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Abstract

Introduction: The application of machine learning (ML) techniques in classifi-
cation and prediction tasks has greatly advanced our comprehension of biological
systems. There is a notable shift in the trend towards integration methods that
specifically target the simultaneous analysis of multiple modes or types of data,
showcasing superior results compared to individual analyses. Despite the avail-
ability of diverse ML architectures for researchers interested in embracing a
multimodal approach, the current literature lacks a comprehensive taxonomy
that includes the pros and cons of these methods to guide the entire process.
Closing this gap is imperative, necessitating the creation of a robust framework.
This framework should not only categorise the diverse ML architectures suitable
for multimodal analysis but also offer insights into their respective advantages
and limitations. Additionally, such a framework can act as a guide for selecting
an appropriate workflow for multimodal analysis. This comprehensive taxon-
omy would furnish a clear guidance and aid in informed decision-making within
the progressively intricate realm of biomedical and clinical data analysis, and is
imperative for advancing personalised medicine.
Objective: The aims of the work are to comprehensively study and describe the
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harmonisation processes that are performed and reported in the literature and
present a working guide that would enable planning and selecting an appropriate
integrative model.
Methods: A systematic review of publications that report the multimodal har-
monisation of biomedical and clinical data has been performed.
Results: We present harmonisation as a dual process of representation and inte-
gration, each with multiple methods and categories. The taxonomy of the various
representation and integration methods are classified into six broad categories
and detailed with the advantages, disadvantages and examples. A guide flowchart
that describes the step-by-step processes that are needed to adopt a multimodal
approach is also presented along with examples and references.
Conclusions: This review provides a thorough taxonomy of methods for harmon-
ising multimodal data and introduces a foundational 10-step guide for newcomers
to implement a multimodal workflow.

Keywords: multimodal integration, feature representation, data integration, deep
learning, digital health
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1 Introduction1

The growth of biological and healthcare data, in terms of volume, velocity and variety,2

has been exponential and driven by technological advances in electronics, communi-3

cation and infrastructure (Laney (2001); Dash et al. (2019)). Concurrently, there has4

been an increase in data analysis tools to understand and analyse the data. Progress5

in computational techniques, artificial intelligence (AI) and machine learning (ML)6

methods have been identified to contribute towards the analysis and interpretation7

better than traditional analytical methods (Acosta et al. (2022); Li and Ngom (2015)).8

Data generated in the context of biological systems can manifest in various forms9

such as quantitative, qualitative or narrative; each of these has its subtypes, which10

are collectively referred to as a ‘modality’. These diverse modalities can capture sev-11

eral aspects of a biological system, such as nucleic acid and protein sequences (Neidle12

(2008)), gene expression (Raghavachari and Garcia-Reyero (2018)) and the biomolec-13

ular structure and its activity (Vergoten and Theophanides (2012)). Other modalities14

include the epigenetic state and methylation information (Paro et al. (2021)) of the15

genome, metabolites, and anatomic and phenotypic data.16

Each data type has driven research towards elucidating the corresponding func-17

tional aspects to understand the system. Numerous studies using a single data18

modality have presented valuable additions to the literature in disease mapping, path-19

way and network elucidation (Aburajab et al. (2023); Mansuri et al. (2023); Pang20

et al. (2023)). However, a vast portion of the biological complexity still requires an21

explanation, which is an ongoing challenge for the research community.22

Different modalities capture different aspects of the system. Thus, integrating them23

provides a comprehensive multi-view understanding of both biological and clinical con-24

ditions (Li and Ngom (2015); Nie et al. (2007)). Combining multiple types of omics25

data or a ‘multiomics’ approach to study biological systems has gained momentum26

lately due to their demonstrated superiority over single-omics approaches (Chen et al.27

(2021); Chen and Tyagi (2020); Baltrušaitis et al. (2018); Acosta et al. (2022); Sum-28

maira et al. (2021)). Furthermore, healthcare data is integrated with omics datasets to29

reveal their interconnections, providing a comprehensive 360-degree view of an indi-30

vidual’s condition. (Schiano et al. (2020); Dargazanli et al. (2020)). Such studies have31

reported results with significant validation and reliability over independent analysis.32

Thus, the integration of multiple modalities can reveal synergistic effects, where the33

combined information enhances the overall performance of the model beyond what34

individual modalities can achieve.35

Existing literature primarily focuses on the model architecture and merits of the36

general ML methods used for analysis (Li and Ngom (2015); Summaira et al. (2021);37

Sapoval et al. (2022)). However, a gap still persists in delineating between integrated38

learning and co-learning (harmonisation). Harmonisation aims to elucidate the low-39

level relationship between features of different modalities (Baltrušaitis et al. (2018)).40

Often, articles incorporating ’integration’ as part of their pipeline do not necessarily41

perform a harmonisation process, instead they focus on the correlation between indi-42

vidual data type analysis (Chen et al. (2021)). The effect of an analysis using multiple43

modalities is not adequately captured by methods that do not harmonise the features.44

A co-learning set-up is distinct from an individual analysis since it necessitates fusion45
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of features. Published articles relay information to mitigate data challenges but lack46

information on the multimodal process (Mirza et al. (2019); Kline et al. (2022); Acosta47

et al. (2022); Zitnik et al. (2019)). A definitive explanation of the methods involved in48

a multimodal harmonisation approach is missing. The absence of adequate informa-49

tion impedes interested researchers from fully grasping the process and implementing50

a workflow. In summary, this literature review addresses the aforementioned gap by51

offering insights into data modalities, challenges encountered in data, the processes52

involved in a multimodal setup, and a beginner’s guide to multimodal analysis.53

2 Methods54

Fig. 1: Flowchart of literature screening. The blocks on the left indicate articles
searched for representation and integration methods. The blocks on the right describe
the targeted search for review articles on biomedical multimodal harmonisation.

