
Drones 2024, 8, 179. https://doi.org/10.3390/drones8050179 www.mdpi.com/journal/drones 

Article 

Model-Free RBF Neural Network Intelligent-PID Control  
Applying Adaptive Robust Term for Quadrotor System 
Sung-Jae Kim 1 and Jin-Ho Suh 2,* 

1 The Industrial Science Technology Research Center, Pukyong National University, 
Busan 48513, Republic of Korea; bbman7020@gmail.com 

2 Major of Mechanical System Engineering, Pukyong National University, Busan 48513, Republic of Korea 
* Correspondence: suhgang@pknu.ac.kr

Abstract: This paper proposes a quadrotor system control scheme using an intelligent–propor-
tional–integral–differential control (I-PID)-based controller augmented with a radial basis neural 
network (RBF neural network) and the proposed adaptive robust term. The I-PID controller, similar 
to the widely utilized PID controller in quadrotor systems, demonstrates notable robustness. To 
enhance this robustness further, the time-delay estimation error was compensated with an RBF neu-
ral network. Additionally, an adaptive robust term was proposed to address the shortcomings of 
the neural network system, thereby constructing a more robust controller. This supplementary con-
trol input integrated an adaptation term to address significant signal changes and was amalgamated 
with a reverse saturation filter to remove unnecessary control input during a steady state. The adap-
tive law of the proposed controller was designed based on Lyapunov stability to satisfy control sys-
tem stability. To verify the control system, simulations were conducted on a quadrotor system ma-
neuvering along a spiral path in a disturbed environment. The simulation results demonstrate that 
the proposed controller achieves high tracking performance across all six axes. Therefore, the con-
troller proposed in this paper can be configured similarly to the previous PID controller and shows 
satisfactory performance. 

Keywords: quadrotor; attitude control; I-PID control; time-delayed control; RBF neural network; 
prescribed performance 

1. Introduction
Quadrotors have symmetric structures and high maneuverability, enabling hovering 

and demonstrating good flight performance. Currently, these characteristics find applica-
tion across various industries, leveraging their capabilities [1–3]. Moreover, quadrotors 
are garnering significant attention not only for practical applications but also from re-
searchers. Despite their favorable behavior, quadrotor systems present significant control 
challenges due to strong nonlinear coupling dynamics, model uncertainties, unmeasura-
ble disturbances, and under-actuated problems. Consequently, these complexities pose 
formidable challenges for control engineers, prompting extensive research efforts [3–17]. 

In [7], dynamics were estimated using FCRNN (Fully Connected Recurrent Neural 
Network) and controlled using ISMC (Integral Sliding Mode Control). In [8], trajectory 
tracking was achieved by applying RGSMC (Rapid Global Sliding Mode Control) using a 
fast decay function. Attitude stabilization was attained in [13] through a nominal state-
feedback controller and a robust compensator, while [14] utilized the PD2 feedback struc-
ture for the same purpose. Furthermore, Ref. [15] accomplished robust attitude control 
against disturbances through a switching model predictive attitude controller, showcas-
ing promising results. Ref. [16] introduced a dynamic event-triggered control strategy that 
maximized the efficiency of maritime search operations through the collaboration of USVs 
and UAVs. The strategy enhanced system stability by efficiently managing key control 
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inputs and robustly resisting external disturbances. Ref. [17] presented a control algorithm 
designed to efficiently perform path-following tasks through the cooperation of USVs and 
UAVs. Aiming to minimize complex design requirements and command transmissions, it 
utilizes a dynamic event-triggered mechanism to reduce data transmission and maximize 
system efficiency. 

Their research shows excellent results. However, their control methods use model 
information. Since system identification of a control system is difficult, it can be hard to 
apply to a quadrotor system. Therefore, in one study, a quadrotor was controlled using a 
PID controller, a representative, model-free control method. It can be applied to various 
quadrotor systems with a simple control method and can lead to satisfactory performance. 
Although this control method has the advantage of being easy to apply, it also has the 
disadvantage of reducing control performance due to external forces and system uncer-
tainty. Thus, this paper proposes a control method that combines an I-PID (Intelligent-
PID) controller and an RBF (Radial Basis Function) neural network. 

I-PID control is a model-free nonlinear control method [18–20], which offers ad-
vantages for application in complex systems such as robots and quadrotors. This method 
relies on previous control inputs and outputs rather than modeling information. There-
fore, this method is one of the promising control techniques that can replace traditional 
PID, and there are currently results of its application to various types of plants [18–20]. 
Moreover, this controller exhibits similarities to time-delay estimation errors and a lack of 
robustness in the transient state [20–22]. In particular, time-delay estimation error is a 
problem that must be solved as it reduces the robustness of the controller and deteriorates 
control performance. To mitigate this issue, we employed an artificial neural network for 
compensation. 

Artificial neural networks are powerful tools for solving control problems such as 
nonlinearity and disturbance approximation. In addition, a neural network does not re-
quire complex mathematical analysis such as disturbance observers and can be configured 
independently of the system [23–26]. These features can be implemented without the 
model information required in this paper and are easy to apply to the controller. However, 
neural networks have some disadvantages when online learning. Firstly, neural networks 
require a lot of computation. This can increase computation time and reduce the control 
rate. Secondly, neural networks are difficult to mathematically analyze. This issue com-
bines with control systems to make stability analysis difficult. Thirdly, due to initial value 
problems, neural networks can make control systems unstable. This paper addresses this 
issue by employing an RBF neural network and an adaptive robust term for compensation. 

