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Abstract: Linear codes are the most important family of codes in cryptography and coding theory.
Some codes only have a few weights and are widely used in many areas, such as authentication codes,
secret sharing schemes and strongly regular graphs. By setting p ≡ 1 (mod 4), we constructed an
infinite family of linear codes using two distinct weakly regular unbalanced (and balanced) plateaued
functions with index (p − 1)/2. Their weight distributions were completely determined by applying
exponential sums and Walsh transform. As a result, most of our constructed codes have a few nonzero
weights and are minimal.

Keywords: linear code; weight distribution; Walsh transform; plateaued function

1. Introduction

Let p be a prime number and Fp the finite field with p elements. We denote C to be a
linear code over Fp with parameters [n, k, d], which that means C is a subspace of dimension
k with minimum distance d of the vector space Fn

p. Compared with nonlinear codes, linear
codes are easier to describe, encode and decode, due to their algebraic structure, so they
have many applications in cryptography and communications. See [1] for more information
about linear codes.

For a codeword c = (c0, c1, . . . , cn−1) ∈ C, its weight is defined by

wt(c) = #{0 ⩽ i < n : ci ̸= 0}.

Then, the weight distribution of C is the sequence (A0, A1, A2, . . . , An), where A0 = 1 and
Aw stands for the number of codewords in C that have weight w, for 0 ⩽ w ⩽ n, i.e.,

Aw = #{c ∈ C : wt(c) = w}.

The code C is called t-weight if the number of nonzero Aw for 1 ⩽ w ⩽ n equals t.
Linear codes with a few nonzero weights have attracted much attention in recent decades
due to their wide applications in theory and practice, see [2–11]. Some linear codes are
constructed from bent functions [6,12], square functions [13] and weakly regular plateaued
functions [3,5,7].

In what follows, we always assume p is an odd prime. Now, let us introduce an
efficient way to construct linear codes, which was proposed by Ding et al. [14]. Let q = pm

and D be a subset of Fq of size n. We define

CD =
{

c(a) = (Tr(ax))x∈D : a ∈ Fq
}

,
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where Tr is the absolute trace function. It can be checked that CD is a linear code of length
n. The set D is called the defining set of CD. This approach was generalized by Li et al. [15],
who defined a class of codes by

CD =
{

c(a, b) = (Tr(ax + by))(x,y)∈D : a, b ∈ Fq

}
, (1)

where the defining set D is a subset of F2
q. Let c ∈ Fp. For p-ary functions f and g, we define

D(c) =
{
(x, y) ∈ F2

q\{(0, 0)} : f (x) + g(y) = c
}

.

Based on [15], Wu et al. [16] offered new linear codes using the defining set D(0), where f
and g are weakly regular bent functions from Fq to Fp. Later, Cheng et al. in [3] introduced
several linear codes CD(0) of (1) with a few weights by considering f and g to be weakly
regular unbalanced s-plateaued functions in the defining set D(0), where 0 ⩽ s ⩽ m.
In 2022, Sınak [17] went deeper by choosing the weakly regular unbalanced and balanced
s f -plateaued function f and sg-plateaued function g in D(0), where 0 ⩽ s f , sg ⩽ m. Very
recently, Yang et al. [18] continued the research of [17] by considering two weakly regular
balanced plateaued functions in the defining set D(c), where c ̸= 0. All of them studied the
indexes of f and g among the set {2, p − 1}, that is, l f , lg ∈ {2, p − 1}.

Along this research line, we further consider the index of (p − 1)/2, where p ≡ 1
(mod 4). Let f and g be certain weakly regular unbalanced and balanced s-plateaued and
t-plateaued functions, respectively, for 0 ⩽ s, t ⩽ m. The defining set is denoted by

D f ,g =
{
(x, y) ∈ F2

q\{(0, 0)} : f (x) + g(y) = 0
}

. (2)

For clarity, we only concentrate on the case of lg = (p − 1)/2 and l f ∈ {2, p − 1}, since the
case of l f = (p − 1)/2 and lg ∈ {2, p − 1} will lead to similar results (also, see Remark 3
for the case of l f = lg = (p − 1)/2). In this paper, we consider the constructed codes CD f ,g
of (1) and (2). In detail, we will completely determine their weight distributions using the
theory of exponential sums and Walsh transform.

The rest of this paper is arranged as follows. We first present, in Section 2, an introduc-
tion to the mathematical foundations. Section 3 gives necessary results for our computation.
Our main results are proposed in Section 4, where we study the weight distributions
and the parameters of our constructed codes and their punctured ones. Section 5 shows
the minimality and applications of these codes. Finally, the whole paper is concluded in
Section 6.

2. Mathematical Background

In this section, let us have a quick glance at the mathematical background, including
cyclotomic classes, cyclotomic fields, the theory of exponential sums and weakly regular
plateaued functions. We recall that q = pm and m ⩾ 2. We denote by Sq (resp. Nsq) the set
of square (resp. non-square) elements in F∗

p.

2.1. Cyclotomic Classes and Cyclotomic Fields

Let θ be a fixed primitive element of Fq and N ⩾ 2 be a divisor of q − 1. For 0 ⩽ i < N,

the i-th cyclotomic classes of order N are defined by C(N,q)
i = θi⟨θN⟩, where ⟨θN⟩ stands

for the subgroup generated by θN .
The p-th cyclotomic field is denoted by K = Q(ζp), where ζp = exp

( 2π
√
−1

p
)
. From [19],

we know that the Galois group Gal(K/Q) is given by {σz : z ∈ F∗
p}, where the automor-

phism σz of K is defined by σz(ζp) = ζz
p. Let η be the quadratic character of Fp. Then,

σz(
√

p∗) = η(z)
√

p∗, where p∗ = η(−1)p.
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2.2. Exponential Sums

We denote by ηm the quadratic character of Fq, where q = pm. Let G(ηm) be the
quadratic Gauss sum over Fq defined by

G(ηm) = ∑
x∈F∗

q

ηm(x)χ1(x),

where χ1(x) = ζ
Tr(x)
p is the canonical additive character, and Tr is the absolute trace function.

It is well known that G(ηm) = (−1)m−1√p∗m and G(η) =
√

p∗.
For n ∈ N and a ∈ F∗

q , the Jacobsthal sum is defined by

Hn(a) = ∑
x∈Fq

ηm(xn+1 + ax) = ∑
x∈Fq

ηm(x)ηm(xn + a).

We define

In(a) = ∑
x∈Fq

ηm(xn + a).

It is a companion sum related to Jacobsthal sums because I2n(a) = In(a) + Hn(a), which is
due to Theorem 5.50 in [20]. We can evaluate easily that I1(a) = 0 and I2(a) = −1 for all
a ∈ F∗

q . In general, the sums In(a) can be described in terms of Jacobi sums.

Lemma 1 (Theorem 5.51, [20]). For all a ∈ F∗
q and n ∈ N, we have

In(a) = ηm(a)
d−1

∑
j=1

λj(−a)J(λj, ηm),

where λ is a multiplicative character of Fq of order d = gcd(n, q − 1), and J(λj, ηm) is a Jacobi
sum in Fq.

Lemma 2 (Theorem 5.33, [20]). Let q = pm be odd and f (x) = a2x2 + a1x + a0 ∈ Fq[x] with
a2 ̸= 0. Then,

∑
x∈Fq

ζ
Tr( f (x))
p = ζ

Tr(a0−a2
1(4a2)

−1)
p ηm(a2)G(ηm).

2.3. Weakly Regular Plateaued Functions

Let f : Fq → Fp be a p-ary function. For β ∈ Fq, the Walsh transform of f is defined by

χ̂ f (β) = ∑
x∈Fq

ζ
f (x)−Tr(βx)
p .

A function f is said to be balanced if χ̂ f (0) = 0; otherwise, it is said to be unbalanced.
Plateaued functions in characteristic 2 were first studied by Zheng et al. [21] for cryp-

tographic applications in 1999, and later in any general characteristic p by Mesnager [22] in
2014. Several years ago, Mesnager et al. presented the definition of (non-)weakly regular
plateaued functions in their work [23]. We follow the notation used in [23]. A function f is
s-plateaued if |χ̂ f (β)|2 ∈ {0, pm+s} for each β ∈ Fq, where 0 ⩽ s ⩽ m. Let S f be the Walsh
support of f . In fact,

S f = {β ∈ Fq : |χ̂ f (β)|2 = pm+s}.