This systematic review was performed based on the standards of the Preferred55

Reporting Items for Systematic Reviews and Meta-analyses (PRISMA 2020) statement56

(Page et al. (2021)).57

Based on existing literature reviews published over the past decade, a general out-58

line was followed to select articles that mentioned multimodal learning techniques.59

An extensive search of various ML methods focused on biomedical data was initially60

gathered using the metapub (https://github.com/metapub/metapub) python module61
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based on the following keywords:62

‘Multimodal’, ‘Machine learning’, ‘Integrated learning’, ‘Multiomics’, ‘Genomics’,63

‘Proteomics’, ‘Biomedical’, ‘Healthcare data’, ‘Biological network’, ‘Deep learning’,64

‘Multitask learning’, ‘Data fusion’, ‘Representation’, ‘Interpretable model’, ‘Neural65

network’.66

The title and the abstract of the search results reported by the keywords using67

the python script was used to select papers for complete reading. A few suggested68

articles from co-authors on were used to initiate the search for reviews on biomedical69

multimodal integration. Citations from suggested papers were manual searched using70

Google Scholar and PubMed. Connected Papers (https://www.connectedpapers.com)71

was used to identify related articles. We identified less than 10 articles that described72

on the topic. Few papers were selected for reading on general multimodal integration73

methods. Figure 1 describes the count of articles.74

The inclusion criteria for this review primarily focused on studies that incorporated75

multiple different types of biological and medical data towards a singular analysis76

using machine learning algorithms. Reports that did not use biomedical datasets but77

employed a multimodal approach for data analysis were also included for review. The78

exclusion criteria was marked by the absence of a multimodal approach only. However,79

studies that focused on representation methods of different data types were included80

for full-text reading. The last date of article search and selection was 20 October 2023.81

The methods for selected articles were reviewed in detail and information on the82

data type, machine learning framework, model advantages, research gaps were col-83

lected. They have been classified into groups and presented in tabular format (Tables84

1, 4) and the results are discussed in following sections.85

3 Results86

In the following sections, we integrate our findings regarding data types, techni-87

cal hurdles, and harmonisable methodologies gleaned from the literature we have88

examined.89

3.1 Typical Study Designs in biological and clinical studies90

All data generated are usually based on a study or an objective that has a focused91

rationale. The richness of information in collected or generated data depends on its92

type, determining the range of possible analyses (Ranganathan and Aggarwal (2019)).93

A static study design acquires data as a ‘snapshot’, that is, collected at a point94

in time. Case series refer to static data collected from positive-group criteria within a95

population subgroup, while case-control studies include a negative dataset (controls)96

for comparison. On the other hand, cohort studies and randomised controlled trials97

sample data over a period of time, capturing the dynamic nature of a biological system,98

which allows for a realistic investigation. However, they are resource-intensive methods99

that must be maintained regularly, and constant follow-up with the subjects considered100

in the study is crucial.101

Many efforts are being taken to enhance the data collection methods and acces-102

sibility across various domains, such as in cancer ( The Cancer Genome Atlas,103
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Fig. 2: An illustration briefly depicting the broad categories of data modalities and the
representation and integration methods used in a multimodal harmonisation analysis.
The representation methods are split into three groups based on the number and type
of datasets. The integration methods are split based on the type of fusion performed.
Made with BioRender.

https://www.cancer.gov/ccg/) and preterm birth (Garbh-Ini). Current literature pre-104

dominantly reports on results based on single, static datasets. Correlation studies use105

multiple datasets to support conclusions through overlapping results (Clarke et al.106

(2017)). Only a few methods take a complementary approach between modalities107

(Welch et al. (2017); Chen et al. (2021)).108

3.2 Common data modalities studied in the literature109

Data can be collected in forms such as text, numbers, and multimedia. Based on110

the sources, they can be classified as ‘biological’ data and ‘health’ data (Dash et al.111

(2019)). We refer to ‘biological data’ as information from high-throughput experiments112

such as sequencing, expression profiling, microscopic imaging and the vast literature113

corpus for functional annotation. This also includes metadata related to samples,114

experimental design, assay protocols and technologies. ‘Health’ sources refer to data115

primarily collected through healthcare providers in digital forms. This data contains116

an individual’s valuable health and medical history and is stored as time-stamped117

electronic medical records (EMR). EMR data displays significant structural diversity118

since it can be structured data, including vital signs and pathology measurements119

organised in tabular formats, or presented as unstructured data, consisting of clinical120

notes, images, and documents. Table 1 describes the different modalities that stem121

from clinical and biomedical sources.122
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3.2.1 Text Modality123

Text as a modality comprises various types, encompassing narrative and sequence124

forms of data. Sequence data stemming from biological macromolecules such as DNA,125

RNA, and proteins describe and define the relationship between the genotype and the126

phenotype of an organism. Differences in sequences among groups differing in demog-127

raphy or phenotype are represented as single nucleotide polymorphism (SNP) or small128

insertions and deletions of DNA bases and are generated by genome-wide association129

studies (GWAS) (Uffelmann et al. (2021)). Information on motifs, interaction net-130

works and annotations about biomolecules, drugs and diseases belong to this class.131

Healthcare data, such as EMR, contain unstructured clinical notes and prescriptions132

manually entered by medical practitioners, which are included in the text category of133

datasets (Lima et al. (2019)).134

3.2.2 Spectral and Signal Modality135

Spectral data, typically acquired through mass spectrometry experiments to study136

protein molecules and metabolites, provides detailed insights into the structural com-137

position, constitution and organisation of the molecules under investigation (Mansuri138

et al. (2023); Mou et al. (2022)). ML analysis of spectral data involves features139

representing three-dimensional conformations and spatial relationships of molecules,140

enabling classification based on functional groups and elements (Mou et al. (2022);141

Sachdev and Gupta (2019)). Proteomics, examining proteins through expression, func-142

tional relationships, and structural information, includes investigations into protein143

folding and structural orientations using methods such as NMR and X-ray crystal-144

lography (Malet-Martino and Holzgrabe (2011)). Structural metabolomics stores the145

structural data collected from metabolites.146

Healthcare data in spectral form includes time-dependent Electroencephalogram147

(EEG) and electrocardiogram (ECG) analysed with signal processing methods (Subha148

et al. (2010); Abarbanel et al. (2009)). Audio data, such as voice notes, undergoes149

analysis using appropriate methods after feature extraction (Camastra and Vinciarelli150

(2015)).151

3.2.3 Numerical Modality152

A numerical form of biological data can be from any quantifiable assay, broadly called153

