
Heliyon 10 (2024) e28087

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

IoT service composition based on improved Shuffled Frog Leaping

Algorithm

Zhengyi Tang a,b,c, Yongbing Wu a,c, Jinshui Wang a,b,c,∗, Tianwei Ma a,c

a School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, 350118, Fujian, China
b Key Laboratory of Hunan Province for Mobile Business Intelligence, Hunan University of Technology and Business, Changsha, 410205, Hunan,
China
c Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, 350118, Fujian, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Service composition

Quality of service

Service composition optimization

Shuffled Frog Leaping Algorithm

IoT service

In the complex Internet of Things (IoT) environment, a plethora of IoT services with akin functions
but varying qualities of service exist. To meet diverse customer needs and drive widespread
application, service composition optimization becomes crucial. In the current era of rapid
development in artificial intelligence, intelligent algorithms play a significant role in optimizing
service composition. However, algorithms applied to IoT service composition optimization face
common challenges of low search efficiency and insufficient optimization precision, including
the Shuffled Frog Leaping Algorithm (SFLA) and Genetic Algorithm (GA). Therefore, this study
seeks to enhance the perception of service quality in IoT service composition. It proposes an
improved SFLA (ISFLA) based on the original SFLA. The algorithm integrates chaos theory and
reverse learning theory for the acquisition of the initial population. It utilizes Euclidean distance
to partition the population into groups and employs Gaussian mutation to optimize the optimal
individual of each group. Finally, the entire population undergoes evolution through a local
update method based on two strategies. Simulated experiments were conducted to search for
optimal IoT service composition solutions of different scales. The results indicate that, compared
to the SFLA, GA, ISFLA*, IGSFLA and SFLAGA, ISFLA achieves superior fitness values, better
composition solutions, and exhibits faster convergence, higher stability, and greater overall
operational efficiency.

1. Introduction

With the incessant popularization of Service Oriented Architecture (SOA) technology, a large number of resources are converted
into available services, thereby Enhancing both the efficiency and efficacy of the organization [1]. The success of SOA in the
traditional Internet field provides a reference path for the advancement of the IoT. Researchers apply the ideas and methods of
SOA to the design of the IoT system, resulting in the concept of IoT service [2–4]. With the rapid maturation of Internet and IoT
technology, an escalating count of services have been published by various enterprises in the form of web services on different cloud
computing platforms. The chain reaction is that the number of web service resources in different fields on the Internet is growing
crazy [5], and the types and numbers of IoT services in different areas of the IoT system are also growing exponentially. At the same

* Corresponding author.
Available online 27 March 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: wangjinshui@fjut.edu.cn (J. Wang).

https://doi.org/10.1016/j.heliyon.2024.e28087

Received 12 October 2023; Received in revised form 26 February 2024; Accepted 12 March 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:wangjinshui@fjut.edu.cn
https://doi.org/10.1016/j.heliyon.2024.e28087
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2024.e28087&domain=pdf
https://doi.org/10.1016/j.heliyon.2024.e28087
http://creativecommons.org/licenses/by-nc-nd/4.0/

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

time, in the IoT environment, the demands of users are also becoming more personalized and intricate. In reality, a standalone IoT
service has been increasingly insufficient to meet users’ practical needs. Therefore, it has become an active research topic to build a
composite service by combining multiple single services to meet the intricate practical demands of users. So, the service composition
technology appears particularly important and critical [6–9]. In the huge IoT service set, there are numerous IoT services with the
similar functionalities but different non-functional properties, which leads to plenty of composite IoT services that seem to meet the
user demands under the same IoT service composition logic. However, the non-functional attributes of IoT services need to become
quantified by the performance of each characteristic of IoT services. Therefore, to evaluate the pros and cons of composite IoT
services, a great number of studies have introduced quality of service (QoS) indicators to measure the non-functional attributes of
services. On the basis of fulfilling users’ functional requirements, we aim to find the composite IoT services with the best overall QoS
[10]. This kind of problem is commonly referred to as the optimization problem of IoT service composition. For the composition
optimization method of IoT services, traditional web services have brought great research contributions and reference value. For the
traditional web service composition method, there are typically two methods: static composition and dynamic composition [11]. This
paper studies the problem of IoT service composition under the static composition method. This method mainly includes three steps:
determining the task process that describes the demands of user, matching and querying the candidate collection of IoT services for
each task in the task process, and generating the composite IoT service to meet the demands of user through composition. This paper
only considers the problem in the third step, when the task process and the candidate collection of IoT services of each task are known,
that is, on the premise of fulfilling the functional requirements, a candidate service is selected for each task, and the composite IoT
service is formed by combination, and finally meets the non-functional requirements of users as much as possible. Obviously, this is a
typical NP-hard problem. However, there are mainly two approaches to solve the NP-hard problem: exact algorithm and approximate
algorithm [12]. The exact algorithms predominantly employ exhaustive methods, which is to find the best service composition by
exhaustive traversal. The other approximation algorithm mainly uses swarm intelligence algorithm, which is suitable for large-scale
service composition. Swarm intelligence algorithms are often utilized to address combinatorial optimization problems because they
can find optimal or nearly optimal solutions within a relatively short timeframe.

The modeling of QoS-based web service composition typically involves an extremely large solution space, posing significant
challenges for researchers. This challenge becomes even more formidable when dealing with more complex IoT services. Existing
research has demonstrated that intelligent algorithms are a popular research direction in service composition optimization.

However, a majority of current swarm intelligent algorithms face limitations in quickly obtaining optimal solutions and exhibit
poor stability. Therefore, this paper will draw inspiration from traditional methods of web service composition optimization. Faced
with the challenge of large-scale IoT service composition, the objective is to employ swarm intelligence algorithms for composite
optimization, striving to meet users’ non-functional requirements while satisfying functional demands. Thus, this paper makes the
following contributions:

• According to the non-functional QoS attributes of IoT services, the formula for calculating the comprehensive QoS value of
IoT service composition is designed as the fitness function to be optimized in this paper to find the non-functional optimal IoT
service composition scheme.

• The population initialization and group division method of the classical SFLA are improved.

• The mutual learning strategy of the original SFLA is combined with the evolution strategy of the GA [13], and the selection,
crossover and mutation strategy of the original GA are improved. An improved SFLA based on the dual strategy local search
method of mutual learning and crossover mutation was formed.

• The improved SFLA is applied to the QoS-based IoT service composition optimization, and finally forms the IoT service compo-

sition solution with the largest fitness value, that is, the most non-functional.

2. Related works

Nowadays in the field of artificial intelligence, there has been a continuous surge in research and innovation concerning intelligent
algorithms, significantly impacting optimization.

Reference [14] introduced a novel Chaos Sine-Cosine Firefly (CSCF) algorithm, which combines chaotic sine-cosine and firefly
algorithms to get better convergence speed and efficiency while reducing complexity. The method offers multiple variants, oper-

ating under different chaotic phases to select the optimal one. The study extensively evaluated the CSCF algorithm’s performance
across various chaotic benchmark functions and validated its effectiveness, robustness, and efficiency through simulation results on
engineering design problems. Reference [15] utilized advanced optimization algorithms to enhance deep convolutional learning,
specifically employing a modified Harris Hawks Optimization (HHO)-based deep convolutional neural network. By integrating GWO
and HHO, the method aimed to improve results while controlling convergence speed and enhancing overall performance. Exper-

imental comparisons with nine other algorithms showed superior performance in precision, accuracy, F-measure, recall, memory
usage and execution time. In reference [16], SFLA is introduced for generating structural test data, known for its fast convergence
and straightforward implementation. Results show an average of 99.99% branch coverage, 99.97% success rate, and an average of
2.03 generations to cover all branches. In reference [17], Bölen is introduced for clustering software modules, merging SFLA and GA.
Experiments with traditional datasets affirm that this approach surpasses previous methods in convergence speed, module clustering
quality, and result stability. In reference [18], Düzen is introduced to enhance software module clustering. Utilizing a meta-heuristic
memetic algorithm, Düzen incorporates the SFLA. Results compared to earlier approaches demonstrate Düzen’s superior clustering
2

quality, data stability, convergence to best solutions in fewer repetitions, higher data mean and faster execution time for clustering.