According to [22], the cardinality of S f is given by #S f = pm−s.
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Definition 1 ([23]). A function f is called weakly regular s-plateaued if there exists a complex
number u, |u| = 1, such that

χ̂ f (β) ∈ {0, up
m+s

2 ζ
g(β)
p }

for all β ∈ Fq, where g is a p-ary function over Fq satisfying g(β) = 0 for all β ∈ Fq \ S f .
Otherwise, if u depends on β, then f is called non-weakly regular s-plateaued.

Lemma 3 (Lemma 5, [23]). Let β ∈ Fq and f a weakly regular s-plateaued function. For every
β ∈ S f , we have

χ̂ f (β) = ε f
√

p∗
m+s

ζ
f ⋆(β)
p ,

where ε f ∈ {±1} is the sign of χ̂ f and f ⋆ is a p-ary function over Fq with f ⋆(β) = 0 for all
β ∈ Fq \ S f . We call f ⋆ the dual function of f .

In 2020, Mesnager and Sınak [5,7] defined two subclasses of weakly regular
plateaued functions.

Definition 2 ([5,7]). Let f be a weakly regular unbalanced (resp. balanced) s-plateaued function
with 0 ⩽ s ⩽ m. We denote by WRP (resp. WRPB) the subclass of the unbalanced (resp. balanced)
functions f that meet the following homogeneous conditions simultaneously:

1. f (0) = 0;
2. There exists a positive integer h f , such that 2 | h f , gcd(h f − 1, p − 1) = 1 and

f (zx) = zh f f (x) for every z ∈ F∗
p.

Remark 1. It is clear that 0 ∈ S f (resp. 0 /∈ S f ) whenever f ∈ WRP (resp. f ∈ WRPB).

The following lemmas, due to [5,17], play a significant role in the following calculation.

Lemma 4 (Lemma 6, [5]). Let f ∈ WRP or f ∈ WRPB with χ̂ f (β) = ε f
√

p∗m+sζ
f ⋆(β)
p , where

β ∈ S f . Then, for z ∈ F∗
p, we have zβ ∈ S f if β ∈ S f , and otherwise, we have zβ ∈ Fq\S f .

Lemma 5 (Propositions 2 and 3, [5]). Let f ∈ WRP or f ∈ WRPB with χ̂ f (β) = ε f
√

p∗m+sζ
f⋆(β)
p ,

where β ∈ S f . Then, f ⋆(0) = 0 and f ⋆(zβ) = zl f f ⋆(β) for all z ∈ F∗
p, where 2 | l f and

gcd(l f − 1, p − 1) = 1. We call l f the index of f .

Remark 2. According to Lemma 5, if we take l f = (p − 1)/2, then we must have p ≡ 1 (mod 4).

Lemma 6 (Lemma 10, [5]). Let f ∈ WRP or f ∈ WRPB with χ̂ f (β) = ε f
√

p∗m+sζ
f ⋆(β)
p , where

β ∈ S f . For c ∈ Fp, we define

N f (c) = #{β ∈ S f : f ⋆(β) = c}.

When 2 | m − s,

N f (c) =

{
pm−s−1 + (p − 1)ηm+1(−1)ε f

√
p∗m−s−2, if c = 0,

pm−s−1 − ηm+1(−1)ε f
√

p∗m−s−2, if c ̸= 0.

Otherwise,

N f (c) =

{
pm−s−1, if c = 0,
pm−s−1 + η(c)ηm(−1)ε f

√
p∗m−s−1, if c ̸= 0.
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Lemma 7 (Lemma 3.12, [17]). Let f , g ∈ WRP or f , g ∈ WRPB with χ̂ f (α) = ε f
√

p∗m+sζ
f ⋆(α)
p

and χ̂g(β) = εg
√

p∗m+tζ
g⋆(β)
p , where α ∈ S f and β ∈ Sg. We define

T (0) = #{(a, b) ∈ S f × Sg : f ⋆(a) + g⋆(b) = 0},

T (c) = #{(a, b) ∈ S f × Sg : f ⋆(a) + g⋆(b) = c} for c ∈ F∗
p.

Then, we have

T (0) =

{
p2m−s−t−1 + (p − 1)p−1ε f εg

√
p∗2m−s−t, if 2 | s + t,

p2m−s−t−1, if 2 ∤ s + t,

T (c) =

{
p2m−s−t−1 − p−1ε f εg

√
p∗2m−s−t, if 2 | s + t,

p2m−s−t−1 + η(c)ε f εg
√

p∗2m−s−t−1, if 2 ∤ s + t.

Lemma 8 (Lemma 3.7, [17]). We write n = #D f ,g, where D f ,g is defined by (2) and f , g are given
in Lemma 7. If f , g ∈ WRPB, then n = p2m−1 − 1. If f , g ∈ WRP, then

n =

{
p2m−1 − 1, if 2 ∤ s + t,
p2m−1 − 1 + (p − 1)p−1ε f εg

√
p∗2m+s+t, if 2 | s + t.

3. Auxiliary Results

To ensure that the frequency of each weight appears in our codes, we will need the
following lemmas.

Lemma 9. Let p ≡ 1 (mod 2). For the quadratic character η over Fp, we have

∑
u∈Sq

∑
v∈Sq

v ̸=±u

η(u + v) = − p − 1
2

(η(2) + 1),

∑
u∈Nsq

∑
v∈Nsq
v ̸=±u

η(u + v) =
p − 1

2
(η(2) + 1).

Proof. We note that −1 ∈ Sq if p ≡ 1 (mod 4), and otherwise, −1 ∈ Nsq if p ≡ 3 (mod 4).
Thus,

∑
u∈Sq

∑
v∈Sq

v ̸=±u

η(u + v) = ∑
u∈Sq

η(u) ∑
v∈Sq

v ̸=±u

η(1 +
v
u
)

= ∑
u∈Sq

∑
v∈Sq
v ̸=±1

η(1 + v)

=
p − 1

2

(
∑

v∈Sq

η(1 + v)− η(2)
)

=
p − 1

2

(1
2 ∑

x∈Fp

η(1 + x2)− 1
2
− η(2)

)
=

p − 1
2

(1
2

I2(1)−
1
2
− η(2)

)
.

The first assertion then follows from I2(1) = −1. The second one is analogously proved
and is omitted here.
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Lemma 10. Let p ≡ 1 (mod 4) and f , g be given as Lemma 7. We suppose that s + t is odd. We
write γ = 2m − s − t and

BSq = #{(a, b) ∈ S f × Sg : f ⋆(a) + g⋆(b) ∈ Sq, f ⋆(a)− g⋆(b) ∈ Sq},

BNsq = #{(a, b) ∈ S f × Sg : f ⋆(a) + g⋆(b) ∈ Nsq, f ⋆(a)− g⋆(b) ∈ Nsq}.

Then, if 2 ∤ m − s and 2 | m − t, we have

BSq =
p − 1

2
√

pγ−3
( p − 1

2
√

pγ−1 − η(2)ε f
√

pm−t

+
p + 1

2
εg
√

pm−s−1 + (η(2) + p)ε f εg

)
,

BNsq =
p − 1

2
√

pγ−3
( p − 1

2
√

pγ−1 + η(2)ε f
√

pm−t

+
p + 1

2
εg
√

pm−s−1 − (η(2) + p)ε f εg

)
.

Otherwise, if 2 | m − s and 2 ∤ m − t, we have

BSq =
p − 1

2
√

pγ−3
( p − 1

2
√

pγ−1 − η(2)εg
√

pm−s

+
p + 1

2
ε f
√

pm−t−1 + (η(2) + p)ε f εg

)
,

BNsq =
p − 1

2
√

pγ−3
( p − 1

2
√

pγ−1 + η(2)εg
√

pm−s

+
p + 1

2
ε f
√

pm−t−1 − (η(2) + p)ε f εg

)
.

