure of operators.

Nowadays, AI technologies are widely used in Go game,
image recognition, audio recognition and other scenarios,
which trigger an upsurge of AI technology applications in
various sectors. Researchers in electric power field have con-
ducted preliminary exploratory research on application of new
generation of AI. Advanced AI technologies such as deep
neural network learning and reinforcement learning are applied
to power systems, which has achieved valuable outcomes [1],
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[2]. Reference [3] focused on the field of PGDC and analyzed
adaptability of AI in typical regulation application scenarios.
The Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN), as mainstream deep learning algo-
rithms, are used in power system transient stability assess-
ment [4], [5], renewable energy and load forecasting [6],
[7], power grid fault diagnosis and analysis [8], due to their
strong feature extraction and mapping capabilities. In addition,
reinforcement learning algorithms such as Q-learning, deep
Q-network (DQN) and deep deterministic policy gradient
(DDPG) are applied to power grid emergency control [9], load
frequency control (LFC) [10], automatic generation control
(AGC) [11] and automatic voltage control (AVC) [12], to
solve problems of sequential decision-making. However, the
above-mentioned references only aim at intelligence of certain
functionalities in PGDC, categorized as dedicated end-to-end
intelligence. Appropriate input data and models are selected
based on human’s understanding of a certain task to realize
the intelligence.

Introduction of AI technologies has improved the intel-
ligence of the PGDC system to a certain extent, while it
still has great limitations in handling dynamic and complex
human-machine collaborative tasks. The PGDC system is a
typical human-machine intelligence (HMI) system. The key
issue it faces is how to integrate the intelligence of operators
and machine to tackle challenges of uncertainty, vulnera-
bility and openness through human-machine interaction and
coordination. At present, human-machine hybrid-augmented
intelligence (HHI) technology is applied in fields of online in-
telligent learning [13], medical and health care [14], and robot
control [15]. In power system applications, reference [16] con-
ducted preliminary research on enhanced intelligent analysis
of power systems. It proposed a framework for enhanced
intelligent analysis and investigated its technical difficulties,
yet enhanced intelligence from human-machine collaborative
mode is not considered. So far, there is no dedicated systematic
research on HHI in the field of PGDC. Therefore, research
on design of the HHI system framework for modern large-
scale PGDC is indispensable. To realize this, it is necessary
to fully exploit the respective potential advantages of both
operators and control system to complete complex human-
machine collaborative tasks.

To summarize, the main contributions of this paper are as
follows.

1) The framework of HHI system is proposed for large-
scale PGDC from physical and functional perspectives. It also
establishes a data-knowledge collaborative interaction mech-
anism among power grid control system, power grid digital
twin (PGDT) system, AI system, and system operator, aiming
at solving issues of uncertainty, openness and vulnerability
of large power grids faced by AI application in power grid
regulation.

2) A human-machine cooperative dispatching and control
method is proposed for real-time power grid regulation based
on the above technical framework of HHI system. Further-
more, the key technologies involved with HAI are analyzed
and discussed to achieve deep integration of human intel-
ligence and machine intelligence., which provides a useful

reference for subsequent large-scale application of HAI in the
field of power grid regulation. To the best of the authors’
knowledge, this is the first paper to systematically analyze and
design application of hybrid-augmented intelligence in power
grid regulation. It is expected this work can unfold a new
technical theme for application of AI in large-scale power grid
regulation.

II. HHI THEORY AND TECHNOLOGY DEVELOPMENT

Machine intelligence has the ability to perceive high-
dimensional states and rapid decision-making by virtue of
its super computing power, while human intelligence has
the ability to summarize and logically deduce, especially
has certain advantages in understanding the real-world en-
vironment, processing incomplete information, and complex
temporal and spatial relationship reasoning. When machine
intelligence is applied to areas with high requirements for
safety and reliability, e.g. automatic driving, power systems,
human supervision and interaction are required as an important
link in the calculation loop of the intelligent system to avoid
problems such as risky decision-making and out-of-control
caused by limitations of machine intelligence. In 2017, the
“New Generation Artificial Intelligence Development Plan”
issued by the P.R.C. Government made a comprehensive de-
ployment of a national AI development strategy, which placed
the hybrid intelligence of HMC as one of the key directions
of AI technology planning and deployment [17]. Academician
Zheng Nanning et al. divides HAI into human-in-the-loop
augmented intelligence with HMC and cognitive computing
based augmented intelligence [18]. The fundamental frame-
work and paradigm of human-machine collaborative HAI
were proposed. It mainly analyzes confidence level of output
results of the AI system to determine whether humans actively
intervene to adjust system parameters, which can be used
as a feedback loop to provide a reasonably correct solution.
Reference [19] defines “human-machine hybrid intelligence”
as a new form of intelligence, which is a cross-species and
cross-domain next-generation scientific entity.

According to its stages of development, HMI systems can
be classified into human-machine system, human-in-the-loop
system, and human-out-of-the-loop system, reflecting different
degrees of machine intelligence, and human-machine inter-
action and collaboration. HMC modes can be classified into
human-dominated (machine-followed), human-machine coop-
eration, and machine-dominated (human-supervised). They
represent the intelligent progressive extent of AI technologies
in the system. A reasonable HMC mechanism ensures the
HMI system can achieve the best efficiency and optimal
decision-making results in solving complex tasks. In addition,
it can achieve human-machine knowledge collaboration and
optimization in an open evolving environment.

HHI technology is still in its infancy, and preliminary
results have been achieved in application scenarios such as
autonomous driving [20] and robot control [21]. An autopilot
system is a highly comprehensive artificial intelligence system;
hence it has become a hot application field of AI research in
recent years. An autonomous driving system and driver consti-
tute a typical human-in-the-loop hybrid-augmented intelligent
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system. They have strong complementary characteristics. Ref-
erences [22]–[25] analyzed the role and function of the driver
in human-machine collaborative control from aspects of driver
state monitoring, intention recognition and driver operational
behavior modeling, also constructed corresponding models.
Reference [26] defines a subset of the vehicle state space
based on a description of the driver’s capabilities to maneuver
the vehicle, and uses vehicle models and reachability analysis
methods to achieve transition from automated to manual driv-
ing, with verification via an actual system. Robots are widely
used in various fields of industry, interact and collaborate with
humans to an expanded extent that form an HMI system.
An exoskeleton robot obtains the wearer’s posture and related
physical human-computer interaction information through sen-
sors to understand wearers’ motion intention, and dynamically
plans wearers’ personalized bionic motion trajectory, which
further improves wearing comfort [27]. Reference [28] pro-
posed a framework for collaborative assembly planning to
realize a hierarchical human-machine collaborative control,
which can not only generate nominal plans, but also react to
and cope with unforeseen possible fault events by combining
the capabilities of humans and robots in an optimal way.