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Furthermore, in the context of collective intelligent algorithms for service composition problems, numerous researchers have
made outstanding contributions to addressing QoS-based web service composition issues. They have proposed various enhanced
intelligent algorithms and applied them to optimize service composition, aiming to obtain approximate optimal solutions for web
service composition.

Reference [19] proposes an improved GWO to realize the service composition of large-scale web services. This algorithm in-

troduces chaos theory and a nonlinear convergence factor into the Gray Wolf algorithm. Finally, parallel experiments using the
MapReduce framework were conducted, demonstrating superior performance in average fitness and stability compared to other al-

gorithms. The proposed method effectively addresses the challenges of composite optimization for large-scale web services. Reference
[20] applies the Sparrow Search Algorithm (SSA) to optimize web service composition. The algorithm introduces an adaptive adjust-

ment step size factor, enhancing the algorithm’s global search capability. Comparative experiments validate the proposed algorithm’s
high precision, fast convergence speed, and stability in solving service composition problems. The method is deemed feasible and ef-

fective. Reference [21] introduces a Chaos Genetic Algorithm (CGA) to address the issue of service quality perception in web service
composition. The method incorporates the concept of chaos, using chaos theory to generate the initial population. The algorithm
evolves the population through the selection, crossover, and mutation operations of GA. By introducing chaotic small perturbations
to the offspring population after each evolution, it effectively overcomes the premature convergence and slow convergence speed
drawbacks of genetic algorithms. The results show that this algorithm can achieve faster convergence and higher reliability com-

pared to existing genetic algorithms. Reference [22] proposes an improved krill herd algorithm (PRKH), enhancing the algorithm’s
search capabilities. Building upon the base krill herd algorithm (KH), this algorithm incorporates adaptive crossover probability and
random perturbation based on actual offsets. This integration gets a balance between the global and local search capabilities of
the KH. In the final simulation, the proposed improved algorithm is compared to KH, PSO, ABC and FPA. The experimental results
indicate that the PRKH can quickly find composite services with superior Quality of Service. Reference [23] introduces an Improved
Flower Pollination Algorithm (IFPA), which dynamically transitions between global and local searches to enhance population opti-

mization. The algorithm incorporates mutation and exchange operations from the DE into the FPA, thereby boosting the effectiveness
and diversity of flowers. Additionally, a greedy strategy is employed to select flowers with higher fitness values, accelerating the
algorithm’s convergence and strengthening its optimization capabilities. Experimental results indicate that, compared to DE, KDE,
FPA, and EFPA algorithms, IFPA exhibits faster convergence and superior optimization performance in solving service composition
problems. Reference [24] proposes an improved GA by combining simulated annealing with traditional GA. The idea of simulated
annealing is introduced into the selection and mutation operator filtering processes to choose better solutions. In the algorithm’s
selection and mutation processes, the probability of filtering out inferior genes is set, and the mutation rate gradually increases to
ensure the diversity of the algorithm’s population. This improved GA is applied to web service composition optimization, resulting
in better optimization outcomes. Reference [25] combines GA and SFLA, and proposes an improved SFLA (SFLA-GA), which changes
the local search strategy of the original SFLA – mutual learning strategy into the cross inheritance of GA to carry out local search of
population, and applies it to the combination optimization of cloud services based on QoS, achieving a good solution effect. However,
the algorithm is not good enough in convergence speed and stability. Reference [26] proposed an improved SFLA (IGSFLA), which
introduced Logistic chaotic initialization in population initialization and Gauss mutation factor in the local update strategy of pop-

ulation. The IGSFLA was used to optimize the multivariable PID controller parameters, which enhanced the optimization accuracy
and convergence speed. However, the algorithm is not good enough in terms of stability and solution quality.

3. IoT service and composition optimization problem

3.1. Problem description

The process of optimizing the combination of IoT services can be described as determining user requirements to form correspond-

ing task workflows, representing the abstract IoT service layer. Subsequently, for each abstract IoT service, specific IoT services are
chosen from the candidate service set, seeking the optimal combination of IoT services based on satisfying user QoS constraints, as
illustrated in Fig. 1. In the Fig. 1, 𝑇 1, 𝑇 2, ..., 𝑇 𝑛 represent task workflows formed through requirements, and each task undergoes
functional matching to filter out several candidate IoT services. 𝐼𝑜𝑇𝑆(𝑛, 𝑀) represents the Mth IoT service in the candidate IoT
service set under the nth task. The n-dimensional array [2, 3, 4, 12, ..., 39] in the figure represents one of the combination schemes. If
there are 10 tasks, and each task has 100 specific services that meet the relevant functionalities, there are a total of 10100 combi-

nation schemes. This falls under the category of NP-hard problems, necessitating the use of intelligent algorithms for combinatorial
optimization.

Therefore, this paper first designs the fitness function for calculating the fitness value, where an n-dimensional array represents
an optimization individual, each with its own fitness value. In the end, this paper optimizes and obtains the optimal value through
improved intelligent algorithms.

3.2. Definitions of IoT service

IoT service (IoTS). It refers to the things and things in the IoT environment to achieve information interaction of functional
services equipment. This paper is represented as a triple IoTS = (TDP, FDP, QoSDP) where TDP is the text description of the IoTS,
FDP is the functional description of the IoTS, and QoSDP is the QoS attribute description of the IoTS. QoS attribute description is
3

used to measure the quality of IoTS, which represents the non-functionality of IoTS.

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Fig. 1. Composite IoTS encoding model.

Fig. 2. Four control structures.

Abstract IoT services (AIoTS). It refers to a set of IoTS, each of which contains the same or similar functions. Also referred to
the individual tasks in a requirements task process. In a requirement task process, AIoTS cannot substitute each other due to different
functions.

Control structure of IoTS composition. It refers to a series of control logic structures in the demand task process, including four
logical structures: sequence, parallel, selection and loop, as shown in Fig. 2. All the latter three control structures can be converted
4

to sequential structures, so this paper exclusively discusses sequential structures.

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Quality of Service (QoS). It pertains to the non-functional attributes of IoTS, that is, it represents the pros and cons of IoTS,
such as execution time, service cost, reliability, etc. It can be further reflected in the quality of the IoT service in the case of function
satisfaction.

Service quality weight. 𝑊 = [𝑤1, 𝑤2, 𝑤3, 𝑤4]. It refers to the weights assigned to various attributes in IoTS, which meets ∑4
𝑖=1𝑤𝑖 = 1.

3.3. QoS attribute preprocessing

Since each QoS attribute has a different impact on service selection, such as reputation and service price, higher reputation is
better, and higher and better attributes can be classified as friendly attributes. However, the lower the service price is better, and
the lower the better attribute is classified as the adversarial attribute. Therefore, each QoS can be divided into friendly attributes
and hostile attributes according to the influence effect. The different dimensions will significantly impact experimental results, thus
necessitating the normalization of QoS to mitigate these effects. In this paper, the QoS values are normalized to [0,1] by referring
to the method of reference [27]. The specific normalization operations for friendly and hostile attributes are calculated according to
Equation (1) and (2) respectively,

𝑄+
𝑖
=

{
𝑄𝑖−min(𝑄𝑖)

max(𝑄𝑖)−min(𝑄𝑖)
, min(𝑄𝑖) ≠max(𝑄𝑖)

1, min(𝑄𝑖) = max(𝑄𝑖)
(1)

𝑄−
𝑖
=

{ max(𝑄𝑖)−𝑄𝑖
max(𝑄𝑖)−min(𝑄𝑖)

, min(𝑄𝑖) ≠max(𝑄𝑖)

1, min(𝑄𝑖) = max(𝑄𝑖)
(2)

In Equation (1) and (2), 𝑄+
𝑖

is denoted as the standardized value of the friendly attribute of the IoTS, 𝑄−
𝑖

is denoted as the
standardized value of the hostile attribute of the IoTS, 𝑚𝑎𝑥(𝑄𝑖) is denoted as the upper limit value of the attribute, and 𝑚𝑖𝑛(𝑄𝑖) is
denoted as the lower limit value of the attribute.