The RBF neural network has a simple structure consisting of one layer each. The ad-
vantage of this neural network is that it is mathematically analyzed, and the computa-
tional amount is smaller than for other neural networks. Therefore, as in this paper, it is 
evaluated as a neural network suitable for mechatronics system control [27–34]. The acti-
vation function uses a Gaussian function. This function follows a probability distribution 
and has excellent nonlinear approximation ability when used with neural networks [27–
31]. However, a challenge arises as Gaussian functions are not differentiable. In this paper, 
we design a Lyapunov-based update law to consider control system stability without us-
ing differentiation in the activation function. 

To overcome some of the shortcomings of neural networks, we used adaptive robust 
terms. An adaptive robust term originates from a robust term. A robust term consists of 
constant gain and error sign functions. This ability of the robust term nicely suppresses 
the shortcomings that occur during the online learning of neural networks [29–35]. Alt-
hough this may reduce the estimation performance of the network, it is a practical way to 
make control systems containing neural networks more robust. However, robust terms 
also have some disadvantages. A robust term uses constant control gain and cannot re-
spond to large signal changes. Additionally, by generating unnecessary control inputs un-
der a steady state, there is a risk of worsening control performance in a steady state and 
causing chattering. Therefore, we propose an adaptive robust term that can dynamically 
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adapt to signal changes by adjusting the control gain and that utilizes a reverse saturation 
filter that can remove unnecessary control inputs in the steady state. In conclusion, this 
paper proposes I-PID control, which can be configured similarly to PID and is more robust 
to disturbances. This study used the RBF neural network to compensate for the time-delay 
estimation error, which is a drawback of I-PID. Afterwards, we proposed an adaptive ro-
bust term to overcome the shortcomings of neural network control and design a more 
robust controller. 

The contributions of this paper are as follows: 
• We performed mathematical modeling to control a quadrotor system and designed a 

controller that combines an I-PID controller and an RBF neural network. 
• To make the control system more robust, we designed an adaptive robust term that 

includes a reverse saturation filter. 
• For the proposed controller, we designed update laws based on Lyapunov stability. 
• Stability was rigorously proven by investigating the control boundness of the whole 

control system. 
• The performance of the proposed controller was proven through simulation. 

This paper is structured as follows: Section 2 introduces the quadrotor system and its 
dynamics. Section 3 shows the design of the I-PID control with the RBF neural network 
and the design of the adaptive robust term; it also proves the whole control systemʹs sta-
bility. Section 4 compares and verifies the performance of the proposed controller through 
computer simulation. Section 5 discusses the conclusions and future work. 

2. Dynamic Model of the Quadrotor System 
The quadrotor system moved by regulating the angular speed of four rotors that were 

equidistant from the center of mass. Due to these control methods, the quadrotor achieved 
six-degrees-of-freedom movement, including vertical take-off and landing (VTOL) and 
hovering. However, the quadrotor system needed to maintain its position using the four 
rotors that controlled axial movement. In other words, the quadrotor had an underactu-
ated problem. Quadrotor dynamic models including these issues have been investigated 
in previous studies [4–15,36–39]. We used a quadrotor dynamic model with reference to 
previous studies. 

Figure 1 is a coordinate system of the quadrotor considered in this paper. The quad-
rotor shows the position and orientation in an inertial coordinate system with 6 DOF 
(𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓). 

 
Figure 1. Coordinate system of quadrotor. 
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The linear velocity in the object coordinate system relative to the inertial coordinate 
system was defined as Equation (2) using Equation (1). 𝑅 = 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 − 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 + 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 + 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 − 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜙− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙  (1) 

𝑉 = 𝑅 𝑉  (2) 

where the object coordinate system velocity 𝑉 = [𝑢 𝑣 𝑤] and the inertial coordinate 
system velocity 𝑉 = [𝑥 𝑦 𝑧]. 

The angular velocity in the object coordinate system relative to the inertial coordinate 
system was defined as Equation (4) using Equation (3). 𝑅 = 1 0 − 𝑠𝑖𝑛 𝜃0 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙0 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙  (3) 

𝜔 = 𝑅 𝜔  (4) 

where the object coordinate system angular velocity 𝜔 = [𝑝 𝑞 𝑟] and the inertial co-
ordinate system angular velocity 𝜔 = [𝜙 𝜃 𝜓]. Due to the characteristics of the quad-
rotor, 𝜃, and 𝜙 needed to remain around zero to maintain the quadrotor attitude. There-
fore, this could be expressed as 𝑐𝑜𝑠𝜃 ≅ 𝑐𝑜𝑠𝜙 ≅ 1  and 𝑠𝑖𝑛𝜃 ≅ 𝑠𝑖𝑛𝜙 ≅ 0 . Finally, using 
Equations (2) and (4), the dynamic model of the quadrotor could be expressed as Equation 
(5). 

