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Abstract: We review recent work on Ising-like models with “compressible cells” of fluctuating volume
that, as such, are naturally treated in NpT and µpT ensembles. Besides volumetric phenomena, local
entropic effects crucially underlie the models. We focus on “compressible cell gases” (CCG), namely,
lattice gases with fluctuating cell volumes, and “compressible cell liquids” (CCL) with singly occupied
cells and fluctuating cell volumes. CCGs contemplate singular diameters and “Yang–Yang features”
predicted by the “complete scaling” formulation of asymmetric fluid criticality, with a specific version
incorporating “ice-like” hydrogen bonding further describing the “singularity-free scenario” for the
low-temperature unusual thermodynamics of supercooled water. In turn, suitable CCL variants
constitute adequate prototypes of water-like liquid–liquid criticality and the freezing transition of a
system of hard spheres. On incorporating vacant cells to such two-state CCL variants, one obtains
three-state, BEG-like models providing a satisfactory description of water’s “second-critical-point
scenario” and the whole phase behavior of a simple substance like argon. Future challenges comprise
water’s crystal–fluid phase behavior and metastable states.

Keywords: Ising-like models; compressible cells; local entropic effects; NpT and µpT ensembles;
asymmetric fluid criticality; water’s unusual thermodynamics; freezing

1. Background and Scope
1.1. Ising Model and Standard Lattice Gas

Understanding the microscopic basis of the distinct phases of matter and the transitions
between them has long been recognized a major topic in Statistical Physics. Associated with
it is the extraordinarily complex mathematical problem posed by a macroscopic number
of interacting constituents. This is the reason why the focus has been put on the simplest
models, which, remarkably, have been found to contain the essential physics. One such
model is certainly the Ising model of ferromagnetism [1], whose solutions in d = 2 [2–4]
and d = 3 dimensions [5] have triggered the development of the modern theory of critical
phenomena [6–8]. Another relevant prototype is the XY model [9], which has featured
topological phase transitions in d = 2 [10]. A third prominent example is the Sherrington–
Kirkpatrick model of a spin glass [11], whose solution has revealed the laws of disorder [12].
The models cited are most representative members of respective classes of models: while
the Ising class is the simplest one and the first to be worked out, it has remained useful with
time [13]. The present articles summarizes recent work indicating that the Ising paradigm
continues to thrive. In doing so, we start by briefly reviewing the original Ising model.

Figure 1a illustrates that at each site of a d-dimensional regular lattice of coordination
number c, there is a spin that can point either upwards (↑) or downwards (↓), with the
energy of two neighboring spins decreasing by J > 0 when they both are in the same
individual state. This is known to result in a phase transition akin to the ferromagnetic–
paramagnetic transition of an uniaxial ferromagnet. For a fixed number of sites N , only
the system’s energy E fluctuates and so a canonical treatment is in order. Specifically, at
temperature T and magnetic field H, the partition function is
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Z = ∑
{si}

exp
(

K ∑
<ij>

sisj + h
N
∑
i=1

si

)
, (1)

where si = −1, 1 applies when spin in site i is in a ↓, ↑ state, < ij > refers to spins in
nearest-neighbor sites, and

f̄ ≡ − F
N kBT

=
ln Z
N , K ≡ J

kBT
, h ≡ H

kBT
, (2)

with kB the Boltzmann constant and F the free energy.
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Figure 1. (a) Ising model in a square lattice. (b) Standard lattice gas of hard-core spherical particles in
a square lattice. The blue-shaded area in the upper-left cell is the free volume v̇0 a particle explores
according to the criterion explained in the text. More details about both models including the coupling
between nearest-neighbor pairs are specified in Section 1.1.

The Ising model gained relevance in light of the pioneering work by Lee and Yang [14]
proving its mathematical equivalence to the standard lattice gas (SLG) of condensation
earlier introduced by Cernushi and Eyring [15]. This indicated the “Ising machinery” to
underlie the phase behavior of systems of a distinct physical nature such as ferromagnets
and fluids. This major idea of equivalence and universality lies behind the recent progress
to be described in this article, to which the SLG is, besides, pivotal. It is then pertinent to
review the SLG and its equivalence with the Ising model.

