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Abstract: The applications of deep learning and artificial intelligence have permeated daily life, with
time series prediction emerging as a focal area of research due to its significance in data analysis. The
evolution of deep learning methods for time series prediction has progressed from the Convolutional
Neural Network (CNN) and the Recurrent Neural Network (RNN) to the recently popularized
Transformer network. However, each of these methods has encountered specific issues. Recent studies
have questioned the effectiveness of the self-attention mechanism in Transformers for time series
prediction, prompting a reevaluation of approaches to LTSF (Long Time Series Forecasting) problems.
To circumvent the limitations present in current models, this paper introduces a novel hybrid network,
Temporal Convolutional Network-Linear (TCN-Linear), which leverages the temporal prediction
capabilities of the Temporal Convolutional Network (TCN) to enhance the capacity of LSTF-Linear.
Time series from three classical chaotic systems (Lorenz, Mackey–Glass, and Rossler) and real-world
stock data serve as experimental datasets. Numerical simulation results indicate that, compared to
classical networks and novel hybrid models, our model achieves the lowest RMSE, MAE, and MSE
with the fewest training parameters, and its R2 value is the closest to 1.

Keywords: chaos prediction; time series forecasting; neural networks

1. Introduction

Chaotic research constitutes an interdisciplinary field [1], encompassing theories of dy-
namical systems, nonlinear dynamics, and complex systems [2]. The significance of chaos
theory lies in its elucidation of non-periodic behaviors and unpredictable characteristics
within numerous systems [3]. Notably, chaotic systems demonstrate extreme sensitivity to
initial conditions, where minor initial discrepancies can lead to significant deviations in
system trajectories, resulting in long-term unpredictability while retaining short-term pre-
dictability [4]. This phenomenon marks chaos as a key feature of complex system behaviors,
offering new perspectives for our understanding and analysis of these systems [5].

Time series forecasting involves predicting future outputs using historical infor-
mation and future input signals [6], reflecting the dynamic changes of the system in
the future, and holds broad research prospects [7]. In the classical forecasting domain,
mathematical models with rigorous derivations offer good interpretability; however, un-
known parameters in the system increase the difficulty of modeling [8]. Linear or single-
degree-of-freedom dynamic systems are easier to predict, whereas, due to their sensitivity
to initial conditions—characteristic of chaos—chaotic time series are more challenging
to forecast [9].

The advent of data-driven modeling techniques has posed challenges for researchers,
while the evolution of neural networks, particularly deep learning, bolstered by advance-
ments in computer hardware, has opened new avenues for automated data analysis.
Amaranto et al. [10], for instance, developed B-AMA (Basic dAta-driven Models for All),
a flexible and easy-to-use tool for both non-expert users and more experienced develop-
ers. As for deep learning, traditional Convolutional Neural Networks (CNNs) [11] have
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been proven effective in the domain of image recognition, while Recurrent Neural Net-
works (RNNs), due to their unique neural unit structure, exhibit superior performance
in processing sequential data [12]. Despite many RNN variants optimizing their perfor-
mance by introducing gating mechanisms, issues such as vanishing or exploding gradients
and high computational costs due to the inability to compute in parallel still persist [13].
Consequently, since the introduction of the Transformer [14] network in 2017, its paral-
lel processing capabilities based on the attention mechanism and its ability to capture
long-distance dependencies have demonstrated remarkable abilities in natural language
processing tasks, making it and its variants the focus of current neural network research.
However, Zeng et al. questioned the Transformer network’s capabilities in time series
forecasting [15]. They pointed out that the attention mechanism could lead to the loss of
temporal scale information, which is crucial for time series forecasting. They introduced a
structurally simple LSTF-Linear network that outperformed the Transformer network on
multiple test sets.