Proof. We only calculate BSq for the case 2 ∤ m − s and 2 | m − t. Let f ⋆(a) + g⋆(b) = u,
f ⋆(a)− g⋆(b) = v, where u, v ∈ F∗

p. So, f ⋆(a) = u+v
2 , g⋆(b) = u−v

2 and consequently,

BSq = ∑
u∈Sq

∑
v∈Sq

N f (
u + v

2
)Ng(

u − v
2

),

where N f and Ng are computed in Lemma 6. It follows that

BSq = ∑
u∈Sq

N f (u)Ng(0) + ∑
u∈Sq

N f (0)Ng(u) + S,

where
S = ∑

u∈Sq

∑
v∈Sq

v ̸=±u

N f (
u + v

2
)Ng(

u − v
2

). (3)

We observe that u−v
2 ̸= 0 in (3). If we write c = u−v

2 ̸= 0, then, from Lemma 6,

S = Ng(c) ∑
u∈Sq

∑
v∈Sq

v ̸=±u

N f (
u + v

2
)

= Ng(c) ∑
u∈Sq

∑
v∈Sq

v ̸=±u

(
pm−s−1 + η(

u + v
2

)ε f
√

pm−s−1
)

= Ng(c)
( p − 1

2
· p − 5

2
pm−s−1 + η(2)ε f

√
pm−s−1 ∑

u∈Sq

∑
v∈Sq

v ̸=±u

η(u + v)
)

.

The desired assertion then follows from Lemmas 6 and 9.
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4. Main Results

In this section, we will give our main results of the weight distributions of the desired
linear codes CD f ,g defined by (1) and (2). Let us fix some notation that will be used
throughout this section. Let p ≡ 1 (mod 4) and f , g ∈ WRP or f , g ∈ WRPB. For each
α ∈ S f and β ∈ Sg, we may assume from Lemma 3 that χ̂ f (α) = ε f

√
pm+sζ

f ⋆(α)
p and

χ̂g(β) = εg
√

pm+tζ
g⋆(β)
p , where ε f , εg ∈ {±1} and 0 ⩽ s, t ⩽ m. The indexes of f and g are

l f and lg such that l f ∈ {2, p − 1} and lg = (p − 1)/2.
For (a, b) ∈ F2

q\{(0, 0)}, we define

N0 = #
{
(x, y) ∈ F2

q : Tr(ax + by) = 0, f (x) + g(y) = 0
}

. (4)

In what follows, we always denote γ = 2m − s − t and τ = 2m + s + t for abbreviation
purposes.

4.1. The Calculation of N0

The values of N0 in (4) are stated in Lemmas 11–13.

Lemma 11. Let f , g ∈ WRP or f , g ∈ WRPB with lg = (p − 1)/2. We suppose that 2 ∤ s + t
and (a, b) ̸= (0, 0). We always have N0 = p2m−2 if (a, b) /∈ S f × Sg. Otherwise, the following
statements hold.

When l f = p − 1,

N0 =



p2m−2 + p−1
2 η(2)ε f εg

√
pτ−3, if f ⋆(a) ∈ Sq, g⋆(b) = ± f ⋆(a),

p2m−2 − p−1
2 η(2)ε f εg

√
pτ−3, if f ⋆(a) ∈ Nsq, g⋆(b) = ± f ⋆(a),

p2m−2 + (p − 1)ε f εg
√

pτ−3, if f ⋆(a) + g⋆(b) ∈ Sq, f ⋆(a)− g⋆(b) ∈ Sq,
p2m−2 − (p − 1)ε f εg

√
pτ−3, if f ⋆(a) + g⋆(b) ∈ Nsq, f ⋆(a)− g⋆(b) ∈ Nsq,

p2m−2, otherwise.

When l f = 2 and p ≡ 1 (mod 8),

N0 =



p2m−2 + (p − 1)ε f εg
√

pτ−3, if f ⋆(a) = 0, g⋆(b) ∈ Sq

or g⋆(b) = 0, f ⋆(a) ∈ Sq,
p2m−2 − (p − 1)ε f εg

√
pτ−3, if f ⋆(a) = 0, g⋆(b) ∈ Nsq

or g⋆(b) = 0, f ⋆(a) ∈ Nsq,
p2m−2 − 2(p − 1)ε f εg

√
pτ−3, if f ⋆(a) ∈ Sq, g⋆(b) ∈ Sq,

p2m−2 + 2(p − 1)ε f εg
√

pτ−3, if f ⋆(a) ∈ Nsq, g⋆(b) ∈ Nsq,
p2m−2, otherwise.

When l f = 2 and p ≡ 5 (mod 8),

N0 =



p2m−2, if f ⋆(a) = g⋆(b) = 0,
p2m−2 + (p − 1)ε f εg

√
pτ−3, if f ⋆(a) = 0, g⋆(b) ∈ Sq

or g⋆(b) = 0, f ⋆(a) ∈ Sq,
p2m−2 − (p − 1)ε f εg

√
pτ−3, if f ⋆(a) = 0, g⋆(b) ∈ Nsq

or g⋆(b) = 0, f ⋆(a) ∈ Nsq,

p2m−2 + ε f εg
√

pτ−3η( f ⋆(a))
(

I4

(
g⋆(b)
f ⋆(a)

)
− η

(
g⋆(b)
f ⋆(a)

))
, otherwise,

where I4 is a companion sum determined in Lemma 1.
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Proof. Let 2 ∤ s + t. By Equation (4) and the orthogonal property of group characters,

N0 =
1
p2 ∑

x,y∈Fq

∑
z∈Fp

ζp
z( f (x)+g(y)) ∑

h∈Fp

ζp
hTr(ax+by)

=
1
p2 ∑

x,y∈Fq

(
1 + ∑

z∈F∗
p

ζp
z( f (x)+g(y))

)(
1 + ∑

h∈F∗
p

ζp
hTr(ax+by)

)
= p2m−2 +

1
p2 ∑

z∈F∗
p

∑
x,y∈Fq

ζp
z( f (x)+g(y))

+
1
p2 ∑

x,y∈Fq

∑
z∈F∗

p

∑
h∈F∗

p

ζp
z( f (x)+g(y))+hTr(ax+by)

= p2m−2 + p−2(Λ1 + Λ2), (5)

where we write

Λ1 = ∑
z∈F∗

p

∑
x,y∈Fq

ζp
z( f (x)+g(y)),

Λ2 = ∑
x,y∈Fq

∑
z∈F∗

p

∑
h∈F∗

p

ζp
z( f (x)+g(y))+hTr(ax+by).

It follows that

Λ1 = ∑
z∈F∗

p

σz
(
χ̂ f (0)χ̂g(0)

)
=

{
0, if f , g ∈ WRPB,
ε f εg

√
pτ ∑z∈F∗

p
ηs+t(z), if f , g ∈ WRP.

So, we always have Λ1 = 0 when 2 ∤ s + t. Now, it is sufficient to determine Λ2. We observe
from its definition that

Λ2 = ∑
z∈F∗

p

∑
h∈F∗

p

∑
x∈Fq

ζp
z f (x)−Tr(hax) ∑

y∈Fq

ζp
zg(y)−Tr(hby)

= ∑
z∈F∗

p

∑
h∈F∗

p

∑
x∈Fq

ζp
z( f (x)−Tr( h

z ax)) ∑
y∈Fq

ζp
z(g(y)−Tr( h

z by))

= ∑
z∈F∗

p

∑
h∈F∗

p

σz

(
χ̂ f (ha)χ̂g(hb)

)
. (6)

Let h ∈ F∗
p. Obviously, when (a, b) /∈ S f × Sg, (ha, hb) /∈ S f × Sg by Lemma 4. Hence,

χ̂ f (ha) = 0 or χ̂g(hb) = 0, and consequently, by (6),

Λ2 = 0.