Figure 1b illustrates that, in the SLG, one considers that lattice sites are either vacant or
occupied by one particle that interacts with particles in nearest-neighbor sites via a discrete
energy −ε0 < 0. This may be interpreted more realistically as a continuum model in which
the d-dimensional space is divided into “cells” of volume v0, each of which is associated
with a site of the underlying lattice. Each particle explores a free volume v̇0 in its cell. A
most elementary assumption is to consider that particles are allowed to move as if the cell
boundaries act as impenetrable walls, which gives v̇0 ≤ v0 with the equality holding for the
marginal case of point particles. Note that walls are imaginary (rather than real) physical
objects merely serving to provide a criterion to manage free volumes.

Clearly, for a given number of cells N , both the model’s E and number of particles
N are allowed to fluctuate, with the volume V = N v0 fixed. A grand canonical (or µVT)
treatment—with µ the chemical potential—then emerges naturally. The corresponding
partition function is

Ξ = ∑
{ni}

exp
(

β̄ε0 ∑
<ij>

ninj + µ̄
N
∑
i=1

ni

)
, (3)

where ni = 0, 1 for vacant and occupied cells, β̄ ≡ 1/kBT, and µ̄ ≡ µ/kBT − ln(Λ3/v̇0)
with Λ = h̄

√
2π/mkBT the thermal de Broglie wavelength for a particle with mass m. The
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groundbreaking observation by Lee and Yang was to show that (1) and (3) are equiva-
lent with

f̄ = p̄v0 − c
8 β̄ε0 − 1

2 µ̄, K = 1
4 β̄ε0, h = 1

2 µ̄ + c
4 β̄ε0, (4)

where p̄ ≡ p/kBT with p the pressure. In purely mathematical terms, (4) is the exact analytic
mapping of the SLG into the Ising model characterized by a one-to-one correspondence
between ( f̄ , K, h) and (p̄, β̄, µ̄) that renders it an “isomorphism”. This result is useful because
the solutions of the Ising model readily provide the ones of the SLG.

1.2. Decorated and BEG-like Models

A valuable extension of the SLG entails a mathematical device known as the decoration
transformation [5]. Figure 2a illustrates a decorated lattice gas that as such considers, in
addition to vertex cells, cells in the bonds joining lattice sites. The model’s solutions are
readily found from the ones for the SLG by merely evaluating the so-called decorating
factors, which result from the summations over states for a bond cell. Note that the
decorating system can be (as in Figure 2a) a cell that can be empty or occupied by one
particle that interacts with particles in vertex cells, but one may generally consider an
arbitrary statistical mechanical system [16]. This renders decorated lattice gases a flexible
class of models. They have played a prominent role in fluid criticality [17].

(a) (b)

−ε0

−ε1

−ε0, −ε1

Figure 2. (a) Cell states and coupling of a decorated lattice gas with vertex cells (squares) and
bond cells (diamonds). (b) BEG-like model with vacant cells and cells occupied by particles of two
distinct species.

The two-state nature of the SLG makes it suitable for describing a single phase tran-
sition. Models contemplating three states improve upon this insofar as they allow us to
describe more than one phase transition and, hence, to account for a richer phenomenology.
Figure 2b illustrates an early application for a two-component solution using vacant cells
and cells containing particles of two distinct chemical species, the resulting model allowing
us to account for gas–gas, gas–liquid, and liquid–liquid transitions [18]. Another relevant
member of the class is a three-component model displaying intriguing phase behavior that
includes tricriticality [19,20]. Progress on three-state models originated in part in work by
Blume, Emery, and Griffiths [21], who introduced a variant jointly describing superfluid
ordering and demixing in He3-He4 solutions. As often carried out, we shall henceforth
refer to these three-state variants as BEG-like (or simply BEG) models.

1.3. Compressible Cell Models

Common to the wide variety of models so far described, cells have a fixed volume v0
that is the same for all cells. Progress accounted for in this review deals with the expediency
of relaxing this constraint by allowing the individual cell volumes to fluctuate. This was
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pioneered by Stanley, Fisher, and coworkers for lattice gases [22–25], so that the resulting
compressible cell gas (CCG) models incorporate local volumetric effects to the locally
fluctuating number of particles and energy already contemplated. Inherent to fluctuating
cell volumes are fluctuating free volumes carrying local changes in entropy S. On the other
hand, local entropic effects associated with orientational degrees of freedom of molecules
may also be considered [22]. In summary, there is the possibility to generate Ising-like
models in which local fluctuations in energy, entropy, volume, and number of particles are
coupled in a rich variety of ways.