‘omics’ data. Transcriptomics represents digital counts of identified expressed tran-154

script molecules, available as a two-dimensional (2D) matrix of genes/transcripts and155

samples. Similarly, proteomic, lipidomic and metabolomic counts data portray the156

expression levels of proteins, lipids or metabolite molecules as a 2D data matrix. This157

modal information allows understanding of individual differences regarding genetic158

expression and linking related biological pathways. EMR readings document vital and159

pathological parameters such as heart rate, weight, height, age, and blood pressure as160

numerical time-series data. Frequent time-stamped EMRs enable longitudinal analysis,161

capturing changes in the recorded values over time (Haghverdi et al. (2016)).162
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Type Data Source Features of Interest Reference

Text
DNA, RNA and Protein
Sequence

Sequence order and
motifs

(Tyagi et al.
(2008);
Andrikos et al.
(2022)

GWAS Data Genetic variants (Chang et al.
(2018)

Clinical Notes Correlated medical terms
and phrases

(Banerjee et al.
(2019)

Spectral
and signal

X-Ray crystallography,
NMR, Mass Spec-
troscopy

Structural composition
and identified functional
groups, topology

(Mou et al.
(2022)

Audio signals Speech to text patterns (Summaira
et al. (2021)

Biomolecular profiles
(Lipids,
Metabolites, Nucleic
acids, Proteins)

Expression levels of
biomolecules

(Zitnik et al.
(2019)

Numerical EMR (Vitals, Lab mea-
surements)

Health factors, trends
and trajectories

(Banerjee et al.
(2019)

Interaction Networks
(Diseases, drugs, genes,
proteins)

Regulatory and Func-
tional relationships

(Lee et al.
(2020)

Images
EMR (CT, X-ray, Ultra-
sound)

Patterns and localisa-
tions

(Zhao et al.
(2021)

Cell Imaging Patterns and localisa-
tions

(Schiano et al.
(2020)

Table 1: The four distinct modalities biological and clinical data investi-
gated in this study are listed and categorised based on their sources and the
features targeted for modelling.

3.2.4 Image Modality163

This modality encompasses visual information, including images and videos. Videos164

are also considered under this modality because each frame can be considered an image165

for processing but in a time-dependent manner (Camastra and Vinciarelli (2015)).166

Microscopy and cell imaging data are often analysed for morphology studies, protein167

localisation and DNA tagging (Fu and Rui (2017)). Manual image analysis methods168

include segmentation tasks to identify regions of interest and cell morphology assess-169

ment (Kan (2017)). Cell movement and tracking studies creating animated clips from170

multiple fluorescence-tagged cell images are a modality of this category. Additionally,171

X-rays, CT and MRI images from EMRs supporting non-invasive diagnosis fall in this172

category.173
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3.3 Common challenges associated with biomedical data174

Datasets require extensive pre-processing due to incompleteness and imperfections175

before analysis (López de Maturana et al. (2019)). Key challenges include high176

dimensionality, heterogeneity, missing data, class imbalances, bias and accessibility.177

Complex high-dimensional data, characterised by large features and file sizes,178

require extensive computational resources for understanding the variables (Stephens179

et al. (2015)). Addressing the ‘p>>n’ problem, considering the ratio of available sam-180

ples (n) to features (p), is crucial to prevent specific features from being overlooked in181

small sample groups (Baltrušaitis et al. (2018); Stephens et al. (2015)).182

Bias refers to a variety of imbalances found within a dataset and can lead to an183

unfair interpretation of results. Bias can manifest in various forms, such as representa-184

tion bias or class imbalance, measurement bias (due to incorrect or unrelated values),185

aggregation bias (when models are applied to new datasets with a mutually exclusive186

relationship to training samples) and evaluation bias (when generic models are used187

as benchmarks for targeted datasets) (Suresh and Guttag (2021)). Comparative ana-188

lytical methods utilise representative datasets, subsets of the population with samples189

from distinct groups like case and control. It is crucial for groups to have samples in190

a comparable and an equivalent number to understand the true differences.191

Irregular clinical data collection processes lead to inconsistent data entries and192

contribute to missing data. In datasets, all samples may not provide data for all193

possible features, and the resulting matrix could be sparse in a few cases. Importantly,194

a missing measurement may carry meaning and should be considered subjectively.195

Heterogeneity refers to the variety that exists within and across modalities. Within196

a modality, the data collected across variables can vary in terms of scale, distribution197

and recorded value, such as discrete, continuous, categories and intervals, due to non-198

standardised procedures. For example, clinical and genomic data can not be directly199

compared and analysed, requiring methods to address heterogeneity.200

These challenges obstruct the potential in any analysis, but the problem exac-201

erbates when multiple datasets are involved in a multimodal set-up (Zhang et al.202

(2019)). Multimodal methods are affected by coherence between dataset sets (due to203

heterogeneity and missing data), accessibility and computational resources (due to204

high-dimensional datasets and bias).205

Data preprocessing steps prepare a path to check, sort, and select data points so206

that informed decisions can be taken to handle samples with anomalies and poor qual-207

ity. The lack of data standardisation between multiple collection sites poses a challenge208

for seamless data harmonisation (Ramakrishnaiah et al. (2023)) and requires specific209

preprocessing for different sources. While imputation methods partially handle missing210

data, they are not universal solutions, as approximations may not accurately reflect211

the system (Schafer (1997)). Hence, more data-driven approaches may be adopted in212

different scenarios (Ramakrishnaiah et al. (2023)). Large datasets can be converted213

to latent values to reduce computational load. Representation methods (Section 3.5)214

effectively resolve these issues.215

Biomedical and health data containing personal and sensitive information are216

restricted for global access, which limits the extent and scope of analysis. Implement-217

ing ethical and legal data practices, both nationally and internationally, is crucial for218
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easing the data sharing process (Tyagi (2023)). These practices establish a structured219

and transparent approach to handling data, creating an environment conducive to220

sharing valuable information.221

3.4 Multimodal Data Integration: a systematic investigation of222

data formats and methodologies223

Multimodal analytical methods aim to combine information from multiple modalities224

towards one or many of the following goals: 1) Explain a biological phenomenon or225

phenotype through overlapping results. 2) Account for and impute missing data in one226

modality through another linked dataset/modality. 3) Condense the high-dimensional,227

sparse and noisy data to a low-dimensional latent representation.228

The fundamental difference between an unimodal and a multimodal analysis is the229

number of different modalities used. The complete dataset can be directly fed into230

an ML architecture for an unimodal analysis, but a multimodal approach requires231

the fusion of features from multiple datasets. The process of merging and modelling232

of features can be classified under ‘representation’ and ‘integration’. The choice of233

method varies depending on the task to be achieved and the dataset combinations.234