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧ 𝜙 = 1𝐼 𝜃𝜓 𝐼 − 𝐼 − 𝐽 𝛺𝜃 + 𝑈 + 𝐷𝜃 = 1𝐼 𝜙𝜓(𝐼 − 𝐼 ) + 𝐽 𝛺𝜙 + 𝑈 + 𝐷𝜓 = 1𝐼 𝜃𝜙 𝐼 − 𝐼 + 𝑈 + 𝐷𝑥 = 1𝑚 [(𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓)𝑈 + 𝐷 ]𝑦 = 1𝑚 (𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓)𝑈 + 𝐷𝑧 = 1𝑚 [(𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃)𝑈 − 𝑚𝑔 + 𝐷 ]

 (5) 

where 𝑚 is the mass of the quadrotor, 𝐼  is the inertia moment of the quadrotor, 𝐽  is the 
inertia moment of the rotors, 𝑈  is the control input, 𝑔 is the gravitational acceleration, Ω 
is the total rotor velocity, and 𝐷  is the lumped disturbance including aerodynamic friction, 
drag force, and unmeasurable disturbance. 

3. Quadrotor Controller Design 
The proposed controller was composed of three parts: an I-PID controller, an RBF 

neural network for compensated time-delay estimation error, and an adaptive robust term 
for increased robustness of the control system. 

3.1. I-PID Control 
To construct the I-PID controller, we assumed a nonlinear second-order system such 

as Equation (6). 𝑀𝑋(𝑡) = 𝐹(𝑡) + 𝑢(𝑡) (6) 

where 𝑀 is an inertia matrix, 𝐹(𝑡) is nonlinear plant dynamics, and 𝑢(𝑡) is the control in-
put. In Equation (6), if the sampling time ℎ was fast, the system model could be approxi-
mated as Equation (7). 
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𝐹(𝑡) ≃ 𝑀𝑋(𝑡) − 𝑢(𝑡 − ℎ) (7) 

The control input of the I-PID controller to be used in this study was designed as in 
Equation (8) using Equation (7). 𝑒(𝑡) = 𝑋 − 𝑋𝑢(𝑡) ≃ 𝑢(𝑡 − ℎ) − 𝑀𝑋Linearization of the Plant + 𝑀 𝑋 + 𝐾 𝑒(𝑡) + 𝐾 𝑒(𝜏)𝑑𝜏 + 𝐾 𝑒(𝑡)Desired error dynamics  (8) 

To construct the controller in this study, where 𝑋 = [𝑧 𝜙 𝜃 𝜓]  system state, 𝑋  was 
the desired system state; 𝐾 , 𝐾 , and 𝐾  were control gains; and 𝑀 was a constant inertia 
estimation matrix. In other I-PID-related studies [16–18], this is expressed as 1/𝛼. In this 
paper, it is expressed as 𝑀. This controller was similar to time-delay control. Therefore, 
this controller consisted of two parts: linearization of the plant and desired error dynamics. 𝑒 + 𝐾 𝑒(𝑡) + 𝐾 𝑒(𝜏)𝑑𝜏 + 𝐾 𝑒(𝑡) = 0 (9) 

In the linearization of the plant, information from previous time steps was used to 
approximate and compensate for the system model containing lumped disturbances. Con-
trol performance achieved closed-loop error dynamics, as shown in Equation (9), through 
desired error dynamics. This controller could determine the performance of a closed-loop 
system through error dynamics. 𝑒 + 𝐾 𝑒(𝑡) + 𝐾 𝑒(𝜏)𝑑𝜏 + 𝐾 𝑒(𝑡) = Δ𝐻 (10) 

However, in real systems, time-delay estimation errors Δ𝐻 such as those in Equation 
(10) occur due to uncertainties such as disturbances and time delays. This error may re-
duce control performance; therefore, we compensated for this through the RBF neural 
network. 

3.2. RBF Neural Network 
To compensate for the time-delay estimation error, this study used an RBF neural 

network. It is very difficult to mathematically define time-delay estimation error. How-
ever, RBF neural networks are independent of control systems and allow for the estima-
tion of time-delay estimation errors without complex mathematical analysis. In this study, 
we estimated the time-delay estimation error using the same 2-5-1 network structure as in 
previous research cases [29,30]. 

Figure 2 is the network structure used in this study, where 𝑒 = 𝑒  𝑒  𝑒  𝑒 , 𝑒 =𝑒  𝑒  𝑒  𝑒 , ℎ  is the activation function output, and 𝑤  is weight value. The activation 
function was a Gaussian function and was expressed as Equation (11). 

ℎ = 𝑒𝑥𝑝( − 𝑥 − 𝑐 /2𝑏 ) (11) 

where 𝑥   is a Gaussian function input, 𝑐   represents the coordinate value of the center 
point of the Gaussian function, and 𝑏  represents the width of the Gaussian function. The 
output of this neural network could be expressed as Equation (12). 

Δ𝐻 = 𝑊 𝐻(𝐸) (12) 

where 𝑊 = [𝑤 ⋅⋅⋅ 𝑤 ] is the weight vector, 𝐻 = [ℎ ⋯ ℎ ]  is the activation function out-
put vector, and 𝐸 is the input vector. 

Δ𝐻 = 𝑊 𝐻(𝐸) + 𝜀 (13) 

Equation (13) is the optimal time-delay estimation error: 𝑊 is the optimal weight vec-
tor and 𝜀 is the neural network estimation error. To design the weight update law, we 
utilized Equation (10) and considered Equation (14), which was an error state space model. 