Fluctuating cell volumes have opened the way to devise alternative models with all
cells occupied [26,27], which will be henceforth referred to as compressible cell liquids
(CCL). Of course, they may also suitably couple local energetic, entropic, and volumetric
effects in distinct ways. A further crucial step is to build BEG-like models from them by
simply adding vacant cells [27,28].

In what follows, we shall describe a variety of CCG, CCL, and BEG models addressing
the topics of asymmetric fluid criticality, water’s unusual thermodynamics, and freezing
transition of a simple substance, to which Sections 2–4 are, respectively, devoted. Each
Section starts with the statement of the problem to then focus the attention on the specific
nature of the corresponding models and the main results they lead to. Future challenges
are introduced in Section 5.

Note that the statistical–mechanical analysis of CCL models is naturally made in the
isothermal–isobaric (or NpT) ensemble, whereas CCG and BEG-like models demand a
great grand canonical (or µpT) treatment. While the NpT ensemble has been widely used
in simulations, it has left little effort for analytical work beyond the most basic textbook
topic of ideal-gas thermodynamics and certain specific models of elasticity [29]. Even rarer
is the use of the µpT ensemble, whose unconventional nature poses extra difficulties [27,30].
The present review summarizes most (if not all) work involving Ising-like models in these
two isobaric ensembles.

2. Asymmetric Fluid Criticality
2.1. Complete Scaling with Singular Diameters and Yang–Yang Features

Early this century, experiment and simulation demanded the traditionally accepted
scaling formulation of the thermodynamic behavior near the gas–liquid critical point to
be revised [31,32]. The resulting theory, termed “complete scaling”, introduces additional
terms in the expansions for each thermodynamic property [33]. A major effect is that the di-
ameter of the coexistence curve in the density–temperature ρ-T plane varies asymptotically
close to the critical temperature Tc like |T − Tc|2β, with β ≃ 0.326. This implies an asym-
metric coexistence curve close to criticality violating the classical Law of the Rectilinear
Diameter: see Figure 3a for an schematic illustration. Associated with such an “asymmetric
criticality” is a dilemma posed in 1964 by Yang and Yang [34] regarding the critical behavior
of the isochoric heat capacity CV (see Figure 3b). The question arises whether there are
Ising-like models exhibiting such “Yang–Yang and related features”.

The need for a prototype of gas–liquid criticality with known “exact” (i.e., non-mean-
field) solutions initially puts the focus on the SLG. Nevertheless, the model is itself intrinsi-
cally irrelevant since it exhibits a trivial symmetry reminiscent to that for the spontaneous
magnetization curve of the underlying Ising model upon magnetic field reversal H → −H.
Moreover, while the decorated lattice gas of Figure 2a displays an asymmetric coexistence
curve [35], it introduces a weaker |T − Tc|1−α singularity in the diameter, with α ≃ 0.109
and so 2β < 1 − α. This situation likewise occurs for the Widom–Rowlinson model of
penetrable spheres [36] and Mermin’s “bar” model [37]. In this context, how can the SLG
and usual variants be repaired for a |T − Tc|2β singularity in the diameter to come up? In
practice, the task is to obtain the Ising ordering field h to depend on p. We shall explain
below that CCG models meet this requirement. Moreover, we shall state the conditions
by which CCGs mix all three physical fields p, T, and µ into h and K, thereby obeying
complete scaling in all its aspects.
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ρc

T

(a)

ρ ρ

(b)

CV

Figure 3. (a) Asymmetric gas–liquid coexistence curve of a fluid in the density–temperature ρ-T
plane (dashed, black) ending at a critical point (circle, orange) with coordinates (Tc, ρc). The diameter
(solid, orange) is the locus of the mid-points of the phase boundary and it curves in the immediate
neighborhood of the critical point. According to complete scaling, the asymptotic curvature of
the diameter is dominated by a |T − Tc|2β singularity. (b) Yang–Yang plot corresponding to the
coexistence curve in (a). The isochoric heat capacity CV varies linearly with ρ at each T < Tc (solid,
black) within the two-phase envelope delimitated by the black dashed line. According to complete
scaling, both the slope and the intercept diverge at criticality like |T − Tc|−α.

