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Abstract: Spatiotemporal information on individual trajectories in urban rail transit is important for 
operational strategy adjustment, personalized recommendation, and emergency command deci-
sion-making. However, due to the lack of journey observations, it is difficult to accurately infer un-
known information from trajectories based only on AFC and AVL data. To address the problem, this 
paper proposes a spatiotemporal probabilistic graphical model based on adaptive expectation max-
imization attention (STPGM-AEMA) to achieve the reconstruction of individual trajectories. The 
approach consists of three steps: first, the potential train alternative set and the egress time alterna-
tive set of individuals are obtained through data mining and combinatorial enumeration. Then, 
global and local potential variables are introduced to construct a spatiotemporal probabilistic graph-
ical model, provide the inference process for unknown events, and state information about individ-
ual trajectories. Further, considering the effect of missing data, an attention mechanism-enhanced 
expectation-maximization algorithm is proposed to achieve maximum likelihood estimation of in-
dividual trajectories. Finally, typical datasets of origin-destination pairs and actual individual tra-
jectory tracking data are used to validate the effectiveness of the proposed method. The results show 
that the STPGM-AEMA method is more than 95% accurate in recovering missing information in the 
observed data, which is at least 15% more accurate than the traditional methods (i.e., PTAM-MLE 
and MPTAM-EM). 

Keywords: urban rail transit; trajectory prediction; probabilistic graphical model; expectation- 
maximization algorithm; attention mechanism 
 

1. Introduction 
Currently, urban rail transit (URT) has become the preferred public transport mode 

for residents due to its large capacity and high efficiency. For example, in Beijing, the total 
number of passengers reached 5.327 billion in 2022, of which 42.5% were transported by 
URT [1]. Due to the large proportion of transportation, the URT system also faces many 
problems, such as the fact that it is often difficult to transport passengers in a timely man-
ner during peak traffic hours, which leads to crowding induced by passengers waiting for 
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trains on platforms and other areas [2–4]. Furthermore, factors such as the capacity of dif-
ferent train types and station layouts also result in uncertain waiting times and compli-
cated travel choices for passengers [2,5–11]. 

To better monitor the URT system’s status and optimize train scheduling, precise ac-
cess to spatiotemporal characteristics and semantic information of passengers is a prereq-
uisite [2,4,5,10,12–16]. The prediction of individual mobility using data-driven modeling 
approaches based on Automatic Fare Collection (AFC) data and Automatic Vehicle Loca-
tion (AVL) data has been a hot research topic in recent years. Meanwhile, individual move-
ment information can also be used for emergency commands or providing personalized 
recommendation services [10]. Among the studies on individual mobility modeling in ur-
ban rail transit, scholars mainly carry out three aspects to achieve accurate prediction of 
individual movement, namely, travel pattern mining [17,18], route choice model [19–24], 
and individual trajectory inference [10,15,25–27]. These studies are categorized into net-
work-level, path-level, and train-level according to the scale of the URT system. 

In the first aspect of research, unsupervised learning methods (e.g., K-means, LDA) 
are used to mine job-housing relationships or travel patterns about passengers, which can 
subdivide passengers into different groups [5,18,28–32]. For example, Cheng et al. [18] 
developed a topic model to predict passengers’ travel destinations, thereby distinguishing 
between commuters and non-commuters. However, the focus of these methods is gener-
ally to construct input features (such as travel days, travel time, etc.), which are primarily 
used to support macro-level transportation planning or the prediction of new lines, offer-
ing limited assistance for operational-level adjustments and strategies [32]. 

Furthermore, considering the path-level, passengers need to be matched to one phys-
ical path between Origin-Destination (OD) pairs. Thus, large research on route choice and 
assignment models consists of three main methodologies: the Logit model based on la-
beled data, the clustering model based on unsupervised learning, and the probability-
based generative model [3,21,33–36]. The Logit model and its variants are generally estab-
lished by considering the number of transfers, distance, waiting time, etc. [6,34,37,38]. 
Some scholars have adopted unsupervised clustering methods for exploration, e.g., Fu et 
al. [39] combined the AFC data of London Underground with the Gaussian Mixture 
Model (GMM) within a Naive Bayesian framework to calculate the line selection proba-
bility. Wu et al. [36] proposed a fuzzy matching method to assign the passenger flow to 
each line using the AFC data. Probabilistic generative models appeared almost simulta-
neously with clustering methods [40]. They are mainly based on Bayes’ rule or frequency-
based statistical inference methods. Sun et al. [21] proposed a comprehensive Bayesian 
inference framework that is combined with the Metropolis–Hastings (M-H) algorithm to 
provide a posterior distribution for route choice. From an application perspective, at the 
path-level, these researchers are still unable to obtain fine-grained information about in-
dividual trajectories and face methodological limitations such as poor stability or over-
reliance on survey data.  

Moreover, some scholars have expanded individual trajectory reconstruction (ITR) 
from the path-level to the train-level by integrating AFC data with other data, focusing on 
models for matching passengers to the train. Current research primarily rely on the Rule-
based Method (RM) and the Probabilistic Generative Model (PGM). RM directly utilizes 
the segmentation and concatenation of AFC and AVL data to mine the matching relation-
ship between passengers and trains [15,26]. However, the spatiotemporal constraints in 
such methods are considered hard constraints, lacking detailed depictions of passenger 
behaviors. Studies based on PGM refine the modeling of passengers’ left-behind or wait-
ing behaviors at stations [2,12,20,41–43], such as PTAM [20] and LBPMF [42]. However, 
some essential parameters in these studies still need manual surveys (walking speed, etc.). 
The improved MPTAM model established by Xiong et al. [12] can automatically fit param-
eters without resorting to external data. Considering the randomness of boarding choice 
at the individual level, the error of these researches may be large. Further exploring the 
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inherent value of data to replace manual surveys presents a worthwhile approach for ob-
taining passengers’ spatiotemporal trajectories to explore. 

In summary, the existing methods have the problems of the high cost of manual in-
vestigation, large sample randomness, coarse sampling granularity, etc. Therefore, it is 
extremely challenging to fully explore the hidden information and obtain the unknown 
state and semantic information (e.g., waiting time, walking time, etc.) of each passenger 
without relying on any manual investigation. 

In this paper, a spatiotemporal probabilistic graphical model based on the adaptive 
expectation-maximization attention algorithm (STPGM-AEMA) is proposed. The method 
can effectively recover the rich semantic and state information of each individual trajec-
tory only from Automatic Fare Collection (AFC) data and Automatic Vehicle Location 
(AVL) data. Specifically, the main contributions of the paper are as follows: 
1. A spatiotemporal probabilistic graphical model (STPGM) is proposed with global 

and local interactive representation to capture the complex spatiotemporal depend-
encies between individuals and system components (stations or trains) and obtain 
the individual trajectory at the train level, operating without manual survey data in-
put. 

2. Considering the sensitivity of the expectation-maximization (EM) approach to initial 
parameters, a novel data-driven parameter estimation framework is developed called 
the Adaptive Expectation-Maximization Attention Algorithm (AEMA). It can auton-
omously alternate between maximum likelihood estimation and latent variable in-
formation interpolation to return the missing information we want while ensuring 
fast and stable convergence.  

3. Actual individual trajectory tracking (ITT) data is used to compare baselines on mul-
tiple OD pair datasets, thereby confirming the effectiveness and robustness of the 
proposed approach, STPGM-AEMA. 
The paper is structured into six sections. Section 2 describes the problem of recon-

structing individual trajectories with incomplete information. In Section 3, the trajectory 
inference model is developed, and the methods for parameter estimation are described in 
Section 4. Section 5 outlines the validation scenarios and compares various methods using 
real ITT data, followed by an interpretive analysis and a residual analysis of the model 
results. Finally, Section 6 elucidates the conclusion of the study. 

2. Problem Description 

In the closed URT system, it is assumed that the passenger i  enters into the station 
s  at t  and leaves from station s′  at t′ , as exemplified by OD pair on a single line in 
Figure 1. Only tap-in and tap-out events are recorded with spatiotemporal information 
from AFC data, and train arrival and departure events are obtained from AVL data. How-
ever, due to the low sampling frequency, the sequential events of each passenger, e.g., 
waiting for boarding event, boarding, and alighting event, and the associated state infor-
mation, are severely missing in the system. This further results in the inability to obtain 
accurate system status (e.g., congestion state at platforms or on trains).  