   𝐸 = 𝐴𝐸 + 𝐵 · Δ𝐻  (14) 
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where 𝐴 is the desired error dynamics control gain matrix and 𝑃 is the positive definite 
constant matrix that satisfied Equation (15). 𝐴 𝑃 + 𝑃𝐴 = −𝑄 (15) 

Matrix 𝑄 is explicitly defined as a positive definite matrix.    𝑊 = 𝛾(𝐸 𝑃𝐵𝐻(𝐸) − 𝜎𝑊) (16) 

Equation (16) presents a weight update law formulated on the principles of Lya-
punov stability without differentiation of the activation function. In this equation, 𝑊 =𝑊 − 𝑊 represents the weight error vector and both 𝛾 and 𝜎 are positive control gains. 

 
Figure 2. RBF neural network structure. 

3.3. Adaptive Robust Term 
Robust terms are used to increase the robustness of control systems using neural net-

works [29–35]. A robust term consists of a constant control gain and an error sign function 
similar to the switching term of sliding mode control. This control technique is effective 
in improving control performance by compensating for estimation errors in controllers 
using neural networks. However, it cannot respond to large signal changes and, even if it 
has reached a steady state, it can affect control performance by generating unnecessary 
control input. We propose an adaptive robust term that combines a robust term with a 
filter that can adaptively generate signals and remove unnecessary inputs in the steady 
state. 

To design the adaptive robust term, we redefined the optimal time-delay estimation 
error as Equation (17). 

Δ𝐻 = 𝑊 𝐻(𝐸) + 𝜀̄ (17) 𝜀 ̅denotes the optimal neural network estimation error. The adaptive robust term pro-
posed in this paper compensated for neural network estimation error and increased the 
robustness of the control system. 𝑠 = 𝜇 𝐸 + 𝜇 𝐸 (18) 

Equation (18) is the error surface for designing the adaptive term; 𝜇 is control gain. 
We approximated the nonlinearity of the neural network estimation error as the product 
of a nonlinear term and an error surface. Therefore, optimal neural network estimation 
error could be regarded as 𝜀̄ = �̄� ⋅ 𝑠. The adaptive robust term proposed in this paper is 
Equation (19), which was defined as the approximate neural network estimation error 𝜀̂. 
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𝜀̂ = 𝜌 ⋅ 𝑠 (19) �̅� is an optimal nonlinear term; 𝜌 is an approximated nonlinear term. 𝜌 = 𝜅(𝐸 𝑃𝐵𝑠 − 𝛽𝜌) (20) 

where 𝜌 = 𝜌 − �̅� and 𝛽 is positive control gain. Equation (20) is a nonlinear term update 
law designed based on Lyapunov stability. 

3.4. Proposed Controller Design 
We designed the controller by integrating the previously proposed I-PID controller, 

RBF neural network, and adaptive robust term. 𝑢(𝑡) ≃ 𝑢(𝑡 − ℎ) − 𝑀𝑋Linearization of the Plant + 𝑀 𝑋 + 𝐾 𝑒(𝑡) + 𝐾 𝑒(𝜏)𝑑𝜏 + 𝐾 𝑒(𝑡)Desired error dynamics+ 𝑀 ∙ Δ𝐻RBF neural network + 𝑀 ∙ 𝜀̂Adaptive robust term 
(21) 

Equation (21) is the control input including RBF neural network output and the adap-
tive robust term. Using Equation (21), we could obtain closed-loop error dynamics such 
as Equation (22).    𝐸 = 𝐴𝐸 + 𝐵 ⋅ 𝑁 (22) 𝑁 = 𝑊𝐻(𝐸 ) + 𝜌𝑠. Next, we considered the Lyapunov function candidate that could 
represent the control system, such as Equation (23). 𝑉 = 𝐸 𝑃𝐸 /2 + 𝑊 𝑊/2𝛾 + 𝜌 𝜌/2𝜅 (23) 

Its time derivative was Equation (24). 𝑉 = 𝐸 𝑃𝐸 /2 + 𝐸 𝑃𝐸/2 + 𝑊 𝑊/𝛾 + 𝜌 𝜌/𝜅    = (𝐴𝐸 + 𝐵 ⋅ 𝑁)𝑃𝐸 /2 + 𝐸 𝑃(𝐴𝐸 + 𝐵 ⋅ 𝑁)/2 + 𝑊 𝑊/𝛾 + 𝜌 𝜌/𝜅    = 𝐸 (𝐴 𝑃 + 𝑃𝐴)𝐸 /2 + 𝐸 𝑃𝑁 + 𝑊 𝑊/𝛾 + 𝜌 𝜌/𝜅    = −𝐸 𝑄𝐸 /2 − 𝐸 𝑃𝑊 𝐵𝐻(𝐸) + 𝑊 𝑊/𝛾 − 𝐸 𝑃𝐵𝜌 𝑠 + 𝜌 𝜌/𝜅    = −𝐸 𝑄𝐸 /2 − 𝑊 (𝐸 𝑃𝐵𝐻(𝐸) − 𝑊/𝛾) − 𝜌 𝐸 𝑃𝐵𝑠 − 𝜌/𝜅  

(24) 