2.2. Most Basic Compressible Cell Gases

A first expediency is to simply allow the individual cell volumes of the SLG to fluctuate
freely by, say, supposing that any cell can take n discrete volumes 0 < vk ≤ v0 and a set of
associated free volumes 0 < v̇k < vk (k = 1, . . . , n) [24,25]. Clearly, E, V, and N fluctuate
simultaneously for such a most basic CCG0 model, the µpT partition function being

Θ = SN
00 ∑

{ni}
exp

{
β̄ε0 ∑

<ij>
ninj +

[
µ̄ + ln

(
S01

v0S00

)]∑N
i=1 ni}

, (5)

with

S00( p̄) =
1
n

n

∑
k=1

e− p̄vk , S01( p̄) =
1
n

n

∑
k=1

v̇ke− p̄vk . (6)

The following analytic mapping into the Ising model is found:

f̄ = − 1
2 ln

[
S01S00

v0

]
− c

8 β̄ε0 − 1
2 µ̄, (7)

K = 1
4 β̄ε0, h = 1

2 µ̄ + c
4 β̄ε0 + 1

2 ln
[

S01

v0S00

]
, (8)

which, via the explicit dependence of S01 and S00 on p, mixes the pressure into h as required
for Yang–Yang features to show up.

One has the freedom to choose the cell volumes and free volumes in distinct ways. A
most relevant result in this connection is that Yang–Yang features are absent in CCG0 models
when v̇k are the same for all k. This clearly renders the fluctuating free volumes explored
by particles a source of Yang–Yang features. Moreover, the diameter curves towards higher
densities as T → Tc when larger cell volumes are accompanied by larger free volumes,
whereas it curves towards lower densities when free volumes are anticorrelated with cell
volumes. The former case is realized by particles with a fixed core volume, the latter by
compressible particles. Additional features such as changes in cell shape are also relevant.

While CCG0 models mix p, T and µ into h, they lack the mixing of p and µ into K
demanded by complete scaling [see (8)]. Decorated CCG0s, namely, models such as the
one in Figure 2a but with fluctuating cell volumes, fill the gap. The mapping of (7) and (8)
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is then supplemented by the decorating factors when vertex cells are both occupied Ψ++,
both vacant Ψ−−, and only one occupied Ψ+− to obtain

f̄ = − 1
2 ln

[
S01S00

v0

]
− c

8 β̄ε0 − 1
2 µ̄ − c

8 ln(Ψ++Ψ−−Ψ+−), (9)

K = 1
4 β̄ε0 + 1

4 ln
(

Ψ++Ψ−−
Ψ2
+−

)
, h = 1

2 µ̄ + c
4

[
β̄ε0 + ln

(
Ψ++

Ψ−−

)]
+ 1

2 ln
[

S01

v0S00

]
. (10)

Now, it is known since long ago [35] that bond cells with a fluctuating number of particles
make Ψ++, Ψ−−, Ψ+− and, hence, K to depend on µ. Further allowing the volume of
decorating cells to fluctuate introduces p into Ψ++, Ψ+−, Ψ−− and, hence, into K. Therefore,
a decorated model with fluctuating volume and number of particles for both vertex and
bond cells constitutes a sufficiently general model exhibiting all effects contemplated by
complete scaling.

3. Water’s Unusual Thermodynamics
3.1. Singularity-Free Scenario Versus Second Critical Point

Groundbreaking experiments published in the 1970s and 1980s [38–40] evidenced
a dramatic increase in the magnitude of thermodynamic response functions such as the
isothermal compressibility κT , the isobaric heat capacity Cp, and the isobaric thermal
expansivity αp of supercooled water as T is lowered at atmospheric p below the freezing
point: see Figure 4. Of the various competing physical pictures accommodating such
unusual thermodynamic behavior [41,42], two of them largely survive nowadays: the
so-called “second-critical-point” [43] and “singularity-free” [22,44] scenarios. The former
hypothesizes that the enhancement of response functions is associated with the existence
of a second, liquid–liquid critical point located in the region where water can exist as a
deeply supercooled liquid. The latter merely points out that a second critical point is not
necessarily demanded.

240 360 480

500

1000

1500

2000

240 360 480

Experiment

κT (10
−12 Pa−1)

T (K) T (K)

Sastry et al.

BEG

(a) (b)

Figure 4. Isothermal compressibility κT of water as a function of temperature T at atmospheric
pressure. (a) Experimental data [38]. (b) Values from Sastry et al. [22] (solid, orange) and BEG-like
(dashed, orange) models described in Sections 3.2 and 3.3 with parameter settings in the original sources.