The information lost in a single trajectory is usually obtained through the spatiotem-
poral interpolation method, but it usually cannot satisfy the comparison of semantic in-
formation in URTS. Different from traditional methods, this paper aims to capture the 
missing spatiotemporal events, status, and semantic information in passenger trajectories 
through data mining, information interaction design, parameter learning, and probabilis-
tic reasoning without manual investigation. This process is called individual trajectory 
reconstruction (ITR). It is worth noting that the problem of ITR in this paper is a further 
extension of individual trajectory prediction at the train level. 
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Figure 1. Example of individual travel itinerary. 

Further, a set of journey among OD pairs is defined as { }1 N, , , ,I= … …X x x x
 , 

where Ix
 represents the original information that can be obtained, with the index being 

1, , NI ∈ …  , and the total number of trips being N  . Based on this, 

{ }1 N, , , ,I= … …D D D D
  is defined as a set of observable information, it comprises 

known itinerary information Ix
, system observability data sysD

, and mined information 

miningD
 encompassing individual trips, train operations, station flows, etc. It can be given 

as follows: 

{ } { }sys mining,I I= =D D X D D,
 

(1) 

Next, the individual trajectory Itr
 is defined as being represented by a sequence of 

ordered spatiotemporal events E  recorded in chronological order and a state vector S . 

Itr
 can be stated as follows: 

{ } { } { }{ }, [1, ] ], , [1,I fhtr E S S h M fE W= = ∈ ∈，
 

(2) 

where hE  denotes a single spatiotemporal event, h  is the event index, there are M  in 

total. fS
 indicates a state set between two adjacent events, including single or multiple 

status values. The value f  is the state set index, there are W  in total. Furthermore, a 

single event hE  is represented in the form of a ternary tuple, containing the characteris-
tics of the moment of occurrence, location, and instantaneous behavior, namely:  

( )T ,L ,B
h h hE E EhE =  (3) 

The passenger travel process consists of two main modes of spatial and temporal 
transitions, i.e., walking within the station or moving with the train. The state chain of an 
individual trajectory is defined as follows: 
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{ }= ,f station trainS S S  (4) 

where, stationS   and trainS   represent the set of states of individuals at the origin/inter-
change/terminal and on the train, respectively. They can be represented by n-tuples. And 
every state is a scalar. 

The overall trajectories Tr  is a set composed of ordered spatiotemporal event se-

quences as { } { }1 2 N, , ,ITr tr tr tr tr= = …
. 

Summarizing, this paper aims to interpolate missing spatiotemporal events in each 
travel trajectory and complement the semantic state information through probabilistic in-

ference, which can naturally be represented by conditional probabilities ( )P Tr X∣
. To 

achieve optimal estimation of individual itineraries inference, a probability-based frame-
work is proposed. Within this framework, the core of ITR is reduced to an optimization 
problem, namely seeking the parameter configuration Θ  that maximizes the posterior 
probability in the parameter space. This optimization problem can be formalized as fol-
lows: 

( ) ( )arg max arg max arg max ( , )P Tr P Tr P
Θ

= ∝ ΘX D D∣ ∣ ?∣
 

(5) 

3. Methodology 
How to make the best use of limited information and infer high-fidelity individual 

trajectories through appropriate design is the key to methodology. A data-driven spatio-
temporal probabilistic graphical model inference framework is proposed in the paper, 
which consists of three steps: potential set mining, modeling, and parameter estimation. 
The input data sources of the method are as follows: AFC, AVL, and Lines and Stations 
data. Where AFC records passengers’ information, including their origin and destination 
stations and times of entry/exit. AVL data captures train operation information such as the 
train’s ID, service line, station numbers, and arrival/departure time. Line and Station data 
provide physical distance and adjacency relations between stations. The outputs are spa-
tiotemporal events and state information involved in individual trajectories. The key steps 
of the methodology are shown in Figure 2a–c, respectively. 
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Figure 2. A data-driven spatiotemporal probabilistic graphical model inference framework for ITR. 

3.1. Framework 
In brief, the steps are as follows: 

1. Potential Sets Mining. Considering the sequential nature of passengers’ behaviors 
in spatiotemporal events, wherein each event is dependent on the preceding specific 
event, the get-off-leave-now (GOLN) principle is introduced. A feasible train alterna-
tive set for a journey as well as an egress time alternative set at the destination station 
of the individual are obtained, combined with complex spatiotemporal constraints 
and a combinatorial enumeration algorithm. This strategy can effectively reduce the 
space of candidate solutions under the premise of guaranteeing accuracy for subse-
quent computations. 

2. Modeling. In order to suppress the bias caused by small-sample randomness, global 
and local latent variables are introduced to model the complex spatiotemporal de-
pendencies of all trips and observed components (stations, trains) in the URT system. 
The construction of the model consists of three steps: dataset segmentation, global-
local interaction representation, and trajectory inference. The main details of the 
model are presented in Section 3.3. 

3. Parameter Estimation. To obtain the optimal parameters of the model and infer the 
most probable trajectories, an adaptive expectation-maximizing attention (AEMA) 
parameter learning method is proposed, which integrates a base adaptive embedding 
unit (UB), which provides automated a priori parameters to the likelihood function. 
Next, the introduction of the key-value attention computation unit (UA), where train 
labels can be matched to every individual trajectory. Details of the algorithm are 
given in Section 4. 
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3.2. Potential Sets Mining  
The subsequent section outlines the necessary constraints and computational formu-

las for resolving both the set of train alternatives and individual travel alternatives. Fi-
nally, the combined enumeration method is used to obtain the collection. Appendix A 
provides relevant notation definitions. 

Constraint 1. The departure time ,s dttj   of a potential train tj   at the origin station s   con-

straint. The departure time ,s dttj  must be such that between the time period tap-in time t  and 

tap-out time t′  in itinerary I .  

, , ,t , , , es,  s t s dt s s at s dt s q qI tj I tj tj and tj tj′ ′< < ≠ ≠,
 

(6) 

The process generates a set of potential candidates for the train at the origin s  called 

( , )t sI
J

: 

[ ]{ }( , )t s idI
seJ q key tj= =

 
(7) 

Constraint 2. The departure time s dttj ′,   of the potential train tj  at the destination station s′  

constraint. The departure time s dttj ′,  must be such that between the time period tap-in time t and 
tap-out time t′  in itinerary I . 

, , ,t , , , fs,  s t s dt s s at s dt s q qI tj I tj tj and tj tj′ ′ ′ ′ ′ ′< < ≠ ≠,
 

(8) 

A set of potential candidates for the train at destination s′  can be generated called 

( , )t sI
J ′ ′ : 

[ ]{ }( , )t s idI
sJ eq key tj′ ′ ==

 
(9) 

The set of feasible train choices in the itinerary I  can be obtained by taking the in-

tersection, denoted as IJ
: 

{ }( , ) ( , ) , 1
, [1, , ]t s t s

I
I I idI I L Ij seq keJ y tjJ J j L′ ′

×
= = ∈ = =  

 
(10) 

Based on this premise, constructing the egress time sequence set in the itinerary I  

as 
g

I
eT

. Each egress time value ,i jt
 is calculated as the time difference between the tap-

out time and the arrival time ,s atj ′  of the corresponding train of IJ
.  

{ } ( )T

, ,t ,1 I

eg
i j s s atLIT t concat I tj′ ′ ′×

 = = −   
(11) 

3.3. Modeling 
The Bayes theorem principle and the backward inference method are introduced to 

establish a mechanism for global and local interactive representation. After obtaining the 
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optimal parameters, probabilistic reasoning about individual trajectories is realized. Fig-
ure 3 illustrates the trajectory inference framework based on STPGM, where color coding 
is employed to denote different categories of nodes and edges (refer to the legend for de-
tails). Events are represented as nodes, while edges describe potential spatial transition 
dependencies between state time intervals and events. Shaded nodes correspond to deter-
ministic variables, whereas hollow circles indicate unobservable random variables. Solid 
and dashed lines distinguish deterministic relationships from uncertain ones, with unidi-
rectional arrows representing causal relationships and bidirectional arrows indicating 
correlations. 