In summary, HAI is to introduce human functions or human
cognitive models into AI systems to establish a form of
“enhanced hybrid intelligence”, which is a key development
of human-machine system intelligence in the future.

III. TECHNICAL FRAMEWORK OF HHI SYSTEM FOR
LARGE-SCALE POWER GRID REGULATION

The PGDC system provides reliable technical support and
guarantees in secure, stable, and economic operations of a
power grid, as well as rapid recovery from faults [29]. The
current system, as an extension of the eye, hand, and brain
of the operator when performing regulation tasks, plays an
auxiliary and augmented role in terms of perception, analy-
sis, and decision-making for operators. Current HMC mode
belongs to a primary level at which machines can enhance
perception of operators. As the intelligence level of power
grid control increases, the relationship between operators and
control systems is not limited to reminders, warnings or mutual
switching, but a complex dynamic interactive relationship
of human-machine paralleled decision-making and control.
Overall design goal of the PGDC system based on HAI is to
promote interaction between operators and system at the data
level to a bidirectional knowledge interaction, to realize HAI
of human-in-the-loop. It can improve capabilities of situation
awareness and operational decision-making of power grid and
further reduce working intensity of operators.

This section consists of three parts: overall approach, phys-
ical deployment and technical architecture design of the HHI
system for power grid regulation.

A. Overall Approach
This paper divides power grid operation and control process

into inner and outer control loops based on timescale and
structure hierarchy of system control, namely automatic power
grid protection control and human-machine joint decision-
making respectively. The inner loop uses real-time operation

information to realize automatic execution of protection and
control of the power grid, which forms a fast closed loop
with the power grid. In the above-mentioned calculation and
execution process, participation of operators is limited. The
inner loop largely relies on automation and intelligence of
the system. The outer loop is an important link of using AI
technologies where operators and control systems participate
jointly. It mainly involves interaction and collaboration be-
tween humans and machines, which can achieve HHI. This
paper combines requirements and characteristics of power grid
regulation to build a technical framework of HHI system based
on advanced AI technology, which fully exploits intelligence
integration of operators and machines under the outer loop.

B. The Deployment of HHI System for Power Grid Regulation

The physical architecture design of the hybrid-augmented
intelligent system is shown in Fig. 1. It is comprised of AI
intelligent system, PGDC system, PGDT system with inputs
from operators. In order to meet requirements of power system
security and protection, the system is deployed in different
information security partitions according to its operational and
functional characteristics.
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Fig. 1. The physical architecture design of the hybrid-augmented intelligent
system.

Currently, multi-source data such as grid model data, real-
time operating data, and management data are collected to
the dispatching and control cloud platform. Together with
dispatching and control cloud infrastructure (CPU resources,
storage resources, and network resources), it can provide an
AI platform applied to the field of power grid regulation with
data, computing power, algorithms and other services [30].
Thus, data-driven AI system and control cloud platform are
deployed in the same information management area to fa-
cilitate interaction of data and information between systems
and model learning and training. AI system includes hardware
facilities, model algorithms, AI model bases, and knowledge
bases. The management information area where the AI system
is deployed is between production control area and Internet
area shown in Fig. 1. For the AI system, the adopted open-
source framework and external information can be used for
safe cross-regional interaction with secure access area through
the Internet. In addition, data interaction with the production
control area needs to pass through a forward and backward
physical isolation device, which can avoid potential safety
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Fig. 2. The technical framework of the HHI system for PGDC.

hazards caused by open source information. The trained model
base and constructed knowledge base in the AI system can be
directly used for power grid status perception and decision-
making, which needs to be mirrored and deployed in the
production control area. The AI system utilizes a backward
isolation device to update the model base and knowledge
base from the management information area to the production
control area, realizing management of the entire life cycle of
AI models.

The PGDT system is a digital map of the power system [31],
[32]. Related research has been carried out in recent years and
is still under development [33], [34]. While how to build the
PGDT system is beyond the scope of this paper. It can simulate
the state of the power grid under different operating modes
and generate data samples under abnormal operating modes
to ensure balance of AI system training samples. Moreover,
it can also be used as a virtual evolution environment for
interacting with AI systems, which trains the AI model to
generate optimal control strategies. The PGDT system, as an
interactive environment where operators and AI systems can
perform analysis and calculations, is not directly used for
power grid control. Thus, the PGDT system and AI system are
deployed in the same management information area, which fa-
cilitates interaction with the AI system and operators, realizing
autonomous collaboration and optimization of hybrid HMI.

Operators use human-machine interfaces to interact and
collaborate with the AI system, PGDC system and the PGDT
system deployed in different network security zones, to en-
hance their ability to regulate the complex power grid.

C. Technical Architecture Design of HHI System

To construct a HHI system for PGDC, it is required to
clarify functions and interactive information of various mod-
ules that build the HMI system, which realizes bidirectional
communication of data and information flows between the
PGDC system, the PGDT system, the AI system, and oper-
ators. The technical framework of this system is shown in
Fig. 2. This section introduces overall technical architecture
design of HHI system for power grid regulation from aspects
of system function composition, human-machine system inter-
action collaboration, and power grid regulation method based
on HMC.
1) The Function of the HHI System for PGDC

The HHI system is upgraded and superimposed on the
architecture and function of the current PGDC system. The
PGDT system and AI intelligent system are added to the
intelligence system architecture. Specific function components
of the system are as follows:

1) The PGDT system has the information of power grid
topology, physical model, historical data, and real-time opera-
tional data. Based on the above information, various processes
of the power grid at different time scales can be simulated
and predicted, and fast calculation verification can also be
achieved. In the HHI system, the PGDT system mainly under-
takes offline and online analysis, calculation, and checking of
power grid. Functions related to analysis, calculation, auxiliary
decision-making in conventional power grid regulation can be
integrated into the PGDT system.
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The PGDT system can support analysis and calculation of
power grid in multi-mode, including real-time mode, research
mode, planning mode, training mode, and test mode. Power
grid analysis and calculation in different modes are used to
solve tasks in different scenarios in PGDC. In real-time mode,
the PGDT system analyzes and calculates state of real-time
power grid operation mode by using real-time data collec-
tion, offline data, to provide corresponding auxiliary decision-
making, which can realize application functions of power
grid steady-state analysis and online security and stability
analysis. Research mode is for case analysis of power grid
characteristics, power grid operational mode calculation, fault
inversion, according to tasks assigned to PGDT system by
operators, which can realize power grid operational mode
calculation, generation of security control strategy and other
application functions. Planning mode is used to predict the
trend of renewable energy generation and load in future power
grid, then use forecast information for research of power
grid planning under different future power grid scenarios,
to assist auxiliary decision-making calculation for existing
safety hazards. It can realize application functions such as load
forecasting, scheduling plan and security checking. In training
mode, static and dynamic responses of the power system
and regulatory environment identical to the actual control
center can be simulated by the PGDT system, which can help
operators be familiar with and grasp functions of the power
system in a simulated dispatching environment. Autonomous
training and anti-accident exercises can be carried out for the
purpose of targeted training through knowledge level evalu-
ation of operators, which can improve operators’ operational
experience in different working conditions of the power grid.
Test mode can support system operation and maintenance
personnel to test and debug the network model and advanced
application functions used in practical power grid.

2) AI intelligent system is the core subsystem of the HHI
system, mainly comprised of AI platform and applications
for power grid regulation perception and decision-making
services. The bottom layer of the AI platform consists of
hardware devices and grid data. Hardware devices include
computing facilities (CPU, GPU, TPU, etc.), storage resources,
and network devices. In terms of data structure, grid data
includes structured, semi-structured and unstructured data,
where structured data is stored in relational databases, and
regulatory text data, pictures, videos and audios are semi-
structured and unstructured data. Based on the above hard-
ware devices and grid data, the AI platform can provide
various functions, such as data preprocessing, model and
algorithm, model training and evaluation. On this basis, the
model database and knowledge database suitable for PGDC
is constructed. Furthermore, in order to ensure accuracy and
generalization ability of the AI model, an evaluation index is
established to evaluate performance of the model to achieve
updating and upgrading of the model. The AI platform pro-
vides basic support of data and algorithm for upper-level AI
application of the PGDC.

The model base is a set of AI models built for power grid
applications. The AI models with different model structures
and weighted parameters are trained by the AI platform,

which uses its computation hardware and regulatory training
data samples through algorithms such as machine learning,
deep learning, reinforcement learning. The above models are
integrated into unified management of the model base, which
provides model support for cross-information security partition
model sharing and intelligent regulation applications.

The knowledge base is a collection of various kinds
of knowledge constructed for regulation applications, such
as power grid characteristics, causal knowledge, association
knowledge. The knowledge can be used to construct knowl-
edge subsets by first-order logical predicate, production rule,
RDF (Resource Description Framework) triplet and a variety
of different knowledge expressions, and then build expert
systems and knowledge graph systems to apply to power grid
regulation scenarios.
2) Human-machine System Interaction and Collaboration

Human-machine interaction and collaboration are the foun-
dation to build HAI of power grid regulation, which involves
human-machine and machine-machine interaction information
and interaction mechanism. It can be realized that bidirectional
fusion, cooperation, and joint evolution of human intelligence
and machine intelligence in large-scale PGDC by establishing
the mechanism of human-machine interaction and clarifying
information of human-machine interaction. Content of human-
machine and machine-machine interactions includes data and
knowledge level of the interaction, scope of interaction in-
cludes system internal interaction and interaction with external
environment. Detailed content and form of interactions are as
follows.

The PGDC system uses a Supervisory Control and Data
Acquisition (SCADA) system to collect data in real-time, such
as steady-state, dynamic, or transient information of power
grid operation, secondary equipment status information, and
auxiliary information for detection. Real-time and historical
data and model information of grid are provided to the digital
PGDT system for offline and online computation and analysis.
Data collection and advanced application information related
to security control, AGC and AVC in PGDC system interact
with operators through a human-machine display interface,
which improves operators’ ability to perceive system status.

The PGDT system accepts task information provided by
operators and AI system to perform tasks related to power
grid analysis and calculations, such as unbalanced sample
generation, thermal stability calculation, transient stability
analysis, and other tasks. The PGDT system can adopt Robotic
Process Automation (RPA) to automatically perform the afore-
mentioned tasks. The process is to transform power grid data
to knowledge. Results obtained after task execution will also
be provided to operators and AI system in the form of data
samples and knowledge to achieve human-machine knowledge
collaboration and optimal evolution.

AI system, as an important part of HHI system, interacts
with other systems with data and knowledge. The sources
of these include internal and external data and knowledge
related to applications. Internal data of the system is composed
of structured/semi-structured data collected and recorded by
the PGDC system and unstructured text data for existing
power grid, such as stable operation regulations, dispatching
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operation rules, fault handling plans. External data is mainly
non-grid information, such as weather information and social
information from other systems and the Internet. Since the
operational range of the power system is constrained within
the range of typical operational modes, collected data cannot
cover all operational modes and scenarios. Therefore, data-
driven based AI system needs to tackle issues such as failures
or small samples in abnormal scenarios through simulation
data generated by the task of the PGDT system given by
operators and AI systems. In this way, balance of power grid
training data samples can be realized.

Model base and knowledge base of the AI system can
be evaluated by established indicators (such as recall rate,
accuracy, precision, etc.) or human-machine interaction to
determine whether it needs to be updated and expanded. In
addition, it can be combined with data obtained by results
of a given human-machine task and external database and
knowledge base, which can upgrade and strengthen the model
and knowledge of the AI system to ensure its accuracy in
the application process. Output of the AI system is mainly
prediction results of the machine learning model and related
knowledge established by the knowledge base, which are
provided to operators and the execution section of PGDC
system through human-machine interaction for power grid
perception and decision-making process under the HMC.