Recent state-of-the-art spectroscopic experiments point towards the existence of a
second critical point [45]. Moreover, the second critical point has been proved via molec-
ular simulation by Debenedetti, Sciortino, Poole, and coworkers for the ST2 model of
water [46] and the even more accurate TIP4P/2005 and TIP4P/Ice [47], while the class
of models exhibiting such behavior is rapidly expanding. In any event, what is the Ising
expression for the singularity free versus second-critical-point dichotomy? Short answer
is that suitable CCG and CCL models yield the singularity-free and second-critical-point
scenarios, respectively.
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3.2. Compressible Cell Gas with “Ice-like” Hydrogen Bonding

Sastry et al. [22,23] pioneered a decorated model with vertex cells like in the SLG
and bond cells mimicking the “ice-like structures” characteristic of liquid water at low
temperatures. Specifically, as Figure 5a shows, bond cells serve to characterize the energetic,
entropic, and volumetric features of ice-like hydrogen bonding: such bond cells account for
the q distinct orientations for a single particle and further contemplate that only q of the q2

possible orientations of two particles in nearest-neighbor cells lead to a hydrogen bond that
is accompanied by an energy decrease and a volume increase in magnitudes δε and δv. This
is a decorated CCG with vertex cells of fixed volume and bond cells of fluctuating volume.
Note that, in contrast to CCG0 models, bond cell volume fluctuations are coupled to energy
fluctuations. The concept is that the bond cell volume fluctuations set out relevant changes
in intermolecular distances over which a pair potential acts.

−ε0 − δε
−ε0 − δε

−ε0 −ε0

normal(a) (b) ice− like

Figure 5. Cell states and pair couplings. (a) Sastry et al. decorated CCG described in Section 3.2.
Note that the decorating system is, in contrast to the one in Figure 2a, a statistical–mechanical
system implemented with the local energetic, entropic, and volumetric costs associated with ice-like
hydrogen bonding in water. (b) Water-like CCL described in Section 3.3 with ice-like hydrogen
bonding implemented through the standard Ising scheme.

The model may be worked out in the µpT ensemble since E, V, and N are fluctuating.
The partition function is

Θ = exp(− p̄N v0) ∑
{ni}

exp
{[

β̄ε0 + ln
(

Ψ++Ψ−−
Ψ2
+−

)]
∑
<ij>

ninj + c ln
(

Ψ++

Ψ−−

) N
∑
i=1

ni

}
, (11)

with
Ψ−− = 1, Ψ+− = q, Ψ++ = q2 − q + qeβ̄δε− p̄δv. (12)

An exact analytic mapping into the Ising model comes out by simply inserting (12) into (9)
and (10), with S00 = e− p̄v0 and S01 = v̇0e− p̄v0 owing to the fixed-volume nature of vertex
cells. [This is accompanied by Yang–Yang features because p enters into h thorugh Ψ++.]

Since decoration is known to result in no additional phase transition [5], the gas–liquid
transition of the underlying SLG is the only model’s transition. On the other hand, at
low temperatures, significantly lower than the one of gas–liquid criticality, the Sastry et al.
model predicts the magnitude of response functions to increase markedly as T is lowered
just as observed experimentally for water: see Figure 4 for κT . Note that results of Figure 4
correspond to a mean-field calculation since no exact solutions for the underlying Ising
model are available for the isobaric path of atmospheric pressure of interest (that is, h ̸= 0).
While a mean-field treatment is only exact in d = ∞, there is a tacitly accepted consensus
regarding it a reasonable approximation in d = 3 —from van der Waals or Curie–Weiss’
early work to the latest theory of simple glasses [48].
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3.3. Compressible Cell Liquid with “Ice-like” Hydrogen Bonding and BEG Water-like Model

Ice-like structures can be alternatively implemented in another type of Ising-like
model [26]. Thus, as Figure 5b shows, instead of occupied and vacant cells, one may
consider a compressible cell liquid (CCL) with cells occupied by particles with no spherical
symmetry and two distinct accessible volumes, v0 and v0 + δv. Then, one further assumes
that particles in bigger cells are in one of the q preferred orientations, while particles in
smaller cells may display a full range of q2 orientations. The cells with higher volume and
lower entropy mimic the geometrical constraints of ice-like structures and are stabilized by
a hydrogen-bonding energy −δε < 0 when any two such “ice-like cells” are adjacent.