As Equation (3), the set of nodes state as follows: 

{ } { }, ,W ,, B A
I I Ih I IV VE I O=

 
(12) 

where, the events of tap-in II , waiting for boarding WI , boarding 
B

IV , alighting 
A

IV , 

and tap-out IO  are represented in sequential order.  
As in Equations (4) and (12), for OD pairs on a single line that do not require transfers, 

the state chain of an individual trajectory is defined as follows:  

{ } { } ( ) ( ) ( ){ }= , , , , , ,f s j s AWT WT AT RT ETS S S S T T T T T′ =
 

(13) 

where, , ,s j sS S S ′  represents the state of an individual at different spatial locations of the 

origin station s , train j , and destination station s′ , respectively. The value of the total 

time at the origin station AWTT  is calculated by summing the access time ATT  and the 

waiting time WTT . RTT  denotes the running time on the train and ETT  indicates the 

egress time at the destination station. An individual trajectory Itr  can be represented as 
follows: 

( )
( )
( )
( )
( )

( )
( )
( )

08 : 00 : 23

W 0

,

8 : 01: 28

08 : 04 : 32 ,

08 : 2

, ,Tap

, ,  

:

249 ,65 ,184

, ,   1428

43

p

8 : 20

08 : 2

,

, ,T9 3 a0

I

B
I

I

s

I j

s
A

I

I

I in

Start waiting S s s s

tr Boarding Train j S S s

S s

T

Alighting

o

TTYB

TTYB

E V T YB

V DD

utO DD
′

−

 =
 

 =
 

= 
 

= = 
 = 
 = 

= = = 
 =

−

 
 
 
 
 
 

 
 
  . 

 

The inference tasks of this paper encompass the identification of waiting events at the 
platform, as well as the boarding and alighting events of passengers, along with a chain 
of unknown states. To establish the model, two strategies are employed: 

1. The data is divided into deterministic dataset 1IL =D
 and stochastic dataset 1IL >D

 
in order to generate prior samples.  

2. A global-local interaction module is devised to transform the problem from maxim-
izing the probability of individual trajectories to posterior parameter estimation 
based on the basis function. Building upon this foundation, boarding and alighting 

events are inferred by estimating egress time ETT
 , then determining access time 

ATT
 and waiting for the event through MCMC simulation, thereby achieving com-

prehensive inference of unknown events and latent states in trajectories. The model-
ing process consists of three steps which are described in detail below. 
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Figure 3. Trajectory inference framework based on STPGM. 

3.3.1. Dataset Split 

In this paper, the dataset is split into a deterministic dataset 1IL =D  and a stochastic 

dataset 1IL >D  with multiple alternatives, based on whether the number of options in the 
train candidate set is greater than one. Consequently, Equation (1) can be modified ac-
cordingly: 

{ }1 1), ( )( , 1, , , 1, ,
I IL LI m I n= >= = … = …D D D

 
(14) 

Wherein, the numbers of samples in the deterministic dataset and the stochastic da-
taset are respectively denoted as m and n , with m+n=N . This approach benefits by 
providing prior data for the training of model parameters from the deterministic dataset 

1IL =D , thereby replacing manual surveys and reducing the introduction of system noise. 
Observable information is redefined based on node information, as shown in the 

dashed box on the left side of Figure 3a, taking the observable dataset as an example: 

{ } ( ) ( ){ }eg
sys mini :1 ( ,s )1 1 1:ng, , , ,, ,

I I
L I t I IL m mI I tjI VI F TO J∆ ′= =

  =   =   D x D D,
 

(15) 

where, an individual’s journey Ix  observations encompass tap-in event II  and tap-out 

IO   event, while system observations sysD   include train operation events tjVI   and 
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outbound passenger flow within a specific time interval ( ,s )tF ∆ ′ . The mined information 

set miningD  comprises a feasible train choices set IJ  and potential egress time set 
eg

IT
, with their sample sizes remaining consistent. It is important to note that these observable 

pieces of information are either localized or aggregated. Similarly, this definition 1IL >D  
follows a similar logical framework. 

3.3.2. Global-Local Interactive Representation 
In the study of passenger journeys between OD pairs under incomplete information, 

the spatiotemporal dependency is manifested in the dynamics of individual travel events 
and state information as they evolve over time and space, exerting a significant influence 
on the local elements of the system. This paper introduces two latent variables to facilitate 
parameter estimation based on local elements, as elaborated below. 

Global variable: latent variables Iz  and t . The index position corresponding to 

the individual egress time ,i jt  is set as a discrete random hidden variable Iz , following 
a multinomial distribution. The probability mass function can be expressed as follows: 

( ) , 1, 2, II ijP j j Lp == = z
 

(16) 

where, ijp  represents the probability of selecting the thj  index in 
eg

IT , and satisfies 

1
1IL

ijj
p

=
=∑  , represents the probability distribution in the ordered sequence 

1,2, Ij L=  . The complete hidden variable is denoted as { }IZ = z . 
Moreover, in order to effectively characterize the parameter variations throughout 

the iterative process and disentangle the interdependencies between global and local ele-
ments, we propose a set of aggregate vectors referred to t , which are composed of egress 

time ,i jt  for all individuals. Consequently, we obtain the following: 

( )1, 1 11 ,1 1 , ,1 ,,[[ ] ] ] , ,[
I I I IN i m i n ii j L Lit t t tt × =× >×== ∈ ∈t c D Dz z  

(17) 

where, ,1it  represents the unique egress time value from dataset 1IL =D , with the dimen-

sion being 1 m× ; , Iit z  states the th Ij ( )z  egress time component from the set 
eg

IT  of 

1IL >D , with the dimension being 1 n× ; and c  denotes the vector concatenation opera-
tion. 

Local variable: basis function ( ) . In this paper, the distribution of egress time 

( )  is designed as a local variable. It is represented by a continuous probability distri-

bution form that is integrable 
0

( )x f x dx
∞

⋅∫  and 
2

0
( ) ( )x f x dxµ

∞
− ⋅∫  absolutely con-

vergent, meaning it possesses finite mean and variance as a basis function ( );Θt . The 
general form of representation is provided as follows: 

( ) ( )2; ; ,θ µ σΘ =t t , 
 

(18) 

where, Θ  represents parameters related to the time scale t  and exit station s′ , func-
tioning as spatiotemporally adaptive parameters. θ  denotes the intrinsic parameters of 
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the function ( )   itself, µ   determines the central position of the distribution, 
2σ  

describes the dispersion of data points around the mean, and t  signifies the input value. 
Interactive representation mechanism. Figure 3b shows the global-local interactive 

representation mechanism by basis function ( ) , latent variables Iz , and t . Among 

them, vector t  plays a key role. As a transmission channel, it not only aggregates the 
egress time information of all individuals but also provides the required input for updat-

ing the parameters of the basis function ( ) . 

Specifically, in the process of transferring information from global parameters Θ  to 

local parameters Iz
, t  collects the candidate egress time , Iit z  generated by each indi-

vidual in each iteration, passes these data to the function ( )
, and estimates by MLE 

to fit the parameters Θ . This step ensures that local parameter updates reflect the latest 
data in the context of the system. 

In turn, the results of parameter optimization are used to construct the query vector 

and the global variable candidate solution , Iit z  is used as the key component to con-
struct the key-value pair for the next step of similarity comparison (to be described in 
detail in Section 4). Through this operation, we can re-evaluate and update everyone’s 

, Iit z , thereby optimizing the performance of the entire system in each iteration. 

3.3.3. Trajectory Inference 
1. Calculate the maximum probability of individual trajectories. Under the princi-

ple GOLN, the problem of calculating the maximum probability of all journeys is equiva-

lent to estimating the best parameters ∗Θ  of the basis function ( )  by maximizing 

the probability of t  under the influence of the latent variable Z , making the observed 
data most likely to occur. Thus:  

( )arg max arg max ( , )P Tr P
Θ

∝ ΘX D Z t∣ ,∣
 

(19) 

It is worth noting that the basis vector t  serves as a conduit, facilitating the process 
of global-local interaction by aggregating individual travel time information and channel-

ing it to the basis function ( )  representing local characteristics. Subsequently, param-
eter updates occur during each iteration to ensure stability in parameter estimation, which 
is elaborated upon in Section 4.  