Operator, as a service object and final value judge of the
intelligent machine system, is arbiter and guardian of the
security operation of the power grid. Interaction and coopera-
tion between operators and machine intelligence run through
state perception and decision-making process of the power
grid. Operators obtain data and information related to power
grid operation through a visual human-machine interaction
interface of the PGDC system. These data and information
are summarized and deduced into knowledge for power grid
perception and decision-making through human brain induc-
tion and deduction. Physiological information and capability
assessment of operators will be transmitted to the AI system
as the basis for human-machine hybrid intelligent decision-
making. In addition to traditional keyboard, mouse, and other
input methods, interaction between operators and system can
also be carried out through speech, gesture, eye movement.
The above-mentioned advanced multi-channel human-machine
interaction technology can realize state perception and in-
tention understanding of operators, which improves human-
machine cooperation ability in power grid regulation tasks and
promotes level of human-machine integration.
3) Power Grid Regulation Method Based on HMC

This section constructs a human-machine collaborative reg-
ulation method for real-time power grid regulation based on
the above technical framework of HHI system. Regulation
tasks are reasonably allocated to operators and machines for
execution, and perception and decision-making control of
the power grid are realized through HAI. Fig. 3 shows the
power grid regulation scheme based on HMC, which primarily
includes task planning and decision execution process.

The process of regulation scheme based on HMC is divided
into the following four steps:

Start
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Subtask for 
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Fig. 3. Power grid regulation scheme flow chart based on HMC.

Step 1: Current task is decomposed into multiple intercon-
nected subtasks according to steps in task execution process.
According to types and complexity of subtasks, decomposed
subtasks are fairly assigned to operators and machines for
joint execution. Based on modes of HMC, types of subtasks
can be divided into subtasks executed by machine and HMC,
respectively.

Step 2: For subtasks executed by machines, network models
generated by training of algorithms such as machine learning
are used to generate results which will be inputs to the
next subtask. Results of machine execution tasks are used to
evaluate practical performance of training model by establish-
ing corresponding model evaluation indexes, which ensures
accuracy of models in different power grid operation scenarios.
When evaluation index results are higher than a specified
threshold, results of the model output are input into the next
subtask; instead, when evaluation index results are below the
threshold, then it needs to decide whether model is retrained
or human intervene is required, depending on urgency of the
subtask.

Step 3: Subtask of human-machine cooperation is executed
by adopting an appropriate human-machine cooperation mode,
and human-machine hybrid decision obtained is input into the
next subtask.

Step 4: Check whether current task is complete. If not,
execute next subtask. The process will follow Step 2 or Step
3 according to types of subtasks. When it is completed, task
processing flow based on HMC is finished.

Based on the above-mentioned regulation process, HHI
of power grid regulation can be realized by HMC, which
enhances accuracy of machine learning models and ensures
significance of humans in the process of the HMC.
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IV. KEY TECHNOLOGIES OF HUMAN-MACHINE HYBRID
AUGMENTED INTELLIGENCE FOR PGDC

HHI in power grid regulation is inseparable from interaction
and collaboration of two important carriers: operators and
control systems. In this section, human-machine modeling
and evaluation techniques for power grid regulation is first
analyzed. Then other key technologies are detailed such as
complex task allocation and planning, unbiased technology for
regulation operating data, and human-machine collaborative
intelligent decision-making and control.

A. Human-machine Modeling and Evaluation Techniques for
Power Grid Regulation

Modeling and evaluation of human-machine systems are
important prerequisites to ensure a safe and efficient HMC.
HMC needs to take into account respective characteristics
of operators and machines, and further to realize hybrid
intelligence enhancement of human-machine systems by fully
exploiting intelligence of operators and machines.

Research on human intelligence measurement has been
relatively well-developed [35], and its evaluation division
method can be used as a reference for evaluation of machine
intelligence. At present, research on modeling and quanti-
tative evaluation of human-machine systems is focused on
intelligent driving [36], [37]. By modeling and evaluating
driver’s behavior and state (e.g. skill, fatigue and distraction),
intelligent vehicles can realize collaborative control between
system and driver. Intelligent closed-loop system of human-
machine co-driving that integrates human-vehicle-environment
is formed to meet driver’s subjective feelings, and also improve
performance indicators of vehicle handling, safety, economy,
and comfort.

The process of HMC in the PGDC does not fully consider
operator factors and level of system intelligence. There is
a lack of reasonable quantitative evaluation indexes of the
HMI level, which needs to be defined. Human-machine mod-
eling and evaluation of power grid regulation can be studied
from aspects of constructing operator’s behavior model and
capability evaluation model of human/machine. Fig. 4 shows
block diagram of human-machine modeling and evaluation
technology for power grid regulation.
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Fig. 4. The block diagram of human-machine modeling and evaluation
technology for power grid regulation.

The main task of human-machine modeling and evaluation
in power grid regulation is to establish behavior and capability
models of operators and machines, and conduct quantitative
assessment, which can provide a basis for human-machine task
allocation and hybrid decision-making. Because operator is an
important participant in the HMC of power grid regulation,
effective assessment of behavior and capability of operators
can avoid limitations to a large extent, which arises from
subjective factors and their ability level in the process of
decision control.

Behavior modeling of operators focuses on differences in
operating behavior and habits of different operators. It is
necessary to build a quantitative model of operators’ behavior
based on multi-source data such as historical operating be-
haviors, command language and eye movements to effectively
characterize behaviors of operators.

Capability assessment modeling for operators is used to
establish model and evaluate operators’ competency consider-
ing related factors such as emotional intelligence, skill level,
current task-oriented risk factor, and tolerance of operators,
which provides a reference for HMC in power grid regulation.
Machine capability modeling focuses on evaluating system’s
level of intelligence, ability to handle tasks, generalization ca-
pability, and transferability. It is used to measure performance
of intelligent machines.

For application scenario of human-machine intelligent col-
laboration in PGDC, based on the above content, model
of the behavior and capability for operators and model of
capability for machines can accurately reflect characteristics
of human and machines, which can further improve initiative
and intelligence of machines in the HMC.

B. Optimal Allocation and Planning of Complex Tasks

The main task of power grid regulation is to monitor
real-time operation of a power system and determine system
operational mode arrangement and security control measures
according to current power grid status and combine with
personal experience and cognitive level of operators, which
ensures safe and stable operations of power system and reliable
power supply. In the process of power grid operation, operators
face different types of regulation tasks, which can be classified
into simple and complex tasks. Simple tasks can be assigned to
machines to complete independently, while complex tasks are
usually decomposed into interconnected or parallel subtasks
according to basic functional units and boundary conditions
of human-machine division of labor, and then decomposed
subtasks are assigned to operators and machines for execution.