The study of time series forecasting for dynamic system states holds practical value [16].
In recent decades, a considerable amount of research has been dedicated to applying neural
networks to chaotic time series forecasting and related application domains. Sun et al. [17]
trained an encoder–decoder with LSTM units to perform chaos forecasting on a five-degree-
of-freedom duffing oscillator system. The numerical simulations revealed that the LSTM
ED model can accurately predict chaotic time series with limited data, achieving a pre-
diction window twice the size of the observation window. Uribarri et al. [18] found out
that under certain conditions, Long Short Term Memory networks can learn to forecast
time series from chaotic systems by generating an embedding in their inner state that is
topologically equivalent to the original strange attractor. Sangiorgio et al. [19] implemented
a multi-step approach to predict an entire interval of future values, and compared the
performances of various neural network architectures in real-world cases. Ref. [20] rec-
ommends training LSTM networks without the teacher forcing them to improve accuracy
and robustness, ensuring a more uniform distribution of the predictive power within the
chaotic attractor. Ref. [21] found that recurrent architectures of networks are more suitable
for learning the non-stationary dynamics caused by structural noise. Pathak et al. [22]
presented a parallel scheme with an example implementation based on the Reservoir Com-
puting (RC) paradigm that offered a new direction in the field of chaos prediction. Ref. [23]
found that RNNs trained via backpropagation through time show superior forecasting
abilities and capture the dynamics of reduced order systems well. Patel et al. [24] found
that machine learning shows excellent performance in predicting the long-term behavior of
a non-stationary dynamical system.

In recent studies, hybrid models that leverage the strengths of various models through
parallel or sequential combinations have demonstrated superior performance, which is
emerging as a new trend in research. Xia et al. [25] presented a stacked GRU-RNN for the
prediction of renewable energy generation and electricity load; the experimental results
demonstrated that the models achieved an accurate energy prediction for effective smart
grid operation. Lazcano et al. [26] combined the characteristics of a GCN and a Bi-LSTM
network to forecast the price of oil and reached a low error of RMSE, MSE, and MAPE.
Cao et al. [27] established a new hybrid time series forecasting method by combining the
EMD and CEEMDAN algorithms with the LSTM neural network for financial time se-
ries, which exhibited a more accurate predictive performance than other similar models.
Fu et al. [28] designed a deep temporal inception module and gated recurrent unit net-
work (DTIGNet), which demonstrated superior accuracy and performance in predicting
chaotic time series, outperforming other methods based on six evaluation metrics. The
significance of chaotic time series prediction also extends to its application in fields such as
weather forecasting [29,30], the stock market [31,32], wind power [33,34], and traffic flow
analysis [35,36], highlighting its critical role across various domains.

Building on the analysis provided, we introduce a novel hybrid neural network
architecture, the TCN-Linear model. This model harnesses the advantages of dilated and
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causal convolutions within the TCN network, thereby expanding the model capacity of
LSTF-Linear and enhancing its specialized learning capabilities for diverse time series data.
It circumvents the gradient issues associated with RNNs and the loss of temporal scale
information attributed to the attention mechanisms in Transformers, achieving a higher
prediction accuracy with a reduced parameter count for training. The remainder of the
paper is organized as follows. Section 2 introduces the theoretical underpinnings and the
development of the model. Section 3 describes the experimental setup and results. Section 4
concludes the work and offers perspectives on future research.

2. Proposed Model
2.1. TCN

Bai et al. [37] introduced a novel Temporal Convolutional Network (TCN) that adapts
convolutional networks for the processing of time series data. This model leverages a
proposed causal convolution method to capture local dependencies within sequence data,
ensuring temporality, and employs dilated convolutions to expand its receptive field for
better learning of data correlations. Additionally, it utilizes convolutional operations for
efficient parallel computation, making it suitable for large-scale data processing.

2.1.1. Causal Convolution

Causal convolution, as shown in Figure 1, is one of the core concepts of TCN. To ensure
that convolution operations only utilize past information, causal convolution employs zero-
padding at the beginning of the sequence. This technique ensures that the output at each
time step is influenced solely by that point and its preceding inputs. Such an approach
prevents forward leakage of information and maintains temporal alignment between the
input and output sequences.

Entropy 2024, 26, x FOR PEER REVIEW 3 of 16 
 

 

such as weather forecasting [29,30], the stock market [31,32], wind power [33,34], and traf-

fic flow analysis [35,36], highlighting its critical role across various domains. 

Building on the analysis provided, we introduce a novel hybrid neural network ar-

chitecture, the TCN-Linear model. This model harnesses the advantages of dilated and 

causal convolutions within the TCN network, thereby expanding the model capacity of 

LSTF-Linear and enhancing its specialized learning capabilities for diverse time series 

data. It circumvents the gradient issues associated with RNNs and the loss of temporal 

scale information attributed to the attention mechanisms in Transformers, achieving a 

higher prediction accuracy with a reduced parameter count for training. The remainder 

of the paper is organized as follows. Section 2 introduces the theoretical underpinnings 

and the development of the model. Section 3 describes the experimental setup and results. 

Section 4 concludes the work and offers perspectives on future research. 