2. Calculate unknown events and state variables. Figure 3c illustrates the trajectory 

inference process, indicating that the egress time of the passenger is , IET iT t= z . Subse-
quently, the individual’s train ID is determined as follows: 

, [ , ]I idtj idx i j=
 

(20) 

where, [ ]idx   represents a mapping function used to locate an element based on its index 

number. Further, the spatiotemporal characteristics of the boarding event 
B

IV   and 

alighting event 
A

IV  are established, and the running time duration and access time are 

computed by T TA B
I IVT VRT = −  and T T

I
B

IVAWT I
T = − , individually. 
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The next step is to use the formula quoted by Zhu et al. [20] to calculate the waiting 

time WTT , which is a typical formula. And the access time of every passenger can be cal-

culated by AT AWT WTT T T= −  . However, it was found that about 10% of the results of 

ATT  are negative by calculating WTT  and ATT , using 26,000 samples from one line of 
the Beijing Rail Transit System (BRTS) during the peak period. This reveals that this 
method may not be suitable for BRTS. Building upon the decomposition method outlined 

in Equation (14), this study defines the waiting duration of the sample set 1ILI =∈x X  as 
follows: 

( ) 1
1

1

1

( ) Var( )
2 2 ( )I

j j j j
WT I

j j
L

E H H
T

E H
→ + →

→
=

+

+

∈ +=x X
 

(21) 

where, 1j jH → +  states the departure interval between thj  and 1thj +  train. 

The access time of the sample set 1ILI =∈x X  is calculated by means of a piecewise 
function as follows: 

( )1

,  
         ,                I

AWT WT AWT WT
AT I

AWT
L

T T if T T
T

T else=





− >
∈ =x X

 
(22) 

On this basis, the waiting duration of the sample set 1ILI >∈x X  calculated by the 
following: 

( )1IWT I AWT ATLT T T>∈ −=x X
 

(23) 

4. Parameter Estimation 
The second challenge addressed in this paper is how to design a likelihood function 

that maximizes the reconstruction of high-fidelity trajectories for all individuals Tr , con-
sidering dependence between t  and Θ . To tackle this, we draw inspiration from the 
GMM for mixed distributions [35] and the EMA for semantic segmentation [44]. The 
Adaptive Expectation-Maximization Attention (AEMA) algorithm is proposed, which in-
corporates the EM algorithm and attention mechanisms.  

The idea behind the proposed algorithm is derived from how to establish a data flow 
mechanism between global variables representing all individuals and local features rep-
resenting the system, which is crucial for fully data-driven algorithms. 

The AEMA algorithm consists of an input and output unit and four main operation 
units (as shown in Figure 4), namely: Input Unit (UI), Bases Adaptability Embedding Unit 
(UB), Expectation-Step Unit (UE), Key-Value Attention Calculation Unit (UA), Maximiza-
tion-Step Unit (UM), and Output Unit (UO). In brief, the UI is the first step of AEMA, 
aimed at providing the UB with observable dataset inputs. The UB is responsible for dy-
namically obtaining initial base vectors providing an initial parameter for fitting the dis-
tribution. UE, the E-step in the EM algorithm, defines the objective function under prior 
parameters. UA provides methods for computing the posterior distribution of hidden var-
iables. UM, the M-step in the EM algorithm, aims to maximize until convergence criteria 
are met. The UO outputs the reconstructed trajectories. Each step is explained below. 
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Figure 4. Parametric learning process based on the AEMA algorithm. . 

4.1. Input Unit (UI) 
UI is responsible for inputting the observable data set and defining the parameters of 

the core steps. It is important to note that , ,{ , }i j i jt         X , z  should be considered as 

complete observation data, with the parameters to be estimated as 
2{ , , }ijpθ µ σΘ  =   , , and the number of parameters as 3 * IN L+ . Let the likelihood 

function be ( ) ( , )P=Θ ΘD Z t,∣ , with the conditional distribution of the latent vari-

ables Z   and t   being ( )( , , )kP ΘZ t D∣  . Where 
( )kΘ   represents the parameter esti-

mated in the thk  iteration. The parameters in the 1thk +  round, 
∗Θ  are thus the tar-

get parameter values to be maximized. 

4.2. Bases Adaptability Embedding Unit (UB) 
Prior information is typically obtained through surveys involving small labeled da-

tasets, followed by fitting the parameters (0)Θ  through maximum likelihood estimation 
(MLE) [20]. However, the calculation of this mean value µ  cannot be adaptively chosen, 
and different scenarios require different survey data. UB is responsible for acquiring prior 
information and initializing parameters. It dynamically obtains samples from the dataset 

1IL =D   based on station s′   and time interval t   as inputs for prior knowledge, sup-

porting the automated calculation of prior parameters (0)Θ  for using the MLE method, 
replacing the practice in traditional EM algorithms of randomly initializing model param-
eters. Let: 

( ), 1
(0)

1 1 ,11
arg max ] ,[

I

m
i m i Li

t t×=
Θ

=Θ = Θ ∈∏ D
 

(24) 

In summary, the UB exhibits the capability to automatically capture spatiotemporal 
information thereby enhancing the model’s robustness and accuracy in handling intricate 
spatiotemporal correlations and dynamic patterns. This effectively addresses the issue of 
sensitivity in parameter initialization.  
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4.3. Expectation-Step Unit (UE) 

The marginal likelihood function of a sample is denoted as ,( , , )iI I jp t ΘD ∣z
, while 

the conditional distribution probability of the latent variables is represented by 

,
( )( , , )k

i jI Ip t ΘD∣z
. By applying Jensen’s inequality, the log-likelihood function is: 

( ) ,

( ) ( )

,

( )

(

, ,

, , , ,

, ,

, , , , ,
)

ln ln ( , , ) ln ( , , )

( , , ) ( , , )
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( , , )

              ( , , ) ln ( , , ) ( , ,

I

I

I

I I
N

k k
I I
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N I
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I I I

i j i j i j

i j i j i j i j

i j i j
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t t

t t
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p
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Θ Θ = Θ
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Θ
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∑
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D D D

∣ ∣

∣ ∣

∣
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(25) 

where ,
(

,
) ( )

, ,( , , ) ln ( , , )
I

k

N
i j i j

k
j I iI i jp pt tΘ Θ∑∑ D D∣ ∣

z
z z  is a constant, then the objec-

tive function is ( )( )kΘ Θ , which is given by the following: 

( ) , , ,
( ) (

,
)

( )

( , , ) ln ( , , )

E [ln ( ) ]
I

i j i j i j i j
N

k k
I I

k

t

P

tp pΘ Θ = Θ Θ

= Θ Θ

∑∑

Z

D D

D,Z D,

∣ ∣

∣ ∣

z
z z

 

(26) 

It is evident that we need to calculate the conditional distribution probability 

,
( )( , , )k

i jI Ip t ΘD∣z  for each individual and use it as the maximization target function 

( )( )kΘ Θ  in the UM. However, due to the nonlinearity of high-order terms in the 

objective function, conventional optimization methods may be sensitive to initial param-
eters and prone to local optima. To more effectively capture the relationship between an 
individual’s egress time sequence set eg

IT  and the station’s local prior information while 
reducing the communication cost, this paper draws on a key-value attention mechanism. 
This involves constructing a query vector representing local parameters and determining 
attention weights for key-value pairs ( ),I Ik v  associated with each individual during 
the UA step. 

4.4. Key-Value Attention Calculation Unit (UA)  

In this step, the distribution of the latent variables Z  and t  are calculated. Figure 
5 shows the entire calculation process of UA. The specific steps are as follows: 

 
Figure 5. Calculation process of key-value attention unit (UA). 
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First, the query vector (as shown in Figure 5a). It is constructed by leveraging the 
broadcasting method commonly used in deep learning to transform scalar values into a 
vector representation. Specifically, we utilize the parameter u   to create a vectorized 

form denoted as ( s )
eg

,

( )
T t

k

′
q

 , which stands for q . Let: 

( s )
eg

,

( ) ( ) ( )
T

,,
t

Tk k kµ µ µ
′

∀ ∈Θ  q =
  

(27) 

In fact, this definition expands the information aggregated at the current station. Fur-

thermore, the initial value 
(0)q  comes from the sample set 1IL =D

. 
Second, key-value pairs (as shown in Figure 5a). Let 

T T( ) ( )
,1 ,

1
, ,

I

k k
I i i j

L
t tµ µ

×

    =      
k , ,

 used to simulate the values that each individual 
with multiple potential trajectories can take in each round, and let 

T

,1 , 1 I
I i i j L

t t
×

 =  v 

 represent the egress time corresponding to the index position of 
the latent variable. So there are:  

( ){ }( )( )( , ) , [1, , ]
kk

I I I n= ∈ …K V k v ，
 

(28) 

Third, the scoring function is defined (as depicted in Figure 5b). The role of this func-

tion is to compute the correlation between each input vector Ik  and the query vector 
q . In the standard Scaled Dot Product Model, the dot product operation tends to be more 
sensitive to a larger value. This study focuses on computing proximity values between 

vectors Ik  and q  for assigning higher weights accordingly. Hence, cosine similarity 
based on vector angle principles is chosen as the definition for the scoring function. This 
approach not only considers individual value relationships with groups but also accounts 
for self-relationship. Let: 

( )( ) I
I

I

, =ks ⋅
⋅

k qk q
k q

 
(29) 

where, the inner product of vectors, denoted by I ⋅k q , ⋅  represents the norm of a vec-
tor. A smaller angle indicates higher similarity. 