Task allocation is a key step in the HHI system for power
grid regulation. Quality of task allocation directly determines
execution efficiency and cost of the system. In a complex reg-
ulation task environment, how to scientifically and rationally
allocate each subtask to operator and intelligent machine, how
to maximize human-machine hybrid intelligence under a mu-
tual trust mechanism are critical challenges urgently needing
to be addressed. In essence, human-machine task allocation is
a mathematical optimization problem with multiple objectives.
At present, research on task allocation of HMC is focused on
a collaborative assembly operation of human and industrial
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robots [38]. Task allocation between human and machine
mainly considers factors (such as operation comfort, resource
utilization, task complexity) as the objective function. Opti-
mization algorithms (such as integer mixed programming [39]
and genetic algorithm [40]) are used to achieve a task al-
location scheme of human-robot collaboration [41], which
realizes a reasonable allocation of human-machine tasks and
further improves efficiency of production system and product
quality. However, there is limited literature and research on
optimization of human-machine task allocation in the field
of power grid regulation. Reference [42] considers human
factors influencing accuracy of dispatching operation to ensure
workload balance across shifts, but machine intelligence is not
involved. The process of human-machine task collaboration in
power grid regulation is dominated by operators, followed by
machines for execution, which lacks optimization in allocation
of human-machine regulation task. In order to allow full
initiative and intelligence of machines and further reduce
work intensity of operators, it is necessary to establish a
mathematical model for assignment of HMC in power grid
regulation. Fig. 5 shows the flow chart of power grid regulation
task allocation.

High operational safety requirement of the power grid
proves urgent need of intelligence in human-machine system,
for power grid regulation task allocation. Optimal allocation
of human-machine tasks can be achieved through construc-
tion and quantitative evaluation analysis of human-machine
capability model and behavior model of operators, which
are mentioned in the previous section. Assuming the set of
regulation tasks is T = {Task1,Task2, · · · ,Taskn}, decision
variables for task allocation TaskAi is described as:

TaskAi =

{
1 TaskAi is assigned to machine
0 TaskAi is assigned to human-machine

(1)

Capability vector of operator to solve a task is defined as
H = {H1, H2, · · · , Hn}, where element Hi denotes capability
of operator to solve task i, such as risk factor, tolerance, etc.
Capability vector of the intelligent machine to solve a task
is defined as M = {M1,M2, · · · ,Mn}, where element Mi

denotes capability of machine to solve task i, such as level of
intelligence, ability to handle task, etc. Mathematical model
of HMC can be described by

min f(x) =

m∑
j=1

αj

n∑
i=1

(gj(Mi)TaskAi

+ g′′j (Hi,Mi)(1− TaskAi ))

s.t. λ ≤ Hi ≤ λ, ∀i ∈ T
δ ≤Mi ≤ δ, ∀i ∈ T
0 ≤ αj ≤ 1, ∀i ∈ T
m∑
j=1

αj = 1, ∀i ∈ T

· · · (2)

where f(x) is objective function, gj(x) and g′′j (x) are sub-
objective functions related to capability of machines and
human-machine, T is set of regulation tasks, αj is weight
values of sub-objectives, λ, λ and δ, δ are thresholds of
capability value for humans and machines to perform subtasks,
m is number of multiple objectives, n is number of subtasks
in T .

Objective function of the above model can be set accord-
ing to key factors of human-machine task allocation, such
as minimum degree of participation of operator, minimum
human-machine system cost, or minimum risk factor. Based
on objective function and constraints of above task allocation
model, an intelligent optimization algorithm is used to achieve
a reasonable share of duties between humans and machines for
power grid regulation tasks.

C. Scenario-driven Data Unbiased Technology for Large-
scale Power Grid Regulation

Dispatching operational region of a large-scale power grid
is generally in the neighborhood of typical operation mode.
There exists a large amount of steady-state operational data
in power grids, while it faces shortage of grid extreme scene
and fault samples [43]. Essence of data-driven AI technol-
ogy is to extract features from a large amount of data and
make a prediction through continuous training and learning
of the model [44]. Features and quality of data will directly
affect performance of AI applications. Therefore, in view
of complex, open, and various operating scenarios of large
power grids, application of AI technologies requires various
operational scenario data as inputs to ensure accuracy and
generalization ability of model [45].
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Current regulatory tasks

Task decomposition

Subtask Subtask Subtask

Subtask sequence

Objective function
Optimization algorithm

Decision variables [Task1
A, Task2

A, Task3
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machine system cost

• Minimum risk factor
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• Heuristic algorithm
Task2 Task3 Task4Task1

[H1, M1] [H2, M2] [H3, M3] [H4, M4]

Constraint condition

Subtask for machine Subtask for human/machine

Task allocation results

Fig. 5. The flow chart of power grid regulation task allocation.
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Power grid operational data are unbalanced datasets. There-
fore, a model generated by unbalanced dataset training is
difficult to accurately predict instances of these few-shot
sample categories, while accurate identification of few-shot
type samples plays a critical role in safe operation of the power
grid. Fig. 5 shows a schematic diagram of organization and
generation of power grid dataset samples.

These samples mainly consist of real-time grid operational
data, simulated data, and data generated based on machine
learning, as shown in Fig. 6. Power grid operational data,
as historical data, can be equalized by two common data
processing methods: undersampling and oversampling. Under-
sampling processing method is to ensure balance of datasets
by removing part of large class samples, with commonly
used methods – (Random undersampling, Tomek-link [46],
ENN (Edited Nearest Neighbor) [47], etc.). Differently, over-
sampling processing method increases small class samples,
and a representative algorithm is SMOTE (Synthetic Minority
Oversampling), which generates similar data by a fixed rule
algorithm and cannot accurately express state information of
the power grid. The above sampling techniques are suitable
for scenarios with trivial sample imbalance.

Compared with other fields such as transportation and
autonomous driving, the power system has an accurate dig-
ital twin simulation system. At present, offline analysis and
decision-making of the power grid are based on simulation
results. Therefore, increase of small class samples can be
combined with experiences of operators and Monte Carlo
simulation methods to generate required samples through
simulations. Simulation data samples can be used as a useful
supplement to meet data requirements for model training.

With development of AI technologies, sample generation
based on deep learning can also be used to expand grid
data, such as recently popular generative adversarial net-
works (GAN) and its series [48]. GAN-series can effectively
learn distribution of samples and generate new samples by
alternately training generator and discriminator, which has
been applied in spatial load prediction [49], renewable energy
scenario generation [50], [51], and power system dynamic
security assessment [52].