Section 3.5 describes the different ways of feature representation, and section 3.6 briefs235

about the fusion methods currently used with examples.236

3.5 Data Representation237

As discussed earlier, biomedical and health data is generated in many forms (Table238

1). Data representation methods are crucial as they transform diverse data types239

into machine-processable formats such as vectors, matrices, or tensors. Vectors are240

one-dimensional representations of numerical values, while matrices and tensors hold241

data in 2-dimensional and multidimensional scales. These methods keep track of rela-242

tionships between elements of each modality via predefined rules, facilitate feature243

extraction by using relevant information, and help in mapping data from one modality244

to another. Importantly, the representation methods can be modified to suit the study245

conducted (Sapoval et al. (2022)). In this context, we have classified three groups of246

data representation approaches.247

3.5.1 Unimodal Data Representation248

Unimodal data representation involves using a single mode or source of information249

to represent features. Each modality qualifies as an unimodal representation when250

independently transformed into a numerical format through an encoding or embedding251

approach.252

Encoding involves the conversion of original data into a numerical format, whereas253

embedding refers to portraying the original data in a vector space that incorpo-254

rates semantic information. The information from biological sequence and text can255

be encoded by converting them to a numerical representation based on composition256

(tallying frequency of words/monomers), K-mers (segmenting a biological sequence as257

a window of ‘k’ letters) and distribution (percentage of occurrence of each monomer258

within user-defined ranges) of the sequence (Yang et al. (2020)). K-mers serve as the259
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counterparts to n-grams or tokens in NLP methods, and ongoing efforts are focused260

on developing more advanced, data-driven approaches to derive them from sequen-261

tial data (Chen et al. (2023)). Many tools have been created to embed text data262

into a numerical representation, such as word2vec (Church (2017)) or doc2vec (Lau263

and Baldwin (2016)), which preserves the order of information and local neighbouring264

relationships.265

Numerical data, obtained as-is or in other formats is commonly represented as266

matrices for analysis purposes. Time-series information is represented as tensors, where267

the data is nested within matrices, extending in dimensions to include the tempo-268

ral relationship (Zhu et al. (2021)). Similarly, image data is converted to a matrix269

representation by splitting a digital pixel into a numerical value between 0-255 for270

constituent colours. Further, spectral information from biological mass spectrometry271

studies generates coordinate data and is represented as a matrix.272

Unimodal representation is the fundamental way to proceed with any ML analysis.273

The complete set of features obtained through representation methods can vary in274

size and dimension depending on the dataset. To alleviate the computational load and275

resources during modelling, feature selection and feature reduction methods reduce the276

representation into a smaller latent space portraying the complete dataset, which is277

used for analysis. There are multiple feature reduction methods, such as the Principal278

Component Analysis (PCA), Joint Non-negative Matrix Factorisation (Joint NMF)279

and Autoencoders. Wrapper methods (forward, backwards, and stepwise selection),280

Filter methods (ANOVA, Pearson correlation, variance thresholding), and embedded281

methods (Lasso, Ridge, Decision Tree) are all part of feature selection techniques282

(Mirza et al. (2019)).283

3.5.2 Multimodal Representation284

Multimodal data representation involves using multiple modes or sources of infor-285

mation to represent data. A multimodal representation fuses multiple unimodal286

representations together onto a shared feature space (joint) or co-represents the287

features from the different datasets (coordinate).288

Each modality is condensed in a joint multimodal representation, and the defin-289

ing features selected are concatenated to form a single collective representation. The290

ratio of features from each modality contributing to the concatenated representation291

is maintained uniformly. This prevents modalities with fewer features from being over-292

whelmed by modalities with large dimensions. Zhao et al. describe the application293

of joint representation in two publications using image data and clinical information294

(Zhao et al. (2020, 2021)). They merge representations of image data (CT scans) and295

clinical information in different ratios and predict lymph node (LN) metastasis (Zhao296

et al. (2020)). In a subsequent publication focusing on the same diagnosis, they intro-297

duce the 3M-CN architecture that utilises a ‘refine layer’ to predict LN metastasis298

(Zhao et al. (2021)). The refine layer is a concatenation of key features identified from299

clinical information and processed 3D images.300

Coordinated representations reduce and present the features within each modal-301

ity individually but link them towards the same meaning over a common coordinate302
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space. Trajectory inference or pseudotemporal ordering is a method to classify the dif-303

ferent stages of the same cell type along an axis representing evolution (Saelens et al.304

(2019)). Pseudotime ordering is an excellent example of coordinate representations,305

where data from single-cell experiments are projected onto an evolutionary axis (Sae-306

lens et al. (2019)). The relationships established with identified patterns and domain307

knowledge help associate the features. MATCHER is a tool that has depicted impu-308

tation and correlation between modalities using a coordinate representation (Welch309

et al. (2017)). The manifold alignment method used in this tool achieved this task by310

representing data in low dimensions called a manifold and aligning them in a common311

space (alignment) (Wang and Mahadevan (2009)).312

Multimodal representation methods empower ML architectures to investigate the313

interplay between features across diverse modalities. The entities in a biological sys-314

tem interact with each other in varied ways. Hence, the ratio of representations in315

the shared space as a parameter also affects the results of a multimodal analysis316

(Zhao et al. (2020)). Coordinate representations become more difficult than joint317

representations when there is no common ground to link the features.318

3.5.3 Special representations319

Special approaches represent data non-conventionally through a generative or a rule-320

based approach. These are not mutually exclusive to the previous two categories but321

process one or more source modalities differently to generate a representation. Gen-322

erative representations learn the underlying patterns and structure of the data and323

are capable of generating new instances of data that are similar to the examples they324

were trained on. On the other hand, rule-based representations leverage formal rules325

and semantics to describe the features within a dataset.326

Auto-Encoders (AE)327

AE methods compress the entire dataset into a compact set of dimensions through an328