When (a, b) ∈ S f × Sg, then (ha, hb) ∈ S f × Sg. By (6), Lemmas 3 and 5, we obtain

Λ2 = ∑
z∈F∗

p

σz

(
∑

h∈F∗
p

ε f εg
√

pτζ
h

l f f ⋆(a)+hlg g⋆(b))
p

)
= ε f εg

√
pτ ∑

z∈F∗
p

ηs+t(z)σz

(
∑

h∈F∗
p

ζ
h

l f f ⋆(a)+hlg g⋆(b)
p

)
= ε f εg

√
pτ ∑

z∈F∗
p

η(z)σz

(
∑

h∈F∗
p

ζ
h

l f f ⋆(a)+hlg g⋆(b)
p

)
. (7)
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In the following, we will determine Λ2 in (7) by considering the cases of l f = p − 1 and
l f = 2, separately.

The first case is that l f = p − 1.
In this case, hp−1 = 1 for every h ∈ F∗

p. By (7), we have

Λ2 = ε f εg
√

pτ ∑
z∈F∗

p

η(z)σz

(
∑

h∈Sq

ζ
f ⋆(a)+g⋆(b)
p + ∑

h∈Nsq

ζ
f ⋆(a)−g⋆(b)
p

)
=

p − 1
2

ε f εg
√

pτ
(

∑
z∈F∗

p

η(z)ζz( f ⋆(a)+g⋆(b))
p + ∑

z∈F∗
p

η(z)ζz( f ⋆(a)−g⋆(b))
p

)

=


0, if f ⋆(a) = g⋆(b) = 0,
p−1

2 ε f εgη(2 f ⋆(a))
√

pτ+1, if f ⋆(a) = −g⋆(b) ̸= 0,
p−1

2 ε f εgη(2 f ⋆(a))
√

pτ+1, if f ⋆(a) = g⋆(b) ̸= 0,
p−1

2 ε f εg

(
η( f ⋆(a) + g⋆(b)) + η( f ⋆(a)− g⋆(b))

)√
pτ+1, otherwise.

Now, let l f = 2; then, the proof is divided into two subcases.

Subcase (a): If p ≡ 1 (mod 8), then −1 ∈ C(4,p)
0 . So, from (7),

Λ2 = ε f εg
√

pτ ∑
z∈F∗

p

η(z)σz

(
∑

h∈Sq

ζ
h2 f ⋆(a)+g⋆(b)
p + ∑

h∈Nsq

ζ
h2 f ⋆(a)−g⋆(b)
p

)
= ε f εg

√
pτ ∑

z∈F∗
p

η(z)σz

(
∑

h∈Sq

ζ
h2 f ⋆(a)+g⋆(b)
p + ∑

h∈Nsq

ζ
−(h2 f ⋆(a)+g⋆(b))
p

)
= ε f εg

√
pτ

(
∑

z∈F∗
p

η(z) ∑
h∈Sq

ζ
z(h2 f ⋆(a)+g⋆(b))
p + ∑

z∈F∗
p

η(−z) ∑
h∈Nsq

ζ
−z(h2 f ⋆(a)+g⋆(b))
p

)
.

Replacing −z by z in the last double sum above, we obtain from Lemma 2 that

Λ2 = ε f εg
√

pτ ∑
z∈F∗

p

η(z) ∑
h∈F∗

p

ζ
z(h2 f ⋆(a)+g⋆(b))
p

= ε f εg
√

pτ ∑
z∈F∗

p

η(z)ζzg⋆(b)
p ∑

h∈F∗
p

ζ
zh2 f ⋆(a)
p

=


0, if f ⋆(a) = g⋆(b) = 0,
(p − 1)ε f εgη(g⋆(b))

√
pτ+1, if f ⋆(a) = 0, g⋆(b) ̸= 0,

(p − 1)ε f εgη( f ⋆(a))
√

pτ+1, if f ⋆(a) ̸= 0, g⋆(b) = 0,
−(p − 1)ε f εg

(
η( f ⋆(a)) + η(g⋆(b))

)√
pτ+1, otherwise.

Subcase (b): If p ≡ 5 (mod 8), then −1 ∈ C(4,p)
2 . So, from (7),

Λ2 = ε f εg
√

pτ ∑
z∈F∗

p

η(z)σz

(
∑

h∈Sq

ζ
h2 f ⋆(a)+g⋆(b)
p + ∑

h∈Nsq

ζ
h2 f ⋆(a)−g⋆(b)
p

)
= ε f εg

√
pτ ∑

z∈F∗
p

η(z)σz

(
∑

h∈Sq

ζ
h2 f ⋆(a)+g⋆(b)
p + ∑

h∈Sq

ζ
−(h2 f ⋆(a)+g⋆(b))
p

)
= 2ε f εg

√
pτ ∑

z∈F∗
p

η(z)σz

(
∑

h∈Sq

ζ
h2 f ⋆(a)+g⋆(b)
p

)
= 2ε f εg

√
pτ ∑

h∈Sq

∑
z∈F∗

p

η(z)ζz(h2 f ⋆(a)+g⋆(b))
p .
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We assume that f ⋆(a)g⋆(b) ≠ 0. If g⋆(b)
f ⋆(a) ∈ C(4,p)

2 , then the equation h2 f ⋆(a)+ g⋆(b) = 0 has

exactly two solutions, h1 and h2, in Sq, where h2 = −h1. Otherwise, if g⋆(b)
f ⋆(a) /∈ C(4,p)

2 , then the

inequality h2 f ⋆(a) + g⋆(b) ̸= 0 holds for all h in Sq. Consequently, when f ⋆(a)g⋆(b) ̸= 0,

Λ2 = 2ε f εg
√

pτ+1 ∑
h∈Sq

η(h2 f ⋆(a) + g⋆(b))

= ε f εg
√

pτ+1 ∑
h∈F∗

p

η(h4 f ⋆(a) + g⋆(b))

= ε f εg
√

pτ+1η( f ⋆(a))
(

I4

( g⋆(b)
f ⋆(a)

)
− η

( g⋆(b)
f ⋆(a)

))
,

where I4 is determined from Lemma 1. Thus, we conclude that

Λ2 =


0, if f ⋆(a) = g⋆(b) = 0,
(p − 1)ε f εgη(g⋆(b))

√
pτ+1, if f ⋆(a) = 0, g⋆(b) ̸= 0,

(p − 1)ε f εgη( f ⋆(a))
√

pτ+1, if f ⋆(a) ̸= 0, g⋆(b) = 0,

ε f εg
√

pτ+1η( f ⋆(a))
(

I4

(
g⋆(b)
f ⋆(a)

)
− η

(
g⋆(b)
f ⋆(a)

))
, otherwise.

The desired conclusion then follows from (5), completing the proof.

Lemma 12. Let f , g ∈ WRP with lg = (p − 1)/2. We suppose that 2 | s + t and (a, b) ̸= (0, 0).
We always have N0 = p2m−2 + (p − 1)ε f εg

√
pτ−4 if (a, b) /∈ S f × Sg. Otherwise, the following

statements hold.
When l f = p − 1, we have

N0 =


p2m−2 + (p − 1)ε f εg

√
pτ−2, if f ⋆(a) = g⋆(b) = 0,

p2m−2 + p−1
2 ε f εg

√
pτ−2, if f ⋆(a) = −g⋆(b) ̸= 0

or f ⋆(a) = g⋆(b) ̸= 0,
p2m−2, otherwise.

When l f = 2 and p ≡ 1 (mod 8), we have

N0 =


p2m−2 + (p − 1)ε f εg

√
pτ−2, if f ⋆(a) = g⋆(b) = 0,

p2m−2 + 2ε f εg
√

pτ−2, if f ⋆(a)g⋆(b) ∈ Sq,
p2m−2, otherwise.

When l f = 2 and p ≡ 5 (mod 8), we have

N0 =


p2m−2 + (p − 1)ε f εg

√
pτ−2, if f ⋆(a) = g⋆(b) = 0,

p2m−2 + 4ε f εg
√

pτ−2, if g⋆(b)
f ⋆(a) ∈ C(4,p)

2 ,

p2m−2, otherwise.

Proof. The proof is completed in a manner analogous to the previous lemma by noting
that 2 | s + t. Now, let (a, b) ∈ S f × Sg. From (5)–(7),

N0 = p2m−2 + p−2(Λ1 + Λ2),

where

Λ1 = (p − 1)ε f εg
√

pτ ,
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Λ2 = ε f εg
√

pτ ∑
z∈F∗

p

σz

(
∑

h∈F∗
p

ζ
h

l f f ⋆(a)+hlg g⋆(b)
p

)
.