It takes a certain amount of time to accumulate real-time
operation data of the power grid, and there is a lack of
historical data of typical extreme scenarios, which cannot

ensure application performance of data-driven AI models.
Thus, it is necessary to ensure training samples are balanced
by above-mentioned methods of data sampling and processing
based on HMC, which can further improve generalization
ability of training model.

D. Intelligent Decision-making and Control Technology Based
on HMC

Existing research on collaborative decision-making and
control of human-machine systems focused on fields of au-
tonomous driving [53], [54] and industrial robotics [55], [56].
Reference [57] and [58] use SVM and reinforcement learning
intelligent algorithms respectively, and realize human-machine
collaborative decision-making and control by setting their
confidence indicators. However, it is rarely applied in the field
of power grid regulation. The key link of human-machine
decision-making and control is to realize distribution and
collaboration of decision-making authority under HMC mode
by considering operator-grid-environment state, to improve
overall performance of human-machine collaborative system.

Based on security requirements of power grid regulation and
degree of HMC coupling, pattern of human-machine collab-
orative intelligent decision-making can be divided into three
modes: human-machine decision-making authority switching,
human-machine auxiliary decision-making and control, and
human-machine joint decision-making and control, as shown
in Fig. 7. Selection of the above three decision-making and
control modes is determined according to current state of the
power grid and level and capability of HMI. In Fig. 7(a),
decision-making authority is actively or passively switched be-
tween operator and machine. When a low probability event or
emergency control occurs, operator will take over the system
proactively, decision-making authority is assigned to operator.
When internal functions of the control system has an error or
a task is too complex beyond the scope of system functions,
control system will temporarily issue a request to complete
passive switch of operator. In addition, when machine is
able to handle a task independently or operator is in a state
of fatigue, machine can take over decision-making authority
either actively or passively. Fig. 7(b) shows human-machine
auxiliary decision-making and control, where machine refines
operator’s experience into knowledge by mining and analyzing
operator’s behavior, which can further optimize decision-
making target. It can automatically provide auxiliary decisions
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Fig. 6. The organization and generation of power grid dataset samples.



10 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 1, JANUARY 2024

Operator

Machine

Power gridTake over Task complexity

Operator status 

Low probability emergency

(a)

Transfer

Operator

Machine

Power grid

auxiliary 
decision-making

Bahavior, knowledge

(b)

Asist Check
Human-machine auxiliary

decision-making

Operator

Machine

Cooperate

Control instruction

Operator control
Strategy prediction

model

Expectation 
control strategy

(c)

Power gridPerceive
Hybrid 

optimization 
decision

Fig. 7. Patterns of human-machine collaborative intelligent decision-making
for power grid regulation. (a) Human-machine decision-making authority
switching. (b) Human-computer auxiliary decision-making and control. (c)
Human-machine hybrid decision-making and control.

for power grid operation, guide and help operator proactively,
quickly, comprehensively, and accurately control current status
and development trend of power grid. Fig. 7(c) shows joint
human-machine decision-making and control, where operator
and machine collaborate to control power grid. For power
grid regulation task, machine uses machine learning or other
optimization algorithms to obtain desired control strategy and
establish a prediction model of operator’s control strategy.
According to desired control strategy and prediction model,
hybrid decision-making under HMC is obtained to ensure joint
control effect of human-machine is close to desired control
target, which can realize intervention correction and control
of operator’s actions, and improve efficiency of collaboration
while reducing adverse effects of unknown random human
behavior.

At present, it is difficult to make a correct decision sepa-
rately by operators or machines during execution of complex
tasks in power grid regulation. Decision-making and control
are still performed in a “human-dominated, machine-followed”
manner. With continuous development of machine intelligence,
intelligent decision-making and control can be realized in
the above-mentioned different human-machine collaborative
modes by using algorithms of evaluation, optimization, and
machine learning, which further enhance safety control ability
of complex power grid regulation.

V. CONCLUSION

HHI is an important development in application of AI tech-
nologies in power grid regulation. It is a promising intelligent

solution to address issues related to uncertainties, fragility
and openness in power grid. This paper analyzes theory
and application scenarios of HHI, establishes overall physical
architecture of HHI system for power grid regulation. Based on
this, the technical framework is investigated in terms of system
function composition, human-machine interaction and collab-
oration, with an in-depth analysis of respective functional
composition of the PGDT system-AI system-PGDC system-
operators, as well as interaction and cooperation between
them. Furthermore, key technologies are discussed, such as
human-machine modeling and evaluation, optimal allocation
of complex tasks, unbiased data organization, and human-
machine coordinated decision-making and control involved in
HMC of power grid regulation.

The proposed PGDC system with HHI is still in the initial
stage of development. Application of HHI is faced with the
problem of human-machine autonomous boundary definition
and human-machine interaction collaboration due to variety
and complexity of control tasks. With continuous improvement
of machine intelligence technology, above problems will also
continue to change. Future development of PGDC system with
HHI is envisaged to focus on the following aspects:

1) Human-machine system modeling: It is required to estab-
lish an HMC mode and a mathematical model of HHI suitable
for power grid regulation, and form basic theory and method
of HAI based on human-machine interaction and collaboration
paradigm.

2) Human-machine interaction and collaboration: This is
required to upgrade data between human and machine to
the level of knowledge interaction to realize collaboration
and update of human-machine knowledge. The method of
human-machine bidirectional learning and joint evolution can
be used to achieve hybrid intelligent convergence cooperation
and continuous optimization.

3) Implementation and application of the PGDT system: A
PGDT system based on mechanism and data fusion modeling
is required to strengthen interaction of data and knowledge
between the PGDT system, operators and AI systems, apply-
ing exploration mechanism of reinforcement/active learning
to achieve human-machine bidirectional knowledge enhance-
ment.

REFERENCES

[1] D. X. Zhang, X. Q. Han, and C. Y. Deng, “Review on the research and
practice of deep learning and reinforcement learning in smart grids,”
CSEE Journal of Power and Energy Systems, vol. 4, no. 3, pp. 362–
370, Sep. 2018.

[2] M. Khodayar, G. Y. Liu, J. H. Wang, and M. E. Khodayar, “Deep
learning in power systems research: a review,” CSEE Journal of Power
and Energy Systems, vol. 7, no. 2, pp. 209–220, Mar. 2021.