3.4. QoS computation for IoTS composition

Since this paper only considers the method of IoTS composition under the sequential structure, only the calculation method under
the sequential structure is considered for calculating the aggregated QoS value of each QoS attribute. When an IoTS composition
scheme is formed, a total value of the scheme needs to be obtained, and the quality of the IoTS composition scheme is measured in
terms of the aggregate value. So, it is crucial to aggregate the QoS of the scheme to obtain the aggregate QoS value. For different
QoS attribute, the respective calculation equations are needed to calculate the QoS values.

3.4.1. Execution time

It shows to the time interval from the user’s IoTS request to the final conforming IoTS being sent to the user, which also includes
the total running time of the IoTS. The duration QoS of the composite IoTS is calculated as follows,

𝑄𝑡 =
𝑛∑
𝑖=1
𝑞𝑡
𝑖

(3)

3.4.2. Service cost

It signifies to the cost that the user needs to pay to use the IoTS. The aggregate value of cost QoS is calculated as follows,

𝑄𝑐𝑜 =
𝑛∑
𝑖=1
𝑞𝑐𝑜
𝑖

(4)

3.4.3. Credibility

It refers to the degree of trust users have in the IoTS they use. The aggregate value of reputation QoS is calculated as follows,

𝑄𝑐𝑟 =
1
𝑛

𝑛∑
𝑖=1
𝑞𝑐𝑟
𝑖

(5)

3.4.4. Reliability

It refers to the comprehensive capability that can correctly and efficiently execute user requests. The aggregate value of reliability
QoS is calculated as follows,

𝑄𝑟𝑒 =
𝑛∏
𝑖=1
𝑞𝑟𝑒
𝑖

(6)

Finally, the simple weighting method is used to calculate the aggregate QoS value of IoTS composition scheme. The equation is
5

as follows,

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Fig. 3. Flow chart of SFLA.

𝑄 =
∑

𝑘∈{𝑡,𝑐𝑜,𝑐𝑟,𝑟𝑒 }
𝑤𝑘𝑄𝑘 (7)

In Equation (3), (4), (5), (6) and (7), 𝑛 refers to the number of AIoTS (i.e., tasks of the task process); 𝑞𝑡
𝑖
, 𝑞𝑐𝑟
𝑖

, 𝑞𝑐𝑜
𝑖

and 𝑞𝑟𝑒
𝑖

are the
attributes of the ith subservice in the composite IoTS, corresponding to the normalized values of Execution time, Credibility, Service
cost and Reliability, respectively. 𝑤𝑘 is the weight.

In summary, it can be observed that the purpose of IoTS composition is to select a specific IoTS from each AIoTS set to form a
composite IoTS, so as to maximize 𝑄. The Equation (7) is the objective to be optimized by the swarm intelligent algorithm in this
paper, which is the fitness function to evaluate the IoTS composition scheme.

4. Composition optimization based on improved SFLA

In this section, we start by providing a brief introduction to the basic principles and fundamental steps of the original SFLA,
pointing out the algorithm’s drawbacks. Subsequently, a series of improvements are made at various stages of the original SFLA,
ultimately resulting in the Improved SFLA.

4.1. SFLA

SFLA [28] is a simulation of frog group hopping foraging behavior in wetland. In the algorithm, the multi-dimensional positions
of 𝑁 frogs are generated randomly in the feasible region to get the initial population, and the multi-dimensional position of each frog
indicates a solution. The position of the ith frog means the solution of the problem as 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, ..., 𝑥𝑖𝑛), and 𝑛 represents the
dimension of the solution. Secondly, the fitness values of 𝑁 frogs are solved, and then they are sorted in decreasing order, and then
the frog group is divided. Then, the local search of the population is carried out. In the local search process, 𝑞 frogs are selected to
form sub-groups by roulette wheel method for each group, and the position of the worst frog in the sub-group is updated. The worst
frogs of all sub-groups are updated and the population is reordered and divided into groups. The flowchart of the SFLA is shown in
Fig. 3. In the Fig. 3, the left side shows the global flow chart and the right side shows the local search chart.

The local update strategy is a three-step jump strategy as follows.

4.1.1. Step 1 jump

The worst frog in the sub-group jumps in the best frog’s direction in the same group, and the update Equation (8) and (9) are as
6

follows,

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

𝑆 =
{

𝑚𝑖𝑛(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑏 −𝑋𝑤), 𝑆𝑚𝑎𝑥)
𝑚𝑎𝑥(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑏 −𝑋𝑤),−𝑆𝑚𝑎𝑥)

(8)

𝑋𝑛𝑒𝑤
𝑤

=𝑋𝑤 +𝑆 (9)

4.1.2. Step 2 jump

If the new position of the worst frog is not better than the old position, the second jump is performed, and the worst frog jumps
to the global optimal frog position, and the update Equation (10) and (11) are as follows,

𝑆 =
{

𝑚𝑖𝑛(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑔 −𝑋𝑤), 𝑆𝑚𝑎𝑥)
𝑚𝑎𝑥(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑔 −𝑋𝑤),−𝑆𝑚𝑎𝑥)

(10)

𝑋𝑛𝑒𝑤
𝑤

=𝑋𝑤 +𝑆 (11)

4.1.3. Step 3 jump

If the new position of the worst frog is still not better than the old position, the final jump is carried out, that is, a random jump
to the whole wetland (solution space).

In Equation (8), (9), (10) and (11), 𝑟𝑎𝑛𝑑() represents the random number in (0,1), 𝑋𝑏 is the optimal solution of each group, 𝑋𝑔
is the optimal solution of the entire frog population, 𝑆 is the jump step size of the frog individual, 𝑆𝑚𝑎𝑥 is the maximum step size of
the frog individual jump, and 𝑋𝑛𝑒𝑤

𝑤
is the multi-dimensional position of the frog after the jump.

Although SFLA is faster than other algorithms in the convergence rate, the multi-dimensional position update formula of SFLA
only involves 𝑋𝑔 and 𝑋𝑏, and relies too much on 𝑋𝑔 and 𝑋𝑏, which makes the population search area not comprehensive enough,
the variety within the population is also reduced, and the algorithm is easy to converge prematurely.

4.2. ISFLA

In order to address the drawbacks of the standard SFLA, such as premature convergence and susceptibility to local optima, this
paper improves the standard SFLA as follows.

4.2.1. Population initialization

Based on the initial population, SFLA generates a new population of frog positions through the iterative operation of the optimal
frog position and the fitness function. Therefore, the quality of the initial population of frog positions will affect the rate at which the
algorithm converges and the quality of the generated solutions to some extent. For SFLA, its initial population is formed by means
of random generation. However, the randomly formed initial population cannot make the individual frogs as evenly distributed in
the solution space as possible, which will lead to the decrease of the variety within the initial population. Consequently, the SFLA is
easy to premature local convergence and premature.

To mitigate this problem, this paper draws on the combination method of Logistic chaotic map [29] and Reverse learning [30]

to generate the initial population, so that the individual frogs are first distributed in the solution space as evenly as possible, so that
the search efficiency of the algorithm is better.