Using Equations (16) and (17), we could obtain Equation (25), which satisfied the 
Lyapunov stability condition. 𝑉 = −𝐸 𝑄𝐸 /2 − 𝜎𝑊 𝑊 − 𝛽𝜌 𝜌 ≤ 0 (25) 

The proposed control method satisfied the Lyapunov stability condition. However, 
adaptive robust terms can cause unnecessary control input in a steady state. This situation 
may adversely affect control performance. Therefore, the reverse saturation filter was used 
in the adaptive robust term to prevent this. 𝑠𝑎𝑡 (𝑢) = −|𝑢|0+|𝑢|       if:      if:      if: 𝑢 < −𝑁−𝑁 ≤ 𝑢 ≤ 𝑁𝑢 > 𝑁  (26) 

The reverse saturation filter was defined as Equation (26), and the adaptive robust 
term operated for errors above the threshold value and removed unnecessary control in-
put for errors below the threshold value. The proposed adaptive robust term applying this 
filter could be defined as 𝜀̂ ≈ 𝑠𝑎𝑡𝑟𝑒𝑣(𝜀). 

The optimal weights and optimal nonlinear terms were unknown. Therefore, the 
weight error and nonlinear term error in the weight update rule and nonlinear term up-
date rule could not be known. For this reason, 𝑊 = 𝑊 − 𝑊 and 𝜌 = 𝜌 − �̅� could not be 
included in the update law. We replaced 𝑊 and 𝜌. These values were associated with 𝑊 
and 𝜌 and would not result in large values since they were coupled with the I-PID con-
troller. The modified update law used is shown in Equations (27) and (28). 
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   𝑊 = 𝛾(𝐸 𝑃𝐵𝐻(𝐸) − 𝜎𝑊) (27) 𝜌 = 𝜅(𝐸 𝑃𝐵𝑠 − 𝛽𝜌) (28) 

Finally, the proposed control input is shown in Equation (29). 𝑢(𝑡) = 𝑢(𝑡 − ℎ) − 𝑀𝑋Linearization of the Plant + 𝑀 𝑋 + 𝐾 𝑒(𝑡) + 𝐾 𝑒(𝜏)𝑑𝜏 + 𝐾 𝑒(𝑡)Desired error dynamics+ 𝑀 ∙ Δ𝐻RBF neural network + 𝑀 ∙ 𝜀̂Adaptive robust term with ilter 
(29) 

3.5. Stability Analysis 
This study used a modified neural network update law to generate the proposed 

control inputs and applied a reverse saturation filter to the adaptive robust term to remove 
unnecessary control inputs in the steady state. In this chapter, we prove that the proposed 
controller satisfies stability. The proposed controller was composed of three parts: an I-
PID controller, an RBF neural network for compensated time-delay estimation error, and 
an adaptive robust term for increased robustness of the control system. To remove unnec-
essary control inputs, we used a reverse saturation filter. For this filter, the presence or 
absence of an adaptive robust term was determined based on the threshold value. There-
fore, the stability proof was divided into two parts: above and below the threshold value. 

First, we considered when the system error was larger than the threshold value. To 
investigate control system stability, this study defined the Lyapunov function candidate 
as in Equation (30). 𝑉(𝑡) = 𝐸 𝑃𝐸 /2 + 𝑊 𝑊/2𝛾 + 𝜌 𝜌/2𝜅 (30) 

The Equation (30) time derivative was Equation (31). 𝑉(𝑡) = 𝐸 𝑃𝐸 /2 + 𝐸 𝑃𝐸/2 + 𝑊 𝑊/𝛾 + 𝜌 𝜌/𝜅 (31) 

By applying the proposed control input from Equation (29), we derived Equation (32). 𝑉(𝑡) = 𝐸 (𝐴 𝑃 + 𝑃𝐴)𝐸 /2 − 𝜎 𝑊 𝑊 + 𝑊 𝑊 + 𝑊 𝑊 /2 − 𝛽(𝜌 𝜌 + 𝜌 𝜌 + 𝜌 �̅�)           ≤ 𝐸 𝑃(𝐴 + 𝐴 + 𝜆 𝐼 − 𝜆 𝐼)𝐸 /2 − 𝜎 𝑊 𝑊 − 𝑊 𝑊 /2 − 𝛽(𝜌 𝜌 − �̅� �̅�)/2            = −𝜆 𝐸 𝑃𝐸 /2 + 𝐸 𝑃(𝐴 + 𝐴 + 𝜆 𝐼)𝐸 /2 − 𝜎 𝑊 𝑊 − 𝑊 𝑊 /2− 𝛽(𝜌 𝜌 − �̅� �̅�)/2 

(32) 

If 𝜆   satisfied 𝜆 > 0 , 𝐼  was a 3 × 3  unit matrix. The control gain was equal to 𝜎 ≥ 𝜆 /𝛾 and 𝛽 ≥ 𝜆𝑚/𝜅, and we could obtain Equation (33). 𝑉(𝑡) ≤ −𝜆𝑚𝐸𝑖𝑇𝑃𝐸𝑖/2 + 𝐸𝑖𝑇𝑃𝜆𝑚𝐼𝐸𝑖/2 − 𝜎 𝑊𝑇𝑊 − 𝑊𝑇𝑊 /2 − 𝛽 𝜌𝑇𝜌 − 𝜌𝑇𝜌 /2        ≤ −𝜆𝑚(𝐸𝑖𝑇𝑃𝐸𝑖/2 + 𝑊𝑇𝑊/2𝛾 + 𝜌𝑇𝜌/𝜅) + 𝐸𝑖𝑇𝑃𝜆𝑚𝐼𝐸𝑖/2 + 𝜆𝑚𝑊𝑇𝑊/2 + 𝜆𝑚𝜌𝑇𝜌/2 ≤ −𝜆𝑚𝑉 + Φ                                                                                                                  (33) 