[3] S. X. Fan, L. X. Li, S. Y. Wang, X. W. Liu, Y. J. Yu, and B. W. Hao,
“Application analysis and exploration of artificial intelligence technology
in power grid dispatch and control,” Power System Technology, vol. 44,
no. 2, pp. 401–411, Feb. 2020.

[4] J. J. Q. Yu, D. J. Hill, A. Y. S. Lam, J. T. Gu, and V. O. K. Li, “Intelligent
time-adaptive transient stability assessment system,” IEEE Transactions
on Power Systems, vol. 33, no. 1, pp. 1049–1058, Jan. 2018.

[5] G. Z. Wang, J. B. Guo, S. C. Ma, X. Zhang, Q. L. Guo, S. X. Fan, and
H. T. Xu, “Data-driven transient stability assessment using sparse PMU
sampling and online self-check function,” CSEE Journal of Power and
Energy Systems, vol. 9, no. 3, pp. 910–920, May 2023.



FAN et al.: FRAMEWORK AND KEY TECHNOLOGIES OF HUMAN-MACHINE HYBRID-AUGMENTED INTELLIGENCE SYSTEM FOR LARGE-SCALE POWER GRID DISPATCHING AND CONTROL 11

[6] T. Y. Hu, W. C. Wu, Q. L. Guo, H. B. Sun, L. B. Shi, and X. W. Shen,
“Very short-term spatial and temporal wind power forecasting: a deep
learning approach,” CSEE Journal of Power and Energy Systems, vol. 6,
no. 2, pp. 434–443, Jun. 2020.

[7] S. X. Fan, X. W. Liu, W. W. Ma, and W. Zhang, “Ultra-short-term bus
load forecasting method based on multi-source data and hybrid neural
network,” in Proceedings of the 2020 IEEE 4th Conference on Energy
Internet and Energy System Integration, 2020, pp. 2976–2980.

[8] S. Y. Wang, S. X. Fan, J. W. Chen, X. W. Liu, B. W. Hao, and J. L. Yu,
“Deep-learning based fault diagnosis using computer-visualised power
flow,” IET Generation, Transmission & Distribution, vol. 12, no. 17,
pp. 3985–3992, Sep. 2018.

[9] W. Liu, D. X. Zhang, X. Y. Wang, J. X. Hou, and L. P. Liu, “A
decision making strategy for generating unit tripping under emergency
circumstances based on deep reinforcement learning,” Proceedings of
the CSEE, vol. 38, no. 1, pp. 109–119, Jan. 2018.

[10] Z. M. Yan and Y. Xu, “Data-driven load frequency control for stochastic
power systems: a deep reinforcement learning method with continuous
action search,” IEEE Transactions on Power Systems, vol. 34, no. 2,
pp. 1653–1656, Mar. 2019.

[11] J. W. Li, T. Yu, H. X. Zhu, F. S. Li, D. Lin, and Z. H. Li, “Multi-agent
deep reinforcement learning for sectional AGC dispatch,” IEEE Access,
vol. 8, pp. 158067–158081, Aug. 2020.

[12] J. J. Duan, D. Shi, R. S. Diao, H. F. Li, Z. W. Wang, B. Zhang, D.
S. Bian, and Z. H. Yi, “Deep-reinforcement-learning-based autonomous
voltage control for power grid operations,” IEEE Transactions on Power
Systems, vol. 35, no. 1, pp. 814–817, Jan. 2020.

[13] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus
to support ubiquitous learning,” Journal of Ambient Intelligence and
Humanized Computing, vol. 6, no. 2, pp. 223–238, Apr. 2015.

[14] B. Rajalingam and R. Priya, “Combining multi-modality medical image
fusion based on hybrid intelligence for disease identification,” Inter-
national Journal of Advanced Research Trends in Engineering and
Technology (IJARTET), vol. 5, no. 12, pp. 862–870, Apr. 2018.

[15] A. P. Dani, I. Salehi, G. Rotithor, D. Trombetta, and H. Ravichandar,
“Human-in-the-loop robot control for human-robot collaboration: human
intention estimation and safe trajectory tracking control for collaborative
tasks,” IEEE Control Systems Magazine, vol. 40, no. 6, pp. 29–56, Dec.
2020.

[16] G. Z. Wang, J. B. Guo, S. C. Ma, Y. W. Shang, Q. L. Guo, G. Q.
Bu, Y. H. Huang, S. C. Zeng, and Z. H. Zhou, “Preliminary study of
power system enhanced intelligence analysis,” Proceedings of the CSEE,
vol. 40, no. 16, pp. 5079–5088, Aug. 2020.

[17] Chinese state council: new generation artificial intelligence development
plan. The World & Chongqing, no. 2, pp. 5–17, Jan. 2018.

[18] N.-N. Zheng, Z.-Y. Liu, P.-J. Ren, Y.-Q. Ma, S.-T. Chen, S.-Y. Yu, J.-
R. Xue, B.-D. Chen, and F.-Y. Wang, “Hybrid-augmented intelligence:
collaboration and cognition,” Frontiers of Information Technology &
Electronic Engineering, vol. 18, no. 2, pp. 153–179, Feb. 2017.

[19] A. L. Guzman and S. C. Lewis, “Artificial intelligence and communi-
cation: a human–machine communication research agenda,” New Media
& Society, vol. 22, no. 1, pp. 70–86, Jan. 2020.

[20] A. T. Nguyen, C. Sentouh, and J. C. Popieul, “Driver-automation
cooperative approach for shared steering control under multiple system
constraints: design and experiments,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 5, pp. 3819–3830, May 2017.

[21] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis,
“Human interaction with robot swarms: a survey,” IEEE Transactions
on Human-Machine Systems, vol. 46, no. 1, pp. 9–26, Feb. 2016.

[22] Y. Xing, C. Lv, H. J. Wang, D. P. Cao, E. Velenis, and F. Y. Wang,
“Driver activity recognition for intelligent vehicles: a deep learning
approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 6,
pp. 5379–5390, Jun. 2019.

[23] Y. L. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver
cognitive distraction using support vector machines,” IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 2, pp. 340–350, Jun.
2007.

[24] G. S. Yang, Y. Z. Lin, and P. Bhattacharya, “A driver fatigue recognition
model based on information fusion and dynamic Bayesian network,”
Information Sciences, vol. 180, no. 10, pp. 1942–1954, May 2010.