In the population initialization phase, the Logistic chaotic map is used to form the initial population:

𝑦𝑢+1
𝑖

= 𝜇𝑦𝑢
𝑖
(1 − 𝑦𝑢

𝑖
) (12)

The Equation (12) is Logistic chaotic map equation, in the equation, 𝑦𝑖 is the chaotic variable (𝑖 =1, ..., 𝑛; 𝑛 means the number
of AIoTS); 𝑢 means the index of individuals in the population (𝑢 =1, ..., 𝑁 , 𝑁 denotes the size of the population); When 𝜇 denotes
the regulation factor, the system is in the state of complete chaos when 𝜇=4, which is taken as 𝜇=4.

Set 𝑢 = 0, and assign 𝑛 initial values with small differences between 0 and 1 to equation (12), but the initial values cannot be
chosen as 0, 0.25, 0.75, and 1.

The initial chaotic individual 𝑦1
𝑖

is obtained according to the Equation (12). Similarly, take 𝑢 = 1, ..., 𝑁 -1, the obtained 𝑁
initial chaotic individuals are respectively corresponding to the composite IoTS by the Equation (13), and finally the 𝑁 initial frog
individual positions are obtained.

𝑋𝑢+1
𝑖

=
⌈
𝑦𝑢+1
𝑖

+𝑚
⌉

(13)

In the Equation (13), 𝑚 represents the number of IoTS in AIoTS. ⌈⌉ denotes a function that rounds up; 𝑋𝑢+1
𝑖

is a specific IoTS of
AIoTS.

Then we further initialize the population using Reverse learning:

Reverse learning is a new method proposed by Tizhooshl in 2005. It is used to expand the range of generated solutions and
enhance the optimization and convergence ability of the SFLA. The main idea is to consider both feasible solutions and their reverse
solutions when solving a problem, and to select the better solution from the two solutions by solving the fitness function of the
specific problem. The calculation of the reverse solution is shown in the Equation (14),
7

𝑋𝑜𝑝 = 𝑎+ 𝑏−𝑋𝑖 (14)

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

In the Equation (14), 𝑎 and 𝑏 represent the maximum and minimum bounds of the elements in the feasible solution, respectively.
For each element of 𝑋𝑖, the opposite solution is calculated by the Equation (14). After generating the opposite solution of the original
solution, if the fitness value of the opposite solution is better than the original solution, the original solution is substituted by the
opposite solution. Finally, the initialization of the population is completed.

4.2.2. Group division

In SFLA, the frog population is divided to groups according to the order of the fitness value. However, this disadvantage brought
by the original partition method is that the distant frog individuals will be divided into the same family, making some of the
updated individuals become invalid solutions, that is, beyond the limit range of the solution, so that the evolutionary efficiency of
the algorithm will be affected. Therefore, this paper uses Euclidean distance [31] to divide frogs into groups. The new partitioning
method is as follows: First, the population of Frogs individuals in the frog population is expected to be divided into memes groups,
each containing 𝑚𝑒𝑚𝑒𝐹𝑟𝑜𝑔𝑠 frogs. Then the following rules are used for division:

1. Record the quantity of frogs in the current population as 𝐹𝑟𝑜𝑔𝑠, the number of group 𝑛= 1, and select the frog with the largest
fitness value in the current population;

2. Put the nearest 𝑚𝑒𝑚𝑒𝐹𝑟𝑜𝑔𝑠 − 1 frogs and the frog into the Nth group, 𝑛 = 𝑛 + 1, 𝐹𝑟𝑜𝑔𝑠 = 𝐹𝑟𝑜𝑔𝑠 −𝑚𝑒𝑚𝑒𝐹𝑟𝑜𝑔𝑠; Repeat steps 1
and 2 until 𝐹𝑟𝑜𝑔𝑠 is 0 and 𝑛 =𝑚𝑒𝑚𝑒𝑠 + 1.

In the above variables, 𝐹𝑟𝑜𝑔𝑠 denotes the quantity of frogs in the frog population, 𝑚𝑒𝑚𝑒𝑠 signifies the quantity of groups, and
𝑚𝑒𝑚𝑒𝐹𝑟𝑜𝑔𝑠 signifies the quantity of frogs in each group.

4.2.3. Gaussian mutation

Before entering the local search, if the best solution of the group does not reach the ideal optimum, learning from the worst
solution to the best solution will cause trouble of becoming trapped in the local optimum. Therefore, Gaussian mutation [32] is
carried out on the optimal solution of each group before entering the local search each time, and the better solution is selected as
the local optimal solution, which can prevent becoming trapped in the local optimum to some extent. The equations are as follows,

𝑆 = 𝑟𝑎𝑛𝑑() ∗𝑋𝑏 ∗𝐺(0,1) (15)

𝑋′
𝑏
=𝑋𝑏 +𝑆, |𝑆| < 𝑆𝑚𝑎𝑥 (16)

In Equation (15) and (16), 𝑟𝑎𝑛𝑑() signifies a random value in the interval (0, 1); 𝐺(0, 1) signifies a random value created from a
Gaussian distribution; 𝑋𝑏 denotes the optimal solution in the group; 𝑋′

𝑏
denotes the mutated solution; 𝑆 denotes the jump step size;

𝑆𝑚𝑎𝑥 denotes the maximum jump step size.

4.2.4. Dual strategy local search

Mutual learning.

In the local search of the population, SFLA uses a relatively simple and single updating position formula, so that each frog
individual is close to the frog position with the highest fitness value. However, this method of updating position is a method without
general direction. If an aimless search is carried out, the search time will become longer, the search efficiency will become lower,
the number of iterations to reach convergence will increase, and the population diversity will decrease in the later stage of the
search. In SFLA, it can be known that when the worst individual in the population is not improved after the first two jumps, SFLA
will finally jump randomly in the search space and randomly create new individual to substitute the worst individual. Although this
random jump method can prevent the algorithm to become trapped in the local optimum to some extent, due to the randomness and
contingency of evolution, it will form a situation that decreases the search speed.

To enhance the search efficiency, expand the search space, reduce the search time, improve the population diversity and escape
local optimum, this paper refines the local search strategy in SFLA, and proposes SFLA based on dual strategy local search. The
algorithm determines the update strategy of local search by judging whether the best solution changes when the quantity of iterations
exceeds the threshold number. When the optimal value remains unchanged for more than a threshold number of iterations during
the global update process, the crossover and mutation strategy is selected for the local search strategy, otherwise the mutual learning
strategy is selected. In this paper, the update strategy of the GWO algorithm is utilized for reference to enlarge the learning range of
the worst solution to avoid falling into local optimum. The mutual learning strategy adopted in this paper is a new three-step jump,

Step 1 Jump: The worst frog in the group jumps in the direction of the best frog, the second-ranked frog, and the third-ranked
frog in the same group. The update equations are as follows,

𝑆 =
{

𝑚𝑖𝑛(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑏 −𝑋𝑤) + 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑠𝑛𝑏 −𝑋𝑤) + 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑡ℎ𝑏 −𝑋𝑤), 𝑆𝑚𝑎𝑥)
𝑚𝑎𝑥(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑏 −𝑋𝑤) + 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑠𝑛𝑏 −𝑋𝑤) + 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑡ℎ𝑏 −𝑋𝑤),−𝑆𝑚𝑎𝑥)

(17)

𝑋𝑛𝑒𝑤
𝑤

=𝑋𝑤 +𝑆 (18)

Step 2 Jump: If the new position after the previous jump is not surpassing the old position, the worst frog jumps to the direction
of the global optimal and suboptimal frog positions, and the update equations are as follows,

𝑆 =
{

𝑚𝑖𝑛(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑔 −𝑋𝑤) + 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑠𝑛𝑔 −𝑋𝑤), 𝑆𝑚𝑎𝑥) (19)
8

𝑚𝑎𝑥(𝑟𝑎𝑛𝑑() ∗ (𝑋𝑔 −𝑋𝑤) + 𝑟𝑎𝑛𝑑() ∗ (𝑋𝑠𝑛𝑔 −𝑋𝑤),−𝑆𝑚𝑎𝑥)

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Fig. 4. Flow chart of Crossover-mutation.