Defining Φ = 𝐸 𝑃𝜆 𝐼𝐸 /2 + 𝜆 𝑊 𝑊/2 + 𝜆 �̅� �̅�/2  and utilizing Equation (33), we 
could derive Equation (34). 𝑉(𝑡) ≤ (𝑉(𝑡 ) − Φ/𝜆 )𝑒 ( ) + Φ/𝜆  (34) 𝑡  represents the initial time and 𝑡  denotes the time when the system error reaches 
a threshold value. Through Equations (3)–(34), we could verify that the proposed control 
system was bounded when it was larger than the threshold value. 

Next, we considered when the system error was lower than the threshold value. To 
verify stability, we considered the Lyapunov function candidate as in Equation (35). 𝑉(𝑡) = 𝐸 𝑃𝐸 /2 + 𝑊 𝑊/2𝛾 (35) 

The Equation (35) time derivative was Equation (36). 
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𝑉(𝑡) = 𝐸 𝑃𝐸 /2 + 𝐸 𝑃𝐸/2 + 𝑊 𝑊/𝛾 (36) 

Using the proposed control input Equation (29) without the adaptive robust term, we 
obtained Equation (37).  𝑉(𝑡) = 𝐸 (𝐴 𝑃 + 𝑃𝐴)𝐸 /2 − 𝜎 𝑊 𝑊 + 𝑊 𝑊 + 𝑊 𝑊 /2 + 𝐸 𝑃𝐵𝜀           ≤ 𝐸 𝑃(𝐴 + 𝐴 + 𝜆 𝐼 − 𝜆 𝐼)𝐸 /2 − 𝜎 𝑊 𝑊 − 𝑊 𝑊 /2            = −𝜆 𝐸 𝑃𝐸 /2 + 𝐸 𝑃(𝐴 + 𝐴 + 𝜆 𝐼)𝐸 /2 − 𝜎 𝑊 𝑊 − 𝑊 𝑊 /2 

(37) 

When below the threshold value, it was assumed that ε approximated zero. If 𝜆  sat-
isfied 𝜆 > 0 , 𝐼  was a 3 × 3  unit matrix. The control gain was equal to 𝜎 ≥ 𝜆 /𝛾 , and we 
could obtain Equation (38). 𝑉(𝑡) ≤ −𝜆𝑚𝐸𝑖𝑇𝑃𝐸𝑖/2 + 𝐸𝑖𝑇𝑃𝜆𝑚𝐼𝐸𝑖/2 − 𝜎 𝑊𝑇𝑊 − 𝑊𝑇𝑊 /2 ≤ −𝜆𝑚(𝐸𝑖𝑇𝑃𝐸𝑖/2 + 𝑊𝑇𝑊/2𝛾) + 𝐸𝑖𝑇𝑃𝜆𝑚𝐼𝐸𝑖/2 + 𝜆𝑚𝑊𝑇𝑊/2 ≤ −𝜆𝑚𝑉 + Φ                                                                       (38) 

Defining Φ = 𝐸 𝑃𝜆 𝐼𝐸 /2 + 𝜆 𝑊 𝑊/2  and utilizing Equation (37), we could derive 
Equation (39). 𝑉(𝑡) ≤ (𝑉(𝑡 ) − Φ/𝜆 )𝑒 ( ) + Φ/𝜆  (39) 

According to Equation (39), it was bounded even below the threshold value. Using 
the reverse saturation filter, this system was not smooth and had two bounds. However, 
as both cases were bounded, the whole control system was confirmed to be asymptotically 
stable [29,30,40–42]. 

4. Simulation 
4.1. Simulation Setup 

Computer simulations were performed to verify the performance of the proposed 
controller. The quadrotor parameters [43] used in the simulation are listed in Table 1. 

Table 1. The quadrotor parameters. 

Parameter Description Value 𝑚 Mass of quadrotor 0.5 [kg] 𝐼  Moment of inertia about 𝑋  0.0023 [kg ∙ m ] 𝐼  Moment of inertia about 𝑌  0.0023 [kg ∙ m ] 𝐼  Moment of inertia about 𝑍  0.0051 [kg ∙ m ] 𝑙 Distance between center of 
the quadrotor and the pro-

peller 
0.17 [m] 𝑏 Thrust factor 0.00018 [N ∙ m ] 𝐽  Total moment of inertia of 

motor 0.000065 [kg ∙ m ] 
g Acceleration of gravity 9.81 [m/s ] 

The control parameters are shown in Table 2, and the sampling time was 0.001 s. All 
control parameters were determined through iterative simulations. The parameter deter-
mination process was a step-by-step tuning process starting from I-PID. The RBF neural 
network initial weight 𝑊 = [0.1, 0.01, 0.1, 0.01, 0.1], c = [−1, 0.5, 0, 0.5, 1], and 𝑏 = 15. 