2. Proposed Model 

2.1. TCN 

Bai et al. [37] introduced a novel Temporal Convolutional Network (TCN) that 

adapts convolutional networks for the processing of time series data. This model lever-

ages a proposed causal convolution method to capture local dependencies within se-

quence data, ensuring temporality, and employs dilated convolutions to expand its recep-

tive field for better learning of data correlations. Additionally, it utilizes convolutional 

operations for efficient parallel computation, making it suitable for large-scale data pro-

cessing. 

2.1.1. Causal Convolution 

Causal convolution, as shown in Figure 1, is one of the core concepts of TCN. To 

ensure that convolution operations only utilize past information, causal convolution em-

ploys zero-padding at the beginning of the sequence. This technique ensures that the out-

put at each time step is influenced solely by that point and its preceding inputs. Such an 

approach prevents forward leakage of information and maintains temporal alignment be-

tween the input and output sequences. 

 

Figure 1. Structure of causal convolution. 

  

Figure 1. Structure of causal convolution.

2.1.2. Dilated Convolution

Dilated convolution represents another crucial component within TCN, serving as an
extension of traditional convolution aimed at enlarging the receptive field of the convo-
lutional layers. This enlargement enables the network to capture temporal dependencies
over longer ranges. In dilated convolution, zeros are inserted between the elements of the
convolution kernel (i.e., the dilation rate), allowing the network to cover a larger input
area without an increase in the number of parameters or the computational complexity; the
structure of dilated convolution is shown in Figure 2.
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With the increase in network depth, the dilation rate can be progressively increased,
enabling deeper convolutional layers to possess an extensive receptive field. Consequently,
the network can effectively learn long-term temporal dependencies without sacrificing
temporal resolution.

2.1.3. Residual Connection

TCN mitigates the effects of gradient vanishing and explosion in deep networks to
some extent. This model introduces straightforward direct connection channels, allowing
the network to learn identity mapping, as shown in Figure 3. This ensures that the perfor-
mance of deep networks does not degrade more than that of their shallower counterparts,
and prevents the initial data weight increase caused by dimension changes during the
input processing phase.
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2.2. LSTF-Linear

LSTF-Linear is a simple direct multi-step model that operates via a temporal linear
layer. The fundamental approach of LTSF-Linear employs a weighted sum operation to
directly predict future values by regressing on historical time series data (as illustrated in
Figure 4). The mathematical expression is X̂i = WXi, where W ∈ RT×L is a linear layer
along the temporal axis. X̂i and Xi are the prediction and the input for each i variate.
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Specially, D-Linear (shown in Figure 4) is a hybrid of a seasonal decomposition
encoder–decoder and the Linear network which decomposes the original data into seasonal
and trend components through a moving average kernel. Subsequently, each component is
processed using a single linear layer, and the output results are summed to obtain the final
prediction. This strategy enhances the model’s performance when the data exhibit clear
trends, which coincidentally can be identified within the phase diagrams of chaotic systems.

2.3. TCN-Linear

To further improve model capacity and prediction accuracy, a new hybrid model for
chaotic time series prediction is proposed in this paper, named TCN-Linear, which is shown
in Figure 5. We tried to improve the structure of D-Linear by fusing it with TCN. This
model is constructed with several Residual Block modules and a D-Linear network, where
each Residual Block contains two Dilated Causal Conv, two WeightNorm layers, two ReLu
layers, and two Dropout layers. In the Dilated Causal Convolution within these blocks, the
dilation factor (d) is set to values in the set {1,2,4} and the output of each current layer will
serve as the input of the next layer. Finally, the prediction is output by the combination of
the Decomposition scheme and the Linear layers.
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This hybrid architecture is designed to address the complexities of time series data that
exhibit both long-term dependencies and seasonal patterns, making the model versatile
across different time series forecasting tasks. Furthermore, TCNs offer efficient parallel
computation, significantly reducing both the number of training parameters and the train-
ing time compared to traditional RNN- and Transformer-based solutions. This efficiency,
when combined with the direct computational characteristics of LSTF-Linear networks,
renders the TCN-Linear model particularly suitable for large-scale time series datasets.

In the model, we employed the mean squared error (MSE) as the loss function—a
commonly used metric in regression problems that calculates the mean squared error
between the predicted values and the actual values. The Adaptive Moment Estimation
(ADAM) optimizer [38] was utilized for network training due to its efficiency, robustness,
and ease of configuration, making it one of the preferred optimizers in deep learning
applications. Its role is to adjust the network parameters to minimize the loss function.
Additionally, we adopted early stopping to prevent overfitting. This technique terminates
the training process prematurely when the validation error stops decreasing after a certain
number of epochs, thereby ensuring the model’s generalization capability.