Moreover, calculate the attention function (as shown in Figure 5c). The attention dis-

tribution Iα  represents the degree of attention the thj  component of Ik , given the 
query vector q . Specifically, when dealing with class-imbalanced data, traditional atten-

tion functions such as ( )Softmax ⋅  often fail to provide sufficient learning opportunities 
for minority classes because they may be suppressed by dominant classes during compu-

tation. To overcome this, we use a normalization function ( )⋅ to replace the tradi-
tional activation function, which can enhance the model’s focus on minority class features 

and learning efficiency. The calculation of Iα  amounts to computing the posterior prob-

ability distribution of Iz , which is as follows: 

( )
( ) ( ) ( ), 1

,
[ ] ( ( , ), ) , ,nI

I i j I I I I I

s
p j s sα α= = = =

⋅
= ∑

k q
k v q k q k q∣z

  
(30) 
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The attention mechanism offers two available forms, hard attention is chosen in this 
paper. Subsequently, the attention function is defined as: 

ˆ ˆI , , ,
1

ˆatt(( ), ) ] a, rg[ m, axI i y i y i j
j

t y α
=

= ==k v q v
 

(31) 

where ŷ  is the subscript of the input vector ,i jv
 with the greatest probability, name is

,
1

arg max i j
j

α
= . 
Finally, the basis variable t  is calculated, let: 

( ),, 1ˆ1 1 1 , 1 ,1[ ] ] , ][ [ ,
IN i m i y ni j i Lt t tt × × × == = ∈t c D

 
(32) 

4.5. Maximization-Step Unit (UM) 
The main objective in this step is to solve the optimization problem by utilizing the 

complete observed variables and obtaining maximum likelihood estimates of the param-
eters, which is given by Equation (26). Let: 

( )( )arg max k∗

Θ
Θ = Θ Θ

 
(33) 

Finally, by alternating iterations among the UE, UA, and UM until convergence is 
achieved.  In this process, three termination conditions are set. (1) The local variable Θ  

is controlled by the Tolerance parameter 1  (set to 1 × 10−3). (2) The global variables con-

vergence tolerance is managed by the tolerance of the objective function 2  (set to 1 × 
10−1). (3) The overall convergence speed is controlled by setting a maximum number of 
iterations K , which is set to 50 times. If the algorithm satisfies the tolerance conditions 
before reaching the maximum number of iterations, it will stop prematurely. That is as 
follows: 

( ) ( )

( 1) ( )
1

( 1) ( ) ( ) ( )
2

 or

o

 

, ,  r

k k

k k k kQ Q

k K

+

+




 =

Θ −Θ <

Θ Θ − Θ Θ <







 

(34) 

4.6. Output Unit (UO) 
The train ID serves as a primary criterion for assessing the accuracy of the spatial 

position of trajectories in ITR. According to Equation (18), it is known that 

,
ˆ ˆ[ , ]I idtj idx i y= . Further, the samples for 1ILI >∈x X  are simulated to generate values 

ATT  using the NUTS algorithm for MCMC sampling with the pyMC3 library. Based on 
this, by applying the formulas from Section 3.3.3, we can provide detailed information on 
the attributes and state features of unknown events involved for all passengers. 

5. Experiments 
In traditional methods, local features (like egress time distribution) are simulated to 

verify the accuracy of parameters or the usability of methods [12,42], but they are rarely 
considered from the perspective of actual individual trajectories. Verifying the method 
from a bottom-level rather than an aggregate perspective is also one of the contributions 
of this article. 
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5.1. Dataset Description 
5.1.1. Design of Individual Trajectory Tracking Simulation Experiment 

During peak hours, a large number of passengers entering the origin station or trans-
ferring at the transfer station will flow into the platform; meanwhile, many passengers 
will flow out at other destination stations. This may cause local congestion and increase 
the complexity of the spatiotemporal modeling of travel trajectories. Therefore, in the de-
sign stage of the individual trajectory tracking simulation experiment, this study pays 
special attention to capturing the tidal characteristics of the passenger flow [35]. Take the 
CY station in Line 6 as an example. The station is located in a suburban area with more 
residential areas in the neighborhood, and the main service targets are commuters. During 
the morning peak period, most passengers entering the station from 7:00 to 09:00 are head-
ing towards downtown Beijing, and the passenger inflow during this period accounts for 
about 50% of the total daily passenger inflow. In contrast, the number of passengers en-
tering the station from 17:00 to 20:00 in the evening is significantly lower, accounting for 
only about 15% of the total.  

In addition, in order to better validate the effectiveness and applicability of the 
STPGM-AEMA method proposed in this article, several factors are considered in depth in 
this study. First, this study covers OD pairs with different distances and station types to 
ensure the comprehensiveness and representativeness of the experimental setup. Moreo-
ver, the investigation team is from Beijing Metro Network Management Co. Ltd., Beijing, 
China, the official regulator of the BRTS. Considering the human and material conditions 
coordinated by this agency, we carefully selected four typical OD pairs for experimental 
validation. See Section 5.1.2 for details. 

Next, in the actual simulation phase, the investigation team simulates the travel pro-
cess of actual passengers on specific OD pairs and obtained data on each timestamp on 
the travel chain (as shown in Figure 6), including tap-in time, time of arrival at the plat-
form, time of train departure at the origin station, boarding time, time of train arrival at 
the destination station, alighting time, and tap-out time. Simultaneously, the integration 
of AFC and AVL data was employed to generate travel chain status information encom-
passing behavioral semantics such as access time to the platform, waiting time, running 
time, and egress time at the destination station. The timestamp and state data tables are 
provided in Appendixes B and C, respectively, serving as a genuine and dependable foun-
dation for evaluating the efficacy of the proposed methodology. 

 
Figure 6. Actual trajectory to obtain experimental records. 

5.1.2. Data Introduction 
As an illustration in Figure 7, typical OD pairs from Line 5 and Line 6 of the BRTS 

during peak periods were selected. The complete dataset comprises four data groups 
(D1~D4) collected in March 2023, including two morning peak period OD pairs (TTYB-
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DD, CY-DS) and two evening peak period OD pairs (PHY-TTYB, HJL-CY). Table 1 pre-
sents information related to the dataset that encompasses three parts: basic information, 
validation data information, and training data information. Basic information includes 
route details, such as the number of stations and distance covered. Validation data elimi-
nates 10 trajectories that do not meet requirements, with a total sample size of ITT of 78. 
It is noteworthy that AFC and AVL data must correspond one-to-one in terms of dates and 
periods, while ITT data is included in all AFC data for training purposes. Training data 
involves multiple days, with a total of 3851 AFC samples and 1069 AVL samples. 

 
Figure 7. Typical OD pairs. 

The parameter learning process involves training utilizing AEMA, followed by per-
forming probabilistic inference and subsequently comparing the inference results with the 
timestamp and status information of the verification data. The L-BFGS-B optimization al-
gorithm is predominantly employed for parameter learning among various comparison 
algorithms. All algorithms are compiled and executed on a computer equipped with an 
Intel(R) Core(TM) i9-10920X CPU processor and 48 GB of memory. 

Table 1. Dataset Description. 

Description Dataset D1 D2 D3 D4 

I. Base Information   

OD pair TTYB-DD CY-DS  PHY-TTYB HJL-CY 
Line 5 6 5 6 

Station Numbers 17 10 21 7 
Distance(m) 19,700 15,771 24,480 11,859 

II. Validation Data Time Duration  07:00–09:00 a.m. 17:00–19:00 
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Day  21 March 2023 22 March 2023 21 March 2023 22 March 2023 
ITT Numbers 21 19 20 18 

III. Training Data  
Days   6 6 4 4 

AFC Samples 1359 699 206 1587 
Train Numbers 340 309 225 195 

5.2. Baselines 
This paper compares the proposed method, STPGM-AEMA, with traditional rule-

based approaches and Bayesian methods at the train-level scale. The methods are outlined 
as follows:  
1. LTRM (Last Train Rule-based Model): Spatiotemporal Segmentation of Metro Trips 

algorithm searching for “BORDER-WALKERS” using the nearest timestamp princi-
ple, proposed by Zhang et al. [15], wherein the train’s departure time closest to the 
passenger’s tap-out time at the destination station was utilized to determine the train 
they boarded. Luo et al. [45] also employed this rule to infer passenger trajectories. 
Furthermore, both studies assumed “speed invariance” as a behavioral postulate. 