‘encoding’ process, eliminating any non-representative features. A ‘decoding’ process329

then reconstructs the original data using the condensed representation, validating the330

reduced feature space. The decoding layers are generative of the relationships between331

all the variables within the data, and hence, this method is classified under a generative332

representation approach.333

Detlefsen et al. extensively explores AE-based representations, emphasising the334

superior results achieved through the non-linear representation method in various tasks335

(Detlefsen et al. (2022)). Zhang et al. introduce OmiEmbed as a multitask framework,336

utilising the low-dimensional latent space generated by AEs for downstream tasks like337

cancer classification and survival prediction (Zhang et al. (2021)). AE representations338

also find applications in gene identification and cancer detection using expression339

data (Danaee et al. (2017)) and predicting carcinoma primary sites through DNA340

methylation data (Leitheiser et al. (2022)).341

The encoding process in AEs can incorporate any type of model, such as a fully-342

connected neural network (FCNN) or convolutional neural network (CNN), to generate343

the latent space (Zhang et al. (2021)). Multiple modalities can also be combined at the344

input to generate a joint latent space (Huang et al. (2020)). This allows to generate345

different variants of the latent space and increases the choices available to work with.346
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The validation by the decoding process makes the latent space devoid of errors or data347

misrepresentation. However, the interpretability of AEs is generally low, and reducing348

the dimensions of the latent layer further diminishes the model understanding.349

Graph-based350

Graph representations portray relationships between different biological entities as a351

network by considering all features as ‘nodes’, and the relationship is depicted using352

‘edges’. The edge values denote characteristics like similarity, interaction, and affinity353

between features based on the data. The representation of features as graphs is not354

limited to local, adjacent points but links them globally with edges.355

Intramodal networks describe relationships between identical molecule types (for356

example protein-protein), while intermodal networks depict links between distinct357

types (Lee et al. (2020)). Clinical information about diseases and drugs can also be358

represented as graphs with links depicting common pathologies and targets. Omics359

modalities such as genome, lipidome, metabolome, proteome and transcriptome can360

be fused with environment and EMR modalities and represented as a Heterogeneous361

Multi-layer Network (HMLN) (Himmelstein and Baranzini (2015)).362

Specific ML architectures are devised to best use a graph network representa-363

tion. Graph Convolutional Networks (GCN) are used to learn local graph structures364

and scale up based on the number of interactions to represent complex relationships365

(Kipf and Welling (2016)). Graph Attention Networks (GAT) incorporate attention366

mechanisms to overcome the structural overfitting for higher order GCNs (Veličković367

et al. (2017)). Ghorbani et al. present MGCN architecture, which implements graph368

representations to consolidate multilevel data (Ghorbani et al. (2019)).369

Graphs can be generated using data from experimental protocols (e.g. omics),370

theory and literature (e.g. disease networks) to represent qualitative and quantitative371

information. Appropriate architectures (Section 3.6.2) assist to map and predict links372

between nodes using multilevel graph network data. The methods are highly sensitive373

to missing and unseen information but excel at discovering links within datasets.374

Sparse data matrices are easily translatable into graphs, as they efficiently condense375

large dimensional data to relevant nodes.376

Grammar-based377

Grammar-based methods, or semantic methods, rely on a predetermined, ordered set378

of ‘vocabulary’ to generate a representation, usually for a text-based modality. High-379

level patterns observed in the modality are identified and the complete dataset is380

represented based on the discovered patterns through a feature generation procedure.381

Additionally, data can either be embedded based on the provided dataset or refer-382

enced from the complete knowledge bank. Dictionary-based embedding methods create383

embeddings for the complete corpus, and the available data is represented based on384

the closest relationship from the complete dictionary (Baltrušaitis et al. (2018)).385

Tyagi et al. used grammar-based representations to model the syntactic and386

semantic rule of RNA folding and used context-free grammars (CFG) to generate387

sequences and parse their structures (Tyagi et al. (2008)). Andikos et al. created Kno-388

tify (Andrikos et al. (2022)), a tool to predict RNA pseudoknots using CFG. Onokpasa389

et al. asserts that CFG representations improve compression ratios of RNA sequences390

and structures (Onokpasa et al. (2023)). Grammar-based representations have been391
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used to embed the motif information from sequences with the domain knowledge to392

depict the functionally connected regulatory regions (Soylu and Sefer (2023)).393

Although grammar-based representations are powerful in capturing structured394

information, they may face challenges in handling the inherent ambiguity and vari-395

ability in real-world data. They require large amounts of data and computing power396

to process and generate the rule-based representation (Baltrušaitis et al. (2018)).397

398

In a few cases, ML methods do not differentiate between the representation steps399

and model training. For instance, dense neural networks and deep-learning architec-400

tures do not explicitly have a joint representation stage. They are directly processed401

for learning the features of the data and training the model (Section 3.6.2).402

Table 2: Representation methods detailed with their advantages and disadvantages.

Representation Advantages Disadvantages
Unimodal Simple; Interpretable; Allows inter-

depencies
Cannot capture contextual infor-
mation; Susceptible to noise or
biases; High feature sizes

Multimodal Joint Combines features to common
space; Controls modality size
effects; Allows interdependencies;
Interpretable; Reduces dimensions;

Requires tailored architecture;
Relies on meaningful cross-modal
relationships;

Coordinate Aligns features to common space;
Controls modality size effects;
Allows interdependencies; Inter-
pretable; Reduces dimensions;
Imputes information; Captures
contextual Information

Requires common axis for represen-
tation; representation depends on
quality and definition of common
space

Special AEs Creates latent representations;
Controls modality size effects;
Allows interdependecies; Reduces
dimensions; Low susceptibility to
noise

Low interpretability; Computation-
ally expensive;

Graph Represents qualitative and quan-
titative; Interpretable; scales with
feature size; covers global informa-
tion