3. Experimental Evaluation

In this section, we evaluate the predictive capability, training cost, and applicability to
real financial data of the proposed model using three classical chaotic systems (the Lorenz
system, the Mackey–Glass system, and the Rossler system) and real-life stock data.

3.1. Dataset
3.1.1. Lorenz

The Lorenz equations were introduced in 1963 by Edward N. Lorenz [39] during his
research on atmospheric convection, marking the inception of chaotic research. The Lorenz
model is a dynamic system comprising three ordinary differential equations, representing
the three-dimensional state of convective rolls.

dx
dt

= −σ(x − y)

dy
dt

= −xz + rx − y

dz
dt

= xy − bz

(1)

when the parameters are set to σ = 10, b = 8/3, r = 28, the system behaves in a chaotic state.
In this state, with initial values set to x(0) = 1, y(0) = 0, and z(0) = 1, we generated time series
for the system’s three variables by employing the ODE45 integration method at a sampling
frequency of 200 Hz within the time interval (t in [0, 55]), which had 11,000 points. We
removed the first 3000 transient values and divided the remaining 8000 data points into
training, validation, and test sets in a 6:2:2 ratio.

3.1.2. Mackey–Glass

The Mackey–Glass system, introduced in 1977 by Michael C. Mackey and Leon
Glass [40], is a delay differential equation frequently utilized as a benchmark in chaotic
time series analysis.

.
x(t) = −bx(t) +

ax(t − τ)

1 + xc(t − τ)
(2)

when the parameters are set to a = 0.2, b = 0.1, c = 10, τ = 17, the system behaves in a
chaotic state. In this state, we generated a time series for the system by employing the
ODE45 integration method at a sampling frequency of 10 Hz within the time interval (t in
[0, 1100]), which had 11,000 points. We removed the first 3000 transient values and divided
the remaining 8000 data points into training, validation, and test sets in a 6:2:2 ratio.
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3.1.3. Rossler

The Rossler model, introduced in 1976 by the German biophysicist Otto E. Rössler [41],
is a chaotic system. Compared to the Lorenz model, the equations of the Rossler model
are simpler, and its phase diagram exhibits a clear spiral structure. This demonstrates that
complex chaotic behavior can be observed even in exceedingly simple systems.

dx
dt

= −(y + z)

dy
dt

= −x + ay

dz
dt

= b + z(x − c)

(3)

when the parameters are set to a = 0.2, b = 0.2, c = 5.9, the system behaves in a chaotic state.
In this state, with the initial values set to x(0) = 0, y(0) = 0, and z(0) = 0, we generated time
series for the system’s three variables by employing the ODE45 integration method at a
sampling frequency of 50 Hz within the time interval (t in [0, 220]), which had 11,000 points.
We removed the first 3000 transient values and divided the remaining 8000 data points into
training, validation, and test sets in a 6:2:2 ratio.

3.1.4. Google Stock Price

We collected stock trading data of Google Inc. (San Francisco, CA, USA) from 2014
to 2024 from public databases. This dataset encompasses key financial indicators over a
decade, including the opening price, closing price, highest price, lowest price of the day,
and trading volume of Google’s stock. As illustrated in Figure 6, we utilized the pairplot
method from the seaborn library to create a diagonal chart that showcases the relationships
between multiple variables, and selected the variables strongly correlated with the closing
price as features. Subsequently, we divided the 4858 data points into training, validation,
and test sets in a 6:2:2 ratio.
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3.2. Experiment Settings
3.2.1. Experimental Configuration

The main hardware environments of the experiments were as follows: AMD R5-5600X
CPU, NVIDIA RTX 3080Ti 16 GB GPU, and 16 GB of RAM, and the operating system of the
computer was Windows 10. The software configuration used for simulation experiments in
this study included CUDA Version 12.3, GPU Driver Version 546.29, torch 1.9.0+cu111, and
python 3.9.18, and the parameter settings are shown in Table 1.

Table 1. Hyperparameter settings.