𝑋𝑛𝑒𝑤
𝑤

=𝑋𝑤 +𝑆 (20)

Step 3 Jump: If the new position in the previous jump is still not surpassing the old position, it randomly jumps to the whole
search space.

In Equation (17), (18), (19) and (20), 𝑟𝑎𝑛𝑑() represents the random value located in (0, 1), 𝑋𝑏, 𝑋𝑠𝑛𝑏 and 𝑋𝑡ℎ𝑏 signify the best,
second-ranked and third-ranked solution in the population respectively, 𝑋𝑔 and 𝑋𝑠𝑛𝑔 represent the global optimal and second best
solution in the population, 𝑆 is the jump size of the individual frog. 𝑆𝑚𝑎𝑥 is the maximum jump size of the frog jump, and 𝑋𝑛𝑒𝑤

𝑤

signifies the multidimensional position of the frog after the jump.

Crossover-mutation.

In the early stage of search, when the cumulative number of iterations exceeds the threshold 𝛼 and the optimal solution is not
updated, it is mainly because the search space of mutual learning strategy is too small. In this case, to expand the search space,
improve the convergence efficiency and increase the population diversity, it is necessary to use the crossover and mutation method
of GA to update the position. The strategy of selecting the next generation population of genetic algorithm is improved, and the
strategy of selecting elite individuals to form the next generation population is adopted. In order to further optimize and improve the
SFLA, this paper does not use the selection crossover and mutation of the original GA to update the group in the Crossover-mutation
stage, this paper improves the original selection crossover and mutation. The improvements are as follows:

The improved selection, crossover, and mutation processes for each group are shown in Fig. 4. The crossover rate is 𝑐, the
mutation rate is 𝜀, and the number of individuals in each group is 𝑙. The details are as follows: for each group, the selected 𝑐 ∗ 𝑙
individuals are crossed with the optimal individual in the group respectively, and the better individual is retained. If the offspring
after crossover is not better, the individual is crossed with the optimal individual in the population, and the better individual is also
retained. If the offspring is not better, it is replaced with a random position. Then the quality individuals generated after crossover
are mutated through the mutation rate 𝜀. Finally, the group that returns to cross and mutate becomes the next generation group and
then the iterative evolution is used to participate in the local search.

In conclusion, this paper presents the ISFLA, and the algorithm’s process is outlined as follows: initially, the initial population is
generated through Logistic chaotic mapping and reverse learning, and the fitness values of each individual in the initial population
are calculated. Then, the population is partitioned into several groups based on the Euclidean distance. Subsequently, Gaussian
9

mutation is applied to the best individual in each group to introduce superior individuals, and within each group, a dual strategy

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Fig. 5. Flow chart of ISFLA.

of mutual learning or selective crossover and mutation is employed for local updates. The decision criteria are as follows: when the
iteration exceeds a given threshold and the global optimum of the population remains unchanged, the strategy of selective crossover
and mutation is chosen for local updates. Otherwise, the strategy of mutual learning is employed for updates. After completing the
local updates, the population is shuffled, and the process is repeated for the next generation until the algorithm’s end conditions are
met. And the flow chart of the ISFLA is shown in Fig. 5. In the Fig. 5, the left side shows the global flow chart and the right side
shows the local search chart.

4.3. Modeling composite IoTS

4.3.1. Encoding method

In this paper, the integer encoding method is used to represent the specific IoTS composition, and the integer list 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛]
is used to represent a solution of the IoTS composition, and the IoTS composition optimization problem is transformed into solving
the optimal solution of multi-dimensional vector 𝑋. Each integer 𝑥𝑖 in 𝑋 represents the index of the corresponding list of IoTS in the
corresponding AIoTS. The overall aggregated QoS value is calculated through the Equation (7), which is used as the fitness value of
each frog’s position, so as to compare and judge the IoTS composition scheme, and the survival of the fittest is obtained.

4.3.2. Description of the IoTS composition method

The procedure of IoTS composition optimization based on ISFLA is as follows,

(1) Using the QoS-based methodology to create a model for IoTS composition, and the multi-objective IoTS composition problem
is converted into a single-objective one;

(2) Initializing the population, Logistics chaotic and Reverse learning are employed to initialize the frog population. 𝑛 frogs were
10

generated, that is, 𝑛 IoTS composition schemes, and the fitness value of each individual is figured out through the aggregate QoS;

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Table 1

Value Range of QoS.

QoS Attribute Execution Time Service Cost Credibility Reliability

Value Range (0, 60] (0, 100] (2, 10] (0.1, 1]

Table 2

Algorithm Parameter Table.

Algorithm Name Setting of each parameter

𝑛 𝑚 𝐺𝐼𝑠 𝐿𝐶𝑠 𝛼 𝑐 𝜀

ISFLA 100 10 200 20 5 0.8 0.2

SFLA 100 10 200 20 \ \ \

IGSFLA 100 10 200 20 \ \ \

SFLAGA 100 10 200 \ \ 0.8 0.2

ISFLA* 100 10 200 20 5 0.8 0.2

GA 100 \ 200 \ \ 0.8 0.2

(3) Based on fitness value, the best solution 𝑃𝑔 is sorted in descending order and the Euclidean distance is used to divide the
population into 𝑚 groups;

(4) Gaussian mutation is performed on the best solution of each group in the population to obtain a better solution;

(5) The local update search based on dual strategy was carried out for each group;

(6) Shuffling and reshuffling each group;

(7) If the maximum iteration count is achieved, the operation will be terminated and the best solution will be obtained, which is
the best or near-optimal IoTS composition scheme; Otherwise, go back to step 3.

5. Result and discussion

5.1. Experimental environment and dataset

To verify the effectiveness of the proposed ISFLA in solving the QoS-based IoTS composition optimization problem, This paper
compares ISFLA with ISFLA* (ISFLA with original genetic algorithm), SFLA, GA, IGSFLA [26] and SFLAGA [25] from four aspects:
Effectiveness, Convergence, Stability and Runtime.

The experimental environment is: Windows 10, 64-bit operating system, 12th Gen Intel(R) Core (TM) i7-12700F 2.10 GHz, 16
GB memory, PyCharm Community Edition 2022.3.

Since there is no standard dataset for the IoTS at present, the QoS attribute parameters of the specific IoTS in each candidate
IoTS set in this experiment are randomly generated within the specified range. In this paper, four representative QoS attributes
of Execution time, Service cost, Credibility and Reliability are selected. The parameter ranges of each QoS attribute are shown in
Table 1.

To simulate the optimization procedure of IoTS composition, the experiments in this paper set different scales of IoTS for combi-

nation when verifying different properties of the algorithm. The scale of IoTS is represented as 𝐴 × 𝐼 , where 𝐴 means there are 𝐴
AIoTSs, and 𝐼 means there are 𝐼 candidate IoTSs in each AIoTS. In this paper, ISFLA, SFLA and GA are tested on the same dataset,
and each experiment is performed 100 times to avoid the contingency of the experiment and ensure the effectiveness and correctness
of the experiment.

In this paper, according to the QoS value range in Table 1, a random algorithm is used to generate the data sets, and the
following data sets are generated for each IoTS scale: IoTS10×50, IoTS10×100, IoTS20×50, IoTS20×100, IoTS30×50, IoTS30×100.
Experiments were performed using the datasets generated above.