[25] T. Qu, H. Chen, D. P. Cao, H. Y. Guo, and B. Z. Gao, “Switching-based
stochastic model predictive control approach for modeling driver steering
skill,” IEEE Transactions on Intelligent Transportation Systems,” vol. 16,
no. 1, pp. 365–375, Feb. 2015.

[26] J. Nilsson, P. Falcone, and J. Vinter, “Safe transitions from automated
to manual driving using driver controllability estimation,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 16, no. 4, pp. 1806–
1816, Aug. 2015.

[27] R. Huang, H. Cheng, J. Qiu Jing, and J. W. Zhang, “Learning physical
human-robot interaction with coupled cooperative primitives for a lower
exoskeleton,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 16, no. 4, pp. 1566–1574, Oct. 2019.

[28] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative in-
dustrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 41–48, Jan. 2017.

[29] P. Kundur, Power System Stability and Control, New York: McGraw-
Hill, 1994.

[30] H. Z. Tao, M. Y. Zhai, H. Q. Xu, X. C. Ji, J. B. Liu, and L. Y. Xu,
“Architecture and key technologies of artificial intelligence platform
oriented for power grid dispatching and control application scenarios,”
Power System Technology, vol. 44, no. 2, pp. 412–419, Feb. 2020.

[31] M. K. Zhou, J. F. Yan, and D. H. Feng, “Digital twin framework and
its application to power grid online analysis,” CSEE Journal of Power
and Energy Systems, vol. 5, no. 3, pp. 391–398, Sep. 2019.

[32] F. Tao, H. Zhang, A. Liu, A. Y. C. Nee, “Digital twin in industry: state-
of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4,
pp. 2405–2415, Apr. 2019.

[33] C. Shen, Q. N. Cao, M. S. Jia, Y. Chen, and S. W. Huang, “Concepts,
characteristics and prospects of application of digital twin in power
system,” Proceedings of the CSEE, vol. 42, no. 2, pp. 487–498, Jan.
2022.

[34] H. Mohammadi Moghadam, H. Foroozan, M. Gheisarnejad, and M.-
H. Khooban, “A survey on new trends of digital twin technology for
power systems,” Journal of Intelligent & Fuzzy Systems: Applications
in Engineering and Technology, vol. 41, no. 2, pp. 3873–3893, Jan.
2021.

[35] H. Morgan, “An analysis of Gardner’s theory of multiple intelligence,”
Roeper Review, vol. 18, no. 4, pp. 263–269, Jan. 1996.

[36] Z. Q. Shi, H. Chen, T. Qu, and S. Y. Yu, “Human–machine cooperative
steering control considering mitigating human–machine conflict based
on driver trust,” IEEE Transactions on Human-Machine Systems, vol. 52,
no. 5, pp. 1036–1048, Oct. 2022.

[37] J. Wu, J. D. Zhang, Y. Tian, and L. Li, “A novel adaptive steering
torque control approach for human–machine cooperation autonomous
vehicles,” IEEE Transactions on Transportation Electrification, vol. 7,
no. 4, pp. 2516–2529, Dec. 2021.

[38] B. Hu and J. Chen, “Optimal task allocation for human–machine
collaborative manufacturing systems,” IEEE Robotics and Automation
Letters, vol. 2, no. 4, pp. 1933–1940, Oct. 2017.

[39] R. Müller, M. Vette, and O. Mailahn, “Process-oriented task assignment
for assembly processes with human-robot interaction,” Procedia CIRP,
vol. 44, pp. 210–215, Dec. 2016.

[40] I. Suemitsu, K. Izui, T. Yamada, S. Nishiwaki, A. Noda, and T. Nagatani,
“Simultaneous optimization of layout and task schedule for robotic
cellular manufacturing systems,” Computers & Industrial Engineering,
vol. 102, pp. 396–407, Dec. 2016.

[41] J. Liu and Y. P. Zhao, “Role-oriented task allocation in human-machine
collaboration system,” in Proceedings of 2021 IEEE 4th International
Conference on Information Systems and Computer Aided Education,
2021, pp. 243–248.

[42] B. Y. Chen, X. T. Li, B Li, and J. Ding, “Assignment method of power
dispatching tasks considering human risk,” Power System Protection and
Control, vol. 47, no. 21, pp. 156–162, Nov. 2019.

[43] J. Lan, Q. L. Guo, Y. Z. Zhou, and H. B. Sun, “Generation of large-
scale convergent power flow samples through a data-driven approach,”
in Proceedings of the 2020 IEEE 4th Conference on Energy Internet
and Energy System Integration, 2020, pp. 722–726.

[44] R. Munro, Human-in-the-Loop Machine Learning, New York: Manning
Publications, 2021.

[45] B. P. Bhattarai, S. Paudyal, Y. S. Luo, M. Mohanpurkar, K. Cheung, R.
Tonkoski, R. Hovsapian, K. S. Myers, R. Zhang, P. Zhao, M. Manic,
S. Zhang, and X. P. Zhang, “Big data analytics in smart grids: state-
of-the-art, challenges, opportunities, and future directions,” IET Smart
Grid, vol. 2, no. 2, pp. 141–154. Jun. 2019.

[46] I. Tomek, “Two modifications of CNN,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-6, no. 11, pp. 769–772, Nov. 1976.



12 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 10, NO. 1, JANUARY 2024

[47] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics, vol.
SMC-2, no. 3, pp. 408–421, Jul. 1972.

[48] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of the 27th International Conference on Neural Information
Processing Systems, 2014, pp. 2672–2680.

[49] J. Moon, S. Jung, S. Park, and E. Hwang, “Conditional tabular GAN-
based two-stage data generation scheme for short-term load forecasting,”
IEEE Access, vol. 8, pp. 205327–205339, Jan. 2020.

[50] Y. Z. Chen, Y. S. Wang, D. Kirschen, and B. S. Zhang, “Model-free
renewable scenario generation using generative adversarial networks,”
IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3265–3275,
May 2018.

[51] D. Wei, X. Q. Chen, and Q. Yang, “Data-driven scenario generation of
renewable energy production based on controllable generative adversar-
ial networks with interpretability,” Applied Energy, vol. 308, pp. 118387,
Feb. 2022.

[52] C. Ren and Y. Xu, “A fully data-driven method based on generative
adversarial networks for power system dynamic security assessment with
missing data,” IEEE Transactions on Power Systems, vol. 34, no. 6,
pp. 5044–5052, Nov. 2019.
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