While fluctuating volumes serve in the Sastry et al. model to consider two distinct
length scales over which an intermolecular potential acts, here the volume fluctuation
concerns primary (instead of bond) cells of the Ising lattice. As such, the present model may
be regarded a CCL model featuring the local energetic, entropic, and volumetric effects of
water’s ice-like order with the aid of an Ising-like mechanism in which, statistically, higher
volume and lower entropy per particle are accompanied by lower energy. This contrasts
with the SLG, characterized by an Ising-like mechanism in which, statistically, a higher
number of particles per volume are accompanied by lower energy. However, the “Ising
machinery” is common to both models.

An NpT treatment is natural, with the partition function being

∆ =
( q2v̇0

Λ3

)N
exp(− c

2 β̄ε0 − p̄N v0) ∑
{ni}

exp
(

β̄δε ∑
<ij>

ninj + (ln ω − p̄δv)
N
∑
i=1

ni

)
, (13)

where N = N and ω = 1/q quantify the entropy difference between ice-like and “normal”
cells. This maps into (1) so that

f̄ = p̄(v0 + 1
2 δv)− 1

2 ln ω − µ̄ − c
2 β̄(ε0 + 1

4 δε), (14)

K = 1
4 β̄δε, h = − 1

2 p̄δv + 1
2 ln ω + c

4 β̄δε. (15)

The one-to-one correspondence between ( f̄ , K, h) and ( p̄, β̄, µ̄) in (14) and (15) indicates
that this CCL is isomorphic to the Ising model, implying that it leads to a phase transition
terminating at a critical point. The transition may be thought of as involving two liquid
phases: a low-density liquid phase rich in ice-like cells and a high-density liquid phase
rich in normal cells. Since ice-like cells carry lower orientational entropy, S is lower for
the low-density liquid and so the Clapeyron equation dictates a negative slope of the
coexistence line in the p-T plane as it occurs for the ST2 model of water (see Figure 6).

0 200 400 6000 200 400 600
-400

-200

0

200

400

T (K) T (K)

BEG

(a) (b)

p(MPa)
ST2

Figure 6. Phase diagram of models of fluid water in the pressure–temperature p-T plane. Plotted are
the binodals (thick, black) and spinodals (solid, orange) associated with critical points (circles) at
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high T (gas–liquid) and low T (liquid–liquid), as well the locus of isobaric ρ(T) maxima (solid, blue)
and minima (dashed, blue) and the locus of isobaric κT(T) maxima (solid, grey) and minima (dashed,
grey) (a) ST2 water [49]. (b) BEG water-like model described in Section 3.3.

Now, the mere expediency of adding vacant cells further incorporates the gas–liquid
transition to our description through the standard SLG scheme. The resulting BEG-like
model [28] demands a µpT treatment. On the other hand, it cannot be mapped into a model
with known exact solutions, implying that a mean-field treatment is in order. Even within
the uncertainties inherent to the approximate nature of a mean-field calculation for d = 3,
the model does account qualitatively for water’s second-critical-point scenario: see Figure 6.
The idea of appealing to the BEG paradigm to account for water’s fluid-phase behavior
was originally explored by Ciach et al. [50], who devised a version distinct from the one
presented here.

Note that BEG-like and Sastry et al. models are essentially equivalent as far as the gas–
liquid transition is concerned, while both employ compressible cells. The main difference
between them lies on the way ice-like structures are implemented. Thus, the second-
critical-point scenario demands a three-state variant combining SLG and CCL components,
whereas the singularity-free scenario occurs in a (two-state) decorated CCG. This is the
Ising expression of the singularity-free versus second-critical-point dichotomy.

Regardless of which scenario really corresponds to water, analyzing liquid–liquid
criticality has an intrinsic interest as a theoretical possibility. In this connection, Figure 7
certifies that the BEG-like model provides a pattern of liquid–liquid critical behavior
consistent with the one for TIP4P/2005 water. An experimental verification of this remains
a great challenge, but before answers in any direction are obtained, Figure 7 may be a
reference as to what should be expected.

0 40 80 120

0

20

40

60

80

0 60 120 180

TIP4P/2005

T − Tc (K) T − Tc (K)

BEG

(a) (b)

Figure 7. Response-function ratios Cp/TvκT (two upper curves, orange) and |αp/κT | (two lower
curves, blue) as a function of temperature T on approaching the liquid–liquid critical temperature
Tc (circles, black) from the one-phase region along the critical isochore (solid) and critical isobar
(dashed) [51]. Results are in bar K−1 (a) TIP4P/2005 water (points are simulation data). (b) BEG
water-like model.