Requires domain-specific knowl-
edge for feature extraction; Com-
plex algorithms needed for irregu-
lar structures and dynamic graphs;
Susceptible to missing information

Grammar Applies for text modality; Captures
patterns and semantic information;
Reduces dimensions; Interpretable;

Affected by ambiguity and complex
language constructs; Computa-
tionally expensive; Large datasets
needed for processing; Susceptible
to missing information
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3.6 Fusion of Data Modalities: Integrating Multifaceted403

Information404

Data fusion methods harmonise the different data modalities available towards tasks405

such as clustering, regression or classification, utilising the representations from meth-406

ods discussed above (Section 3.5). Different modalities can be harmonised using two407

broad ML approaches: Unimodal learning and Multimodal learning.408

3.6.1 Unimodal Learning409

Unimodal learning algorithms elicit information from individual modalities to pre-410

dict an output. Here, three categories of unimodal integration exist based on how411

the features from different modalities are fused: (i) Early, (ii) Late, and (iii) Joint412

integration.413

Early Fusion414

Early fusion methods describe ML architectures that concatenate feature representa-415

tions from multiple modalities at the input stage for modelling. The data is minimally416

processed, primarily to resolve heterogeneity, and samples are removed if imputation417

is impossible for missing data. This method disregards prior selection bias and allows418

us to investigate all features across modalities. It is time-consuming and computa-419

tionally expensive to process the complex combinations of all features from modalities420

(Dash et al. (2019)).421

The benefits of using early integration methods are discussed and reported by Bar-422

num et al. (Barnum et al. (2020)). They assert that using immediate fusion techniques423

to merge modalities before feeding them into a model works better by integrating424

the lowest statistical correlations between input features. Banerjee et al. describe the425

PERFORM algorithm, utilising EMR data represented as temporal vectors, to assess426

its prediction performance in diagnosing acute pulmonary embolism (PE) (Banerjee427

et al. (2019)) with ElasticNet architecture (Zou and Hastie (2005)).428

In the case of early fusion, class imbalance and differing sample sizes across modal-429

ities can affect the contribution of individual datasets, potentially biasing the analysis.430

Moreover, as the number of harmonised modalities increases in early fusion methods,431

the interpretability of the model drastically reduces. The limited coherence among432

data modalities restricts their combined usage, creating challenges in achieving a uni-433

fied representation. For example, input data as a combination of metabolomics and434

chromatin accessibility data may hinder a unified representation. Chen et al. describe435

data agnostic and data specific methods, with choices of modalities that can be used436

for coherent analysis (Chen and Tyagi (2020)).437

Late Fusion438

Late fusion methods analyse multiple modalities independently using a model that best439

fits its representations to a predicted output, and the outputs from each are aggregated440

towards a singular result or inference. Late integration is generally performed either441

by taking an aggregated average of the predicted probabilities (outputs) from each442

modality or passing all the predictions from each modality into a FCNN to process a443

final output.444
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Wang et al. presented MOGONET as a tool to classify cancer subtypes using445

three modalities: mRNA expression, methylation and miRNA expression (Wang et al.446

(2021)). A late fusion architecture was established using GCN to predict an initial447

class label and an FCNN to generate a final class label prediction. Luo et al. presented448

a modified version of MOGONET, called GRAMINet with GATs instead of GCNs449

(Luo et al. (2023)). Both examples pass the same combination of modalities through450

different architectures to learn a model for biomedical data classification. However,451

this is not universally applicable since the late integration methods provide flexibility452

in model selection for different modalities. Huang et al. investigated a multimodal453

approach to predict PE and reported the results on seven different architectures,454

one early, two joint and four late fusion architectures (Huang et al. (2020)). The455

early fusion methods had the highest sensitivity, while the late ElasticNet architecture456

outperformed in all other metrics, such as accuracy, AUROC, specificity and positive457

predictive value.458

Ensemble learning may be considered a variant of the late fusion model, where459

the outputs of multiple ML models are combined towards a final decision (Zhou460

(2012)). The late fusion focuses on combining features or representations after individ-461

ual processing, whereas ensemble learning leverages the diversity of multiple models462

to improve overall predictive performance.463

Late fusion methods do not directly allow for the interaction of features from464

multiple modalities. This enables to train each modality with independent, unique465

models without any interference from other data types. As a result, concerns about466

different dataset sizes, heterogeneous measurements, and model compatibility vanish.467

The ability of late fusion methods to capture all information within each modality468

in an equivalent manner makes it the widely reported harmonisation method in the469

literature.470

Joint Fusion471

Joint fusion methods endeavour to extract a representation of all initial modalities472

and model them together to a predicted output. Direct concatenation methods, often473

used in early fusion, are not possible between modalities that have different quantities474

and may require a heavy preprocessing step. In late integration, the interdependency475

between features across modalities is ignored. Joint integration methods provide an476

advantage through the interaction of features from different modalities in the training477

phase, irrespective of the observed heterogeneity. The heterogeneity is mitigated since478

the feature representation and selection procedures reduce and unify the information479

numerically.480

Joint integration methods have been explored using modalities such as CT scans,481

EMR, methylation, and expression data to achieve biomedical tasks of classification482

towards prognosis and diagnosis (Zhao et al. (2020, 2021); Wang et al. (2021); Huang483

et al. (2020)). Zhao et al. investigated the effect of different ratios of EMR features484

during an integrated analysis of CT images using the DensePriNet architecture (Zhao485

et al. (2021)). Huang et al. propose a joint representation of CT images and clinical486

features in a ‘refine layer’ to predict an output that performs better in detecting pul-487

monary embolism in comparison to other models (Huang et al. (2020)). MATCHER488
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utilises a joint fusion method to interpolate instances based on the alignment of489

multiple modalities to the pseudotime scale (Welch et al. (2017)).490

Joint methods are more complex than late fusion but easier to interpret than491

early fusion methods. Using representations rather than the raw features from each492

modality greatly reduces the computational load compared to early fusion. However,493

joint harmonisation methods are not data agnostic and may require carefully curated494

model designs.495

3.6.2 Multimodal Learning or Co-learning496

Multimodal learning is designed to integrate and model the features from different497

modalities more comprehensively than unimodal learning. Joint fusions merge repre-498

sentations, but multimodal learning enables co-learning through a direct feed of all499

the features interacting at a higher, complex level. They can be classified into three500

distinct co-learning methods: probabilistic, multiple kernel learning and deep neural501

networks.502

Probabilistic Models503

Probabilistic methods involve building models that capture the relationships and504

dependencies between different modalities using joint or conditional probabilities.505