It is sufficient to determine Λ2.
The first case is that l f = p − 1.
Again, from (7), we have

Λ2 =
p − 1

2
ε f εg

√
pτ

(
∑

z∈F∗
p

ζ
z( f ⋆(a)+g⋆(b))
p + ∑

z∈F∗
p

ζ
z( f ⋆(a)−g⋆(b))
p

)

=


(p − 1)2ε f εg

√
pτ , if f ⋆(a) = g⋆(b) = 0,

p−1
2 (p − 2)ε f εg

√
pτ , if f ⋆(a) = −g⋆(b) ̸= 0

or f ⋆(a) = g⋆(b) ̸= 0,
−(p − 1)ε f εg

√
pτ , otherwise.

The second case is that l f = 2 where we only need to consider two different subcases.
Subcase (a): If p ≡ 1 (mod 8), then, from (7),

Λ2 = ε f εg
√

pτ ∑
z∈F∗

p

∑
h∈F∗

p

ζ
z(h2 f ⋆(a)+g⋆(b))
p

= ε f εg
√

pτ ∑
z∈F∗

p

ζ
zg⋆(b)
p ∑

h∈F∗
p

ζ
zh2 f ⋆(a)
p

=


(p − 1)2ε f εg

√
pτ , if f ⋆(a) = g⋆(b) = 0,

(p + 1)ε f εg
√

pτ , if f ⋆(a)g⋆(b) ∈ Sq,
−(p − 1)ε f εg

√
pτ , otherwise.

Subcase (b): If p ≡ 5 (mod 8), then, from (7),

Λ2 = 2ε f εg
√

pτ ∑
h∈Sq

∑
z∈F∗

p

ζ
z(h2 f ⋆(a)+g⋆(b))
p .

The value of Λ2 is clear if f ⋆(a)g⋆(b) = 0. We now assume that f ⋆(a)g⋆(b) ̸= 0. If g⋆(b)
f ⋆(a) ∈

C(4,p)
2 ; then, the equation h2 f ⋆(a) + g⋆(b) = 0 has exactly two solutions, h1 and h2, in Sq,

where h2 = −h1. Hence,

Λ2 = 2ε f εg
√

pτ
(

2(p − 1)− (
p − 1

2
− 2)

)
= (3p + 1)ε f εg

√
pτ .

Otherwise, if g⋆(b)
f ⋆(a) /∈ C(4,p)

2 , then the inequality h2 f ⋆(a) + g⋆(b) ̸= 0 holds for all h in Sq.
Thus,

Λ2 = 2ε f εg
√

pτ × p − 1
2

× (−1)

= −(p − 1)ε f εg
√

pτ .

So, we conclude that

Λ2 =


(p − 1)2ε f εg

√
pτ , if f ⋆(a) = g⋆(b) = 0,

(3p + 1)ε f εg
√

pτ , if g⋆(b)
f ⋆(a) ∈ C(4,p)

2 ,

−(p − 1)ε f εg
√

pτ , otherwise.
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The desired conclusion then follows from (5), completing the proof.

Lemma 13. Let f , g ∈ WRPB with lg = (p− 1)/2. We suppose that 2 | s+ t and (a, b) ̸= (0, 0).
We always have N0 = p2m−2 if (a, b) /∈ S f × Sg. Otherwise, the value of N0 is presented in
the following.

When l f = p − 1, we have

N0 =


p2m−2 + (p − 1)2ε f εg

√
pτ−4, if f ⋆(a) = g⋆(b) = 0,

p2m−2 + p−1
2 (p − 2)ε f εg

√
pτ−4, if f ⋆(a) = −g⋆(b) ̸= 0

or f ⋆(a) = g⋆(b) ̸= 0,
p2m−2 − (p − 1)ε f εg

√
pτ−4, otherwise.

When l f = 2 and p ≡ 1 (mod 8), we have

N0 =


p2m−2 + (p − 1)2ε f εg

√
pτ−4, if f ⋆(a) = g⋆(b) = 0,

p2m−2 + (p + 1)ε f εg
√

pτ−4, if f ⋆(a)g⋆(b) ∈ Sq,
p2m−2 − (p − 1)ε f εg

√
pτ−4, otherwise.

When l f = 2 and p ≡ 5 (mod 8), we have

N0 =


p2m−2 + (p − 1)2ε f εg

√
pτ−4, if f ⋆(a) = g⋆(b) = 0,

p2m−2 + (3p + 1)ε f εg
√

pτ−4, if g⋆(b)
f ⋆(a) ∈ C(4,p)

2 ,

p2m−2 − (p − 1)ε f εg
√

pτ−4, otherwise.

Proof. We note that Λ1 = ∑z∈F∗
p

σz
(
χ̂ f (0)χ̂g(0)

)
= 0 for f , g ∈ WRPB. From (5), N0 =

p2m−2 + p−2(Λ1 + Λ2) = p2m−2 + p−2Λ2, where Λ2 is given in Lemma 12. This completes
the proof.

4.2. Weight Distributions of CD f ,g from WRP or WRPB

The weight distributions of CD f ,g defined by (1) and (2) are given in the following
theorems explicitly. We recall that the length of CD f ,g , denoted by n, is already settled in
Lemma 8.

Theorem 1. We suppose that 2 ∤ s + t, f , g ∈ WRP or f , g ∈ WRPB with lg = (p − 1)/2.
Then, the code CD f ,g has parameters [p2m−1 − 1, 2m] and its weight distribution is summarized in
Table 1 if l f = p − 1, in Table 2 if l f = 2 and p ≡ 1 (mod 8) and in Table 3 if l f = 2 and p ≡ 5
(mod 8).

Proof. From Lemma 8, the length is n = p2m−1 − 1. Let (a, b) ̸= (0, 0) and we write
wt(c(a, b)) to be the weight of nonzero codewords c(a, b). Clearly,

wt(c(a, b)) = n + 1 − N0,

where N0 is given by Lemma 11. To be more precise, if (a, b) /∈ S f × Sg, then

wt(c(a, b)) = (p − 1)p2m−2.

For each (a, b) ∈ S f ×Sg, there are four different cases when the weight of c(a, b) does
not equal (p − 1)p2m−2.
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When l f = p − 1, we have

wt(c(a, b)) =


(p − 1)

(
p2m−2 − 1

2 η(2)ε f εg
√

pτ−3), E1 times,
(p − 1)

(
p2m−2 + 1

2 η(2)ε f εg
√

pτ−3), E2 times,
(p − 1)

(
p2m−2 − ε f εg

√
pτ−3), BSq times,

(p − 1)
(

p2m−2 + ε f εg
√

pτ−3), BNsq times,

where the numbers BSq and BNsq are computed in Lemma 10, and

E1 = #{(a, b) ∈ S f × Sg : f ⋆(a) ∈ Sq, g⋆(b) = ± f ⋆(a)} = (p − 1)N f (i)Ng(i),

E2 = #{(a, b) ∈ S f × Sg : f ⋆(a) ∈ Nsq, g⋆(b) = ± f ⋆(a)} = (p − 1)N f (j)Ng(j),

with i ∈ Sq, j ∈ Nsq, and N f and Ng are given in Lemma 6. The weight distribution in
Table 1 is then established.

When l f = 2 and p ≡ 1 (mod 8), we have

wt(c(a, b)) =


(p − 1)

(
p2m−2 − ε f εg

√
pτ−3), E3 times,

(p − 1)
(

p2m−2 + ε f εg
√

pτ−3), E4 times,

(p − 1)
(

p2m−2 + 2ε f εg
√

pτ−3), (p−1)2

4 N f (i)Ng(i) times,

(p − 1)
(

p2m−2 − 2ε f εg
√

pτ−3), (p−1)2

4 N f (j)Ng(j) times,

where

E3 = #{(a, b) ∈ S f × Sg : f ⋆(a) = 0, g⋆(b) ∈ Sq}+ #{(a, b) ∈ S f × Sg : g⋆(b) = 0, f ⋆(a) ∈ Sq}

=
p − 1

2
(
N f (0)Ng(i) +N f (i)Ng(0)

)
,

E4 = #{(a, b) ∈ S f × Sg : f ⋆(a) = 0, g⋆(b) ∈ Nsq}+ #{(a, b) ∈ S f × Sg : g⋆(b) = 0, f ⋆(a) ∈ Nsq}

=
p − 1

2
(
N f (0)Ng(j) +N f (j)Ng(0)

)
,

for i ∈ Sq and j ∈ Nsq. The above argument leads to Table 2.
When l f = 2 and p ≡ 5 (mod 8), we have

wt(c(a, b)) =


(p − 1)

(
p2m−2 − ε f εg

√
pτ−3), E3 times,

(p − 1)
(

p2m−2 + ε f εg
√

pτ−3), E4 times,

(p − 1)p2m−2 − ε f εg
√

pτ−3η(u)
(

I4
( v

u
)
− η

( v
u
))

for all u, v ∈ F∗
p,

N f (u)Ng(v) times.