5.2. Experimental parameter setting

In this paper, to avoid the influence of parameters, the parameter Settings in all experiments are consistent. The following
parameters need to be set in the experiment: the population size 𝑛, the number of groups 𝑚, the global maximum iteration times
𝐺𝐼𝑠 of each algorithm, the local evolution times 𝐿𝐶𝑠 of some algorithms, the algebraic threshold 𝛼 of the optimal value of ISFLA,
the crossover rate 𝑐 and the mutation rate 𝜀 of some algorithms. The specific parameter Settings are shown in Table 2. The weights
of the four different QoS attributes are set as: 𝑤𝑡 = 0.2, 𝑤𝑐𝑜 = 0.3, 𝑤𝑐𝑟 = 0.1, 𝑤𝑟𝑒 = 0.4.

5.3. Analysis of experimental results

To validate the optimization performance of the ISFLA in solving the large-scale IoTS composition challenge, the comprehensive
QoS of ISFLA, ISFLA*(ISFLA with original GA), SFLA, GA, IGSFLA [26] and SFLAGA [25] under different iterations were compared.
11

By calculating the fitness value of the IoTS composition, the optimization performance of the three algorithms is compared and

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Table 3

Average optimal fitness values for different IoTS scales.

A I Average optimal fitness values

ISFLA SFLA SFLAGA IGSFLA ISFLA* GA

10 50 4.732 4.2522 4.7303 4.2183 4.5845 3.7376

100 4.67 4.1203 4.6592 3.9569 4.5915 4.0993

20 50 9.0625 7.5937 9.0228 7.3085 8.7883 6.5119

100 9.5018 7.5736 9.3738 7.0832 9.1452 7.2635

30 50 13.821 10.7299 13.5842 11.9144 13.0303 9.2446

100 13.967 11.2272 13.6385 10.9166 13.1615 10.2398

Fig. 6. Comparison of the average optimal value when A=10.

analyzed. The larger the fitness value, the better the quality of IoTS composition solution. The algorithm is analyzed from four
perspectives: Effectiveness, Convergence, Stability and Runtime.

5.3.1. Analysis of effectiveness of the algorithm

The first is the effectiveness of the algorithm. This can be judged by comparing the average of the optimal fitness values obtained
after computing 100 maximum global iterations using each of the three algorithms. The larger the average fitness value, the better
the effectiveness. To evaluate the effectiveness of the algorithm more comprehensively, the optimization calculation was carried out
under different IoTS scales, including 10×50, 10×100; 20×50, 20×100; 30×50,30×100. The results of the specific implementation
of the experiment are shown in Table 3. It can be found that under different IoTS scales, the average optimal fitness value obtained
by ISFLA is larger than that of other algorithms in the table. And as the scale of IoTS becomes larger, the advantage of ISFLA also
becomes larger. This shows that ISFLA shows better results in large-scale iot service composition optimization. The results can also
be seen from Figs. 6 to 8. Therefore, it can be concluded that ISFLA has better effect and stronger effectiveness in IoTS composition
optimization.

5.3.2. Analysis of convergence of the algorithm

The second is the convergence of the algorithm. The experiment is also carried out under the above IoTS scale, as shown in Fig. 9

to Fig. 11 results. Under different scales of IoTS composition, with the increase of the number of global iterations, the average optimal
value of IoTS composition gradually increases, and all algorithms on the graph basically reach convergence within 200 iterations.
In Fig. 9, when A=10 in the IoTS scale, ISFLA can not only obtain the average fitness value not lower than other algorithms on
the graph, but also converge faster than other algorithms. For example, although the average fitness value obtained by ISFLA is not
significantly higher than that of SFLAGA, it reaches convergence significantly faster than SFLAGA. The global iteration times of ISFLA
are about 50, while that of SFLAGA is about 100. Compared with ISFLA*, although the difference in convergence speed between the
two is not very large, the average fitness value obtained by ISFLA is significantly higher than that of ISFLA*. Compared with SFLA,
GA and IGSFLA, ISFLA is superior in average fitness value and convergence speed. In Fig. 10, when A=20 in the IoTS scale, ISFLA
is still larger than other algorithms on the graph in the average fitness value, and the average fitness value of ISFLA is larger than
SFLAGA to a larger extent. In terms of convergence speed, the advantage of ISFLA over other algorithms is not obvious, but ISFLA
can get better average fitness value. In Fig. 11, when A=30 in the IoTS scale, compared with SFLAGA, the advantage of the average
fitness value obtained by ISFLA becomes larger again, and the convergence speed is better. Compared with other algorithms on the
graph, although ISFLA does not have an obvious advantage in convergence speed, the average fitness value obtained by ISFLA shows
an obvious advantage. It can be seen that with the increase of the scale of IoTS, the advantages of ISFLA gradually become larger. In
12

summary, it can be concluded that ISFLA has relatively better convergence performance.

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Fig. 7. Comparison of the average optimal value when A=20.

Fig. 8. Comparison of the average optimal value when A=30.
13

Fig. 9. Comparison of convergence of average optimal values when A=10.

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Fig. 10. Comparison of convergence of average optimal values when A=20.

Fig. 11. Comparison of convergence of average optimal values when A=30.

5.3.3. Analysis of stability of the algorithm

The third is the stability of the algorithm. The stability of the intelligent algorithm is the key to accurately obtain the best value
in the face of complex problems. In order to show and analyze the stability of each algorithm in different scales of IoTS composition,
the optimal fitness value list of each algorithm at each scale is obtained by searching each algorithm 100 times in three cases of
different IoTS scales: 10×100, 20×100, 30×100, and then the standard deviation is calculated. The size of the standard deviation can
judge the stability of the algorithm. Under the same conditions, the stability of different algorithms with smaller standard deviation
is stronger, and vice versa is weaker. The standard deviation of each algorithm obtained by the experiment is shown in Table 4, and
it can be seen that the standard deviation of ISFLA is significantly smaller than the standard deviation of other algorithms. With the
continuous increase of the scale of IoTS, the standard deviation of each algorithm is increasing. The reason is that the stability of
the algorithm is affected by the continuous expansion of the problem scale. It shows that the standard deviation of 30×100 scale
is significantly larger than that of 20×100 or 10×100 scale. However, the standard deviation of ISFLA is still smaller than other
algorithms. The results can also be seen in Fig. 12, where the abscissa is the different IoTS scales and the ordinate is the standard
deviation of the optimal value obtained from 100 experiments. In summary, this indicates that ISFLA has better stability in obtaining
the optimal solution.

5.3.4. Analysis of runtime of the algorithm

Finally, the runtime of the algorithm. The runtime of the algorithm refers to the time required for the algorithm to complete
an experimental simulation. In this group of experiments, each algorithm was tested under the same experimental parameters, and
500 experimental simulations were carried out under different IoT service scales of 10×100, 20×100 and 30×100, and the average
runtime of each algorithm was obtained. The results are shown in Table 5. Under the same experimental parameters and data set,
14

ISFLA consumes more time at execution time. The reason is that in ISFLA, the local search of each group requires 20 local searches,

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

Table 4

Standard deviation for different IoTS scales.

A I Standard deviation

ISFLA SFLA SFLAGA IGSFLA ISFLA* GA

10 100 0.0001154 0.0984059 0.0117937 0.0944845 0.0421759 0.084821

20 100 0.0177277 0.1739253 0.0592577 0.1228199 0.1034664 0.1186472

30 100 0.0430698 0.2967645 0.1000649 0.2507623 0.1621249 0.1570019

Fig. 12. Comparison of standard deviation.

Table 5

Runtime for different IoTS scales.