These models are highly interpretable, which allows for the models to integrate expert506

knowledge in the fusion approach, granting us the ability to interpret the results better507

than other methods. The random walk method uses probabilistic values to simulate a508

particle moving between nodes and layers in a network, establishing the relationships509

and links between the nodes (Baptista et al. (2022)).510

MultiXRank module, published by Baptista et al., is an example of the probabilistic511

method of integration using a multiplex network of intramodal and intermodal inter-512

actions (protein-protein interactions, gene multiplex and disease monoplex networks)513

(Baptista et al. (2022)). Pio-Lopez et al. describe a use case of the random walk with514

restart architecture, wherein the method predicts long-distance gene-disease interac-515

tions using gene interaction network and disease similarity network data (Pio-Lopez516

et al. (2021)).517

Probabilistic methods are applicable to any combination of modalities as long as518

they form a multiplex network. They rely heavily on theoretical knowledge to bridge519

relationships between elements of multiple domains and hence can be applied to data520

from any domain with multiplex and bipartite networks (Pio-Lopez et al. (2021)).521

Multiple Kernel Learning522

Kernels are linear classifiers that divide the data linearly using lenient boundaries,523

and a combined multitude of them assist in classifying non-linear heterogeneous data524

(Gönen and Alpaydın (2011)). This method is implemented in support vector machines525

(SVM), a popular method to analyse complex data.526

Liu et al. used SVM to model MRI datasets from multiple sources towards527

Alzheimer’s disease classification (Liu et al. (2013)). Lancktiet et al. predict the func-528

tions of yeast proteins using kernel-based learning (Lanckriet et al. (2003)). Multiple529

matrices describing the protein data were used in the algorithm, and results were530

reported on the different combinations of kernels used to classify the proteins as per531

their functions (Lanckriet et al. (2003)).532
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In MKL, different kernels are applied to each modality, and the combination of533

these kernels is learned to optimise the model’s overall performance. Kernels can534

identify linear boundaries in datasets, making MKL a highly suitable method for clas-535

sification tasks (Wilson et al. (2019)). Kernels can be combined in different ways (sum,536

product) to generate new kernels. A combination of multiple kernels accounts for a537

better classifier than using a single kernel (Hofmann et al. (2008)). This method is538

resistant to outliers but is susceptible to missing data (Wilson et al. (2019)).539

Deep neural networks (DNNs)540

Deep neural integration methods are characterised by a substantial number of neu-541

rons and layers constituting neural networks with significant depth and complexity.542

DNNs utilise representations of different modalities to reduce the features and pass543

them through high-level, intricate architectures, which enable them to uncover hidden544

information within the datasets.545

DNNs are extensively used to understand data at a microscopic level, especially546

in the biomedical domain. EMR data can be modelled with omics modalities to547

shed light on physical and phenotypic changes and their relationships across time.548

Zhu et al. address an ML model to fuse and learn time-series data, with the use of549

Stacked Sparse Auto-Encoder (SSAE) and Long Short-Term Memory (LSTM) archi-550

tecture (Zhu et al. (2021)). Zhang et al. have reported about OmiEmbed, a multitask551

deep-learning framework based on an autoencoder architecture (Zhang et al. (2021)).552

AffinityNet, proposed by Ma et al., uses k-nearest neighbours (kNN) attention pooling553

where the cluster representations of the data is processed as a GAT (Ma and Zhang554

(2019)). The method has asserted good performance for both labelled and unlabelled555

datasets.556

DNNs are computationally expensive to perform due to their dense and complex557

architecture. They model data at high degrees of non-linearity, but the process becomes558

hard to decipher and elucidate. The meaning of data is lost when modelling and559

remains a black box with very low interpretability.560
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Table 3: A description of the integration methods and their advantages and disadvantages
for a multimodal set-up.

Integration Advantages Disadvantages
Unimodal Early Performs lowest level of statistical

correlation between features; Disre-
gards selection bias

Computationally complex and
expensive; Requires tailored mod-
els for effectively modelling and
interpreting features

Joint Mitigates heterogeneity during
modelling; Reduced feature size
due to representations eases com-
putational load

Requires tailored models for mod-
elling joint representations

Late Independent models for different
modalities; Ignores representation
bias

Does not allow for feature interac-
tion

Multimodal Probabilistic Highly interpretable; Establishes
links between entities across differ-
ent modalities

Requires domain-specific multilayer
network information; Susceptible to
missing data

Multiple
kernel
Learning

Models based on overlapping
results; Applicable for non-linear
relationships; Resistant to outliers;
Interpretable

Susceptible to missing data

DNNs Uncovers hidden information with-
out explicit rules; Utilises complex
architectures to understand the
non-linear relationships between
features and modalities

Low interpretability; Computation-
ally complex and expensive

4 Guidelines for Model Selection561

We propose ten recommendations for initiating a multimodal harmonisation analysis562

(Figure 3. Before starting out on an analysis, clearly articulate the objectives and aims563

of the study before initiating the harmonisation analysis. These objectives will guide564

subsequent data collection, representation, and model selection steps.565

1. Tailor Study Design to Objectives: Tailor the study design to the defined566

objectives, taking into consideration the scale of the study and available resources.567

Ensure effective study design for sample identification and data collection that568

aligns with the study’s goals.569

2. Implement Optimised Experimental Protocols: The data is either already570

available or generated through new experiments. Employ or select optimised experi-571

mental protocols and assays for data collection, ensuring consistency and reliability.572