The weight distribution in this case is concluded in Table 3.

Table 1. The weight distribution of CD f ,g in Theorem 1 when l f = p − 1.

Weight Frequency

0 1
(p − 1)p2m−2 p2m − 1 − E1 − E2 − BSq − BNsq

(p − 1)
(

p2m−2 − 1
2 η(2)ε f εg

√
pτ−3) E1

(p − 1)
(

p2m−2 + 1
2 η(2)ε f εg

√
pτ−3) E2

(p − 1)
(

p2m−2 − ε f εg
√

pτ−3) BSq

(p − 1)
(

p2m−2 + ε f εg
√

pτ−3) BNsq
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Table 2. The weight distribution of CD f ,g in Theorem 1 when l f = 2 and p ≡ 1 (mod 8).

Weight Frequency

0 1

(p − 1)p2m−2 p2m − 1 − E3 − E4 −
(p−1)2

4
(
N f (i)Ng(i) +N f (j)Ng(j)

)
(p − 1)

(
p2m−2 − ε f εg

√
pτ−3) E3

(p − 1)
(

p2m−2 + ε f εg
√

pτ−3) E4

(p − 1)
(

p2m−2 + 2ε f εg
√

pτ−3) (p−1)2

4 N f (i)Ng(i)

(p − 1)
(

p2m−2 − 2ε f εg
√

pτ−3) (p−1)2

4 N f (j)Ng(j)

Table 3. The weight distribution of CD f ,g in Theorem 1 when l f = 2 and p ≡ 5 (mod 8).

Weight Frequency

0 1
(p − 1)p2m−2 p2m − 1 − E3 − E4 − ∑u,v∈F∗

p
N f (u)Ng(v)

(p − 1)
(

p2m−2 − ε f εg
√

pτ−3) E3
(p − 1)

(
p2m−2 + ε f εg

√
pτ−3) E4

(p − 1)p2m−2 − ε f εg
√

pτ−3η(u)
(

I4
( v

u
)
− η

( v
u
))

for all u, v ∈ F∗
p

N f (u)Ng(v)

Theorem 2. We suppose that 2 | s + t and f , g ∈ WRP with lg = (p − 1)/2. Then, CD f ,g is
an [n, 2m] linear code and the weight distribution is given in Table 4 if l f = p − 1, in Table 5
if l f = 2 and p ≡ 1 (mod 8) and in Table 6 if l f = 2 and p ≡ 5 (mod 8). Here, we set
n = p2m−1 − 1 + (p − 1)ε f εg

√
pτ−2 for brevity.

Proof. The length of this code comes from Lemma 8. For (a, b) ̸= (0, 0), the weight
wt(c(a, b)) = n + 1 − N0 can be obtained from Lemma 12. To be more explicit, when
(a, b) /∈ S f × Sg,

wt(c(a, b)) = (p − 1)
(

p2m−2 + (p − 1)ε f εg
√

pτ−4).

The frequency of such codewords equals p2m − pγ since f , g ∈ WRP. When (a, b) ∈
S f × Sg\{(0, 0)}, we will discuss four different cases.

When l f = p − 1, we have

wt(c(a, b)) =


(p − 1)p2m−2, N f (0)Ng(0)− 1 times,
(p − 1)

(
p2m−2 + 1

2 ε f εg
√

pτ−2), F1 times,
(p − 1)

(
p2m−2 + ε f εg

√
pτ−2), F2 times,

where we define

F1 = #{(a, b) ∈ S f × Sg : f ⋆(a) ̸= 0, g⋆(b) = ± f ⋆(a)} = 2 ∑
c∈F∗

p

N f (c)Ng(c),

F2 = pγ −N f (0)Ng(0)− F1.

Thus, we obtain the weight distribution in Table 4.
When l f = 2 and p ≡ 1 (mod 8), we have

wt(c(a, b)) =


(p − 1)p2m−2, N f (0)Ng(0)− 1 times,
(p − 1)p2m−2 + (p − 3)ε f εg

√
pτ−2, F3 times,

(p − 1)
(

p2m−2 + ε f εg
√

pτ−2), F4 times,
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where

F3 = #{(a, b) ∈ S f × Sg : f ⋆(a)g⋆(b) ∈ Sq} =
(p − 1)2

4
(N f (i)Ng(i) +N f (j)Ng(j)),

F4 = pγ −N f (0)Ng(0)− F3,

for i ∈ Sq and j ∈ Nsq. This implies the weight distribution listed in Table 5.
When l f = 2 and p ≡ 5 (mod 8), we get

wt(c(a, b)) =


(p − 1)p2m−2, N f (0)Ng(0)− 1 times,
(p − 1)p2m−2 + (p − 5)ε f εg

√
pτ−2, F5 times,

(p − 1)
(

p2m−2 + ε f εg
√

pτ−2), F6 times,

where we write

F5 = #{(a, b) ∈ S f × Sg :
g⋆(b)
f ⋆(a)

∈ C(4,p)
2 }

=
(p − 1)2

8
(N f (i)Ng(i) +N f (j)Ng(j)) =

1
2

F3,

F6 = pγ −N f (0)Ng(0)−
1
2

F3,

for i ∈ Sq and j ∈ Nsq. Thus, the result in Table 6 is derived.

Table 4. The weight distribution of CD f ,g in Theorem 2 when l f = p − 1.

Weight Frequency

0 1
(p − 1)p2m−2 N f (0)Ng(0)− 1
(p − 1)

(
p2m−2 + 1

2 ε f εg
√

pτ−2) F1
(p − 1)

(
p2m−2 + ε f εg

√
pτ−2) pγ −N f (0)Ng(0)− F1

(p − 1)
(

p2m−2 + (p − 1)ε f εg
√

pτ−4) p2m − pγ

Table 5. The weight distribution of CD f ,g in Theorem 2 when l f = 2 and p ≡ 1 (mod 8).

Weight Frequency

0 1
(p − 1)p2m−2 N f (0)Ng(0)− 1
(p − 1)p2m−2 + (p − 3)ε f εg

√
pτ−2 F3

(p − 1)
(

p2m−2 + ε f εg
√

pτ−2) pγ −N f (0)Ng(0)− F3

(p − 1)
(

p2m−2 + (p − 1)ε f εg
√

pτ−4) p2m − pγ

Table 6. The weight distribution of CD f ,g in Theorem 2 when l f = 2 and p ≡ 5 (mod 8).

Weight Frequency

0 1
(p − 1)p2m−2 N f (0)Ng(0)− 1
(p − 1)p2m−2 + (p − 5)ε f εg

√
pτ−2 1

2 F3
(p − 1)

(
p2m−2 + ε f εg

√
pτ−2) pγ −N f (0)Ng(0)− 1

2 F3

(p − 1)
(

p2m−2 + (p − 1)ε f εg
√

pτ−4) p2m − pγ

Theorem 3. We suppose that 2 | s + t and f , g ∈ WRPB with lg = (p − 1)/2. Then, CD f ,g is a
[p2m−1 − 1, 2m] linear code with its weight distribution given in Table 7 if l f = p − 1, in Table 8 if
l f = 2 and p ≡ 1 (mod 8) and in Table 9 if l f = 2 and p ≡ 5 (mod 8).
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Proof. We note that (0, 0) is not in S f × Sg since f , g ∈ WRPB. This theorem can be
derived in the same way as Theorem 2 by using Lemmas 6–8 and 13. We omitted the details
here.