Parameters Value

seed 42
batch_size 32
in_seq_len 24
out_seq_len 12
num_epochs 500
learning_rate 0.001
es_patience 15
lr_patience 5
kernel_size 25
num_layers 1
hidden_size 64
train_ratio 0.6
teaching_forcing_prob 0.75
dropout 0.2
criterion nn.MSELoss
optimizer optim.Adam

3.2.2. Prediction Evaluation Index

To evaluate the performance of each model, we set the MAE, MSE, RMSE, MAPE, and
R2, and their definitions are as follows:

MAE =
1
n

n

∑
i=1

|(yi − ŷi)| (4)

MSE =
1
n

n

∑
i=1

(
yi − ŷi)

2 (5)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (6)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (7)

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

where n is the length of the predicted series, yi is the true value, ŷi is the predicted value,
and y represents the mean of the true value of the sequence, respectively.

3.3. Results
3.3.1. Lorenz

As shown in Figures 7 and 8, these models can capture the dynamic changes of the
Lorenz system effectively. Their blue prediction curves align well with the red actual value
curves, except for the Transformer network, which exhibits significant noise and fluctuation
in its predictions. The results presented in Figure 9 and Table 2 further suggest that the
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TCN-Linear network, with the smallest number of training parameters, outperforms the
other models to varying degrees across various indexes.
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Table 2. Evaluation scores of Lorenz.

Index TCN-Linear Transformer LSTM RC

RMSE 0.02595169 1.38334787 0.29731486 0.10683146
MAE 0.01839166 1.03468537 0.19289005 0.07635882
MSE 0.00067349 1.91365147 0.08839613 0.06396773
R2 0.99999064 0.97296977 0.99877666 0.99997096

parameter 2853 234,435 17,859 13,689
epoch 240 46 112 101

3.3.2. Mackey–Glass

Due to the Mackey–Glass system’s time series containing only one dimension, the
networks can fit its curves more smoothly, as demonstrated in Figure 10. However, in the
phase space reconstruction shown in Figure 11, the Transformer network still exhibits more
noise compared to the other models. According to the results in Figure 12 and Table 3, the
error values of all models are quite low, with TCN-Linear continuing to exhibit the best
performance among them.

Entropy 2024, 26, x FOR PEER REVIEW 11 of 16 
 

 

3.3.2. Mackey–Glass 

Due to the Mackey–Glass system’s time series containing only one dimension, the 

networks can fit its curves more smoothly, as demonstrated in Figure 10. However, in the 

phase space reconstruction shown in Figure 11, the Transformer network still exhibits 

more noise compared to the other models. According to the results in Figure 12 and Table 

3, the error values of all models are quite low, with TCN-Linear continuing to exhibit the 

best performance among them. 

    
(a) (b) (c) (d) 

Figure 10. Predicted time series of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Trans-

former. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Predicted phase diagrams of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Trans-

former. 

Figure 10. Predicted time series of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Transformer.

Entropy 2024, 26, x FOR PEER REVIEW 11 of 16 
 

 

3.3.2. Mackey–Glass 

Due to the Mackey–Glass system’s time series containing only one dimension, the 

networks can fit its curves more smoothly, as demonstrated in Figure 10. However, in the 

phase space reconstruction shown in Figure 11, the Transformer network still exhibits 

more noise compared to the other models. According to the results in Figure 12 and Table 

3, the error values of all models are quite low, with TCN-Linear continuing to exhibit the 

best performance among them. 

    
(a) (b) (c) (d) 

Figure 10. Predicted time series of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Trans-

former. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Predicted phase diagrams of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Trans-

former. 
Figure 11. Predicted phase diagrams of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM;
(d) Transformer.



Entropy 2024, 26, 467 11 of 15Entropy 2024, 26, x FOR PEER REVIEW 12 of 16 
 

 

    
(a) (b) (c) (d) 

Figure 12. Predicted absolute errors of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Trans-

former. 

Table 3. Evaluation scores of Mackey–Glass. 

Index TCN-Linear Transformer LSTM RC 

RMSE 0.00018653 0.03591761 0.00122464 0.00094763 

MAE 0.00014705 0.02931397 0.00101639 0.00083345 

MSE 0.00000003 0.00129008 0.00000150 0.00000105 

R2 0.99999941 0.97798753 0.99997440 0.99996435 

parameter 951 234,049 17,217 8735 

epoch 76 13 163 69 

3.3.3. Rossler 

Similar to the previous two experiments, the networks demonstrated excellent per-

formance in fitting the time series of the Rossler system, as can be seen from Figures 13–

15. In Table 4 the RMSE, MAE, and MSE values were all very low, and the R2 values were 

very close to 1. Once again, TCN-Linear emerged as the top performer. 

    
(a) (b) (c) (d) 

Figure 13. Predicted time series of Rossler. (a) RC; (b) TCN-Linear; (c) LSTM; (d) Transformer. 