4. Freezing
4.1. An Open Problem to Statistical Mechanics

While the transition between solid and fluid phases is well-known experimentally
since long ago, its statistical–mechanical characterization remains an outstanding question
to the theory of condensed matter [52]. The theory of topological order is able to describe
melting in d = 2 [53], while classical density functional theory has proven efficient for
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computing solid–fluid phase diagrams [54]. Nevertheless, no definite theory for d = 3
currently exists.

Early work by Lennard-Jones and Devonshire [55,56] claimed cell models to describe
freezing, but the idea was later abandoned and seemingly fell into oblivion [57]. A major
breakthrough stemmed from 1957 pioneering molecular simulations [58,59] unexpectedly
indicating the hard-sphere fluid to freeze into a face-centered cubic crystal. Such a piece
of evidence was found and discussed at a time at which the Ising model and the SLG
were becoming widely accepted. It was then natural to inquire which sort of Ising-like
variant was needed to describe hard-sphere freezing. To answer it, much attention was
placed on the class of “hard-core lattice particle” models [60–63]. Nevertheless, they have
only led to a strictly first-order transition conforming to the nature of freezing (i.e., no
critical point) when interactions beyond first neighbors are contemplated [64–67]. The
question arises whether or not there is a reasonable Ising-like model accounting for freezing
in a first-neighbor scheme, just as it occurs with the SLG for condensation. A suitable
CCL model answers this question positively, and with further incorporation of attractive
interactions, it leads to the whole phase behavior of a simple substance like argon.

4.2. Compressible Cell Liquid with Molecular Packing

Let us consider a CCL with singly occupied cells as in Section 3.3, but distinguish
two distinct situations for the free volumes that a hard sphere of diameter σ can explore
in its cell [27]. As Figure 8a shows, we are led to think, as described in Section 1.1 for the
SLG, about standard cells with free volume v̇0 constrained by σ and the cell boundaries. In
addition, one contemplates a situation of “positional order” (and, hence, lower entropy) in
which a particle explores a preferential, restricted free volume v̇1 < v̇0 around the center of
its cell. Our description is then completed by simply postulating that the total volume of
an assembly of two nearest-neighbor cells is decreased by δv > 0 when they both have the
prescribed positional order (see Figure 8a). This CCL features molecular packing via an
Ising-like mechanism in which, statistically, lower entropy per particle is accompanied by
a lower volume. The concept is that a most efficient packing can only be achieved when
particles occupy preferred positions in space.

0 0.1 0.2 0.3
-3

0

3

 

h

K

normal positional

2v0 2v0 − δv

(a) (b)

Figure 8. CCL model for molecular packing described in Section 4.2. (a) Cell states and coupling
between nearest-neighbor pairs. (b) Ising (K, h) state points mapped by the model (dashed, black
straight lines) corresponding to ω values decreasing from top to bottom. They cross the Ising
transition line (thick, orange) when ω is small enough. Thus, beyond the borderline case in which the
crossing point is at K = Kc, the transition is strictly first-order.
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The model is naturally treated in the NpT ensemble. The partition function is

∆ =
( v̇0

Λ3

)N
exp(− p̄N v0) ∑

{ni}
exp

(
p̄δv ∑

<ij>
ninj + ln ω

N
∑
i=1

ni

)
, (16)

with N = N and ω = v̇1/v̇0 serving to quantify the entropy difference between standard
and positional cells. A comparison with (1) yields the following mapping:

f̄ = p̄(v0 − c
8 δv)− 1

2 ln ω − µ̄, K = 1
4 p̄δv, h = 1

2 ln ω + c
4 p̄δv. (17)

This is essentially different from all mappings described previously since both K and h
just depend on a single variable, namely, p̄. Thus, no one-to-one correspondence between
( f̄ , K, h) and (p̄, β̄, µ̄) holds, and as Figure 8b shows, only a straight line in the (K, h) space
is covered. In purely mathematical terms, this mapping is a monomorphism rather than
an isomorphism. Furthermore, the conditions leading to a strictly first-order transition
(i.e., no critical point) are illustrated by Figure 8b. Fulfillment of such conditions meets a
distinguishing feature of freezing, as revealed by Landau’s theoretical statements and all
known experimental evidence.