2. PTAM-MLE (Passenger-to-Train Assignment Model with MLE): Zhu et al. [20] pro-
posed a probabilistic approach, named PTAM, which requires AFC/AVL data and the 
station’s walking speed distribution as inputs. To ensure consistency in measuring 
speed, this paper replaces it with their later proposed LBPMF [42], where the input 
is the egress/access time distribution and the likelihood function is expressed accord-
ingly. 

3. MPTAM-EM (Modified Passenger-to-Train Assignment Model with EM): A modi-
fied model MPTAM was constructed by Xiong et al. [12], and the EM algorithm was 
proposed for estimating the parameters of the egress time distribution and the board-
ing probability distribution function, and the likelihood function was formulated by 
them.  

4. STPGM-EMA (without UB): The proposed STPGM-AEMA algorithm forms the ba-
sis of this method, which entails the removal of the UB module. 

5. STPGM-AEM (without UA): Similarly, the proposed STPGM-AEMA algorithm 
forms the basis of this method, which entails the removal of the UA module. 

5.3. Evaluation Metrics 
The present study employs two categories of metrics to assess its accuracy and ro-

bustness. The details are given below. 

5.3.1. Accuracy Evaluation Metrics 
Considering the precision of evaluating the multiclassification problem, a confusion 

matrix is introduced, and six evaluation metrics are chosen: macro-precision, macro-re-
call, macro-F1 score, micro-precision, micro-recall, and micro-F1 score, and calculated 
based on true positives (TP), false positives (FP), and false negatives (FN) across all cate-
gories. These metrics serve as indicators for model performance improvement; higher val-
ues indicate better results. The formula is as follows: 

1
N

N

Macro c
c

P P
=

=∑
 

(35) 

1
N

N

Macro c
c

R R
=

=∑
 

(36) 
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⋅
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+  
(40) 

where, c  is the index of categories. 

5.3.2. Consistency Evaluation Metric  
Considering the impact of random classification by the model, this paper introduces 

Cohen’s Kappa coefficient (K) to calculate the overall consistency and random agreement 
between observed and predicted values. The K measures the model’s resistance to inter-
ference in the presence of a class imbalance, serving as a statistical measure to evaluate 
credibility. The formula is as follows: 

1
o e

e

P PK
P
−

=
−  

(41) 

where, the variable oP  represents the observed accuracy, i.e., the proportion of correctly 

classified instances. eP  denotes the expected accuracy, which refers to the proportion of 
instances correctly classified by chance. The K value ranges between [−1, 1], with higher 
values indicating a model’s more genuine resistance to randomness. A K value closer to 1 
signifies a model’s perfect agreement with reality; K = 0 indicates the model’s performance 
is equivalent to random classification; and K < 0 suggests the model’s performance is even 
worse than random classification. 

5.4. Result 
5.4.1. Accuracy Evaluation Results 

Figure 8 presents the classification results across four datasets (D1–D4) utilizing op-
timal parameters, depicted through a Confusion Matrix format. Each column is allocated 
to a dataset, while each row showcases the efficacy of a specific method applied to that 
dataset. Predicted labels are displayed along the horizontal axis, with true labels along the 
vertical axis. Areas of correct classification are marked in green, whereas inaccuracies are 
highlighted in red, accompanied by percentages that reflect the proportion of correct and 
incorrect classifications. The intensity of the color signifies proportionality, with darker 
shades indicating a higher frequency of occurrences. Owing to the consistent outcomes 
between the STPGM-EMA and STPGM-AEMA methods, their results have been consoli-
dated for representation.  
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Figure 8. Comparison of the confusion matrix. 

The experimental analysis elucidates that while most algorithms fare well in scenar-
ios with a single alternative train option, their efficacy diminishes in contexts with multi-
ple train choices, illustrating a notable challenge in navigating complex classification land-
scapes. This delineates a direct linkage between the number of potential train choices and 
the escalation of uncertainty in passenger trajectories, inherently augmenting the likeli-
hood of misclassification. A cross-comparison of various methods reveals that the UA 
module plays a crucial role in the STPGM-AEMA framework to capture data details. This 
highlights a direct correlation between the number of potential train selections and an 
escalation in passenger trajectory uncertainty. 
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Table 2 shows the results of the accuracy assessment of the different algorithms on 
each dataset. It is particularly noteworthy that STPGM-AEMA(ours) and STPGM-EMA 
(ours without UB) perform well on all datasets, while the other algorithms perform poorly 
at least on the D2 dataset. the prediction accuracy of the STPGM_AEMA method proposed 
in this article reaches more than 90% on all datasets, showing that the algorithm can cope 
with scenarios of different complexity levels. Despite some random errors, the overall ro-
bustness is good.  

Table 2. Results of accuracy evaluation metrics. 

Dataset Methods 𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑹𝑹𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑭𝑭𝟏𝟏𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑹𝑹𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑭𝑭𝟏𝟏𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 

D1: TTYB-DD 

LTRM 1.00 × 100 1 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 
PTAM-MLE 9.46 × 10−1 8.38 × 10−1 8.72 × 10−1 8.57 × 10−1 8.57 × 10−1 8.57 × 10−1 
MPTAM-EM 5.95 × 10−1 6.25 × 10−1 6.01 × 10−1 8.57 × 10−1 8.57 × 10−1 8.57 × 10−1 
STPGM-AEM 9.62 × 10−1 1 8.88 × 10−1 9.16 × 10−1 9.05 × 10−1 9.05 × 10−1 9.05 × 10−1 
STPGM-EMA 9.58 × 10−1 9.38 × 10−1 9.42 × 10−1 9.52 × 10−1 9.52 × 10−1 9.52 × 10−1 

STPGM-AEMA(ours) 9.58 × 10−1 9.38 × 10−1 9.42 × 10−1 9.52 × 10−1 9.52 × 10−1 9.52 × 10−1 

D2:  
CY-DS 

LTRM 2.40 × 10−1 9.17 × 10−2 9.44 × 10−2 1.05 × 10−1 1.05 × 10−1 1.05 × 10−1 
PTAM-MLE 5.13 × 10−1 5.14 × 10−1 5.12 × 10−1 4.74 × 10−1 4.74 × 10−1 4.74 × 10−1 
MPTAM-EM 1.98 × 10−1 9.38 × 10−2 1.22 × 10−1 1.58 × 10−1 1.58 × 10−1 1.58 × 10−1 
STPGM-AEM 5.60 × 10−1 4.79 × 10−1 5.10 × 10−1 6.32 × 10−1 6.32 × 10−1 6.32 × 10−1 
STPGM-EMA 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 

STPGM-AEMA(ours) 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 

D3:  
PHY-TTYB 

LTRM 8.33 × 10−1 9.76 × 10−1 8.77 × 10−1 9.50 × 10−1 9.50 × 10−1 9.50 × 10−1 
PTAM-MLE 7.56 × 10−1 8.00 × 10−1 6.79 × 10−1 8.50 × 10−1 8.50 × 10−1 8.50 × 10−1 
MPTAM-EM 8.33 × 10−1 9.33 × 10−1 8.52 × 10−1 9.50 × 10−1 9.50 × 10−1 9.50 × 10−1 
STPGM-AEM 7.71 × 10−1 7.76 × 10−1 7.02 × 10−1 8.00 × 10−1 8.00 × 10−1 8.00 × 10−1 
STPGM-EMA 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 

STPGM-AEMA(ours) 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 

D4: 
HJL-CY 

LTRM 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 1.00 × 100 
PTAM-MLE 8.56 × 10−1 6.83 × 10−1 6.90 × 10−1 7.89 × 10−1 7.89 × 10−1 7.89 × 10−1 
MPTAM-EM 9.05 × 10−1 8.83 × 10−1 8.79 × 10−1 8.95 × 10−1 8.95 × 10−1 8.95 × 10−1 
STPGM-AEM 9.05 × 10−1 7.17 × 10−1 7.54 × 10−1 7.89 × 10−1 7.89 × 10−1 7.89 × 10−1 
STPGM-EMA 9.67 × 10−1 9.33 × 10−1 9.45 × 10−1 9.44 × 10−1 9.44 × 10−1 9.44 × 10−1 