Table 2. The proposed controller parameters. 

Parameter Value 
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𝑘  8 𝑘  0.002 𝑘  1.6 𝑀 0.02 𝑃 28.5 0.50.5 28.5  𝛾 0.7 𝜎 0.2 𝜇  0.5 𝜇  0.2 𝜅 0.01 𝛽 0.001 
N 0.1 

The relationship between the control input and the angular velocity of the rotor was 
defined as Equation (40). 𝑢𝑢𝑢𝑢 = 𝑏 𝑏 𝑏 𝑏−𝑙𝑏 0 𝑙𝑏 00𝑑 −𝑙𝑏−𝑑 0 𝑙𝑏𝑑 −𝑑 ⎣⎢⎢⎢

⎡𝜔𝜔𝜔𝜔 ⎦⎥⎥⎥
⎤
 (40) 

where d is the drag factor and Ω = 𝜔 − 𝜔 + 𝜔 − 𝜔 . The path equation set to follow a 
continuous helical path in the simulation is given in Equation (41). In this simulation, ef-
fects such as disturbances, model uncertainty, and noise were considered lumped disturb-
ances. Therefore, the lumped disturbance used a complex disturbance including disturb-
ance proportional to the velocity term, a sinusoidal signal, and a constant bias, and was 
defined as Equation (42) and applied to the quadrotor. 𝑥 = (1 − 𝑒 . ) ∙ sin(𝑡)𝑦 = (1 − 𝑒 . ) ∙ cos(𝑡)𝑧 = 0.1𝑡  

𝜓 = 1 

(41) 

𝐷 = 𝑘 ∙ 𝑥 + 2 sin(1.5𝑡) + 0.8𝐷 = 𝑘 ∙ 𝑦 + 4 sin(2𝑡) + 0.7   𝐷 = 𝑘 ∙ 𝑧 + 3 sin(3𝑡) + 1.5     𝐷 = 𝑘 ∙ 𝜙 + 3 sin(2𝑡) + 0.9   𝐷 = 𝑘 ∙ 𝜃 + 3 sin(3𝑡) + 0.7    𝐷 = 𝑘 ∙ 𝜓 + 3 sin(1.5𝑡) + 0.8 

(42) 

𝑘  was set at 0.9, defining the drag coefficient. The threshold value for input satu-
ration was 10. 

Quadrotor systems inherently pose an underactuated problem, which complicates 
position control using conventional controllers. Typically, quadrotor systems resolve this 
issue by employing coupling equations that enable movement along the x and y axes 
through control inputs 𝜙  and 𝜃 . There are research examples for this coupling equation 
[8–10,15,16,43]. One method to achieve this is through the relationship with dynamics and 
another method is to design a controller. This study utilized a coupling equation for 𝜙  
and 𝜃 , as presented in Equation (43), to avoid additional controller design. 𝑠𝑖𝑛𝜙 = 𝑥𝑠𝑖𝑛𝜓 − 𝑦𝑐𝑜𝑠𝜓𝑣 , 𝑡𝑎𝑛𝜃 = 𝑥𝑐𝑜𝑠𝜓 + 𝑦𝑠𝑖𝑛𝜓𝑧 + 𝑔  (43) 

The quadrotor, 𝜃, and 𝜙 needed to remain around zero to maintain the quadrotor at-
titude. Additionally, to track the x and y axes, we utilized the error signal and the coupling 
equation, such as Equation (44), similar to the existing quadrotor PD control system. 
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𝜙 = 𝑥 𝑠𝑖𝑛𝜓 − 𝑦 𝑐𝑜𝑠𝜓𝑣 , 𝜃 = 𝑥 𝑐𝑜𝑠𝜓 + 𝑦 𝑠𝑖𝑛𝜓𝑧 + 𝑔  (44) 

The whole quadrotor control diagram for simulation is shown in Figure 3. The quad-
rotor dynamics part contains thruster information and input saturation. 

 
Figure 3. Quadrotor control system structure. 

4.2. Simulation Results 
This chapter presents the simulation results using the parameters and control system 

covered in Section 4.1 The initial value of the quadrotor was 𝑥 = 0.3, 𝑦 = 0.2, 𝑧 = 0, 𝜙 =0.05, 𝜃 = 0.035, 𝜓 = 0. 
Figure 4 illustrates the tracking performance of both the proposed controller and the 

PID control when following the reference trajectory. As indicated by the results, both con-
trollers were capable of maintaining effective tracking performance, even in environments 
with disturbances. These outcomes confirm that both the traditional PID control system 
and the coupling equations used effectively managed the control tasks. However, the PID 
control was slightly wider in the x and y axes in the reference trajectory than the proposed 
controller. This means that the proposed controller showed better tracking performance 
compared to the PID control. Therefore, the next section discusses the position and pos-
ture tracking performance of the proposed controller and PID control. 