These protocols form the foundation for subsequent analysis steps and contribute573

to the quality of collected data.574

3. Digitised Data and Global Sharing: Digitise collected data to facilitate analysis575

and global data sharing through repositories and databanks. Adopting data and576

metadata standards enhances data sharing and harmonisation. This step is crucial577

for collaborative research efforts and ensures data accessibility for future studies.578
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Fig. 3: A ten step guide flowchart that describes the process and order of execution
to perform a multimodal integration. The titles on the left of the timeline describe
the task order. The illustrations on the right are representative examples of different
methods under each category. Made with BioRender.
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4. Modality Identification and Data Preprocessing: Classify the collected data579

into the broad modalities discussed here and systematically process the data indi-580

vidually to create a working subset free of artefacts and low-quality elements. The581

analysis and results can vary depending on the level of preprocessing done.582

5. Task Selection: Task selection should be guided by the study’s goals, setting the583

stage for subsequent processing and analysis. Choose tasks that reflect the aims584

and are applicable to the dataset.585

6. Choose Feature Representation and Integration Methods Wisely: The586

choice of representation or integration methods influences each other. Hence, select587

them based on the data type, number of modalities, level of harmonisation, and588

modality coherence. Recognise that a one-size-fits-all approach is impractical, and589

tailored methods may be needed for different tasks.590

7. Navigate Model Selection Complexity: Different ML models can be employed591

for the same harmonisation set-up. Employ different models of varying complexity592

to assess the data and evaluate their performance using appropriate metrics.593

8. Model Performance Metrics: Select model performance metrics corresponding594

to the task to compare and choose the optimal model. Provide an explanation of595

the metrics used and their relevance to the task.596

9. Prioritise Interpretable Models: Prioritise using interpretable models, either597

intrinsic or through post-hoc interpretation. Especially in clinical settings, under-598

standing how a model arrives at conclusions enhances trust and reliability.599

10. Validate and Benchmark Models: Validate models on different datasets and600

sources to ensure robustness and generalizability. Benchmark models against state-601

of-the-art approaches and external datasets to mitigate aggregation and evaluation602

biases.603

In the end, ensure that these recommendations are adapted to the specific context604

and goals of your multimodal harmonisation analysis.605

5 Discussion606

Lack of Comprehensive Reviews:607

The article points out a noticeable gap in the existing literature regarding608

comprehensive explanations of workflow and procedures for integrating biomedical609

multimodal data. Multiple reviews for machine learning strategies to process multi-610

modal data are available, but there is a deficit of articles relating them to biological611

and clinical data. A predominant part of research literature presents results with infor-612

mation from a single modality. Studies that utilise different biological modalities often613

interpret the results of independent analyses together. The concept of co-analysis,614

or more aptly, ‘co-learning’ is missed. There is a lack of clarity on how to effec-615

tively integrate data from disparate sources at the lowest item level to extract holistic616

knowledge.617

Diverse Taxonomies in Multimodal Analysis:618

Biomedical multimodal data from the same sample set is now routinely available619

from various research and development activities and healthcare. In the context of620

multimodal analysis, there is a distinction in the representation and integration steps621
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compared to unimodal analysis. We highlight the various analysis methods and the622

data types available under a limited set of taxonomic categorisation.623

This classification of data types from biological and clinical sources allows one to624

identify methods that will suit the analysis of specific combinations and evaluate the625

advantages of each. We describe data harmonisation as a split of representation and626

integration methods, each with six distinct categories. Most steps are similar to an627

unimodal analysis, and the distinction in a multimodal analysis arises in the represen-628

tation and the integration steps. The representation methods proposed emphasise on629

the features within the data. The various types of representation methods are key to630

uniformly present the multimodal data prior to an analysis. The section on integration631

focuses on the various methods to feed the data into ML architectures.632

The article discusses this difference and provides insights into how to handle633

representation and integration methods for multimodal data effectively.634

Framework and Model Suggestions for Biomedical Data Combinations:635

There is a need for a structured framework or guideline to facilitate the harmoniza-636

tion process for multimodal data. The article aims to address this gap by presenting637

the first guideline framework towards a data harmonization process and providing a638

complete workflow. The recommended procedure consists of 10 steps to plan through639

towards a multimodal analysis.640

To assist those undertaking harmonisation for the first time, we present a guide641

matrix showcasing examples from published literature, illustrating different combina-642

tions of data modalities. The combinations between the representation and integration643

methods are presented as a non-exhaustive list in table 4. Existing studies show that644

different choices can yield different results when using the same datasets (Huang et al.645

(2020)). The diverse taxonomies outlined in this paper can assist in understanding the646

significance of choosing an appropriate integration model for analysis, considering the647

concern related to biomedical data and model challenges.648

Future Focus for Harmonisable Models:649

The article acknowledges the challenges related to data and model selection in650

the context of multimodal analysis. It suggests that diverse taxonomies outlined in651

the paper can assist in understanding the significance of choosing an appropriate652

integration model for analysis, considering these challenges.653

Data related challenges and model related challenges both arise when implementing654

a multimodal analysis. In addition to the challenges described in section 3.3 related to655

biomedical data, concerns on data acquisition and maintenance also require attention.656

The quality of biomedical data collected needs to be maintained, with appropriate657

measures taken for de-identification of the data and global sharing. A vast majority658

of the published literature on biomedical multimodal analysis focuses on the model659

metrics and parameters scores. However, due focus should be given to the model660

interpretability as well. Multimodal analysis with complex architectures may yield661

high performance scores, but they cannot be used to understand the biological and662

clinical data if the models are not interpretable. Interpretable models are needed to663

understand the process, especially with biomedical data to relate to further procedures,664

such as diagnosis and intervention strategies .665
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6 Conclusion:666

The article highlights a significant gap in existing literature regarding the integra-667

tion of multimodal data, noting a lack of comprehensive explanations and holistic668

views in current research. While recognizing the transformative potential of multi-669

modal integration, it emphasizes the need for clarity on effectively integrating disparate670

data sources to extract comprehensive knowledge. Acknowledging challenges in data671

and model selection, the article proposes using diverse taxonomies to aid integra-672

tion model selection. Addressing the distinction between unimodal and multimodal673

analysis, the article provides insights into representation and integration methods for674

multimodal data. Furthermore, it underscores the necessity for a structured framework675

to facilitate the harmonization process, presenting the first guideline framework and676

workflow. Additionally, it aims to assist researchers new to harmonization by offering677

a guide matrix featuring examples from published literature, aiding in the selection of678

appropriate integration models.679
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