STPGM-AEMA(ours) 9.67 × 10−1 9.33 × 10−1 9.45 × 10−1 9.44 × 10−1 9.44 × 10−1 9.44 × 10−1 

Average 

LTRM 7.54 × 10−1 7.59 × 10−1 7.31 × 10−1 7.51 × 10−1 7.51 × 10−1 7.51 × 10−1 
PTAM-MLE 7.68 × 10−1 7.09 × 10−1 6.88 × 10−1 7.43 × 10−1 7.43 × 10−1 7.43 × 10−1 
MPTAM-EM 6.33 × 10−1 6.34 × 10−1 6.14 × 10−1 7.15 × 10−1 7.15 × 10−1 7.15 × 10−1 
STPGM-AEM 7.99 × 10−1 7.15 × 10−1 7.20 × 10−1 7.81 × 10−1 7.81 × 10−1 7.81 × 10−1 
STPGM-EMA 9.81 × 10−1 9.68 × 10−1 9.72 × 10−1 9.74 × 10−1 9.74 × 10−1 9.74 × 10−1 

STPGM-AEMA(ours) 9.81 × 10−1 9.68 × 10−1 9.72 × 10−1 9.74 × 10−1 9.74 × 10−1 9.74 × 10−1 
1 Bold denotes the best result, and underline denotes the second-best result. The same is below in 
Table 3. 

The results are consistent with the hypothesis proposed in this paper that the com-
plexity of the operating model and the station structure influence the accuracy of trajec-
tory reconstruction. Specifically, in the D2 dataset, the destination station DS is an inter-
change and adopts a short-turning operation pattern during peak hours for commuting 
needs. Although DD is a transfer station, the operation mode of the D1 dataset is a simple 
mode. While the destination stations in the D3 and D4 datasets are non-transfer stations, 
their operation mode is also a simple mode. Besides, the passenger flow of the D3 dataset 
is the lowest. Therefore, the complexity of these four datasets, from high to low, is D2, D1, 
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D3, and D4. The performance difference of D2 may be due to the operating modes of the 
origin station CY during peak hours; at the same time, the complex mode of the transfer 
destination station DS further increases the difficulty of prediction. This comparison rein-
forces the view that OD’s complexity of the scene directly affects the accuracy of the algo-
rithm’s prediction of passenger trajectories. 

From the average value, the STPGM-AEMA and STPGM-EMA algorithms have 
demonstrated exceptional performance, with all metrics exceeding 0.95, showcasing sig-
nificantly superior classification capabilities compared to other methods. Following them 
are the LTRM and STPGM-AEM algorithms, which, despite performing well in certain 
scenarios, exhibit relatively lower overall stability, especially when faced with unevenly 
distributed dataset features or significant variability. In summary, the STPGM-AEMA ap-
proach presented in this study demonstrates exceptional performance across both macro 
and micro metrics, emphasizing the remarkable robustness of the proposed models. This 
outcome accentuates the precision of the STPGM-AEMA method devised in this research 
in processing intricate spatiotemporal data and accurately capturing passenger behavior 
patterns, underscoring its utility in complex urban rail transit analyses. 

5.4.2. Consistency Test Result  
It is evident that STPGM-AEMA and STPGM-EMA exhibit superior performance (as 

presented in Table 3), with K values exceeding 0.9. This observation suggests that as the 
sample size tends toward infinity, the estimator’s value can converge to the true parameter 
value. Subsequently, the LTRM algorithm demonstrates optimal performance on the D1 
and D4 datasets but exhibits subpar results on the D2 dataset. It should be noted that for 
other algorithms, the stability of results may be significantly influenced by variations in 
walking distances and passenger paths at different entry stations within each dataset. 

Table 3. Results of Cohen’s Kappa consistency test. 

Method 
D1: 

TTYB-DD 
D2: 

CY-DS 
D3: 

PHY-TTYB 
D4: 

HJL-CY 
Average 

LTRM 1.00 × 100 −1.45 × 10−1 8.95 × 10−1 1.00 × 100 6.87 × 10−1 
PTAM-MLE 7.57 × 10−1 1.52 × 10−1 6.61 × 10−1 6.24 × 10−1 5.48 × 10−1 
MPTAM-EM 7.69 × 10−1 −1.65 × 10−1 8.90 × 10−1 8.30 × 10−1 5.81 × 10−1 
STPGM-AEM  8.42 × 10−1 4.14 × 10−1 5.12 × 10−1 6.18 × 10−1 5.96 × 10−1 
STPGM-EMA 9.24 × 10−1 1.00 × 100 1.00 × 100 9.09 × 10−1 9.58 × 10−1 

STPGM-AEMA(ours) 9.24 × 10−1 1.00 × 100 1.00 × 100 9.09 × 10−1 9.58 × 10−1 

5.5. Results Interpretability Discussion 
5.5.1. Potential Train Sets Feature Analysis 

Figure 9 contrasts the distribution of potential train sets for typical OD pairs during 
peak hours (using datasets D2 and D3 as examples) with the distribution of train choices 
by passengers at the origin station. As shown in Figure 9(a.1–a.4) depict the distribution 
of potential train sets for passenger journeys entering the station in dataset D2 between 
07:00 and 09:00 AM in half-hour increments, where 1–5 represent the number of train op-
tions and “P: >” indicates the statistical proportion ranking of train options. For instance, 
in Figure 9(a.1), “P: 2 > 3 > 1 > 4 > 5” indicates that the proportion of having two train 
options is the highest at 45.7%, followed by 3 (25%), 1 (14.6%), 4 (12.8%), and 5 (1.8%). 
Figure 9(b.1–b.4) follow a similar pattern. It is observed that during the morning peak, the 
statistical values for train options mostly range between 2 and 4, while during the evening 
peak, options of 1–2 are more prevalent, likely due to the higher frequency of train depar-
tures in the morning and relatively sparse intervals in the evening. 
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Figure 9. Comparison of typical OD on train selection and train selection distribution. 

5.5.2. Analysis of Latent Variable Z Distribution 

Figure 9(a.5–a.8) illustrate the distribution of train choices at the origin station for all 
passenger journeys during the morning peak, in half-hour intervals within dataset D2, 
representing the distribution of the latent variable Z. T1–T5 denotes feasible train ID, with 
“P: >“ indicating their statistical ranking based on chosen trains. For instance, in Figure 
9(a.5), “P: T1 > T2 > T3 > T4” signifies that the first train has the highest selection propor-
tion at 50.6%, followed by T2 (31.7%), T3 (15.9%), and T4 (1.8%). A similar pattern is ob-
served in Figure 9(b.5–b.8). It is evident that during the morning peak, there are variations 
in train choice probabilities across different time slots; however, a more consistent expo-
nential distribution is apparent during the evening peak hours. 

Interestingly, during the evening peak, there is a clear alignment between the ranking 
of potential train numbers and the sequence of chosen train ID, which is not as evident in 
the morning peak. For instance, between 08:30 and 09:00 a.m., despite only 7.9% of choices 
having one train option available, the proportion of selecting the first train reaches 54.4%. 
In contrast, during the evening peak, when only 43.2% of choices have one train option 
available, the selection proportion for the first train rises to 59.1%. This discrepancy can 
be attributed to the higher demand for comfort among evening peak passengers, who pri-
oritize seating and exhibit a slower walking speed compared to morning commuters. In 
contrast, morning commuters prioritize quick arrival and tend to adopt a “board if possi-
ble” behavior. 

5.5.3. Analysis of the Changing Process of Attention Mechanism 
Figure 10a depicts the variation of value across iterations, with the horizontal axis 

representing the number of iterations and the vertical axis indicating changes in value µ  

and pdf of the latent variable t , taking the D2 data set as an example (unit in second). 
Figure 10b,c display PDF distributions of the initial 0 and final iteration 9, respectively. 