A I Runtime (s)

ISFLA SFLA SFLAGA IGSFLA ISFLA* GA

10 100 4.4151 5.6531 2.2168 5.5352 4.6226 1.7712

20 100 5.1344 6.1739 2.5881 6.3019 5.9902 1.9731

30 100 6.4454 7.2967 2.8218 7.2507 6.5204 2.1079

and each local search is supplemented by the cross-variation of individual iterations in the group. As a result, ISFLA consumes more
time, while GA and SFLAGA algorithms do not carry out more local searches. So they take less time than ISFLA. The difference in
runtime between ISFLA and other algorithms is small. However, under the premise of obtaining a better optimal solution, the time
consumed is within the acceptable range. Therefore, in order to make the algorithm achieve better performance in effectiveness,
stability and convergence speed, it is worthwhile to sacrifice a small amount of time, and in general, ISFLA is superior.

In summary, when ISFLA is looking for the optimal fitness value, compared with the compared algorithms, ISFLA can find a better
fitness value with faster convergence speed, that is, it can find a better IoTS composition scheme. And with the growing scale of IoTS,
the advantages of ISFLA are gradually increasing. In terms of the stability of the solution, ISFLA is more stable than other algorithms.
Therefore, the convergence of ISFLA is better, the stability is better, and the comprehensive operation efficiency of ISFLA algorithm
is higher. It is verified that the proposed method can obtain the IoTS composition that fulfills the user’s non-functional requirements,
and can effectively solve the large-scale IoTS composition problem.

6. Concluding

The optimization problem of IoTS composition is a current hotspot in research. This paper introduces the problem description of
QoS-based IoTS composition and outlines the overall experimental process for solving the problem. To enhance the efficiency and
accuracy of solving the optimization problem in IoTS composition using intelligent algorithms, this paper proposes improvements
to the original SFLA. In the population initialization, Logistics chaotic mapping and reverse learning are introduced to generate
the initial population. The group partitioning is done by calculating Euclidean distances. The global search incorporates a Gaussian
mutation operator for evolving the optimal individual. The local update phase employs a strategy based on mutual learning, selec-

tion, crossover, and mutation for updating evolution. Finally, the improved algorithm is applied to IoTS composition optimization,
effectively addressing the optimization problem in composing IoTS and obtaining approximately optimal solutions. Experimental
results indicate that, compared to SFLA, GA, ISFLA*, IGSFLA and SFLAGA, the ISFLA consistently yields superior optimal solutions
15

under the same experimental conditions. It further improves optimization accuracy, the quality of optimal solutions, and stability. In

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

terms of algorithm runtime, the ISFLA exhibits advantages in efficiency without significant drawbacks. However, the paper has some
limitations, including the absence of a rational analysis and dynamic calculation of QoS attribute weights and insufficient consider-

ation of constraints between IoTS and variations in service performance in complex IoT dynamic environments, the ISFLA still has
some disadvantages in runtime that need to be improved. For future work, we plan to dynamically calculate QoS attribute weights
based on IoTS demands and increase the types of QoS attributes. We will also consider constraints between IoTSs and the dynamic
environmental changes affecting service performance in IoTS composition optimization. Additionally, we will further analyze factors
influencing the performance of the SFLA to enhance its overall performance. This will enable the selection of IoTS compositions that
better meet user non-functional requirements in the contemporary IoT environment.

CRediT authorship contribution statement

Zhengyi Tang: Writing – review & editing, Writing – original draft, Validation, Methodology, Data curation, Conceptualization.

Yongbing Wu: Writing – review & editing, Writing – original draft, Methodology, Formal analysis. Jinshui Wang: Writing – review
& editing, Validation, Project administration, Data curation. Tianwei Ma: Writing – review & editing, Supervision, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that support the findings of this study are available in IoTS_Dataset: QoS data about IoT services at https://zenodo .org /
records /10440967, DOI 10 .5281 /zenodo .10440966. These data are generated within the limits by a randomized algorithm.

References

[1] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, Domnic Savio, Interacting with the soa-based Internet of things: discovery, query, selection,
and on-demand provisioning of web services, IEEE Trans. Serv. Comput. 3 (3) (2010) 223–235.

[2] Ray Chen, Jia Guo, Fenye Bao, Trust management for soa-based iot and its application to service composition, IEEE Trans. Serv. Comput. 9 (3) (2014) 482–495.

[3] Hyun Jung La, Soo Dong Kim, A service-based approach to designing cyber physical systems, in: 2010 IEEE/ACIS 9th International Conference on Computer and
Information Science, IEEE, 2010, pp. 895–900.

[4] Rajeev Piyare, Seong Ro Lee, Towards Internet of things (iots): integration of wireless sensor network to cloud services for data collection and sharing, arXiv
preprint arXiv :1310 .2095, 2013.

[5] Hongyue Wu, Yu-Yue Du, A logical petri net-based approach for web service cluster composition, Chinese J. Comput. 38 (1) (2015) 204–218.

[6] Bouzary Hamed, F. Frank Chen, A classification-based approach for integrated service matching and composition in cloud manufacturing, Robot. Comput.-Integr.
Manuf. 66 (2020) 101989.

[7] Chandrashekar Jatoth, G.R. Gangadharan, Ugo Fiore, Optimal fitness aware cloud service composition using modified invasive weed optimization, Swarm Evol.
Comput. 44 (2019) 1073–1091.

[8] Thar Baker, Muhammad Asim, Hissam Tawfik, Bandar Aldawsari, Rajkumar Buyya, An energy-aware service composition algorithm for multiple cloud-based iot
applications, J. Netw. Comput. Appl. 89 (2017) 96–108.

[9] Shang-Pin Ma, Hsuan-Ju Lin, Ming-Jen Hsu, Semantic restful service composition using task specification, Int. J. Softw. Eng. Knowl. Eng. 30 (06) (2020)
835–857.

[10] Mohamadali Yaghoubi, Ali Maroosi, Simulation and modeling of an improved multi-verse optimization algorithm for qos-aware web service composition with
service level agreements in the cloud environments, Simul. Model. Pract. Theory 103 (2020) 102090.

[11] Lei Zhang, Research on automatic web service composition method based on keyword search, Master’s thesis, Hangzhou Dianzi University, 2019.

[12] Michael C. Jaeger, Gero Muhl, Sebastian Golze, Qos-aware composition of web services: a look at selection algorithms, in: IEEE International Conference on Web
Services (ICWS’05), IEEE, 2005.

[13] Ping Ren, Genetic algorithms (an overview), Chin. J. Eng. Math. 16 (1) (1999) 1–8.

[14] Bryar A. Hassan, Cscf: a chaotic sine cosine firefly algorithm for practical application problems, Neural Comput. Appl. 33 (12) (2021) 7011–7030.

[15] Shko M. Qader, Bryar A. Hassan, Tarik A. Rashid, An improved deep convolutional neural network by using hybrid optimization algorithms to detect and classify
brain tumor using augmented mri images, Multimed. Tools Appl. 81 (30) (2022) 44059–44086.

[16] Amir Ghaemi, Bahman Arasteh, Sfla-based heuristic method to generate software structural test data, J. Softw. Evol. Process 32 (1) (2020) e2228.

[17] Bahman Arasteh, Razieh Sadegi, Keyvan Arasteh, Bölen: software module clustering method using the combination of shuffled frog leaping and genetic algorithm,
Data Technol. Appl. 55 (2) (2021) 251–279.

[18] Bahman Arasteh, Mohammad Bagher Karimi, Razieh Sadegi, Düzen: generating the structural model from the software source code using shuffled frog leaping
algorithm, Neural Comput. Appl. 35 (3) (2023) 2487–2502.

[19] Yuanyuan Xiao, Xuemin Xu, Xiuguo Zhang, Zhiying Cao, Large-scale web service composition based on improved grey wolf optimizer algorithm, J. Comput.
Appl. 42 (10) (2022) 3162.