Table 7. The weight distribution of CD f ,g in Theorem 3 when l f = p − 1.

Weight Frequency

0 1
(p − 1)

(
p2m−2 − (p − 1)ε f εg

√
pτ−4) N f (0)Ng(0)

(p − 1)
(

p2m−2 − p−2
2 ε f εg

√
pτ−4) F1

(p − 1)
(

p2m−2 + ε f εg
√

pτ−4) pγ −N f (0)Ng(0)− F1
(p − 1)p2m−2 p2m − pγ − 1

Table 8. The weight distribution of CD f ,g in Theorem 3 when l f = 2 and p ≡ 1 (mod 8).

Weight Frequency

0 1
(p − 1)

(
p2m−2 − (p − 1)ε f εg

√
pτ−4) N f (0)Ng(0)

(p − 1)p2m−2 − (p + 1)ε f εg
√

pτ−4 F3

(p − 1)
(

p2m−2 + ε f εg
√

pτ−4) pγ −N f (0)Ng(0)− F3
(p − 1)p2m−2 p2m − pγ − 1

Table 9. The weight distribution of CD f ,g in Theorem 3 when l f = 2 and p ≡ 5 (mod 8).

Weight Frequency

0 1
(p − 1)

(
p2m−2 − (p − 1)ε f εg

√
pτ−4) N f (0)Ng(0)

(p − 1)p2m−2 − (3p + 1)ε f εg
√

pτ−4 1
2 F3

(p − 1)
(

p2m−2 + ε f εg
√

pτ−4) pγ −N f (0)Ng(0)− 1
2 F3

(p − 1)p2m−2 p2m − pγ − 1

Remark 3. In Theorems 1, 2 and 3, we completely presented the weight distributions of CD f ,g for
f , g ∈ WRP or f , g ∈ WRPB with l f ∈ {2, p − 1} and lg = (p − 1)/2, where p ≡ 1 (mod 4).
The case l f = lg = (p − 1)/2 is not considered here, since the results for this case will be the same
as for l f = lg = 2 or l f = lg = p − 1 and they were determined in [17] (see Tables 3, 4 and 6).

Remark 4. For s + t is odd, it is interesting to see that the codes have the same weight distributions
whenever the functions are balanced or unbalanced. When s + t is even and f , g ∈ WRP and
p ≡ 1 (mod 8), the weight distribution in Table 5 coincides with [17] (see Theorem 3.17, Table 5).
If we set t = s in Table 5, then the result coincides with [3] (see Theorem 4, Tables 9 and 10).
When s + t is even and f , g ∈ WRPB and p ≡ 1 (mod 8), the weight distribution in Table 8
coincides with [17] (see Theorem 3.21, Table 7). However, this is not the case for p ≡ 5 (mod 8).
Nevertheless, the index (p − 1)/2 is not considered in the literature. Moreover, most of our results,
such as Tables 1–4, 6, 7 and 9, are not contained in [3,17].

Now, we will provide some examples from weakly regular unbalanced plateaued
functions to illustrate the results in Theorems 1 and 2.

Example 1. Let f , g : F53 → F5 be defined as f (x) = Tr(x6 + x2) and g(y) = Tr(θy6 + θ3y2) for
a primitive element θ of F∗

53 . Then, f , g ∈ WRP with s = 0, t = 1, ε f = −1, εg = 1, l f = lg = 2,

χ̂ f (α) ∈ {−
√

5
3
ζ

f ⋆(α)
5 } and χ̂g(β) ∈ {0, 52ζ

g⋆(β)
5 }, where α, β ∈ F53 and f ⋆(0) = g⋆(0) = 0.

Actually, the function f is quadratic bent and its Walsh transform satisfies |χ̂ f (α)|2 = 125.
From Magma programs, the code CD f ,g is a three-weight code with parameters [3124, 6, 2400] and
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the weight enumerator 1 + 1300z2400 + 13124z2500 + 1200z2600. This is verified by Table 3 in
Theorem 1 noting that I4(1) = −3, I4(2) = −5, I4(3) = 3 and I4(4) = 1.

Example 2. Let f , g : F54 → F5 be defined as f (x) = Tr(x6) and g(y) = Tr(y26 − y2). Then,
f , g ∈ WRP with s = t = 2, ε f = −1, εg = 1 and l f = lg = 2. Their Walsh transforms satisfy

χ̂ f (α) ∈ {0,−53ζ
f ⋆(α)
5 } and χ̂g(β) ∈ {0, 53ζ

g⋆(β)
5 }, where α, β ∈ F54 and f ⋆(0) = g⋆(0) = 0.

From Magma programs, the code CD f ,g is a three-weight code with parameters [65624, 8, 50000]
and the weight enumerator 1 + 520z50000 + 390000z52500 + 104z62500. This is verified by Table 6
in Theorem 2.

Example 3. Let f , g : F52 → F5 be defined as f (x) = Tr(x2) and g(y) = Tr(θy2 − θy6) for a
primitive element θ of F∗

52 . Then, f , g are quadratic bent functions in the set WRP, with s = t = 0,

ε f = −1, εg = 1, l f = lg = 2, χ̂ f (α) ∈ {−5ζ
f ⋆(α)
5 } and χ̂g(β) ∈ {5ζ

g⋆(β)
5 }, where α, β ∈ F52

and f ⋆(0) = g⋆(0) = 0. From Magma programs, the code CD f ,g is a two-weight code with
parameters [104, 4, 80] and the weight enumerator 1 + 520z80 + 104z100. This is also verified by
Table 6 in Theorem 2.

5. Minimality of the Codes and Their Applications

This section is devoted to analyzing the minimality of our codes CD f ,g defined by (1)
and (2), and then applying them to construct secret sharing schemes.

A linear code C over Fp is called minimal if every nonzero codeword c solely covers
its scalar multiples zc for z ∈ F∗

p. In 1998, Ashikhmin and Barg [24] provided a sufficient
condition for a linear code to be minimal, that is,

wmin
wmax

>
p − 1

p
,

where wmin and wmax represent the minimum and maximum nonzero weights, respectively.
Now, we will show the minimality of the constructed linear codes in Theorems 1–3.

Theorem 4. (1) The linear codes with weight distributions in Tables 1 and 2 are minimal, if γ ⩾ 5.
(2) The linear codes with weight distributions in Tables 4–6 are minimal, if ε f εg = 1 and

γ ⩾ 4, or if ε f εg = −1 and γ ⩾ 6.
(3) The linear codes with weight distributions in Tables 7–9 are minimal, if γ ⩾ 4.

It should be noted that the minimum distance of C⊥
D f ,g

equals 2 since there are two
linearly dependent entries in each codeword in CD f ,g . Additionally, under the framework
stated in [25,26], the minimal codes described in Theorem 4 can be employed to construct
secret sharing schemes with good access structure.

Theorem 5 (Proposition 2, [26]). Let C be an [n, k] code over Fq, and let G = [g0, g1, . . . , gn−1]
be its generator matrix. If C is minimal, then in the secret sharing schemes based on the dual code
C⊥, there are altogether qk−1 minimal access sets. In addition, we have the following assertions:

(1) If gi is a multiple of g0, 1 ⩽ i ⩽ n − 1, then participant Pi must be in every minimal access
set. Such a participant is called a dictatorial participant.

(2) If gi is not a multiple of g0, 1 ⩽ i ⩽ n − 1, then participant Pi must be in (q − 1)qk−2 out of
qk−1 minimal access sets.

According to Theorem 5, we give the following example for secret sharing schemes.

Example 4. Let f , g : F54 → F5 be defined as f (x) = Tr(x6) and g(y) = Tr(y6). Then, f , g ∈
WRP with s = t = 2, ε f = εg = −1 and l f = lg = 2. From Table 6 in Theorem 2, the code CD f ,g

is a three-weight code with parameters [90624, 8, 62500] and the weight enumerator 1+ 144z62500 +
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390000z72500 + 480z75000. So, CD f ,g is minimal by Theorem 4. Let G = [g0, g1, . . . , g90623] be the
generator matrix of CD f ,g . Then, in the secret sharing scheme based on the dual code C⊥

D f ,g
, there are

altogether 78,125 minimal access sets. In addition, we have the following assertions:

(1) If gi is a multiple of g0, 1 ⩽ i ⩽ 90,623, then participant Pi must be in every minimal access
set and Pi is a dictatorial participant.