4.3. BEG-like Model and Van Der Waals Picture

Adding vacant cells results in a BEG-like model allowing us to describe the range
of states of lower density ρ towards the ideal-gas limit [27]. A concomitantly fluctuating
N then naturally leads to the µpT ensemble. Moreover, as noted in Section 3.3, the BEG-
like model demands a mean-field treatment. This yields the pσ3/kBT versus ρσ3 curve of
Figure 9 contemplating a van der Waals loop as the signature of a phase transition. The
purely-repulsive nature of interactions considered renders reasonable to identify the model’s
transition as the freezing transition of hard spheres proved by molecular simulation.

0 0.4 0.8 1.2 1.6
0

4

8

12

 

pσ3

kBT

ρσ3

BEG

Figure 9. Behavior of BEG-like model for packing of hard spheres of diameter σ described in
Section 4.2. A van der Waals loop appears for ω = 0.1 (solid, orange), whereas it is absent for ω = 0.2
(dashed, blue) [cf. discussion in the caption of Figure 8].

Following up on the model for the hard-sphere system, it is natural to inquire whether
incorporation of attractive interactions in a way consistent with a normal pair potential
like the one due to Lennard-Jones and Devonshire yields the phase behavior known exper-
imentally for a simple fluid like argon. Such a desirable implementation may be readily
accomplished by simply supposing that there is a background interaction energy for parti-
cles in nearest-neighbor cells −ε0 < 0 that is supplemented by an additional energy −δε < 0
when both cells have positional order. This mimics the minimum of a potential well.

Figure 10 shows that the resulting phase diagrams in the p-T and T-ρ planes meet all
essential features observed experimentally. Perturbatively adding attractive interactions to
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a reference hard-sphere system therefore proves efficient for describing the whole phase
behavior of a simple substance. This idea underlay the early work by van der Waals for the
gas–liquid transition and was later extended to freezing by Longuet-Higgins and Widom [68],
who, however, started from the corrected equation of state of hard spheres provided by
molecular simulation. The BEG model with compressible cells and simple attractive inter-
actions wholly develops such a contemporary van der Waals picture [69,70] by preliminary
meeting the hard-sphere phenomenology from first principles of statistical mechanics.

0 100 200 300 400
0.1

1

10

100

1000

10000

0 0.06
0

100

200

300

400

c
c

t

0.03

(a)

(b)T (K)

T (K)

p(bar)

ρ(mol cm−3)

Figure 10. Phase diagram for the simple-substance model described in Section 4.3. (a) Pressure–
temperature p-T plane. (b) Temperature–density T-ρ plane. Lines in the p-T plane determine the
conditions of two-phase coexistence bounded by the triple point t and the gas–liquid critical point
c. Lines in the T-ρ plane enclose regions of two-phase coexistence for crystal (solid, green), liquid
(solid, orange), and gas (solid, blue), with horizontal dashed lines joining the states of three-phase
coexistence associated with t.

5. Future Work

A natural extension of the work summarized above points toward water’s phase
behavior. Of course, one may not realistically expect to cover the many (more than 15)
crystalline ices. Nevertheless, on the basis of what we already have for the freezing of a
simple liquid, a reasonable incorporation of some crystal phase to the current description
of the fluid phases seems feasible.

Another line of inquiry is metastability. This topic can be approached from mean-field
theory since it supports the existence of thermodynamic metastable states [48,71]. Of
significant interest are the various metastable two-phase equilibria inherent to the existence
of three phases [72]. Likewise appealing are spinodal curves, as the mean-field limit of
the regions of thermodynamic space where each phase can exist. A primary objective
is to find an overall picture consistent with evidence known from experimentation and
simulation. In this connection, a major challenge is to explain the absence of a supercooled
liquid spinodal. Has mean-field theory anything useful to say about this?

In our own preliminary assessment, adequate answers regarding the absence of a
supercooled liquid spinodal may arise from the tools so far described in the present review
article. This issue is certainly relevant for water, with its hypothesized metastable liquid–
liquid transition in the supercooled region. A consistent mean-field implementation of such
a transition as a liquid–liquid equilibrium metastable with respect to the crystal would
certainly be an ultimate goal of the work summarized here on the Ising paradigm in isobaric
ensembles as associated with the concept of compressible cells.
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