  
(a) (b) 

Figure 12. Predicted absolute errors of Mackey–Glass. (a) RC; (b) TCN-Linear; (c) LSTM;
(d) Transformer.

Table 3. Evaluation scores of Mackey–Glass.

Index TCN-Linear Transformer LSTM RC

RMSE 0.00018653 0.03591761 0.00122464 0.00094763
MAE 0.00014705 0.02931397 0.00101639 0.00083345
MSE 0.00000003 0.00129008 0.00000150 0.00000105
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3.3.3. Rossler

Similar to the previous two experiments, the networks demonstrated excellent perfor-
mance in fitting the time series of the Rossler system, as can be seen from Figures 13–15. In
Table 4 the RMSE, MAE, and MSE values were all very low, and the R2 values were very
close to 1. Once again, TCN-Linear emerged as the top performer.
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3.3.4. Google Stock Price 

To demonstrate the model’s applicability to real financial sequences, we selected 

Google’s stock data from the past decade for analysis and compared TCN-Linear’s per-

formance with that of hybrid models CNN-GRU [42], Seq2Seq [43], and Bi-LSTM [44], 

which have shown promising results in this domain. 

Due to the high frequency of fluctuations in real stock data, it is challenging for mod-

els to fully learn and fit the actual values without overfitting the data. As depicted in Fig-

ure 16, the prediction curves roughly outline the general trend of the stock price. The in-

dexes in Table 5 show a noticeable deterioration compared to the previous chaotic sys-

tems; however, the TCN-Linear model still demonstrates excellent predictive capabilities. 
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Table 4. Evaluation scores of Rossler.

Index TCN-Linear Transformer LSTM RC

RMSE 0.01509988 0.52885771 0.06465438 0.04373308
MAE 0.00645125 0.31585521 0.03655762 0.04769310
MSE 0.00022801 0.27969050 0.00418019 0.00374805
R2 0.99996984 0.97996159 0.99948332 0.99984731

parameter 2853 234,435 17,859 10,176
epoch 93 27 108 147

3.3.4. Google Stock Price

To demonstrate the model’s applicability to real financial sequences, we selected
Google’s stock data from the past decade for analysis and compared TCN-Linear’s perfor-
mance with that of hybrid models CNN-GRU [42], Seq2Seq [43], and Bi-LSTM [44], which
have shown promising results in this domain.

Due to the high frequency of fluctuations in real stock data, it is challenging for models
to fully learn and fit the actual values without overfitting the data. As depicted in Figure 16,
the prediction curves roughly outline the general trend of the stock price. The indexes in
Table 5 show a noticeable deterioration compared to the previous chaotic systems; however,
the TCN-Linear model still demonstrates excellent predictive capabilities.
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Table 5. Evaluation scores of the Google stock price.

Index TCN-Linear CNN-GRU Seq2Seq Bi-LSTM

RMSE 3.820 7.703 6.408 4.366
MAE 2.918 5.730 4.621 4.200
MSE 14.591 16.832 15.973 14.386
R2 0.976 0.921 0.964 0.953

MAPE 2.793% 5.964% 4.389% 3.763%

4. Conclusions

In this paper, a novel hybrid TCN-Linear model for the prediction of chaotic time
series is proposed. To enhance the capacity of the LSTF-Linear model, we integrated
it with the Temporal Convolutional Network model, which has long-term memory and
parallel computing capabilities, thereby circumventing the gradient issues associated with
RNNs and the loss of temporal scale information due to the attention mechanisms in
Transformers. Experiments conducted on time series generated by several classical chaotic
systems and real stock sequences demonstrate that our model is capable of capturing the
future trends of dynamic systems and making accurate predictions. It achieved the lowest
error metrics compared to other models, with the R2 value closest to 1. The novel structure
of our model offers fresh insights into solving LTSF problems. However, there are still
some limitations in our work. For instance, it is challenging to maintain low error rates in
multi-step predictions of multi-dimensional or high-frequency variable data. Moreover,
there is still a long way to go in terms of accurately restoring the dynamic behaviors and
patterns of chaotic systems. We believe that Recurrent Neural Networks and Reservoir
Computing hold promising potential in nonlinear dynamics analysis, so these are areas
we aim to explore in future improvements. Our future research will focus on designing
models that balance computational resources and prediction accuracy, and applying them
to more complex real-world engineering applications such as weather systems, turbulent
flow data, and industrial fault diagnosis.
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