[20] Fucheng Xue, Hongwei Yang, Li Li, Web service composition based on sparrow search algorithm, Comput. Eng. Des. (2022).

[21] Wenan Tan, Yao Zhao, Web service composition based on chaos genetic algorithm, Comput. Integr. Manuf. Syst. 24 (07) (2018) 1822.

[22] Xingchen Liu, Shuichong Liao, Peng Sun, Yun Zhong, Service composition optimization based on improved krill herd algorithm, J. Comput. Appl. 41 (12) (2021)
3652.

[23] Wenan Tan, Jiakai Wu, Optimization of web service composition based on improved flower pollination algorithm, Comput. Eng. (2020).

[24] Zhipo Chen, Chao Ouyang, Guodong Sun, Improved genetic algorithm for web service composition qos optimization, Comput. Eng. 34 (8) (2017) 231–235.

[25] Parvaneh Asghari, Amir Masoud Rahmani, Hamid Haj, Seyyed Javadi, Privacy-aware cloud service composition based on qos optimization in Internet of things,
J. Ambient Intell. Humaniz. Comput. (2020) 1–26.

[26] Haowen Guo, Yuzhen Sun, Xiaoxiao Huang, Optimization of coordinated control system basedon improved shuffled frog leaping algorithm, J. Eng. Therm.
16

Energy Power 35 (6) (2020).

https://zenodo.org/records/10440967
https://zenodo.org/records/10440967
https://doi.org/10.5281/zenodo.10440966
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibAD55FF8B7C4CA12555994E5E330FB74Bs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibAD55FF8B7C4CA12555994E5E330FB74Bs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib82B0B060F1B90F3B666261B926D7C7BFs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib40DAF3BD358632D7777AED15BC85FE3Es1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib40DAF3BD358632D7777AED15BC85FE3Es1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibD66E177D3351E214BC1D6BE13AB293CBs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibD66E177D3351E214BC1D6BE13AB293CBs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibF53F52CDE446FA85E738002E7EC8C031s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibEF530AB9E9180485A5007A0ECE0F0ADDs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibEF530AB9E9180485A5007A0ECE0F0ADDs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibEC62B7CCBC3B37D09659188634DBBC9Cs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibEC62B7CCBC3B37D09659188634DBBC9Cs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib38F0044FAE1B492198925CF1DA2C6707s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib38F0044FAE1B492198925CF1DA2C6707s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibDE43F7E3A0DF0DCBE0D0A6DF5B9EB193s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibDE43F7E3A0DF0DCBE0D0A6DF5B9EB193s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibE937FF1D4FD5A27F7A9856BB5280E9D1s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibE937FF1D4FD5A27F7A9856BB5280E9D1s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib80E763FD3ED76BD50886EEAAA97D6C92s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib790D60ABAF0B34A9BDC7E07E2FF4F991s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib790D60ABAF0B34A9BDC7E07E2FF4F991s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib81588E920EE575F238A9CCB3790C3250s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibAFE7A5CC827BB2A944C2984D0463044As1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibED89566334A9107025CC57CEB4C6E3D6s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibED89566334A9107025CC57CEB4C6E3D6s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib18C58D43A68D5A5D52BE83329ECB937Bs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib023E3E7E29582792B6064281A8FCDECFs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib023E3E7E29582792B6064281A8FCDECFs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib2184E5DE3E4F4BE24E169F3E9B76E1A3s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib2184E5DE3E4F4BE24E169F3E9B76E1A3s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibF01A44611A79439FEA005C433076195As1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibF01A44611A79439FEA005C433076195As1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib29C889CBFAA17C34DCAEB0324D4760A5s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibD11FBBDE8A6A3E49179B41FBB8432AA9s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib06B54D69EEE818FF6354F2D8C91D9831s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib06B54D69EEE818FF6354F2D8C91D9831s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibF00419B32AE1F4DBC125709861DCA885s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib12738F7DAF8159A92DB108F150B14FBCs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib56145A8326EA3049FA38D2EFAE90020As1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib56145A8326EA3049FA38D2EFAE90020As1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib8BFABCEC57DEF31ADDC5F5D8F81F7A45s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib8BFABCEC57DEF31ADDC5F5D8F81F7A45s1

Heliyon 10 (2024) e28087Z. Tang, Y. Wu, J. Wang et al.

[27] Mahdi Bakhshi, Mohsen Hashemi, User-centric optimization for constraint web service composition using a fuzzy-guided genetic algorithm system, arXiv preprint
arXiv :1210 .3604, 2012.

[28] Bestan B. Maaroof, Tarik A. Rashid, Jaza M. Abdulla , Bryar A. Hassan, Abeer Alsadoon, M. Mohamadi, S. Mirjalili, Current studies and applications of shuffled
frog leaping algorithm: a review, Arch. Comput. Methods Eng. 2 (1) (2022) 1–16.

[29] Junjie Zhao, Faming Tan, Qi Wang, A grey wolf optimization algorithm with improved nonlinear convergence, Microelectron. Comput. 5 (2019) 89–95.

[30] Jiaqing Chen, Mohan Shi, Chenfeng Gao, Bald eagle search algorithm based on chaotic map and adaptive opposition-based learning, Math. Pract. Theory 52 (6)
(2022) 11.

[31] Weidong Ji, Wanlu Ni, A dynamic control method of population size based on Euclidean distance, J. Electron. Inf. Technol. 44 (6) (2022) 2195–2206.

[32] Yangwang Fang, Xiaobin Yan, Weishi Peng, Multi-objective harris hawk optimization algorithm based on adaptive gaussian mutation, J. Beijing Univ. Aeronaut.
17

Astronaut. 48 (2022).

http://refhub.elsevier.com/S2405-8440(24)04118-5/bibF70052C11F92D8ED92A87FE70AC52B3Fs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibF70052C11F92D8ED92A87FE70AC52B3Fs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibB16064AE92303A5ED455672C2C2829CFs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibB16064AE92303A5ED455672C2C2829CFs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib580962E6D92215DF84C82AB0EFAA4708s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib61CDBCFF9D25B636C07F87E7CC041E15s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib61CDBCFF9D25B636C07F87E7CC041E15s1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bibECC49E278991FB074E32EAE6C57903BAs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib230832E1B3D5D7238D8629AC9BF7583Bs1
http://refhub.elsevier.com/S2405-8440(24)04118-5/bib230832E1B3D5D7238D8629AC9BF7583Bs1

	IoT service composition based on improved Shuffled Frog Leaping Algorithm
	1 Introduction
	2 Related works
	3 IoT service and composition optimization problem
	3.1 Problem description
	3.2 Definitions of IoT service
	3.3 QoS attribute preprocessing
	3.4 QoS computation for IoTS composition
	3.4.1 Execution time
	3.4.2 Service cost
	3.4.3 Credibility
	3.4.4 Reliability

	4 Composition optimization based on improved SFLA
	4.1 SFLA
	4.1.1 Step 1 jump
	4.1.2 Step 2 jump
	4.1.3 Step 3 jump

	4.2 ISFLA
	4.2.1 Population initialization
	4.2.2 Group division
	4.2.3 Gaussian mutation
	4.2.4 Dual strategy local search

	4.3 Modeling composite IoTS
	4.3.1 Encoding method
	4.3.2 Description of the IoTS composition method

	5 Result and discussion
	5.1 Experimental environment and dataset
	5.2 Experimental parameter setting
	5.3 Analysis of experimental results
	5.3.1 Analysis of effectiveness of the algorithm
	5.3.2 Analysis of convergence of the algorithm
	5.3.3 Analysis of stability of the algorithm
	5.3.4 Analysis of runtime of the algorithm

	6 Concluding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