 
Figure 4. Comparison of 3D trajectory tracking performance using the proposed controller and PID 
control.  
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4.2.1. Position Control Simulation Results 
This chapter presents the position control simulation results using the proposed con-

troller. Figure 5 illustrates the position tracking performance of the proposed controller, 
while Figure 6 displays the performance of the PID control. The results depicted in Figures 
5 and 6 demonstrate good tracking performance across all three axes. First, we see that the 
tracking performance for the X-axis of the proposed controller converged to the reference 
trajectory at 1.145 s. The maximum error that occurred was 0.05, which shows that the 
error was well suppressed. On the other hand, with the PID control, the X-axis converged 
to the reference trajectory at 1.532 s. The maximum error that occurred was 0.125. Next, 
the Y-axis tracking performance of the proposed controller showed that it converged to 
the reference trajectory in 1.449 s. The maximum error was 0.221, which was larger than 
for the X-axis error but smaller overall, showing satisfactory performance. The perfor-
mance of the PID control was also satisfactory, converging to the reference trajectory in 
1.844 s. The maximum error that occurred was 0.236. Z-axis tracking performance was 
different from the x-axis and y-axis. Based on the maximum error amplitude occurring 
below 0.2, the tracking performance of the proposed controller was found to reach near 
the reference trajectory in 1.5 s. The error was 0.117, and it can be seen that it operated 
around the reference trajectory. PID control also operated based on the reference trajec-
tory and converged in 6.316 s, with an error of 0.161. A detailed comparison can be seen 
in the error comparison in Figure 7. As can be seen from the position control results, the 
x-axis tracking performance was noticeably improved, and the impact on the y and z axes 
was slightly improved, showing that all three axes could be improved. 

 
Figure 5. Position tracking performance of the proposed controller. 

 
Figure 6. Position tracking performance of the PID control. 



Drones 2024, 8, 179 13 of 17 
 

 
Figure 7. Comparison of the position error performance of the proposed controller and PID con-
trol. 

4.2.2. Attitude Control Simulation Results 
This chapter presents the attitude control simulation results for both the proposed 

controller and the traditional PID control. The reference signal 𝜙 , 𝜃  was generated by 
the position PD controller. Consequently, the expression of the reference signal varied 
based on the tracking performance of each controller. Figures 8 and 9 illustrate the attitude 
tracking performance of the proposed controller and the PID control, respectively, while 
Figure 10 compares the attitude error performance between the two controllers. At 𝜙, the 
proposed controller began to converge in 1.9 s and showed excellent tracking performance, 
with a maximum error of 0.008. On the other hand, although the PID control could re-
spond to changes in signals, it did not have excellent tracking performance. The maximum 
error was 0.173. At 𝜃, it converged from about 2.6 s. The maximum error occurred at 0.25. 
After 2.6 s, the tracking performance error rapidly decreased and converged. In the case 
of the PID control, the convergence speed was 2 s faster than that of the proposed control-
ler. However, compared to the proposed controller, the tracking performance was insuf-
ficient, and a large error occurred during operation, with a maximum error of 0.142. 

 
Figure 8. Attitude tracking performance of the proposed controller. 
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Figure 9. Attitude tracking performance of the PID controller. 

 
Figure 10. Comparison of the attitude error performance of the proposed controller and PID con-
trol. 𝜓  exhibited similar behavior characteristics to a second-order system. The maxi-
mum %overshoot was 39% and converged to a steady state around 2.7 s. After conver-
gence, it had high tracking performance. For the PID control, the maximum %overshoot 
was 66% and ranged between 0.088 and 0.117 from around 8.5 s. 

Figure 11 shows the control input comparison results when the proposed controller 
and the quadrotor system using PID control tracked the reference trajectory. The control 
input aspect was similar for both controllers. In particular, as shown in 𝑈 , the proposed 
controller could generate large inputs at the beginning of an operation that required a lot 
of tracking performance or when control inputs were required. Additionally, when enter-
ing a steady state, it could be confirmed that phenomena such as chattering caused by 
unnecessary control input did not occur due to the reverse saturation filter. 

Consequently, the proposed control system enabled the design of a control system 
based on a model-free technique similar to the conventional PID control, and it was con-
firmed that it could enhance tracking performance. 
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Figure 11. Comparison of the control input using the proposed controller and PID control. 

5. Conclusions 
In this paper, an I-PID controller was utilized that was similar to the PID controller 

widely used in previous quadrotor systems and showed high robustness. To enhance the 
robustness of the control system, the time-delay estimation error was compensated for 
with an RBF neural network. To address the shortcomings of neural network systems and 
construct a more robust controller, this paper proposed an adaptive robust term. This ad-
ditional control input included an adaptative term to respond to large signal changes. It 
was combined with a reverse saturation filter to remove unnecessary control input in a 
steady state. The adaptive law of the proposed controller was designed based on Lya-
punov stability to satisfy stability. The stability of the entire control system was proven by 
examining the boundary based on the reverse saturation filter section. 

To verify the control system, simulations were performed on a quadrotor navigating 
a spiral path, subjected to 6-axis lumped disturbances. A conventional PID controller, 
commonly employed in quadrotor systems, served as the baseline for comparison. The 
simulation results demonstrated that the overall tracking performance of the proposed 
controller was superior to that of the PID control. With the proposed controller, conver-
gence was achieved within 3 s across all six axes, with the error being reduced to as low 
as 0.23. Consequently, the controller introduced in this paper could be configured simi-
larly to the conventional PID controller, yet it exhibited satisfactory performance. 

In the future, we plan to make a quadrotor system to experimentally verify the con-
troller and then conduct tracking experiments using a GPS (Global Positioning System) 
and hovering performance tests in situations where disturbances exist. 
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