(2) If gi is not a multiple of g0, 1 ⩽ i ⩽ 90,623, then participant Pi must be in 62,500 out of
78,125 minimal access sets.

6. Conclusions

In the literature, linear codes from weakly regular plateaued functions with index 2
and p − 1 have been extensively studied, where p is a general prime number, see [3,16–18]
and the references therein. However, the index of (p − 1)/2 has not been considered before.
In this paper, we took p ≡ 1 (mod 4) and studied the construction of new linear codes
from two weakly regular plateaued functions with new indexes 2, p − 1 and (p − 1)/2.
By calculating the exponential sums carefully, we succeeded in determining their weight
distributions, as we had described in Theorems 1–3. Moreover, most of our codes are
minimal and so they are suitable for designing secret sharing schemes. It should be noted
that all the examples we gave are chosen from weakly regular unbalanced plateaued
functions. Unfortunately, we have not found any weakly regular balanced plateaued
functions until now. It would be very nice if someone found such a function in the future.

Author Contributions: Conceptualization, S.Y. and T.Z.; methodology, S.Y.; validation, T.Z. and Z.-a.Y.;
writing—original draft preparation, S.Y.; writing—review and editing, S.Y. and T.Z.; visualization,
Z.-a.Y.; supervision, S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of China
(Nos. 12071247, 12126609, 11971496), National Key R&D Program of China (No. 2020YFA0712500), Re-
search and Innovation Fund for Graduate Dissertations of Qufu Normal University (No. LWCXS202251).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Huffman, W.; Pless, V. Fundamentals of Error Correcting Codes; Cambridge University Press: Cambridge, UK, 2003.
2. Calderbank, A.R.; Goethals, J.M. Three-weight codes and association schemes. Philips J. Res. 1984, 39, 143–152.
3. Cheng, Y.J.; Cao, X.W. Linear codes with few weights from weakly regular plateaued functions. Discret. Math. 2021, 344, 112597.

[CrossRef]
4. Kong, X.L.; Yang, S.D. Complete weight enumerators of a class of linear codes with two or three weights. Discret. Math. 2019, 342,

3166–3176. [CrossRef]
5. Mesnager, S.; Sınak, A. Several classes of minimal linear codes with few weights from weakly regular plateaued functions. IEEE

Trans. Inf. Theory 2020, 66, 2296–2310. [CrossRef]
6. Özbudak, F.; Pelen, R.M. Two or three weight linear codes from non-weakly regular bent functions. IEEE Trans. Inf. Theory 2022,

68, 3014–3027. [CrossRef]
7. Sınak, A. Minimal linear codes from weakly regular plateaued balanced functions. Discret. Math. 2021, 344, 112215. [CrossRef]
8. Yang, S.D. Complete weight enumerators of linear codes based on Weil sums. IEEE Commun. Lett. 2021, 25, 346–350. [CrossRef]
9. Zhang, T.H.; Lu, H.; Yang, S.D. Two-weight and three-weight linear codes constructed from Weil sums. Math. Found. Comput.

2022, 5, 129–144. [CrossRef]
10. Zheng, D.B.; Zhao, Q.; Wang, X.Q.; Zhang, Y. A class of two or three weights linear codes and their complete weight enumerators.

Discret. Math. 2021, 344, 112355. [CrossRef]
11. Heng, Z.L.; Li, D.X.; Du, J.; Chen, F.L. A family of projective two-weight linear codes. Des. Codes Cryptogr. 2021, 89, 1993–2007.

[CrossRef]
12. Tang, C.M.; Li, N.; Qi, Y.F.; Zhou, Z.C.; Helleseth, T. Linear codes with two or three weights from weakly regular bent functions.

IEEE Trans. Inf. Theory 2016, 62, 1166–1176. [CrossRef]
13. Tang, C.M.; Qi, Y.F.; Huang, D.M. Two-weight and three-weight linear codes from square functions. IEEE Commun. Lett. 2016, 20,

29–32. [CrossRef]

http://doi.org/10.1016/j.disc.2021.112597
http://dx.doi.org/10.1016/j.disc.2019.06.025
http://dx.doi.org/10.1109/TIT.2019.2956130
http://dx.doi.org/10.1109/TIT.2022.3145337
http://dx.doi.org/10.1016/j.disc.2020.112215
http://dx.doi.org/10.1109/LCOMM.2020.3027754
http://dx.doi.org/10.3934/mfc.2021041
http://dx.doi.org/10.1016/j.disc.2021.112355
http://dx.doi.org/10.1007/s10623-021-00896-2
http://dx.doi.org/10.1109/TIT.2016.2518678
http://dx.doi.org/10.1109/LCOMM.2015.2497344


Entropy 2024, 26, 455 19 of 19

14. Ding, C.S.; Niederreiter, H. Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 2007, 53, 2274–2277. [CrossRef]
15. Li, C.J.; Yue, Q.; Fu, F.W. A construction of several classes of two-weight and three-weight linear codes. Appl. Algebra Eng.

Commun. Comput. 2017, 28, 11–30. [CrossRef]
16. Wu, Y.N.; Li, N.; Zeng, X.Y. Linear codes with few weights from cyclotomic classes and weakly regular bent functions. Des. Codes

Cryptogr. 2020, 88, 1255–1272. [CrossRef]
17. Sınak, A. Construction of minimal linear codes with few weights from weakly regular plateaued functions. Turk. J. Math. 2022, 46,

953–972. [CrossRef]
18. Yang, S.D.; Zhang, T.H.; Li, P. Linear codes from two weakly regular plateaued balanced functions. Entropy 2023, 25, 369.

[CrossRef] [PubMed]
19. Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer: New York, NY, USA, 1990.
20. Lidl, R.; Niederreiter, H. Finite Fields; Cambridge University Press: Cambridge, UK, 1997.
21. Zheng, Y.L.; Zhang, X.M. Plateaued functions. In Proceedings of the International Conference on Information and Communica-

tions Security, Sydney, NSW, Australia, 9–11 November 1999; Springer: New York, NY, USA, 1999; pp. 284–300.
22. Mesnager, S. Characterizations of plateaued and bent functions in characteristic p. In Proceedings of the International Conference

on Sequences and Their Applications, SETA-2014, Melbourne, VIC, Australia, 24–28 November 2014; Springer: Cham, Switzerland,
2014; pp. 72–82.

23. Mesnager, S.; Özbudak, F.; Sınak, A. Linear codes from weakly regular plateaued functions and their secret sharing schemes. Des.
Codes Cryptogr. 2019, 87, 463–480. [CrossRef]

24. Ashikhmin, A.; Barg, A. Minimal vectors in linear codes. IEEE Trans. Inf. Theory 1998, 44, 2010–2017. [CrossRef]
25. Ding, C.S.; Yuan, J. Covering and secret sharing with linear codes. In Discrete Mathematics and Theoretical Computer Science;

Springer: Berlin/Heidelberg, Germany, 2003; pp. 11–25.
26. Yuan, J.; Ding, C.S. Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 2006, 52, 206–212. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.2007.896886
http://dx.doi.org/10.1007/s00200-016-0297-4
http://dx.doi.org/10.1007/s10623-020-00744-9
http://dx.doi.org/10.55730/1300-0098.3135
http://dx.doi.org/10.3390/e25020369
http://www.ncbi.nlm.nih.gov/pubmed/36832735
http://dx.doi.org/10.1007/s10623-018-0556-4
http://dx.doi.org/10.1109/18.705584
http://dx.doi.org/10.1109/TIT.2005.860412

	Introduction
	Mathematical Background
	Cyclotomic Classes and Cyclotomic Fields
	Exponential Sums
	Weakly Regular Plateaued Functions

	Auxiliary Results
	Main Results
	The Calculation of  N0 
	Weight Distributions of CDf,g from WRP or WRPB

	Minimality of the Codes and Their Applications
	Conclusions
	References