The pdf distribution based on 1LI =Xt   is represented by a blue-filled curve, while that 
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based on t  is depicted with a green-filled curve. The blue vertical line represents the ac-
quired prior value ( (prior) 150sµ =  ), serving as a reference for parameter variation, 
whereas the red vertical line indicates the current iteration round’s value µ . It can be 

observed that the prior value exhibits left-skewness, which decreases from (0) 256su =  
to (9) 189su = , after learning through UA module and stabilizes thereafter. Notably, Fig-
ures 10(b.2–b.5) and 10(c.2–c.5) demonstrate different PDF distribution shapes of vectors 
at various position indexes (from left to right: T1–T4), corresponding to the first and last 
rounds, respectively. Evidently, as iterations increase, they tend to align more closely with 

(9)u . 
Experimental results demonstrate that the variables of the key-value pairs ( , )K V  ex-

hibit a tendency to align more closely with the matrix q , indicating that the UA module 

enables interactive learning of both passenger egress time ,i jt   and destination station 

time distribution ( );Θt .  

 
Figure 10. Q value and PDF distribution changes. 

5.5.4. Individual Trajectory Visualization 
The events and state values involved in the reconstructed trajectory are visualized 

using 3 samples of the D2 dataset, as shown in Figures 11 a and 11b, respectively. Figure 
11a shows the reconstructed trajectory of individual “ID19”, where the tap-in and tap-out 
events are known and marked as “be known” in black font. Other events are inferred and 
marked “be inferred” in red font. It can be seen that passenger “ID19” has already inferred 
that he boarded train 2 at station CY at 08:21:14 , and the interpretation of other event 
information is similar. Of course, if the trajectories of all passengers are displayed, the 
congestion and distribution of passengers waiting on the platform can be further ana-
lyzed, this is not the focus of this article. Figure 11b shows the inferred state information 
of each individual. It can be seen that the egress times are indeed relatively similar, which 
in turn confirms the effectiveness of the model STPGM proposed in this article. Further-
more, detailed error analysis is discussed in depth in the next section. 
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Figure 11. Individuals’ reconstructed trajectories visualization. 

5.5.5. Residual Analysis of Trajectory Reconstruction Fragments 
The reconstruction error of the involved ITT data, encompassing temporal attributes 

T
hE   and state characteristics fS   of the event, is assessed based on residuals 

( ) I Ierr tr tr= −   (unit in second). Further, ( ) 0err >   indicates predicted occurrence 
times earlier than the actual events, while positive residuals suggest later predictions. Re-
garding state values, ( ) 0err >  denote underpredictions, whereas positive values indi-
cate overpredictions.  

Figure 12 employs Q-Q plots to demonstrate the normality of each event-time varia-
ble. The horizontal axis represents theoretical quantiles of the probability distribution, and 
the vertical axis reflects percentiles of residual values. The red line represents the regres-
sion line satisfying either T T

h hE E=  (in Figure 12a–e) or 

f fS S=  (in Figure 12f–j). Two grey 

dashed lines indicate a 95% confidence interval, with individual residual ( )err   denoted 
by points on the plot.  

The analysis in Figure 12 reveals that, when considering the deviation from events, it 
is evident that, apart from (T )

IIerr  being influenced by system errors, deviations in T B
IV

 

and T A
IV

 occur due to disregarding the time spent onboarding and alighting. To enhance 

the model, future research can incorporate a deviation correction coefficient. Notably, the 
largest deviation value about WT

I
 primarily stems from insufficient observational infor-

mation and significant randomness. Regarding state values, aside from errors ( )RTerr T  re-
sulting from individual heterogeneity’s perception bias, most values are predominantly 
positive due to their association with calculation methods. It is noteworthy that the error 
value ( )ETerr T  is minimal, thus confirming the efficacy of our proposed method. Further-
more, except for (T )

IIerr , a majority of data points fall within an interval range while ex-
hibiting residuals close to normality, validating the effectiveness of the ITR method pro-
posed in this paper. The Q-Q plots effectively visualize the normality or deviation of re-
siduals, offering a statistical basis to assess the model’s performance in reconstructing 
travel event timelines. 
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Figure 12. Event and state residuals Q-Q plots of trajectory fragments. 

6. Conclusions 
In this paper, an automatic inference method for ITR has been proposed, namely 

STPGM-AEMA, which aims to infer missing information from incomplete information. 
The method effectively recovers rich semantic and state information about each individual 
trajectory using only AFC and AVL data. A GOLN rule is introduced in the model as a 
bridge from observed data to inferred information. On this basis, an information interac-
tion representation module for global and local latent variables was designed, which ef-
fectively promotes autonomous communication of information between individuals and 
the system, eliminating dependence on manual survey data. Secondly, the proposed pa-
rameter learning algorithm AEMA enhances the EM algorithm by adaptively introducing 
a priori parameters and a key-value attention mechanism. It not only improves the stabil-
ity and convergence speed of parameters but also automatically samples the walking time 
of individual and egress time distributions to deal with missing data problems. In addi-
tion, combined with ITT data, three methods and two ablation experimental methods 
were comparatively analyzed. The results show that the proposed STPGM-AEMA 
method performs well in terms of accuracy and robustness, and the accuracy can reach 
0.95 (95%), which is at least 15% more accurate than the traditional methods (i.e., PTAM-
MLE and MPTAM-EM).  

It is worth noting that interpretability analysis was performed on key parts of the 
STPGM-AEMA method, including potential set feature mining analysis, latent variable 
distribution analysis, the role of the attention mechanism, and temporal residual analysis. 
On this basis, some possible directions for improvement could be as follows: (1) address-
ing the limitations of the proposed model in estimating individual trajectories between 
OD pairs with insufficient data, as any lack of prior information will adversely affect the 
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utility of the UB module; (2) Currently, a simple normalization function is used in the UA 
module. In future research, the application of other activation functions (Leaky ReLU, 
weighted Softmax, etc.) in multi-class imbalance problems can be explored to enhance 
model fitting capabilities; (3) Extend the model formulation to include route choice prob-
ability, passenger type, station type, or operation strategies as additional model parame-
ters; and (4) Although the AEMA algorithm proposed in this paper employs offline train-
ing, the average training time for a single dataset in this study is approximately 15.79 s, 
which adequately satisfies the requirements for fast trajectory reconstruction of complete 
samples within a single OD pair. Future work can explore the possibility of integrating 
real-time sample generation and correction modules to achieve real-time personal travel 
trajectory prediction. Certainly, this requires significant extensions to existing models. 
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Appendix A. Notations and Definitions 

Symbol Definition 

i  Passenger index. 

s , s′  The origin and destination stations of an individual trip, respectively. 
t , t′  The tap-in and tap-out time of an individual trip index, respectively. 

(( ), ,)
i

st tsI → ′ ′  
Itinerary index, where ( , )( , ) ts st ′→ ′  indicates that passenger i  enter the origin 
station s  at t  and leave the destination station s′  at t′ , abbreviated as I . 

,s tI
, ,tsI ′ ′  The tap-in and tap-out time of an individual itinerary. 

tj  Train index of all trains between OD pairs. 

,I idtj
 A unique symbol representing the ID of train in journal I . 

,s attj
, ,s dttj , ,s attj ′ , ,s dttj ′  

The arrival time and departure time at origin station s /destination station s′  of 
the train tj , respectively. 

fs,qtj
, ,s qtj

, ,s qtj ′ , es,qtj
 

The order number of the train tj  at first station fs , station s , station s′  and last 
station es . 

( , )t sI
J

, ( , )t sI
J ′ ′  

The set of feasible train choices at origin station s  /destination station s′  for an 
itinerary I , respectively. 

IJ  

The set of feasible train choices for an itinerary I , denoted as { }1,2, , j
, with the 

index being j , IL  represents the ordered sequence of train options available. The 
total length of this sequence is, with the dimension being 1 IL× .  
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( )
eg
I si

T ′

 

The potential set of egress time for an itinerary I , denoted as { },1 ,2 ,, , ,i i i jt t t , ab-

breviated as eg
IT . 

,i jt
 The thj  potential egress time value for passenger i  in itinerary I .  

Appendix B. The Recorded Data from the Trajectory Simulation Experiment 

Date 2023/3/21 

PID 15****36 

Itinerary index 234 
L1 S1 Tap-in Time To platform Boarding Time Train Departure Time 
6 623 17:34:50 17:36:55 17:38:40 17:38:50 
L2 S2 Train Arrival Time Alighting Time Tap-out time  
6 633 17:58:56 17:59:05 17:59:59  

Appendix C. The Table Presents the States of the Trajectory Calculation Results 

Date 2023/3/21  

PID 15****36  
Itinerary index 234  
OD pair Access time(s) Train ID Waiting time(s) Riding time(s) Egress time(s)  
623-633 125 1222 105 1206 54  
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